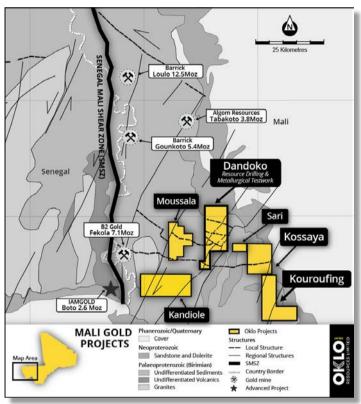


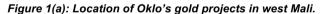
29th APRIL 2020

OKLO'S SK1 NORTH DISCOVERY CONFIRMED TO 240m VERTICAL DEPTH

Oklo Resources Limited ("Oklo" or "the Company") is pleased to report further highly encouraging results from the resource definition drilling program currently in progress at its flagship Dandoko Project located in west Mali, Africa.

HIGHLIGHTS


- ► Assay results received from a further 6 diamond (DD) holes and 1 reverse circulation (RC) hole from the SK1 North discovery at Seko.
- ► Further wide zones of gold mineralisation returned from step-out drilling at depth and along strike. Significant intersections include:
 - ▶ 8m at 4.98g/t gold from 185m including;
 - ▶ 2m at 18.85g/t gold from 185m, and
 - ▶ 23m at 2.50g/t gold from 209m including;
 - ▶ 5m at 5.45g/t gold from 210m
 - ▶ 16m at 4.34g/t gold from 122m including;
 - ▶ 4m at 10.46g/t gold from 123m including;
 - ▶ 1m at 30.30g/t gold from 123m
 - ► 6m at 7.49g/t gold from 242m including;
 - ► 1m at 28.60g/t gold from 242m
 - ▶ 12m at 2.33g/t gold from 131m including;
 - ➤ 3m at 6.67g/t gold from 140m
- ► High-grade mineralisation extended to a vertical depth of 240m (270m down dip) with individual grades of up to 28.60g/t gold recorded over 1m.
- ► The expanded RC and DD drilling program at SK1 North is ongoing both down dip and along strike with a further 18 holes completed and awaiting assays.
- ▶ The Company remains well-funded and with ongoing success, the evaluation of this exciting discovery is now planned to continue until the onset of the wet season (expected in July) subject to the potential impacts of the Covid-19 pandemic. As such, completion of Oklo's maiden Mineral Resource Estimate (MRE) may be rescheduled into 2H 2020.


"With the depth and strike extent of SK1 North growing with each batch of assay results received, we have decided to continue the drilling program to the start of the forthcoming wet season. While this may push the completion of our maiden MRE into 2H 2020, we hope that ongoing exploration success at SK1 North will be an equally rewarding outcome for shareholders." - commented Oklo's Managing Director, Simon Taylor.

Oklo Resources Limited ("Oklo" or "the Company") is pleased to report the receipt of further assay results from its expanded drilling program over SK1 North at Seko within the Company's flagship Dandoko Project.

Oklo's Dandoko Project is located within the Kenieba Inlier of west Mali, approximately 30km east of B2Gold's 7.1Moz Fekola Project and 50km south-southeast of Barrick's 12.5Moz Loulo Project (Figure 1(a)). The Company currently holds ~500km² of highly prospective ground in this emerging world-class gold region.

Extensive gold anomalies have previously been outlined by auger drilling along the 12km-long Dandoko gold corridor (Figure 1(b)). The potential of this corridor to host large, gold mineralised systems has been demonstrated by the recent drilling success at Seko and several other nearby prospect areas.

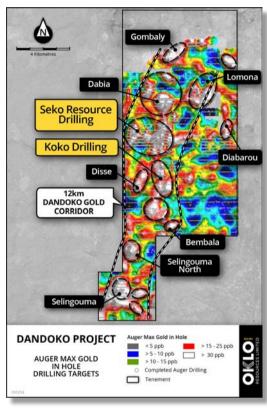


Figure 1(b): Location of Seko gold trends within the Dandoko gold corridor

SEKO DRILLING

Oklo's current field program is focused on infill drilling and closing off previously defined zones of gold mineralisation at Seko and adjoining areas in advance of its maiden MRE. Seko comprises five coherent auger gold trends (SK1-5) with a combined strike length of ~7km.

All assay results have now been received and reported from the initial phases of aircore (AC), reverse circulation (RC) and diamond core (DD) resource definition drilling at SK1, SK2 and SK3 to depths averaging 85m and up to 184m. The evaluation of the emerging SK1 North discovery is ongoing with the latest round of results reported in this announcement.

SK1 NORTH BACKGROUND

The initial phase of drilling at SK1 North, located at the northern end of SK1, returned a spectacular intersection of 47m at 10.95g/t gold from 48m¹, following which Oklo's Board approved additional RC drilling to test this emerging zone of high-grade gold mineralisation.

The follow-up drilling returned further exceptional intersections including 55m at 7.65g/t gold from 54m, 51m at 4.28g/t gold from 63m, 31m at 7.12g/t gold from 30m and 29m at 2.46g/t gold from 51m.²

¹ Refer ASX announcement 20th November 2019, "Spectacular Hit of 47m at 10.97g/t Gold from Seko"

 $^{^2}$ Refer ASX announcement 29th January 2020, "New High-Grade Zone Confirmed at Seko – 55m at 7.65g/t Gold"

A series of step-out DD holes testing the down-dip continuity of the high-grade gold mineralisation successfully intersected 30m at 8.54g/t gold from 135m³ and 38m at 5.65g/t gold from 159m⁴ in the deepest hole and 34m at 4.07g/t gold from 83m⁵ along strike.

Assay results received from a further 6 DD holes (1,302.2m) and 1 RC hole (177m) are reported in this release. The significant drill hole intersections are summarised in Tables 1 and 3 with all drill hole locations summarised in Table 2 and graphically presented in Figures 2 to 10.

SK1 NORTH DRILL RESULTS

The latest batch of assay results from step-out drilling at SK1 North has successfully extended the high-grade gold mineralisation to 240m vertically. The zone remains open at depth, with drilling ongoing both down dip and along strike.

Two of the DD holes were targeting depth extensions to the high-grade gold mineralisation previously reported from the discovery line (Section A, Figure 4), with both holes successfully intersecting significant gold mineralisation.

Hole RDSK20-066 encountered two zones of mineralisation: **8m at 4.98g/t gold** from 185m downhole (including **2m at 18.85g/t gold**) and **23m at 2.50g/t gold** from 209m downhole (including **5m at 5.45g/t gold** and **1m at 9.23g/t gold**). The gold mineralisation is associated with a fault-bounded, brecciated sulphide stockwork hosting more massive zones of weathered pyrite within variably weathered sediments (Figure 5). The pyrite-rich zones correlate with the gossanous zones observed up-dip in hole RDSK20-060 (30m at 8.54g/t gold)⁴.

The second step-out hole (RDSK20-068) confirmed high-grade gold mineralisation extending to at least 240m vertically, which is the deepest intersection returned to date from SK1 North. The hole returned **6m at 7.49g/t gold** from 242m downhole (including **1m at 28.60g/t gold**), partly within fresh rock before intersecting a late-stage (post mineralisation), flat-lying dolerite dyke over 17m (~14m true thickness, Figure 6). Below the dyke, a further **9m at 1.27g/t gold** was intersected from 274m.

Drilling has intersected similar late-stage dykes at SK2 and SK3, with the gold mineralisation extending below the cross-cutting features in these areas. They are also well known in the general region and are reported at other nearby operating mines.

A further step-out DD hole is currently in progress on Section A to a planned downhole depth of 360m (~290m vertical).

On Section E, located 40m north of Section A (Figure 3a), hole RDSK20-067 was completed to a downhole depth of 181m and successfully intersected **16m at 4.34g/t gold** from 122m (including **4m at 10.46g/t gold**) associated with gossanous and altered sediments. A second deeper DD hole (RDSK20-075) was recently completed to a downhole depth of 231m, intersecting altered sediments hosting pyrite stockworks and matrix supported breccia with an apparent fault-bounded upper contact correlating to the mineralised intervals observed in hole RDSK20-068 to the immediate south (Figure 8 photo of core hole RDSK20-075). Assay results are pending for this hole.

Step-out DD and RC drilling along strike at SK1 North continued to return further encouraging gold intersections. Hole RCSK20-218 drilled on Section C (Figure 3) intersected 12m at 2.33g/t gold from 131m, including 3m at 6.67g/t gold (Figure 9). Other significant intersections included 2m at 3.05g/t gold from 106m in hole RDSK20-63 to the south and 9m at 1.63g/t gold from 87m including 3m at 3.44g/t gold to the north of hole RDSK20-064.

The drilling completed to date has confirmed the SK1 North mineralisation over a strike length of 500m, which trends north to northeast and dips moderately to the east from surface. Drill coverage over the northernmost extent is currently being extended to investigate an interpreted change in strike towards the north. Further holes are planned down-dip to investigate the potential for additional high-grade mineralisation below the dolerite dyke.

⁴ Refer ASX announcement 1st April 2020, "SK1 North Confirmed Over 500m Includes 32m at 10.57g/t Gold"

⁵ Refer ASX announcement 25th February 2020, "SK1 Continues to Grow Along Strike And At Depth"

DRILL RESULTS PENDING

Drilling is ongoing at SK1 North with a further 18 holes completed and assay results expected in coming weeks. Assay results are also pending from approximately 9,500m of reconnaissance AC drilling between Koko and SK1, with drill samples from SK1 North currently being given priority at the laboratory.

COVID-19 UPDATE

Oklo and its staff and contractors have been minimally impacted by the Covid-19 pandemic to date and the Company continues to operate its programs within Mali as planned.

At present, Mali has implemented a closure of its borders for travel as well as a night-time curfew restricting evening travel.

The Company has a focus on the welfare of its employees and has implemented measures to ensure their well-being including; health screening and temperature monitoring, change in rosters, spatial distancing protocols, change in flow of staff to and from local community, and the minimisation of staff in the Bamako administrative office. The Company's expatriate staff departed the country prior to the border closure.

The supply of fuel and drilling consumables is ongoing with a suitable precautionary stockpiling occurring. No changes to the planned work programs have occurred other than a reduction in the volume of reconnaissance geophysical surveys being undertaken due to the large quantity of local labour support required. The situation is being continuously monitored by our in-country Director, Dr Madani Diallo and further actions may be appropriately undertaken as deemed necessary.

Table 1: Summary of significant SK1 North intersections

HOLE NO.	FROM (m)	TO (m)	WIDTH (m)	GOLD (g/t)
RCSK20-218	97	102	5	1.12
	105	107	2	1.60
	131	143	12	2.33
includes	140	143	3	6.67
RDSK20-063	96	99	3	1.85
	106	108	2	3.05
	110	111	1	3.17
RDSK20-064	87	96	9	1.63
includes	93	96	3	3.44
	135	142	7	1.60
RDSK20-066	185	193	8	4.98
includes	185	187	2	18.85
	209	232	23	2.50
includes	210	215	5	5.45
includes	225	226	1	9.23
	237	240	3	1.18
	243	246	3	1.67
RDSK20-067	122	138	16	4.34
includes	123	127	4	10.46
includes	123	124	1	30.30
includes	131	134	3	4.89
includes	136	137	1	5.54
RDSK20-068	242	248	6	7.49
includes	242	243	1	28.60
	274	283	9	1.27

Intervals are reported using a threshold where the interval has a 0.3g/t Au average or greater over the sample interval and selects all material greater than 0.10g/t Au allowing for up to two samples of included dilution every 10m. Sampling was completed as 1m for DD/RC/AC drilling. * hole ended in mineralisation

Figure 2: Drill plan showing Leapfrog gold isosurfaces from recent and previous drilling programs (AC, RC and DD) over Seko Anomalies SK1-5

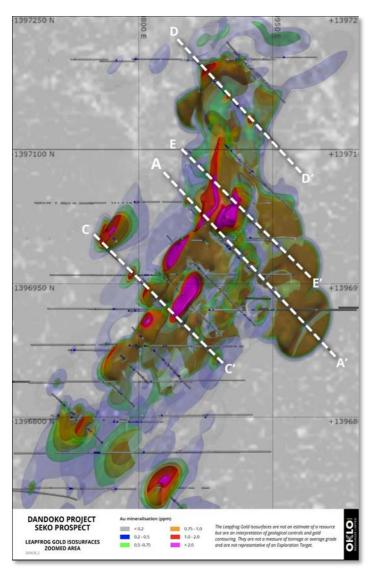


Figure 3 (a): SK1 North Leapfrog gold isosurfaces, showing location of Sections A, C, D and E

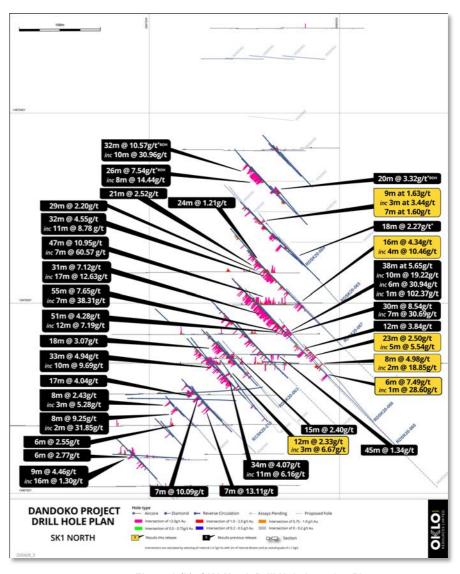


Figure 3 (b): SK1 North Drill Hole Location Plan

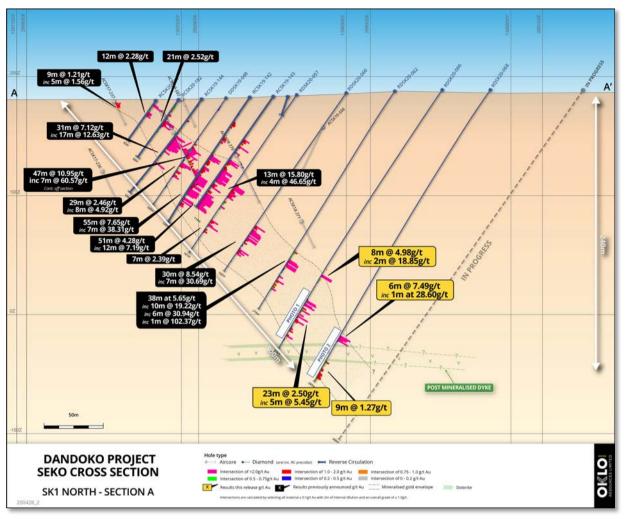


Figure 4: SK1 North Cross Section A-A'

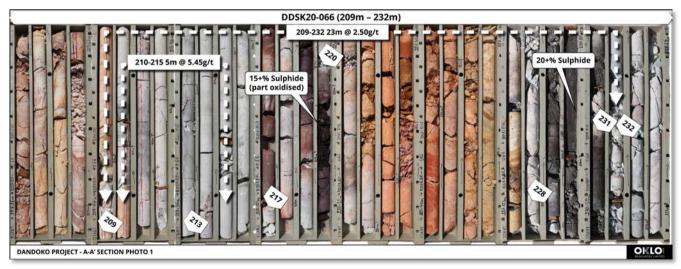


Figure 5: Photo of diamond core from hole DDSK20-066 (209m – 232m) showing altered sediments hosting gossanous zones.

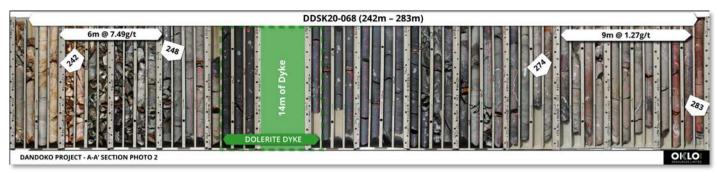


Figure 6: Photo of diamond core from hole DDSK20-068 (242m – 283m) showing altered sediments hosting gossanous zones and post mineralised dolerite dyke

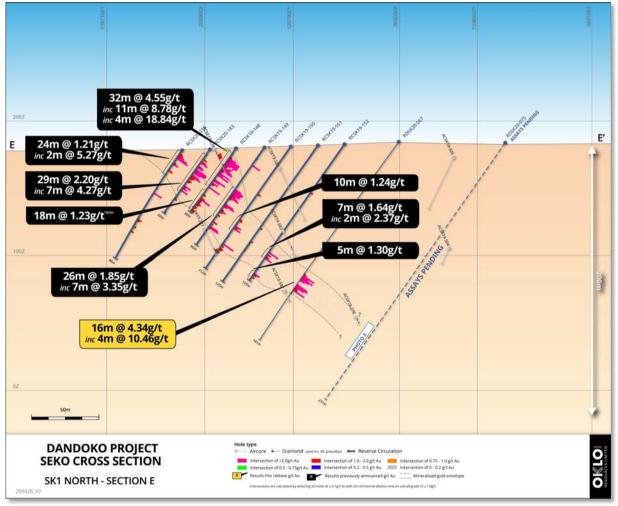


Figure 7: SK1 North Cross Section E-E'

Figure 8: Photo of diamond core from hole DDSK20-075 (186m – 225m) showing altered sediments hosting gossanous zones (assay results pending)

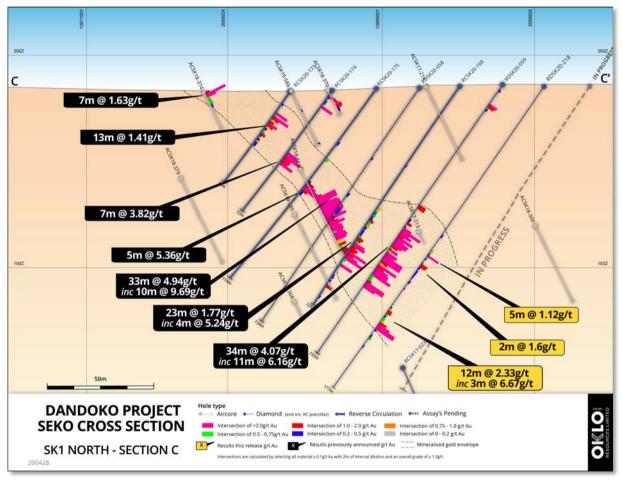


Figure 9: SK1 North Cross Section C-C'

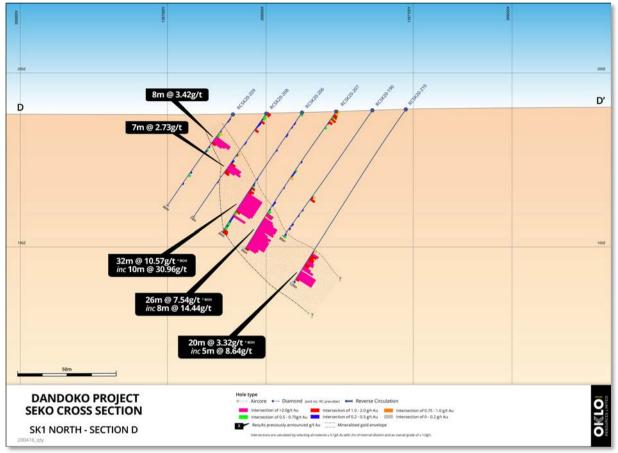


Figure 10: SK1 North Cross Section D-D'

- ENDS -

This announcement is authorised for release by Oklo's Managing Director, Simon Taylor.

For further information, please contact:

Simon Taylor

Managing Director

T: +61 2 8319 9233

E: staylor@okloresources.com

Table 2: SK1 North RC & DD drill hole locations

HOLE NO.	EASTING	NORTHING	RL	LENGTH	AZIMUTH	INCL
RCSK20-218	268906	1396845	187	177.0	315	-55
RDSK20-063	268920	1396863	187	202.5	315	-55
RDSK20-064	268951	1397050	181	160.0	315	-55
RDSK20-065	269000	1397000	184	215.4	315	-55
RDSK20-066	269045	1396845	189	256.8	315	-55
RDSK20-067	269002	1396945	186	181.0	315	-55
RDSK20-068	269072	1396815	189	286.5	315	-55

ABOUT OKLO RESOURCES

Oklo Resources is an ASX listed gold exploration company with a total landholding of 1,405km² covering highly prospective greenstone belts in Mali, West Africa. The Company's current focus is on its West Mali landholding (~405km²), and in particular its flagship Dandoko Project located east of the prolific Senegal-Mali Shear Zone and in close proximity to numerous world-class gold operations. The Company has a corporate office located in Sydney, Australia and an expert technical team based in Bamako, Mali, led by Dr Madani Diallo who has previously been involved in several significant discoveries totalling circa 30Moz gold.



Figure 11: Location of Oklo Projects in West and South Mali

Competent Person's Declaration

The information in this announcement that relates to Exploration Results is based on information compiled by geologists employed by Africa Mining (a wholly owned subsidiary of Oklo Resources) and reviewed by Mr Simon Taylor, who is a member of the Australian Institute of Geoscientists. Mr Taylor is the Managing Director of Oklo Resources Limited. Mr Taylor is considered to have sufficient experience deemed relevant to the style of mineralisation and type of deposit under consideration, and to the activity that he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves" (the 2012 JORC Code). Mr Taylor consents to the inclusion in this report of the matters based on this information in the form and context in which it appears.

This report contains information extracted from previous ASX market announcements reported in accordance with the JORC Code (2012) and available for viewing at www.okloresources.com. Oklo Resources confirms that in respect of these announcements it is not aware of any new information or data that materially affects the information included in any original ASX market announcement. The announcements are as follows:

DANDOKO PROJECT:

Announcements dated 21st December 2016, 30th January 2017, 21st February 2017, 3rd March 2017, 7th March 2017, 15th March 2017, 30th March 2017, 6th April 2017, 26th April 2017, 29th May 2017, 21st June 2017, 12th July 2017, 25th July 2017, 14th August 2017, 16th August 2017, 4th September 2017, 28th November 2017, 5th December 2017, 20th December 2017, 5th February 2018, 22nd February 2018, 8th March 2018, 28th March 2018, 3rd May 2018, 16th May 2018, 22nd May 2018, 2nd July 2018, 6th August 2018, 28th August 2018, 3rd September 2018, 19th September 2018, 30th January 2019, 6th March 2019, 15th August 2019, 22nd October 2019, 20th November 2019, 10th December 2019, 17th December 2019, 14th January 2020, 20th January 2020, 29th January 2020, 25th February 2020, 1st April 2020 and 7th April2020.

Table 3: SK1 North RC and DD assay results ≥0.10g/t Au

Hole ID	From	То	Grade
RCSK20-218	1	2	0.26
RCSK20-218	2	3	0.12
RCSK20-218	3	4	0.35
RCSK20-218	4	5	0.11
RCSK20-218	10	11	2.44
RCSK20-218	26	27	0.28
RCSK20-218	31	32	0.17
RCSK20-218	88	89	0.43
RCSK20-218	89	90	0.33
RCSK20-218	95	96	0.13
RCSK20-218	97	98	0.55
RCSK20-218	98	99	0.89
RCSK20-218	99	100	0.39
RCSK20-218	100	101	3.26
RCSK20-218	101	102	0.53
RCSK20-218	102	103	0.29
RCSK20-218	103	104	0.15
RCSK20-218	104	105	0.25
RCSK20-218	105	106	1.81
RCSK20-218	106	107	1.39
RCSK20-218	107	108	0.40
RCSK20-218	108	109	0.45
RCSK20-218	109	110	0.28
RCSK20-218	110	111	0.41
RCSK20-218	111	112	0.26
RCSK20-218	112	113	0.33
RCSK20-218	113	114	0.22
RCSK20-218	114	115	0.13
RCSK20-218	115	116	0.49
RCSK20-218	116	117	0.34
RCSK20-218	117	118	0.11
RCSK20-218	119	120	0.21
RCSK20-218	120	121	0.13
RCSK20-218	125	126	0.13
RCSK20-218	126	127	0.16
RCSK20-218	129	130	0.25
RCSK20-218	130	131	0.34
RCSK20-218	131	132	0.75
RCSK20-218	132	133	1.06
RCSK20-218	133	134	1.14
RCSK20-218	134	135	0.56
RCSK20-218	135	136	0.42
RCSK20-218	136	137	0.60
RCSK20-218	137	138	0.59

		-	Grade
Hole ID	From	То	
RCSK20-218	138	139	0.89
RCSK20-218	139	140	1.91
RCSK20-218	140	141	3.27
RCSK20-218	141	142	11.10
RCSK20-218	142	143	5.65
RCSK20-218	143	144	0.43
RCSK20-218	144	145	0.18
RCSK20-218	146	147	0.31
RCSK20-218	147	148	0.34
RCSK20-218	148	149	0.60
RCSK20-218	149	150	0.16
RCSK20-218	150	151	0.10
RCSK20-218	151	152	0.14
RCSK20-218	152	153	0.22
RCSK20-218	153	154	0.21
RCSK20-218	154	155	0.19
RCSK20-218	155	156	0.10
RCSK20-218	156	157	0.12
RCSK20-218	157	158	0.11
RCSK20-218	159	160	0.11
RCSK20-218	174	175	0.11
RCSK20-218	175	176	0.15
RDSK20-063	96	97	0.73
RDSK20-063	97	98	2.47
RDSK20-063	98	99	2.36
RDSK20-063	105	106	0.22
RDSK20-063	106	107	5.09
RDSK20-063	107	108	1.00
RDSK20-063	108	109	0.12
RDSK20-063	110	111	3.17
RDSK20-063	118	119	0.84
RDSK20-063	121	122	0.22
RDSK20-063	122	123	0.29
RDSK20-063	134	135	0.12
RDSK20-063	137	138	0.32
RDSK20-063	156	157	0.15
RDSK20-063	157	158	0.20
RDSK20-063	159	160	0.80
RDSK20-064	5	6	0.11
RDSK20-064	6	7	0.25
RDSK20-064	66	67	0.19
RDSK20-064	71	72	0.18
RDSK20-064	72	73	0.16
RDSK20-064	73	74	0.17
=		, .	J. 1.1

Hele ID	E	Ta	Grade
Hole ID	From	То	
RDSK20-064	80	81	0.10
RDSK20-064	83	84	0.70
RDSK20-064	84	85	0.18
RDSK20-064	85	86	0.36
RDSK20-064	86	87	0.39
RDSK20-064	87	88	0.86
RDSK20-064	88	89	0.78
RDSK20-064	89	90	0.81
RDSK20-064	90	91	0.60
RDSK20-064	91	92	0.70
RDSK20-064	92	93	0.59
RDSK20-064	93	94	6.35
RDSK20-064	94	95	1.56
RDSK20-064	95	96	2.42
RDSK20-064	96	97	0.45
RDSK20-064	102	103	0.19
RDSK20-064	103	104	0.13
RDSK20-064	104	105	0.12
RDSK20-064	105	106	0.59
RDSK20-064	106	107	0.59
RDSK20-064	107	108	0.26
RDSK20-064	109	110	0.89
RDSK20-064	110	111	0.15
RDSK20-064	112	113	1.01
RDSK20-064	113	114	0.68
RDSK20-064	114	115	0.57
RDSK20-064	115	116	0.38
RDSK20-064	116	117	0.48
RDSK20-064	117	118	0.16
RDSK20-064	120	121	0.12
RDSK20-064	121	122	0.44
RDSK20-064	122	123	0.23
RDSK20-064	123	124	0.10
RDSK20-064	124	125	0.44
RDSK20-064	125	126	0.34
RDSK20-064	126	127	0.27
RDSK20-064	127	128	0.20
RDSK20-064	128	129	0.22
RDSK20-064	129	130	0.45
RDSK20-064	134	135	0.43
RDSK20-064	135	136	0.12
RDSK20-064	136	137	3.98
RDSK20-064	137	138	1.10
RDSK20-064	138	139	0.91
RDSK20-064	139	140	3.97
NU3N2U-004	139	140	<u> </u>

Hole ID	From	То	Grade
RDSK20-064	140	141	0.11
RDSK20-064	141	142	0.63
RDSK20-065	109	110	0.20
RDSK20-065	110	111	0.84
RDSK20-065	111	112	0.69
RDSK20-065	124	125	0.40
RDSK20-065	125	126	0.27
RDSK20-065	126	127	0.32
RDSK20-065	127	128	0.89
RDSK20-065	128	129	0.38
RDSK20-065	132	133	0.27
RDSK20-065	133	134	0.79
RDSK20-065	139	140	0.33
RDSK20-065	140	141	0.60
RDSK20-065	184	185	0.23
RDSK20-065	188	189	0.21
RDSK20-065	191	192	0.86
RDSK20-065	192	193	0.13
RDSK20-065	193	194	0.28
RDSK20-065	197	198	0.20
RDSK20-066	179	180	0.92
RDSK20-066	185	186	15.50
RDSK20-066	186	187	22.20
RDSK20-066	187	188	0.16
RDSK20-066	188	189	0.11
RDSK20-066	189	190	0.88
RDSK20-066	190	191	0.50
RDSK20-066	191	192	0.16
RDSK20-066	192	193	0.31
RDSK20-066	193	194	0.14
RDSK20-066	196	197	0.10
RDSK20-066	207	208	0.10
RDSK20-066	208	209	0.14
RDSK20-066	209	210	0.47
RDSK20-066	210	211	4.47
RDSK20-066	211	212	9.10
RDSK20-066	212	213	0.69
RDSK20-066	213	214	3.62
RDSK20-066	214	215	9.37
RDSK20-066	215	216	0.11
RDSK20-066	217	218	1.93
RDSK20-066	218	219	0.65
RDSK20-066	219	220	4.20
RDSK20-066	220	221	0.67
RDSK20-066	221	222	0.32

Hole ID	From	То	Grade
RDSK20-066	222	223	0.80
RDSK20-066	223	224	2.42
RDSK20-066	224	225	0.86
RDSK20-066	225	226	9.23
RDSK20-066	226	227	0.44
RDSK20-066	227	228	0.22
RDSK20-066	228	229	1.22
RDSK20-066	229	230	4.30
RDSK20-066	230	231	1.58
RDSK20-066	231	232	0.85
RDSK20-066	232	233	0.16
RDSK20-066	233	234	0.12
RDSK20-066	234	235	0.28
RDSK20-066	235	236	0.56
RDSK20-066	236	237	0.42
RDSK20-066	237	238	1.23
RDSK20-066	238	239	0.45
RDSK20-066	239	240	1.86
RDSK20-066	243	244	1.08
RDSK20-066	244	245	3.11
RDSK20-066	245	246	0.82
RDSK20-066	246	247	0.19
RDSK20-066	247	248	0.22
RDSK20-066	248	249	0.28
RDSK20-066	250	251	0.16
RDSK20-066	251	252	0.11
RDSK20-066	253	254	0.11
RDSK20-067	120	121	0.18
RDSK20-067	121	122	0.28
RDSK20-067	122	123	1.24
RDSK20-067	123	124	30.30
RDSK20-067	124	125	2.75
RDSK20-067	125	126	5.35
RDSK20-067	126	127	3.45
RDSK20-067	127	128	2.04
RDSK20-067	128	129	0.19
RDSK20-067	129	130	0.10
RDSK20-067	131	132	4.63
RDSK20-067	132	133	6.28

Hole ID	From	То	Grade
RDSK20-067	133	134	3.77
RDSK20-067	134	135	1.32
RDSK20-067	135	136	1.70
RDSK20-067	136	137	5.54
RDSK20-067	137	138	0.72
RDSK20-067	138	139	0.72
RDSK20-067	139	140	0.25
RDSK20-067	150	151	0.23
RDSK20-067	155	156	0.11
RDSK20-067	157	158	0.11
RDSK20-067	166	167	0.13
RDSK20-067	242	243	28.60
RDSK20-068	243	244	3.95
RDSK20-068	243	244	3.45
RDSK20-068	245	245	2.27
RDSK20-068	245	247	6.29
RDSK20-068	247	247	0.29
RDSK20-068	248	249	0.10
RDSK20-068	249	250	0.10
RDSK20-068	250	251	0.13
RDSK20-068	251	251	0.13
RDSK20-068	266	267	0.13
RDSK20-068	267	268	1.77
RDSK20-068	268	269	0.51
RDSK20-068	269	270	0.20
RDSK20-068	270	271	0.20
RDSK20-068	273	274	0.73
RDSK20-068	274	275	1.10
RDSK20-068	275	276	1.01
RDSK20-068	276	277	0.80
RDSK20-068	277	278	0.38
RDSK20-068	278	279	1.51
RDSK20-068	279	280	1.73
RDSK20-068	280	281	1.15
RDSK20-068	281	282	1.78
RDSK20-068	282	283	1.97
RDSK20-068	283	284	0.74
RDSK20-068	284	285	0.85
11001120-000	207	are listed	0.00

NB: All gold assays ≥0.1g/t are listed.

JORC CODE, 2012 EDITION – TABLE 1 Section 1 Sampling Techniques and Data

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
Sampling techniques	 Nature and quality of sampling, measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	required. RC Samples were collected in situ at the drill site and are split collecting 2 to 3 kg per sample. Certified reference material and sample duplicates were inserted at regular intervals. DD samples are cut to half core on 1m intervals. All samples were submitted SGS, Bamako Mali
Drilling techniques	Drill type (eg core, reverse circulation, open <hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face<sampling bit="" or<br="">other type, whether core is oriented and if so, by what method, etc).</sampling></hole 	 RC drilling was carried out by AMS drilling DD drilling was undertaken by AMS drilling and utilised PQ and HQ triple tube drilling
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 An initial visual estimate of RC sample recovery was undertaken at the drill rig for each sample metre collected. Collected samples were weighed to ensure consistency of sample size and monitor sample recoveries. For DD core recovery and RQD observations are made. A number of zones of poor recovery were encountered in drilling. Where recovery has been deemed to be poor or was null it has been treated as having a 0ppm grade in any compositing undertaken. No systematic sampling issue, recovery issue or bias was picked up and it is therefore considered that both sample recovery and quality is adequate for the drilling technique employed
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill samples were geologically logged by Oklo Resources subsidiary Africa Mining geologists. Geological logging used a standardised logging system.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non<core, and="" dry.<="" etc="" li="" or="" riffled,="" rotary="" sampled="" sampled,="" split,="" tube="" wet="" whether=""> For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub<sampling li="" maximise="" of="" representivity="" samples.<="" stages="" to=""> Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second<half li="" sampling.<=""> </half></sampling></core,>	 ▶ RC samples were split utilizing a 3 tier riffle splitter with a 1m sample being taken. ▶ Duplicates were taken to evaluate representativeness ▶ Further sample preparation was undertaken at the SGS laboratories by SGS laboratory staff ▶ All DD core was ½ cut and ¼ cut when a duplicate sample was taken. ▶ Duplicates were taken to evaluate representativeness ▶ At the laboratory, samples were weighed, dried and fine crushed to 70% <2mm (jaw crusher), pulverized and split to 85 %<75 um. Gold is

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	Whether sample sizes are appropriate to the grain size of the material being sampled.	assayed by fire assay (50g charge) with an AAS Finish.
		Sample pulps were returned from the SGS laboratory under secure "chain of custody" procedure by Africa Mining staff and are being stored in a secure location for possible future analysis.
		Sample sizes and laboratory preparation techniques are considered to be appropriate for this early stage exploration and the commodity being targeted.
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 Analysis for gold on AC, RC and diamond samples is undertaken at SGS Bamako by 50g Fire Assay with an AAS finish to a lower detection limit of 10ppb Au.
laboratory tests	 For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in 	Fire assay is considered a "total" assay technique.
	determining the analysis including instrument make and model, reading times, calibrations factors	
	 applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	A review of certified reference material and sample blanks inserted by the Company indicated no significant analytical bias or preparation errors in the reported analyses.
		Results of analyses for field sample duplicates are consistent with the style of mineralisation evaluated and considered to be representative of the geological zones which were sampled.
		Internal laboratory QAQC checks are reported by the laboratory and a review of the QAQC reports suggests the laboratory is performing within acceptable limits.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	 All drill hole data is paper logged at the drill site and then digitally entered by Company geologists at the site office.
assaying	The use of twinned holes.	 All digital data is verified and validated by the
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	Company's database consultant in Paris before loading into the drill hole database.
	Discuss any adjustment to assay data.	No twinning of holes was undertaken in this program.
		Reported drill results were compiled by the company's geologists, verified by the Company's database administrator and exploration manager.
		No adjustments to assay data were made.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down<hole surveys),="" trenches,<br="">mine workings and other locations used in Mineral</hole> 	positioned using differential GPS (DGPS).
	Resource estimation.	 Accuracy of the DGPS < +/< 0.1m and is considered appropriate for this level of exploration
	Specification of the grid system used.Quality and adequacy of topographic control.	► The grid system is UTM Zone 29N
Data spacing	► Data spacing for reporting of Exploration Results.	► RC and DD drilling is now being undertaken on a
and distribution	► Whether the data spacing and distribution is sufficient to establish the degree of geological and	~20x40m spacing as infill undertaken in areas of identified higher grade zones.
	grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	 Drilling reported in this program is being designed to infill or extend known mineralisation to a sufficient density of drilling to enable the estimation
	▶ Whether sample compositing has been applied.	of a maiden resource.
Orientation of data in relation to geological	tata in unbiased sampling of possible structures and the lation to unbiased sampling of possible structures and the extent to which this is known, considering the its relation to lithological and s	knowledge on exact location of mineralisation and its relation to lithological and structural boundaries is not accurately known. However, the current hole
structure	► If the relationship between the drilling orientation and the orientation of key mineralised structures is	orientation is considered appropriate for the program to reasonably assess the prospectivity of

CRITERIA	JORC CODE EXPLANATION	COMMENTARY
	considered to have introduced a sampling bias, this should be assessed and reported if material.	known structures interpreted from other data sources.
Sample security	► The measures taken to ensure sample security.	RC and diamond samples were collected from the company camp by SGS and taken to the SGS laboratory in Bamako under secure "chain of custody" procedure by Africa Mining staff.
		Sample pulps were returned from the SGS laboratory under secure "chain of custody" procedure by Africa Mining staff and have been stored in a secure location.
		The AC samples remaining after splitting are removed from the site and trucked to the exploration camp where they are stored under security for future reference for a minimum of 6 months
Audits or reviews	► The results of any audits or reviews of sampling techniques and data.	There have been no external audit or review of the Company's sampling techniques or data at this early exploration stage.

Section 2 Reporting of Exploration Results

CRITERIA	JORC CODE EXPLANATION	CRITERIA
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The results reported in this report are all contained within the Dandoko Exploration Permit, Gombaly Exploration Permit which are held 100% by Africa Mining SARL, a wholly owned subsidiary of Oklo Resources Limited. The Dandoko permit (100km²) which was renewed on the 10/8/17, for a period of 3 years and renewable twice, each for a period of 2 years: The Gombaly permit (34km²) which was granted on the 10/8/17, for a period of 3 years and renewable twice, each for a period of 2 years
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The area that is presently covered by the Dandoko permit was explored intermittently by Compass Gold Corporation between 2010 and 2013. Exploration consisted of aeromagnetic surveys, gridding, soil sampling and minor reconnaissance (RC) drilling. The area that is presently covered by the Mousalla permit was explored intermittently by Compass Gold Corporation between 2010 and 2013. Exploration consisted of aeromagnetic surveys, gridding, soil sampling. Ashanti Mali undertook reconnaissance soil sampling surveys over part of the license area.
Geology	▶ Deposit type, geological setting and style of mineralisation.	 The deposit style targeted for exploration is orogenic lode gold. This style of mineralisation can occur as veins or disseminations in altered (often silicified) host rock or as pervasive alteration over a broad zone. Deposit are often found in close proximity to linear geological structures (faults & shears) often associated with deep<seated li="" structures.<=""> Lateritic weathering is common within the project area. The depth to fresh rock is variable and may extend up to 50-70m below surface and in this drill program weathering of >150m was encountered </seated>

CRITERIA	JORC CODE EXPLANATION	CRITERIA
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Locations are tabulated within the report and are how on plans and sections within the main body of this announcement. Dip of lithologies and/or mineralisation are not currently known. Drilling was oriented based on dips of lithologies observed ~5km to the north of the prospect and may not reflect the actual dip.
Data aggregation methods	 ▶ In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut<off and="" are="" be="" grades="" li="" material="" should="" stated.<="" usually=""> ▶ Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. ▶ The assumptions used for any reporting of metal equivalent values should be clearly stated. </off>	 Intervals are reported using a threshold where the interval has a 0.3 g/t Au average or greater over the sample interval and selects all material greater than 0.10 g/t Au allowing for up to 2 samples of included dilution every 10m. No grade top cut off has been applied to full results presented in Significant Intersection Table. No metal equivalent reporting is used or applied
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The results reported in this announcement are considered to be of an early stage in the exploration of the project. Mineralisation geometry is not accurately known as the exact orientation and extent of known mineralised structures are not yet determined. Mineralisation results are reported as "downhole" widths as true widths are not yet known
Diagrams	► Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Drill hole location plans are provided in earlier releases with new holes tabulated within this release.
Balanced reporting	► Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	 Drill hole locations are provided in earlier reports. All assays received of >=0.1ppm have been reported. No high cuts to reported data have been made.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No other exploration data that is considered meaningful and material has been omitted from this report
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large<scale drilling).<="" li="" step<out=""> Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. </scale>	► AC, RC and diamond drilling is ongoing on the Company's SK1 North prospect with a view to completing a resource estimate for the Seko prospect in Q2, 2020.