

30 April 2020 ASX RELEASE

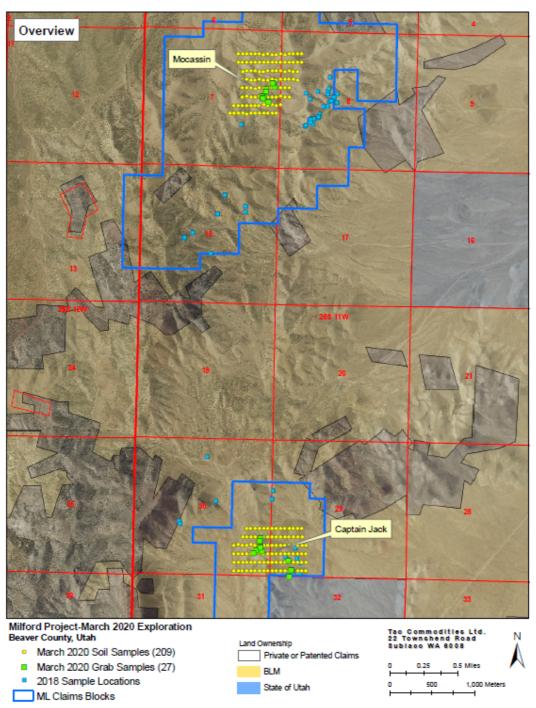
ROCK SAMPLING RETURNS UP TO 17.4 g/t Au & 8760 g/t Ag

- Reconnaissance rock sampling returns high grade results at Milford Project across the Captain Jack West and Moccasin Prospects areas.
- Significant results of <u>17.4 g/t Au, 1.71% Cu and 8760 g/t Ag</u> were returned from grab samples at the Captain Jack West Prospect.
- Moccasin returned significant results of 4.03 g/t Au, 1.98% Cu and 1560 g/t Ag.
- As part of the phase 1 exploration program a total of 209 soil geochemical samples were also collected at Captain Jack (600m by 900m) and Moccasin (700m by 700m). These samples are currently at the laboratory awaiting results in the coming weeks.

Tao Commodities Limited ("TAO" or "the Company") (ASX: TAO) is pleased to announce assays results from initial reconnaissance rock sampling completed at its Milford Project in Beaver County, Utah, USA. Exploration comprised early stage reconnaissance style grab sampling as part of the Company's Phase 1 exploration programme that aimed to test the gold potential at priority areas within the Project.

Previous exploration conducted by the Company primarily focused on replacement style Manto-style base metal targets (Zn, Pb, Ag) within altered limestones and sediments. Several phases of exploration since TAO acquired the project confirmed historical base metal results as well as locating new prospect areas. Due to base metal focus at the time, no assaying for gold was completed.

A review of historical work has shown that two prospect areas within the Milford Project returned anomalous gold assay results from reconnaissance rock sampling completed by Firestrike Resources Ltd in 2013^1 . This work returned gold anomalous assays from the Captain Jack and Moccasin areas, although no further work appears to have been completed subsequently. A single grab sample from old workings in the Moccasin area returned over 7 g/t Au with 110 g/t Ag hosted in altered and quartz veined sediments whilst a sample of outcropping ferruginous quartz veins at Captain Jack assayed 0.99 g/t Au^1 .


A total of 27 rock samples were collected in the current programme targeting these two areas. Samples were collected as grab samples from historical mine dumps, prospect pits & trenches, and outcrop or sub crop/float.

Previous ASX Announcements

05/02/2013- Firestrike Resources Ltd – ASX announcement – Widespread high grade silver, lead and zinc with elevated copper and gold discovered at surface.

Significant results of <u>17.4 g/t Au</u>, <u>1.71% Cu and 8760 g/t Ag</u> were returned from grab samples at the Captain Jack West Prospect, whilst at Moccasin, significant results of <u>4.03</u> <u>a/t Au</u>, <u>1.98% Cu and 1560 a/t Ag</u> were received.

Overview Map- Milford Project. Green- Rock samples (27), Yellow- Soil Samples (209, Results Awaited)

As part of this programme, a total of 209 soil geochemical samples were also collected at Captain Jack (600m by 900M) and Moccasin (700m by 700m). These samples are currently at the laboratory with results expected in coming weeks.

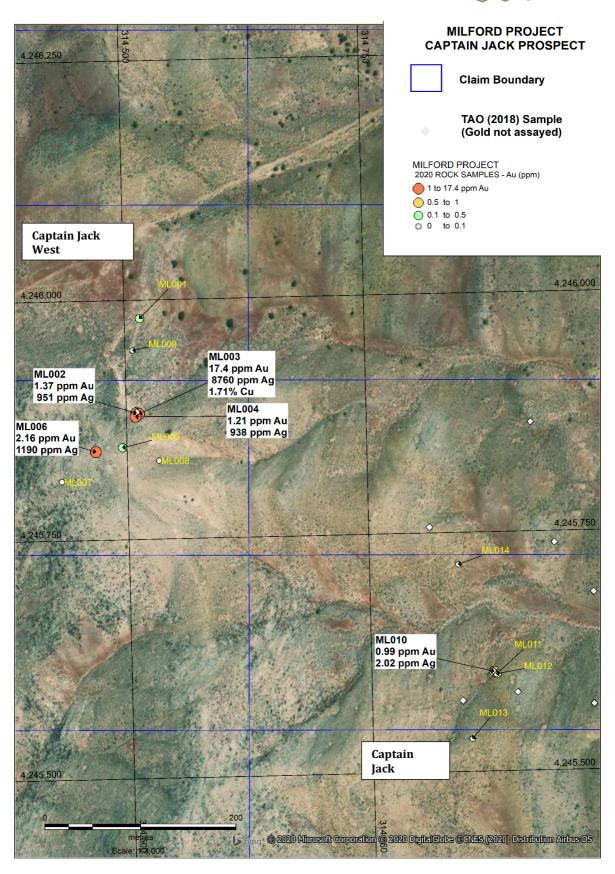
CAPTAIN JACK

The Captain Jack Project is located in the southern part of the Milford Project. Work by previous explorers¹ had located outcropping altered sediments and carbonate rocks with anomalous gold and base metals in the Captain Jack area. Due to the base metals focus at the time, sampling completed by TAO in 2018 was not analyzed for gold².

A total of 14 samples (ML001-014) were collected at two main areas, the Captain Jack and Captain Jack West Prospects. Five samples returned anomalous gold, ranging from 0.99 to 17.4 g/t Au. Silver results ranged from 0.25 to 8760 g/t, with four samples assaying >100 g/t (ppm) Ag (see Table 1 & 2)

The Captain Jack West prospect is associated with a series of old shallow workings/pits in altered silicified carbonate and sedimentary rocks with evidence of ex-sulphide textures and copper oxide staining. A total of nine samples (ML001-009) were collected mainly from old prospecting/mine dumps, outcrop or float/subcrop proximal to road cuttings. Sample ML03 (see Table 1) assayed 17.4 g/t Au, 8760 g/t Ag, 1.71% Cu with associated anomalous As, Pb, Sb and Zn to ppm levels.

Rock Sample ML003 (17.4 g/t Au, 8760 g/t Ag and 1.71% Cu)


At Captain Jack, significant results to 0.99 g/t Au and 2.02 g/t Ag with elevated As were returned from sample ML010 (see Table 1). Mineralisation was hosted within brown to purple weakly bedded altered carbonate with possible fine-grained ex-sulphide pitting and quartz veinlets.

Further detailed prospect-scale mapping is required to better understand the orientation and dimensions of the mineralisation.

Previous ASX Announcements

- 1- 05/02/2013- Firestrike Resources Ltd ASX announcement Widespread high grade silver, lead and zinc with elevated copper and gold discovered at surface.
- 2- 09/07/2018 TAO Commodities Ltd ASX Announcement High grade lead, zinc and copper confirmed.

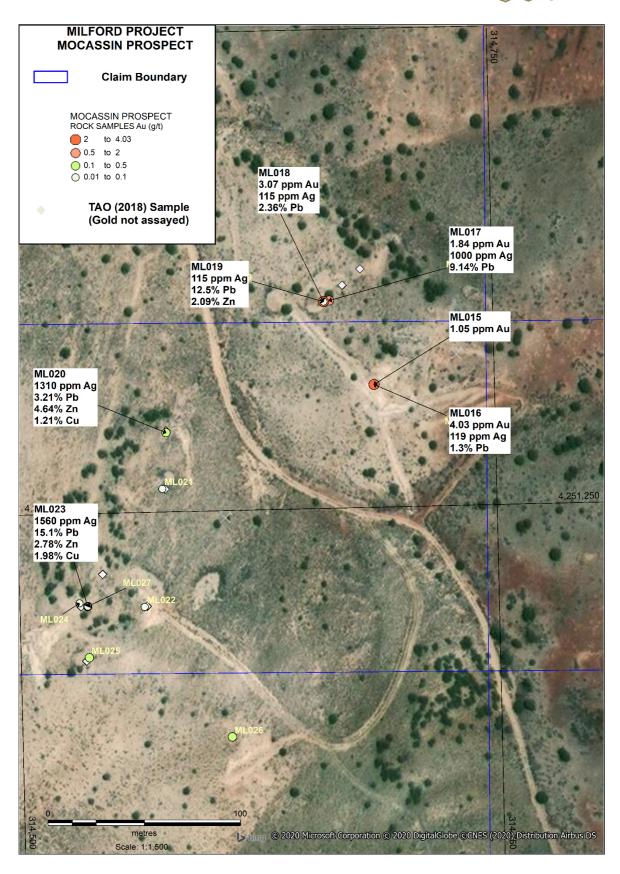
Captain Jack Prospect- Rock Sampling results -Au (g/t)

MOCASSIN PROSPECT

A total of 13 reconnaissance rock samples (ML015-027) were collected at the Moccasin Prospect located in the northern portion of the Milford Project. The work refocused on a series of old workings orientated northeast over several hundred meters strike where 2018 samples collected by the company were not analyzed for gold but returned anomalous silver.

Four samples, (ML015-018) returned gold values of +1 g/t (all samples ranged from 0.05 to 4.03 g/t, see Table 3)with associated silver to 1000 g/t. For all Moccasin samples, silver ranged from 0.27 to 1560 g/t, with nine samples assaying >100 g/t Ag. A number of samples also returned elevated base metal assay results as shown in Table 1. Significant results were 15.1% Pb, 4.64% Zn and 1.21% Cu.

Mineralisation was traced along a northeasterly orientation for over 200m and is hosted within dark grey- to grey-brown altered carbonate to cherty carbonate rocks with moderate to intense ferrugenization and pitting after sulphide. Some remnant sulphide including pyrite and chalcopyrite together with copper oxides was observed.


Moccasin Prospect- ML016 Dump sample from small prospecting pit - 4.03 g/t Au, 119 g/t Ag

Moccasin Prospect - ML023- Dump Sample from old working 1560 g/t Ag, 15.1% Pb, 1.98% Cu, 2.78% Zn, 0.1 g/t Au

Further detailed prospect-scale mapping is required to better understand the orientation and dimensions of the mineralisation.

Moccasin Prospect- Rock Sampling results -Au(g/t)

NEXT STEPS

Geochemical soil sampling covering the anomalous rock samples areas has also been completed over the Captain Jack and Moccasin Prospects. These samples are currently at the laboratory with results expected in coming weeks.

Further exploration will be planned once all geochemical results have been received but will initially include detailed prospect scale mapping and sampling together with additional reconnaissance prospecting work.

This announcement has been authorised for release by the board

END

For further information, please contact

Patrick Glovac
Managing Director
TAO Commodities Limited
info@taocommodities.com.au

Competent Persons Statement - JORC Code 2012

The information in this report that relates to Exploration Results, is based on information compiled and/or reviewed by Mr. Lyle Thorne who is a Members of The Australasian Institute of Mining and Metallurgy. Mr. Thorne is an independent consultant to TAO Commodities Ltd and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity they are undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr. Thorne consents to the inclusion in the report of the matters based on this information in the form and context in which it appears.

TABLE 1- MILFORD PROJECT- ROCK SAMPLES ML001-027 – ASSAY RESULTS (Au, Ag, Cu, Pb, Zn, As, Sb) Coordinate System NAD83 Zone 12

SAMPLE	North_NAD83_	East_NAD83_	Prospect	Au_ppm	Ag_ppm	Ag_ppm2	Ag_ppm3	Cu_ppm	Cu_%	Pb_ppm	Pb_%	Zn_ppm	Zn_%	As_ppm	Sb_ppm
				Au-AA25	ME-MS41	Ag-OG46	Ag-GRA21	ME-MS41	Cu-OG46	ME-MS41	Pb-OG46	ME-MS41	Zn_OG46	ME-MS41	ME-MS41
ML001	4245981	314516	Captain Jack	0.1	0.25			4.1		16.5		60		59.2	8.49
ML002	4245882	314511	Captain Jack	1.37	>100	951		1560		626		299		67.6	1600
ML003	4245881	314513	Captain Jack	17.4	>100	>1500	8760	>10000	1.71	1825		1300		265	>10000
ML004	4245878	314510	Captain Jack	1.21	>100	938		1960		348		279		77.2	1870
ML005	4245846	314495	Captain Jack	0.32	3.22			10.6		5.5		13		16.2	8.19
ML006	4245842	314467	Captain Jack	2.16	>100	1190		5650		1605		899		190.5	2460
ML007	4245812	314431	Captain Jack	0.03	8.67			55.4		14.4		128		4.3	36.4
ML008	4245832	314533	Captain Jack	0.01	5.57			20.9		5.7		7		5.1	18.85
ML009	4245948	314508	Captain Jack	0.02	3.8			36.4		16.9		38		299	33.4
ML010	4245604	314877	Captain Jack	0.99	2.02			9.4		6.7		18		234	1.91
ML011	4245602	314880	Captain Jack	0.24	0.5			7.9		6		20		111.5	1.58
ML012	4245601	314879	Captain Jack	0.05	1.55			7		1.8		3		9.8	5.38
ML013	4245534	314853	Captain Jack	0.03	0.27			9.3		3.5		17		148	5
ML014	4245716	314843	Captain Jack	0.06	0.68			5.5		5.5		32		33.4	2.49
ML015	4251314	314687	Moccasin	1.05	13.65			182		3240		485		26.2	52.5
ML016	4251314	314687	Moccasin	4.03	>100	119		916		>10000	1.305	1450		92.7	169.5
ML017	4251358	314665	Moccasin	1.84	>100	1000		1590		>10000	9.14	5280		111	1100
ML018	4251358	314662	Moccasin	3.07	>100	115		708		>10000	2.36	1260		231	142
ML019	4251358	314662	Moccasin	0.06	>100	812		2060		>10000	12.5	>10000	2.09	159.5	1015
ML020	4251291	314578	Moccasin	0.14	>100	1310		>10000	1.215	>10000	3.21	>10000	4.64	134	4060
ML021	4251262	314576	Moccasin	0.05	>100	621		9170		>10000	4.25	858		296	6080
ML022	4251201	314565	Moccasin	0.08	>100	336		1110		9110		803		82.2	538
ML023	4251202	314535	Moccasin	0.1	>100	>1500	1560	>10000	1.98	>10000	15.1	>10000	2.78	357	2550
ML024	4251203	314531	Moccasin	0.05	>100	1380		>10000	1.3	>10000	4.61	1260		2790	5400
ML025	4251175	314536	Moccasin	0.11	5.53			48		348		117		34	40.7
ML026	4251132	314609	Moccasin	0.1	>100	246		1705		>10000	1.875	1220		1170	3210
ML027	4251202	314535	Moccasin	0.01	71.3			1025		>10000	3.47	303		261	1455

ME-MS41 Ultra Trace Aqua Regia ICP-MS
Ag-0C46 Ore Grade Ag - Aqua Regia
ME-0C46 Ore Grade Elements - AquaRegia
Cu-0C46 Ore Grade Cu - Aqua Regia
Pb-0C46 Ore Grade Pb - Aqua Regia
Zn-0C46 Ore Grade Zn - Aqua Regia
Ag -0GA21 Ag 30g FA-CRAV finish
Au-AA25 Ore Grade Au 30g FA AA finish

TABLE 2- ROCK SAMPLES ML001-027 - GEOLOGICAL SUMMARY

SAMPLE	Notes	Description				
ML001	float in road cut going up hillside	white-light brown siliceous carbonate- Abundant Fe-staining, minor Mn oxides				
ML002	float/grab from prospect cut in hillside	white siliceous ferrugeniused carbonate. Some pyrite and chalcopyrite				
ML003	float/grab from prospect cut in hillside	grey siliceous carbonate, quartz veining. Copper oxide staining, mod ferrugenised				
ML004	float/grab from prospect cut in hillside	white-light grey siliceous carbonate, abundant quartz (white), weak sulphides, minor Ferrugenisation				
ML005	outcrop grab on top of hill	white-light grey siliceous carbonate, strong ferrugenisation, minor Mn oxides				
ML006	outcrop grab on hillside	white-light grey siliceous carbonate, abundant quartz (white), weak sulphides, minor Ferrugenisation				
ML007	outcrop grab on hillside	light brown-grey siliceous carbonate, minor quartz veining, some ferrugenisation				
ML008	outcrop grab on hillside	light grey-brown silceous carbonate, trace sulphides, minor Mn-Fe oxides				
ML009	outcrop grab in road cut going up hillside	light grey-oranage siliceous carbonate, med-fine grained. Strong Fe oxides				
ML010	outcrop grab from sm prospect dig in drainage cut	brown-purple siliceous carbonate, bedded, minoe quartz veins, mod-strong Fe oxides				
ML011	outcrop grab from sm prospect dig in drainage cut	brown-purple siliceous carbonate, bedded, minoe quartz veins, mod-strong Fe oxides				
ML012	outcrop grab from sm prospect dig in drainage cut	Pale pink-white quartz vein material, trace sulphides, some Fe oxides, minor Mn oxides				
ML013	outcrop grab on top of ridge	white-brown siliceous carbonate. Fine grained. Mod Fe oxides, minor Mn oxides				
ML014	outcrop grab on hillside	light brown-white siliceous carbonate. Mod Fe-oxides. Trace sulphide?				
ML015	dump grab from sm prospect along road cut	brown-grey siliceous carbonate, fine grained, vuggy. 10% weathered sulphides. Fe oxides				
ML016	dump grab from sm prospect along road cut	brown-grey siliceous carbonate, fine grained, vuggy. 5-10% weathered sulphides. Fe oxides				
ML017	dump grab from reclaimed adit on hillside	brown-grey siliceous carbonate, fine grained, vuggy. 10+% weathered sulphides. Fe oxides				
ML018	dump grab from reclaimed adit on hillside	light grey-purple siliceous carbonate, fine grained, 5-15% weahtered sulphides, some pitting. Fe oxides				
ML019	dump grab from reclaimed adit on hillside	brown-grey siliceous carbonate, fine grained, vuggy. 20+% weathered sulphides. Fe oxides				
ML020	wall grab from sm prospect cut	brown-dk grey siliceous carboante, fine grained. 20-30% weahtered sulphide				
ML021	dump grab from sm prospect cut	grey-brown siliceous carbonate, fine grained, 20-30% weathered sulphide, pitting Fe oxides				
ML022	dump grab from reclaimed shaft site	light grey-purple siliceous carbonate, fine grained, 10-15% weahtered sulphides, some pitting. Fe oxides				
ML023	dump grab from reclaimed adit	grey-brown siliceous carbonate, pitting, strong Fe oxides				
ML024	dump grab from reclaimed adit	light grey-green siliceous carbonate, fine grained, 10-15% weahtered sulphides, some pitting. Fe oxides				
ML025	dump grab from reclaimed adit	brown-red brown siliceous carbonate. Trace sulphides, weathered. Some Fe oxides				
ML026	dump grab from sm prospect cut/dig	grey-brown siliceous carbonate, pitting, strong Fe oxides, 5-10% weathered sulphide				
ML027	dump grab from reclaimed adit	Dk grey-purple siliceous carbonate. 55 weathered sulphides, pitting, some Fe oxides.				

Forward looking statements

Information included in this release constitutes forward-looking statements. Often, but not always, forward looking statements can generally be identified by the use of forward looking words such as "may", "will", "expect", "intend", "plan", "estimate", "anticipate", "continue", and "guidance", or other similar words and may include, without limitation, statements regarding plans, strategies and objectives of management, anticipated production or construction commencement dates and expected costs or production outputs.

Forward looking statements inherently involve known and unknown risks, uncertainties and other factors that may cause the Company's actual results, performance and achievements to differ materially from any future results, performance or achievements. Relevant factors may include, but are not limited to, changes in commodity prices, foreign exchange fluctuations and general economic conditions, increased costs and demand for production inputs, the speculative nature of exploration and project development, including the risks of obtaining necessary licenses and permits and diminishing quantities or grades of reserves, political and social risks, changes to the regulatory framework within which the company operates or may in the future operate, environmental conditions including extreme weather conditions, recruitment and retention of personnel, industrial relations issues and litigation.

Forward looking statements are based on the Company and its management's good faith assumptions relating to the financial, market, regulatory and other relevant environments that will exist and affect the Company's business and operations in the future. The Company does not give any assurance that the assumptions on which forward looking statements are based will prove to be correct, or that the Company's business or operations will not be affected in any material manner by these or other factors not foreseen or foreseeable by the Company or management or beyond the Company's control.

Although the Company attempts and has attempted to identify factors that would cause actual actions, events or results to differ materially from those disclosed in forward looking statements, there may be other factors that could cause actual results, performance, achievements or events not to be as anticipated, estimated or intended, and many events are beyond the reasonable control of the Company. Accordingly, readers are cautioned not to place undue reliance on forward looking statements. Forward looking statements in these materials speak only at the date of issue. Subject to any continuing obligations under applicable law or any relevant stock exchange listing rules, in providing this information the company does not undertake any obligation to publicly update or revise any of the forward looking statements or to advise of any change in events, conditions or circumstances on which any such statement is based.

JORC Code, 2012 Edition - Table 1 report template

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 A total of 27 rock reconnaissance geochemical samples were collected as grab samples from historically existing mining and exploration workings. This includes from sites such as mine dumps, prospect pits & trenches, and adjacent mineralised outcrop or subcrop/float. Equipment used was predominately hand held hammer for the collection of rock fragments. All field exploration work was completed by Harrison Land Services LLC, a Utah based company.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	No drilling conducted.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	No drilling conducted.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Geological descriptions of reconnaissance rock grab samples have been collected in field notes and entered in digital database. All samples were photographed and labelled.

Criteria	JORC Code explanation	Commentary
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	• Grab samples were placed directly into calico bags at the site location from which they were collected. No repeat or check samples have yet been submitted for analysis. Each sample was weighed at the preparation laboratory and the weights recorded along with the analytical results. No specific quality control procedure has been adopted for the collection of samples. Samples were shipped to ALS Global laboratories in Reno, Nevada for drying, pulverizing, and splitting to prepare a pulp of approximately 200g which was then shipped to ALS Global laboratories in Vancouver, Canada for analytical determinations.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Assays were prepared and performed by ALS Global – Geochemistry Analytical Labs in Reno, Nevada USA and Vancouver, BC Canada using a four acid digestion method with an ICP-MS finish for a suite of elements (Method ME_MS41- AR-ICP-MS). Gold was assayed using Fire Assay technique on 30gm charge (Method Au-AA25). Average sample weight submitted for prep was 0.42kg and range from 0.24kg to 0.6kg. Samples were pulverized to minus 75 microns before a split was sent to ALS Vancouver lab for analysis. This is an accepted industry analytical process appropriate for the nature and style of mineralization under investigation. No company generated standards or blanks were incorporated into the sampling procedure. ALS undertook their own internal checks and blanks. Multi-element analysis included 51 elements (major and minor, (Method ME_MS41- AR-ICP-MS).). Only elements of exploration interest have been reported in text.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Results were checked and reviewed by the Project Geologist and consultant. Assay data was supplied electronically by the laboratory and incorporated into a digital database. Interpretation of multi-element data is on going.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. 	 Location of samples were recorded by hand held GPS. The GPS recorded locations used the NAD83 datum UTM Zone 12N. Accuracy is limited to approximately 3 meters.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Quality and adequacy of topographic control. Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	Samples were collected randomly at previously known mining and prospect sites. The data is primarily an initial exploration reconnaissance sampling program. Samples locations are variable and based on field observations.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Samples were collected based on field observations and the time.
Sample security	The measures taken to ensure sample security.	Contractor personnel collected the samples and transported them to the assay laboratory in Reno, Nevada.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No external audit has been completed.

Section 2 Reporting of Exploration Results(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	TAO Commodities Ltd.'s project is located on unpatented Federal mining claims in Beaver County, Utah, USA. The Project consists of 101 (ML-001 to ML-100, ML-051a) Mining Rights on US Bureau of Land Management (BLM) administered land covering approximately 8.36km².
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Extensive historical mining and exploration activity beginning in the late 1800's is evident within the project area. Limited modern day exploration techniques and methods appear to have been conducted. Firestrike Resources Ltd and J/V partner Escalante Mines LLC performed rock chip sampling of historic mine dumps and prospect pits during 2011-2013. They also completed a 2000m RC drilling program during 2012 on the Coronado Prospect which lies outside of the current project area. Results of this campaign are contained in Firestrike Resources Limited ASX announcement release dated 5 February 2013, "Widespread high grade silver, lead and zinc along with elevated copper and gold discovered at surface." Agricola Mining Consultants Pty Ltd completed an independent technical review of the project during September 2017.
Geology	Deposit type, geological setting and style of mineralisation.	 The project area lies within a structurally controlled Basin & Range type mountain range, dominated by Paleaozoic clastic and chemical sediments. Late granitoid intrusives are known to occur adjacent to the project. Epithermal and replacement type mineralisation occurs along structural corridors in reactive sedimentary host rocks.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the 	No drilling conducted.

Criteria	JORC Code explanation	Commentary
	information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 The assay results are based on reconnaissance rock geochemical sample assays. No data aggregation methods, weighting of results or top cuts have been applied.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Results represent early phase rock sampling of old mine dumps, trenches and road cuts. Rehabilitation of old workings and surrounds has been completed and further mapping and sampling is required to ascertain widths of mineralized zones
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	• NA
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	• Results have been reported in Table 1 for the main elements targeted (Au, Ag, Cu, Pb, Zn, As, Sb) for all sampling. Interpretation of other elements included in the assay method is ongoing.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	• See text
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 .Further geological work including detailed prospect scale mapping and sampling is planned.