

ADRIATIC TO ACQUIRE TETHYAN RESOURCE CORP, CONSOLIDATING POSITION AS LEADING BALKAN POLYMETALLIC EXPLORER AND DEVELOPER

HIGHLIGHTS

- Addition of Tethyan's Serbian brownfield development projects, Kizevak and Sastavci, and its large prospective landholding on the Tethyan mineral belt
- Diversifies Adriatic's portfolio and positions the Company as the leading Balkan base and precious metals developer
- Adriatic plans to rapidly advance the past-producing Kizevak and Sastavci polymetallic mines, in the Raska district of southwestern Serbia towards a maiden JORC compliant resource by end-Q4 2020
- Development of the Company's Vares Project in Bosnia continues apace where a Pre-Feasibility Study is scheduled for completion in Q3 2020
- Exchange ratio of 0.166 Adriatic shares for each Tethyan share represents a premium of 40.7% to the 30 day Volume Weighted Average Price
- Consideration shares represent 6.87% of Adriatic's enlarged issued share capital while significantly deepening project pipeline
- Adriatic to immediately provide a secured convertible loan of up to €1.3m in three tranches to enable Tethyan to close the transaction for the acquisition of Serbian company EFPP d.o.o., the holder of parts of the Kizevak and Sastavci deposits, and to commence confirmation drilling at Kizevak
- Tethyan's Board of Directors unanimously approved the Transaction and has unanimously resolved to recommend that its shareholders vote in favour of the Transaction and voting support agreements received from approximately 54% of Tethyan shareholders
- Transaction expected to close by end-August once all conditions have been satisfied

Adriatic Metals PLC (ASX:ADT, LON:ADT1) ("**Adriatic**" or the "**Company**") and Tethyan Resource Corp. (TSX-V: TETH) ("**Tethyan**") are pleased to announce the execution of a binding letter agreement (the "**Acquisition Agreement**") pursuant to which Adriatic will acquire 100% of the issued share capital of Tethyan, by way of a Plan of Arrangement under the Business Corporations Act (British Columbia) (the "**Transaction**").

ABOUT ADRIATIC METALS (ASX:ADT, LON:ADT1)

Adriatic Metals Plc is focused on the development of the 100% owned, high-grade polymetallic Vareš Project in Bosnia & Herzegovina.

DIRECTORS

Mr Peter Bilbe
NON-EXECUTIVE CHAIRMAN

Mr Paul Cronin
MANAGING DIRECTOR & CEO

Mr Michael Rawlinson
NON-EXECUTIVE DIRECTOR

Mr Julian Barnes
NON-EXECUTIVE DIRECTOR

Mr Milos Bosnjakovic
NON-EXECUTIVE DIRECTOR

Ms Sandra Bates
NON-EXECUTIVE DIRECTOR

Mr John Richards
NON-EXECUTIVE DIRECTOR

adriaticmetals.com

In conjunction with the Transaction, Adriatic and Tethyan have entered into a convertible loan agreement (the "Convertible Loan Agreement"), whereby Adriatic has agreed to advance to Tethyan a secured convertible loan in the amount of up to €1.3 million in tranches, to be used by Tethyan to finance the EFPP Acquisition (as defined below), commence confirmation drilling at Kizevak and to meet the expenses and costs of Tethyan in completing the Transaction.

Paul Cronin, Adriatic's Managing Director and CEO commented:

"Tethyan Resource Corp. has been successful in consolidating the Raska district in Serbia, and with the recent addition of the Kizevak and Sastavci licenses, the acquisition presents a unique opportunity for Adriatic to add assets to our portfolio that have the potential, over time, to match the quality of our exceptional Vares Project in Bosnia.

In a short time, Adriatic has built a significant presence in the region, by developing our assets with a very competent team at the helm. Applying our team and strong balance sheet to Tethyan's assets positions us well to proceed through the project development cycle.

These are past producing mines, and the historical data we have reviewed provides ample confidence that we are adding significant value to our portfolio with minimal outlay and dilution to our existing shareholders. I look forward to working with Fabian and his team over the coming months to close the transaction and demonstrate the potential of these assets."

Fabian Baker, Tethyan's President and CEO, commented:

"We are excited that our assets will soon be part of the Adriatic story. Adriatic Metals has built an excellent reputation in the Balkans based on their development capability and positive engagement with local stakeholders. We are confident that the combined assets and team will go forward to bring high quality assets to production in a timely and sustainable manner, ensuring lasting benefits for both our shareholders and the communities in which we operate."

Figure 1: Map of the Balkan area showing Adriatic and Tethyan asset locations

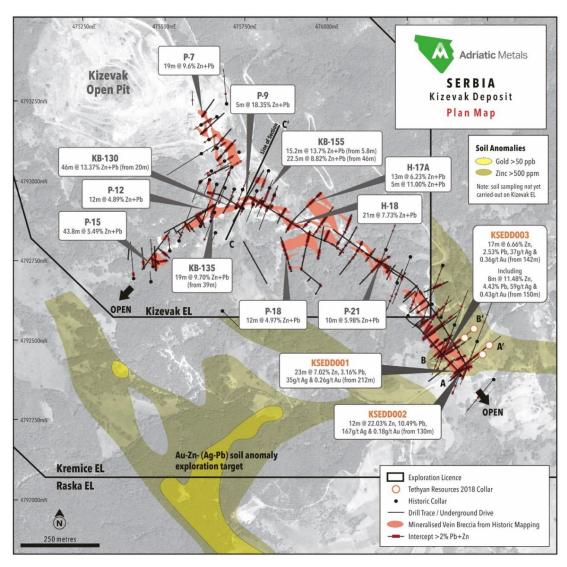


Figure 2: Plan map of Kizevak with significant drillhole intercepts. Historical holes subject to confirmation drilling.

TRANSACTION RATIONALE

The Transaction will confirm the enlarged Company as the leading Balkan polymetallic explorer and developer with four key projects (Rupice, Veovaca, Kizevak & Sastavci) covering a total land package in excess of 301km² across Bosnia and Serbia (Figure 1). The Transaction allows Tethyan shareholders to retain upside to the Kizevak and Sastavci Projects whilst increasing the pace of development as Adriatic brings its strong balance sheet (cash of A\$23.8 million and no debt as at 31 March 2020) and its experienced project development team to rapidly progress the projects.

KIZEVAK PROJECT

Kizevak is a past-producing mine reported to host considerable historic Pb, Zn and Ag mineral resources. In 2018 and 2019, Tethyan drilled 14 drill holes, 1km southeast from the historic Kizevak open pit. These Tethyan drill holes intersected high-grade Pb, Zn and Ag mineralisation, including 12 metres at 22.03%

Zn, 10.49 % Pb, 167g/t Ag and 0.18g/t Au (Figures 2 & 4). Historic records show that the entire corridor between the old Kizevak open pit and Tethyan's recent drilling is mineralised.

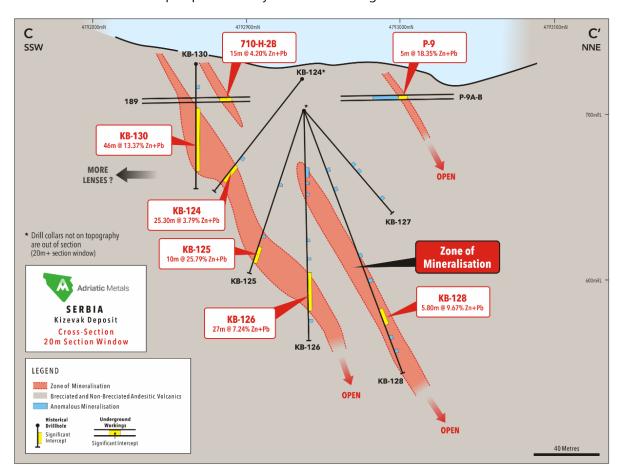


Figure 3: Cross-section in the central part of Kizevak showing steeply dipping mineralised lenses within andesitic volcanics. Historical holes subject to confirmation drilling.

At Kizevak, there have been at least 116 holes drilled, totalling 14,951.1m. Of these, 102 holes are pre-Tethyan ownership and constitute 11,739.3m. There are also an additional 7,820m of underground exploration workings. The mine was operated as an open pit by the Serbian State between 1984 and 2000, ceasing operations due to conflict in the region. The project benefits from numerous infrastructure advantages including water, power, road and rail access all within five kilometres, and a local workforce with a long history of mining. Additionally, the land comprising the wider project area is designated for mining purposes under the Serbian State spatial plan, providing many permitting benefits and efficiencies.

Mineralisation at Kizevak comprises moderate to steep dipping, southeast striking, structurally controlled lenses of quartz-carbonate-sulphide vein breccias and stockwork zones hosted in andesite volcanics (Figures 2 to 5). Historic drilling and underground sampling data indicate that mineralisation occurs over a strike length of at least 1.2 kilometres, between 1 and 30 metres wide, and up to 200 metres down dip. This dominant southeast striking trend is intersected by at least one perpendicular southwest striking mineralised structure, which is inferred as an important control on high grade shoots.

At Kizevak, mineralisation is open in all directions; down dip and along strike to the northwest, southwest and southeast for the entire Kizevak historic resource area. Drilling by Tethyan in 2018 on its wholly owned licence 1,000 metres along strike to the southeast of the mine returned mineralised intervals including:

- 23m at 7.02% Zn, 3.16% Pb, 35g/t Ag and 0.26g/t Au (Hole KSEDD001, from 212m)
- 12m at 22.03% Zn, 10.49% Pb, 167g/t Ag and 0.18g/t Au (Hole KSEDD002, from 130m)
- 17m at 6.66% Zn, 2.53% Pb, 37g/t Ag and 0.36g/t Au (Hole KSEDD003, from 142m)
 - Including 8m at 11.48% Zn, 4.43% Pb, 59g/t Ag and 0.43g/t Au (Hole KSEDD003, from 150m)

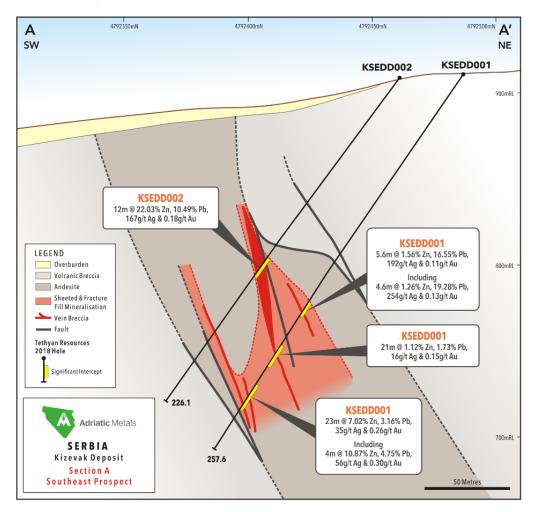


Figure 4: Cross-section A-A' through southeast portion of Kizevak deposit showing steeply dipping mineralised lenses.

SASTAVCI PROJECT

Sastavci was also mined historically by open pit on a smaller scale than at Kizevak and represents a priority drilling target. The Sastavci historic open pit is located 3.5km north-northwest of the Kizevak open pit. Outcropping, steeply dipping, massive sulphide veins up to 5 metres wide are visible in the pit walls. Tethyan collected 65 rock-chip samples across the Sastavci area, which returned Zn values of +30% (limit of assay detection), 7.1% Pb, 94.3g/t Ag and 0.47g/t Au in the old Sastavci open pit.

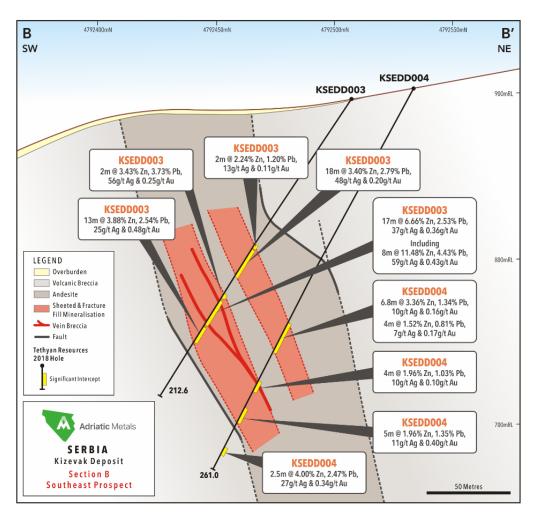


Figure 5: Cross-section B-B' through southeast portion of Kizevak deposit showing steeply dipping mineralised lenses.

For the Sastavci project, a historic resource estimate was also calculated, and is reported in the Serbian geological archives (refer to Table 1 for details).

Additionally, to the north of the Sastavci open pit, Tethyan has defined a greater than 100ppb gold in soil anomaly over 800 metres long and 400 metres wide in strongly silica altered volcanic rocks. Rockchip sample assays range from trace to 3.7g/t gold, representing a separate epithermal gold zone for further exploration activities.

EFPP ACQUISITION

Serbian company EFPP d.o.o. ("EFPP") is the holder of the two exploration licences comprising the central parts of the Kizevak and Sastavci deposits. Tethyan has entered into an agreement with the EFPP shareholders (the "Sellers") whereby Tethyan will acquire EFPP, to be concluded in two stages (the "EFPP Acquisition"); an initial 'First Closing' whereby Tethyan will acquire 10% of the shares of EFPP and management control of the company, together with an option over a 12 month period from First Closing where Tethyan may proceed to a 'Second Closing' to acquire the remaining 90% of the shares of EFPP.

- **First Closing:** in consideration for 10% of the shares of EFPP Tethyan will pay to the Sellers a total of €525,000 in cash.
- **Second Closing:** At any time within 12 months of First Closing, Tethyan may elect to acquire the remaining 90% of shares of EFPP on the Second Closing by:
 - o Paying €1,375,000 in cash;
 - o Granting a 2% net smelter return over the Kizevak and Sastavci exploration licences;
 - Issuing a total of 664,000 ordinary shares of Adriatic, to be issued in four equal tranches of 166,000 shares, with the first tranche issued on the Second Closing and each additional tranche issued each six months thereafter; and
 - o Paying a deferred cash payment of €500,000 on the second anniversary of First Closing.

OTHER TETHYAN ASSETS

Raska Licence (EL 2150)

The 81.4km² Raska Licence includes the Rudnica and Kremice copper-gold porphyry targets and Karadak silver-lead-zinc base-metal vein-type target. Deep Research d.o.o is the owner of the licence with whom Tethyan has an option agreement, in which Tethyan is the operator. Tethyan have completed 9,422m drilling over 20 holes at Rudnica, targeting oxide, supergene and hypogene zones over a 400m x 350m area, within a 1.2km long geochemical and geophysical anomaly. Drilling results returned long intervals of consistent copper-gold mineralisation from surface, including 567m at 0.3% Cu and 0.45g/t Au.

The Karadak epithermal target has non-JORC compliant State historical resources (refer to Table 1 for details), and is seen as priority exploration target.

Zukovac (EL 2234) & Bucje (EL 2254)

Both Zukovac (81.89km²) and Bucje (86.86km²) are 100% owned by Tethyan and are being relinquished this year with no exploration spend planned.

HISTORICAL AND FOREIGN MINERAL RESOURCE ESTIMATES

Table 1: Historical Non-JORC Compliant Mineral Resource Estimates

Project	Category	Tonnes	Ag (g/t)	Zn (%)	Pb (%)
Kizevak	A+B+C1	4,402,227	54	5.43	3.62
	C2	1,800,000	36	5.04	2.23
	Sub Total:	6,202,227	48	5.32	3.22
Sastavci	A+B+C1	357,642	45	5.56	2.07
	C2	1,000,000	25	3.50	1.90
	Sub Total:	1,357,642	30	4.04	1.94
Karadak	C1	410,000	47	4.61	2.52
	Sub Total:	410,000	47	4.61	2.52
Total Kizevak, Sastavci & Karadak	A+B+C1+C2	7,969,869	45	5.06	2.96

The Kizevak, Sastavci and Karadak resource estimates are foreign estimates that have not been reported in accordance with the JORC Code. A competent person has not done sufficient work to classify the Kizevak, Sastavci and Karadak resource estimates as mineral resource estimates in accordance with the JORC Code. It is uncertain that following evaluation and/or further exploration work that the Kizevak, Sastavci and Karadak resources will be able to be reported as a mineral resource estimate in accordance with the JORC Code. Refer to Appendix 1 for further information.

BENEFITS TO SHAREHOLDERS

Benefits for Adriatic shareholders, include, among others:

- Addition of two high quality brownfields projects to the portfolio in established mining jurisdiction Serbia, establishing Adriatic as the leading Balkan polymetallic explorer and developer;
- Creates long term project development pipeline with Kizevak and Sastavci to follow Adriatic's world class Vares project, plus attractive portfolio of regional exploration targets;
- Tethyan has a well-established team in-country to assist with permitting and project development and strong links with the local communities in which it operates;

Benefits for Tethyan shareholders:

Ability to fund the initial €525,000 payment to EFPP in order to close the first stage of the EFPP
Acquisition;

- Adriatic's strong balance sheet will allow significant work to commence immediately in order rapidly progress the Kizevak and Sastavci Projects;
- Exposure to Adriatic's existing portfolio including the world class Vares Project and highly prospective regional exploration potential;

Benefits for both sets of shareholders:

- Consolidates two premier polymetallic mining districts under one capable and well-financed company;
- Synergies between operations in Bosnia and Serbia strengthen exploration, development and permitting ability; and
- Potential for operational synergies once in production, particularly in downstream processes such as blending of concentrates.

TRANSACTION SUMMARY

Adriatic and Tethyan are pleased to announce the execution of the Acquisition Agreement pursuant to which Adriatic will acquire 100% of the issued and to be issued share capital of Tethyan, by way of a Plan of Arrangement under the Business Corporations Act (British Columbia).

Pursuant to the Plan of Arrangement, each Tethyan shareholder will receive 0.166 Adriatic shares for each Tethyan share held (the "**Plan Consideration**"), resulting in Tethyan shareholders owning approximately 6.9% of the enlarged Adriatic.

The Plan Consideration represents an implied price of C\$0.184 per Tethyan share based on the 20-day VWAP of Adriatic at 8 May 2020, representing an implied equity value of C\$14.7 million (US\$10.6 million).

The Plan Consideration represents a premium of:

- 29% to the Tethyan closing price of C\$0.15 per share on 8 May 2020;
- 41% to the 5-day volume weighted average price of C\$0.138 per share on 8 May 2020; and
- 47% to the 20-day volume weighted average price of C\$0.131 per share on 8 May 2020;

The Transaction is subject to several conditions as set out in the Acquisition Agreement, including but not limited to:

- The Transaction being approved by a special resolution of Tethyan shareholders, being 66 2/3% of votes cast;
- Approval of the Plan of Arrangement by the British Columbia Supreme Court;
- The First Closing of the EFPP Acquisition having been completed;
- Customary regulatory approvals including those of the ASX and TSX-V as required; and
- Certain other closing conditions customary in transactions of this nature.

The Acquisition Agreement contains certain customary non-solicitation and right to match provisions, with a break fee of C\$700,000 and costs and expenses of Adriatic up to C\$150,000 payable by Tethyan to Adriatic under certain circumstances, and a break fee of C\$350,000 payable by Adriatic to Tethyan under limited circumstances.

TERMS OF THE CONVERTIBLE LOAN

Adriatic and Tethyan have entered into a Secured Convertible Loan Agreement whereby Adriatic has advanced to Tethyan a secured convertible loan in the amount of up to €1.3 million in three tranches, in order to allow Tethyan to make the required payment of €525,000 under the EFPP Agreement to complete the First Closing, commence confirmation drilling on Kizevak, and to fund the expenses of Tethyan through to completion of the Transaction. The key terms of the Convertible Loan Agreement include the following:

- Interest rate of 10% per annum, compounding monthly;
- Repayment due on the earliest of 12 months, the termination of the Transaction and the completion of the Transaction;
- Conversion at the option of Adriatic at any time following termination of the Acquisition Agreement into common shares of Tethyan at a price of C\$0.15 per share;
- Security in the form of Debenture over its Serbian Assets, Share Pledges and Guarantees; and
- Other such terms as are customary for a convertible loan of this nature.

SENIOR MANAGEMENT APPOINTMENT

Fabian Baker, the President and Chief Executive Officer of Tethyan, will join Adriatic as Corporate Development Manager following closing.

TETHYAN BOARD RECOMMENDATION AND SHAREHOLDER SUPPORT

The Board of Directors of Tethyan has unanimously approved and resolved to recommend that its shareholders vote in favour of the Transaction.

The directors and senior officers, and other shareholders of Tethyan, representing approximately 54.3% of the issued share capital of Tethyan, have entered into voting support agreements committing to vote their Tethyan shares in favour of, and to otherwise support, the Transaction. Additionally, Lock Up Agreements have been entered into by shareholders of Tethyan covering 38.3% of issued capital agreeing not to, directly or indirectly sell, transfer or otherwise dispose of any Adriatic or Tethyan shares until the earlier of: (a) six months after the Effective Time; and (b) any date after the Effective Time where the volume weighted average price of the Adriatic shares on the Australian Stock Exchange for the preceding 30 calendar day period is \$2.00 (Australian dollars) or more.

INDICATIVE TIMETABLE

These indicative dates reflect the expected milestones for the transaction but may be subject to change

Activity	Date	
Arrangement Agreement	1 June 2020	
Dispatch of circular to shareholders of Tethyan	9 July 2020	
Tethyan Shareholder Meeting	8 August 2020	
Court Approval of Plan of Arrangement	10 August 2020	
Effective Date	Late August 2020	

ADVISORS AND COUNSEL

Adriatic has appointed Tamesis Partners LLP as Transaction Advisor, Locke Lord (UK) LLP and Sangra Moller LLP as Legal Advisors and BDO Canada LLP as Tax Advisor.

Tethyan has appointed Morton Law LLP and Edwin Coe LLP as Legal Advisors.

INVESTOR CALL AND WEBCAST

Paul Cronin, Adriatic's CEO & Managing Director will be hosting an investor call and webcast at 9am UK, 6pm Sydney, 4pm Perth on Monday 11 May 2020. The webcast can be accessed via the following link.

https://global.gotomeeting.com/join/298543365

You can also dial in using your phone.

Australia: +61 2 9087 3604

United Kingdom: <u>+44 20 3713 5028</u> United States: <u>+1 (646) 749-3129</u> Canada: +1 (647) 497-9391

Access Code: 298-543-365

If you don't have GoToMeeting and would like to view the webcast online, please use this link: (Google Chrome is the preferred browser)

https://www.gotomeeting.com/en-gb/meeting/join-meeting

and enter the access code above.

DISCLAIMER

Forward-looking statements are statements that are not historical facts. Words such as "expect(s)", "feel(s)", "believe(s)", "will", "may", "anticipate(s)", "potential(s)"and similar expressions are intended to identify forward-looking statements. These statements include, but are not limited to statements regarding future production, resources or reserves and exploration results. All of such statements are

subject to certain risks and uncertainties, many of which are difficult to predict and generally beyond the control of the Company, that could cause actual results to differ materially from those expressed in, or implied or projected by, the forward-looking information and statements. These risks and uncertainties include, but are not limited to: (i) those relating to the interpretation of drill results, the geology, grade and continuity of mineral deposits and conclusions of economic evaluations, (ii) risks relating to possible variations in reserves, grade, planned mining dilution and ore loss, or recovery rates and changes in project parameters as plans continue to be refined, (iii) the potential for delays in exploration or development activities or the completion of feasibility studies, (iv) risks related to commodity price and foreign exchange rate fluctuations, (v) risks related to failure to obtain adequate financing on a timely basis and on acceptable terms or delays in obtaining governmental approvals or in the completion of development or construction activities, and (vi) other risks and uncertainties related to the Company's prospects, properties and business strategy. Our audience is cautioned not to place undue reliance on these forward-looking statements that speak only as of the date hereof, and we do not undertake any obligation to revise and disseminate forward-looking statements to reflect events or circumstances after the date hereof, or to reflect the occurrence of or non-occurrence of any events.

ABOUT ADRIATIC

Adriatic is a dual listed (ASX and LSE) precious and base metals explorer and developer via its 100% interest in the world class Vares Project (the "Project") in Bosnia & Herzegovina. The Project comprises a historic open cut mine at Veovaca and brownfield exploration at Rupice, an advanced proximal deposit which exhibits exceptionally high grades of base and precious metals.

Adriatic announced the results of a Scoping Study on 19 November 2019 which indicated an NPV8 of US\$917 million and IRR of 107%, following the release of a Maiden Resource Estimate earlier the year on 23 July 2019. There have been no material adverse changes in the assumptions underpinning the forecast financial information or material assumptions and technical parameters underpinning the Maiden Resource Estimate since the original relevant market announcements which continue to apply.

Adriatic has attracted a world class team to both expedite its exploration efforts to expand the current JORC resource at the high-grade Rupice deposit and to rapidly advance the Project into the development phase utilising its first mover advantage and strategic position in Bosnia.

More information can be found on Adriatic's website: www.adriaticmetals.com/

ABOUT TETHYAN

Tethyan is a precious and base metals mineral exploration company incorporated in British Columbia, Canada and listed on the TSX Venture Exchange. Tethyan is focused on the Tethyan Metallogenic Belt in Eastern Europe, mainly Serbia, where it is acquiring and exploring a portfolio of quality precious and base metals projects with known mineralization and compelling drill targets. Tethyan emphasizes responsible engagement with local communities and stakeholders, and is committed to the proactive implementation of Good International Industry Practice (GIIP) and sustainable health, safety and environmental management.

More information can be found on Tethyan's website: www.tethyan-resources.com.

Announcement authorised by the Board of Directors.

CONTACT INFORMATION

Adriatic Metals Plc

Paul Cronin Managing Director & CEO info@adriaticmetals.com

Emma Chetwynd Stapylton Investor Relations emmacs@adriaticmetals.com

Tavistock (Financial PR)

Charles Vivian charles.vivian@tavistock.co.uk 07977 297 903

Gareth Tredway

Gareth.tredway@tavistock.co.uk

07785 974 264

Edward Lee
Edward.lee@tavistock.co.uk
07736 220 565

Tethyan Resource Corp.

Fabian Baker President & CEO fabian@tethyan-resources.com

Andjelija Vujovic Investor Relations andjelija@tethyan-resources.com

COMPETENT PERSONS STATEMENT

Kizevak Project, Sastavci Project and Raska Licence - Exploration results

The exploration results in this announcement in respect of the Kizevak Project, Sastavci Project and Raska Licence are based on and fairly represents information and supporting documentation prepared by Mr. Phillip Fox. Mr. Fox is a consultant to Adriatic Metals PLC and is a member of the Australian Institute of Geoscientists (AIG). Mr. Fox has provided his prior written consent as to the form and context in which the disclosure of the exploration results and the supporting information is presented in this announcement.

Kizevak, Sastavci and Karadak Projects - Resource Estimate

Mr. Phillip Fox confirms that the information included in this announcement in respect of the Kizevak, Sastavci and Karadak resource estimates are an accurate representation of the available data and studies for the Kizevak, Sastavci and Karadak projects. Mr. Fox is a consultant to Adriatic and is a member of Australian Institute of Geoscientists (AIG). Mr. Fox has provided his prior written consent as to the form and context in which the disclosure of the Karadak estimate and the supporting information is presented in this announcement.

APPENDIX 1- ASX DISCLOSURE REQUIREMENTS

ASX Listing Rule	ASX Explanation	Commentary
5.12.1	The source and date of the historical estimates or foreign estimates.	"Report on exploration for lead and zinc at the Kizevak-Karadak area in 1994" dated 1995 and authored by Mr B. Rudulović (Izveštaj o istraživanju olova i cinka u području Kiževak - Karadak u 1994. godini).
5.12.2	Whether the historical estimates or foreign estimates use categories of mineralisation other than those defined in Appendix 5A (JORC Code) and if so, an explanation of the differences.	Yugoslav GKZ mineral resource estimates were always stated as "reserves" and classified according to the A+B+C1+C2 or "alphabetical" classification, which was derived from the Russian system and is still applied throughout many countries in southeast Europe. The reserves had to be approved by the official Commission for Ore Reserves. The A, B, C1 and C2 categories reflect the levels of confidence in the actual tonnage exploited from a reserve, with confidence levels being - 95%, 80%, 70% and 35% respectively. Henley (2004) and others have evaluated the alphabetical classification system with respect to the compliant codes in Canada and Australia, and concluded that A+B is comparable to "measured", C1 to "indicated" and C2 to "inferred" in internationally acceptable codes for reporting resources. However, these comparisons are only an approximation, and cannot be
5.12.3	The relevance and materiality of the historical estimates or foreign estimates to the entity.	The Company is not treating the foreign estimate as current mineral resources or reserves and considers the foreign estimate to represent an exploration project that requires verification.
5.12.4	The reliability of historical estimates or foreign estimates to the entity.	The foreign estimate is considered to be a useful guide to exploration but the Company is not treating the foreign estimate as current mineral resources or ore reserves as defined by the JORC Code. The Company has reviewed and digitised original hard copy drill data, geology logs and assay data, but has not had access to drill core or core photographs; descriptions of sampling, sample preparation or analytical methodology; quality control data; core recovery data; downhole or collar survey data; or sample security information.
5.12.5	To the extent known, a summary of work programs on which the historical estimates or foreign estimates are based and a summary of the key assumptions, mining and processing parameters and methods used to prepare the historical or foreign estimates.	The foreign estimate was based on the results of core drilling and underground sampling completed by the Geoinstitut between 1973-1994. It was estimated using the polygonal method assuming an open pit mining scenario and prevailing metal prices at the time.
5.12.6	Any more recent estimates or data relevant to the reported mineralisation available to the entity.	No more recent estimates or data relevant to the foreign estimate are available to the Company except for the results of drill holes KSEDD001 to KSEDD004 reported herein.
5.12.7	The evaluation and/or exploration work that needs to be completed to verify the historic estimates or foreign estimates as mineral resources or ore reserves in accordance with Appendix 5A (JORC Code)	To verify the foreign estimate as mineral resources in accordance with Appendix 5A (JORC Code) the Company intends to perform geological mapping, geophysical surveys and core drilling. An initial 3000m of core drilling is planned to verify the presence and grade of mineralisation, and the results will be used to plan additional exploration programs to facilitate future mineral resource estimation in accordance with the JORC Code, if warranted.
5.12.8	The proposed timing of any evaluation and/or exploration work that the entity intends to undertake and a comment on how the entity intends to fund that work.	The exploration work is proposed over a 12 month period commencing on the First Closing and enduring to the Second Closing, at which point the Company will elect whether or not to proceed with the option agreement with EFPP. The Company intends to fund this work through current cash resources.

5.12.9	A cautionary statement proximate to, and with equal prominence as, the reported historical estimates or foreign estimates stating that: • The estimates are historical estimates or foreign estimates and are not reported in accordance with the JORC Code; • A competent person has not done enough work to classify the historic estimates or foreign estimates as mineral resources or ore reserves in accordance with the JORC Codes; and	The required cautionary statement has been provided proximate to the reported estimates.
	 It is uncertain that following evaluation and/or further exploration work that the historic estimates or foreign estimates will be able to be 	

APPENDIX 2- JORC TABLES

Section 1 Sampling Techniques and Data

Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Tethyan: Drill core samples were collected from half cut PQ and HQ diameter core, where the core was sawn exactly in half along a pre-defined cutting line. Sample intervals were determined by the geologist and samples were placed into labelled and tagged sample bags prior to dispatch. A sample tag was also placed in the core box. A specific gravity sample was taken at 10 metre intervals, or at each change in lithology, using whole core prior to cutting and sampling for analysis. Specific gravity was measured using the Archimedes principle.
		Historical: Core samples were collected from whole core over 1 to 2 metre intervals.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	Tethyan: Sample intervals were selected by the logging geologists based on geological criteria including presence of alteration and mineralisation, style of mineralisation and lithological contacts. Minimum sample lengths of 0.5 metres and maximum sample lengths of 2 metres were employed. Each sample weighed between 2 and 13 kg depending on the length of the sample and diameter of drill core. On silver-lead-zinc vein targets, sampling was only conducted on visually mineralized intervals, including 10 metres either side of the visually mineralized interval. On copper-gold porphyry targets, the entire hole was sampled.
		Historical: Details of historical measures to ensure sample representivity are not known.

Criteria	JORC Code explanation	Commentary
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	Tethyan: Core drilling was used to obtain 2 to 13kg samples, prepared at ALS Bor, Serbia. The sample pulps were sent to ALS Rosia Montana, Romania by air freight for gold analysis by 30 gram fire assay with AA finish (code FA-AA23), and multi-element analyses were conducted by ALS Loughrea, Ireland using a highly oxidising digestion with ICP-MS finish (code ME-ICPORE). Historical: Samples were collected from whole core over 1 to 2 m intervals. Details of sample preparation are not known.
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Tethyan: All holes were drilled by coring producing PQ and HQ diameter core and recovered using triple tube. Downhole surveys were recorded by the drillers every 30 m downhole and at the end of each hole using a Reflex EZ-trac tool. Core was oriented using the spear method. Historical: All holes were drilled by coring. Details of downhole surveys are not known. No oriented core was produced.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Tethyan: All core was geotechnically logged to verify drillers blocks, record the run length, recovered length, core recovery (%), RQD and fracture index. Core recovery was maximised through drilling shorter drill runs in friable zones and zones of water loss. There is no observed relationship between sample recovery and grade.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Historical: Historical drill recoveries are not known.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	

Criteria	JORC Code explanation	Commentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Tethyan: Core samples were geologically logged to a level of detail that would support appropriate Mineral Resource estimation, mining and metallurgical studies. Basic geotechnical logging (RQD, fracture index, core recovery) was recorded and is sufficient for Mineral Resource estimation. Additional geotechnical logging would be required for mining studies. Core logging is qualitative and all core is photographed. All of the core (100%) is logged.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Historical: Core samples were geologically logged to a level of detail that would support Mineral Resource estimation and was qualitative and no photographs were known to have been recorded. All of the core (100%) was geologically
	The total length and percentage of the relevant intersections logged.	logged.
Sub- sampling techniques	If core, whether cut or sawn and whether quarter, half or all core taken.	Tethyan: Core samples were sawn exactly in half.
and sample		Historical: Whole core samples were collected.
preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Not applicable, as all samples are core.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Tethyan : Collection of around 2-13kg of half core material with subsequent pulverisation of the total charge provided an appropriate and representative sample for analysis. Sample preparation was undertaken at the ALS laboratory in Bor, to industry best practice.
		Historical: Sample preparation techniques are not known.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Tethyan: Industry best practice was adopted by ALS for laboratory sub-sampling and the avoidance of any cross contamination. Tethyan inserted blind blanks at a rate of one per batch of 20 samples, typically sequentially following a mineralised sample.
		Historical: No QAQC reports are known for the historical drilling.

Criteria	JORC Code explanation	Commentary
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Tethyan: At Kizevak, two composite samples were collected from mineralised quarter cut core, and were prepared and analysed at MMI Bor. At Rudnica, three composite samples were collected from quarter cut drill core and were prepared and analysed at Wardell Armstrong. Comparison between the exploration assays and the MMI Bor and Wardell Armstrong results demonstrate that sampling is representative of the in-situ material collected. Tethyan routinely assay pulp duplicates which show excellent repeatability (R=>0.9).
		Historical: No field duplicate data is reported.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Tethyan: Sample size of 2-13 kg is appropriate to the grain size of the material being tested.
		Historical: Whole core was sampled which is appropriate for the material being tested.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Tethyan: The sample pulps were sent to ALS Rosia Montana, Romania by air freight for gold analysis by 30-gram fire assay with AA finish (code FA-AA23). Multi-element analyses were conducted by ALS Loughrea, Ireland using a highly oxidising digestion with ICP-MS finish (code ME-ICPORE). All techniques were appropriate for the elements being determined. Samples are considered a partial digestion when using an aqua regia digest.
		Historic: The analytical technique used historically is not known.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	There was no reliance on determination of analysis by geophysical tools.
	Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Tethyan: Quality Control is monitored through the insertion of one certified reference material (CRM) sample and one blank sample per batch of 20 samples. One pulp duplicate sample is also inserted per batch. The QC results are monitored in real-time, and any failed batches are re-assayed prior to inclusion in the final drill database. Failed batches are determined if a blank sample assays three times the lower detection limit of the element of interest, or if a CRM assays greater than +/-3 standard deviations from the mean, or if two consecutive CRMs assay +/_ 2

Criteria	JORC Code explanation	Commentary
		standard deviations from the mean. It is considered that acceptable levels of accuracy and precision have been achieved.
		Historical: No QAQC reports are known for the historical drilling.
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	There has been no independent logging of significant intersections. Tethyan core was logged by geological staff and verified by the Exploration Manager. Tethyan drilled fourteen holes, KSEDD011 to KSEDD014, which have verified the position and grade of historical mineralised intercepts. No historical core remains.
assaying	The use of twinned holes.	None of the reported holes are twin holes.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Tethyan: Primary logging, survey and geotechnical data was entered by the logging geologist into excel sheets per drill hole, and verified and merged with a master database by the data manager. Assay data entry was semiautomated into excel sheets. Data verification includes visual verification by the Database Manager, checking of detailed geological logs against core observations, core photographs and analytical results by the Exploration Manager, and automated data verification using industry standard software. Data is stored on the Virtual Cloud and is regularly backed-up.
		Historical: Primary data was entered onto hard copy sheets and securely stored at the Geozavod archives.
	Discuss any adjustment to assay data.	No adjustments were necessary.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Tethyan: Drill collars were surveyed using Total Station to better than 0.05m accuracy. Downhole surveys were related back to the surveyed collar.
		Historical: Survey details are not known for historical holes but several historical drill pads have been observed in the field by Tethyan and recorded using handheld GPS, which match historical collar locations.
	Specification of the grid system used.	Tethyan: UTM WGS Zone 34, Northern Hemisphere

Criteria	JORC Code explanation	Commentary
		Historical: MGI 1901 / Balkans zone 7
	Quality and adequacy of topographic control.	Topography is derived from public 1:25,000 scale mapping. It is considered sufficiently accurate for the Company's current exploration activities.
Data spacing and	Data spacing for reporting of Exploration Results.	Tethyan: The four drill holes reported (KSEDD001 to KSEDD004) were located on two sections 80 metres apart, with 40 metres between the drill holes on each section.
distribution		Historical: Data spacing varies from 15 to >40m and is considered acceptable for reporting exploration results.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve	Tethyan: Not applicable as no Mineral Resource or Ore Reserve estimation has been completed.
	estimation procedure(s) and classifications applied.	Historical: Data spacing is considered sufficient for the foreign mineral resource estimate (1994).
	Whether sample compositing has been applied.	Sample compositing was not applied.
Orientation of data in relation to geological	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Holes were drilled at a high angle to mineralised structures. The true thickness of mineralised zones is estimated to vary between 70 to 95% of apparent width.
structure	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	It is not considered that the drilling orientation has introduced a sampling bias.

Criteria	JORC Code explanation	Commentary
Sample security	The measures taken to ensure sample security.	Tethyan: Chain of Custody of digital data is managed by the Company. Core samples were stored on site in a locked facility and dispatched to the laboratory using a laboratory courier, at which point the laboratory assumed custody of the samples. Samples were examined and photographed on receipt by the laboratory. All sample collection was controlled by digital sample control file(s) and hard-copy ticket books.
		Historical: Historical sample security measures are not known.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	There have been no audits or reviews of sampling techniques and data.

Section 2: Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title	Tethyan Resource Corp has rights to exploration on four contiguous exploration licences in southwest Serbia, located 250 km from Belgrade and collectively referred to as the "Raska District". Drill holes KSEDD001 to KSEDD004 which are the subject of this press release are located on exploration licence 2176 "Kremice". Drill hole RDD-001 which is also reported in this release is located on exploration licence 2150 "Raska".
	interests, historical sites, wilderness or national	Licence 2176 "Kremice"
park and environmental settings.	Licence 2176 "Kremice" covers an area of 39 km² and is owned 100% by Taor d.o.o., a 100% owned Serbian subsidiary of Tethyan Resource Corp. There are no known native title interests, wilderness or national park or environmental settings within the above licence holding. There are several historical points of interest in the licence which are provided as singular points by the relevant ministry department, where exploration work cannot be conducted without prior approval. However, these sites are outside of exploration areas of interest and have not impeded any exploration work to date.	
	Licence 2150 "Raska"	
		Exploration licence 2150 "Raska" covers an area of 81 km² and is owned 100% by Deep Research d.o.o., a private Serbian company. Tethyan Resource Corp is the operator of licence 2150 under the terms of an option agreement dated September 2016, whereby Tethyan Resource Corp has the option to acquire 100% of the licence from Deep Research d.o.o. at any time within eight years of the agreement for a cash payment of €6 million, plus a percentage of the eventual capital cost of building a mine calculated as:
		• 4% of CAPEX up to €200m;
		• 2% of CAPEX between €200 – 500m;
		• 1% of CAPEX in excess of €500m
		Several other work program and cash commitments due under the agreement have already been met in order to retain the option on Licence 2150.
		There are several historical points of interest in the licence which are provided as singular points by the relevant ministry department, where exploration work cannot be conducted without prior approval. However, these sites are outside of exploration areas of interest and have not impeded any exploration work to date. There is one archaeological protected zone in the northeast of the licence, where no exploration work is permitted without prior approval. No exploration work is planned in this area. There are no known native title interests, wilderness or national park or environmental settings within the above licence holding. Licence 2345 "Kizevak" and 2346 "Sastavci"

Criteria	JORC Code explanation	Commentary
		Exploration licences 2345 "Kizevak" and 2346 "Sastavci" are owned 100% by EFPP d.o.o., a private Serbian company. Licence 2345 covers an area of 1.8 km² and licence 2346 covers an area of 1.4 km². On 01 April 2020, Tethyan Resource Corp announced that it had entered into an arms-length agreement to purchase 100% of EFPP d.o.o. on 31 January 2020. The First Closing initially consists of a cash payment of €525,000 to acquire 10% of EFPP d.o.o. At any time within 12 months of First Closing, Tethyan Resource Corp may elect to acquire the remaining 90% of shares of EFPP d.o.o. on the Second Closing by:
		• Paying €1,375,000 to EFPP d.o.o.;
		Granting to the Sellers a 2% Net Smelter Return over the Licences;
		• Issuing a total of 4 million ordinary shares of Tethyan, to be issued in four equal tranches of 1 million shares, with the first tranche issued on the Second Closing and each additional tranche issued each six months thereafter; and
		• Paying a deferred cash payment of €500,000 on the two-year anniversary of First Closing.
		There are no known native title interests, historical sites, wilderness or national park or environmental settings within the above licence holding.
		<u>Royalties</u>
		A non-negotiable 5% Net Smelter Return is payable to the Serbian government for metallic raw materials.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Licence 2176 "Kremice" is in good standing and is in the fourth of a six-year exploration period with an expiry date of 26.07.2022. The exploration licence may be extended on application for a further two years prior to submission of an application for an Exploitation Licence.
		Licence 2150 "Raska" is in good standing and is in the fifth of a six-year exploration period with an expiry date of 18.02.2022. The exploration licence may be extended on application for a further two years prior to submission of an application for an Exploitation Licence.
		Licence 2345 "Kizevak" and 2346 "Sastavci" are both in good standing and are in the first of a three-year exploration period. Both licences expire on 16.10.2022 and may be extended on application for a further six years prior to submission of an application for an Exploitation Licence.
		There are no known impediments to obtaining a licence to operate in the area.
Exploration done by	Acknowledgment and appraisal of exploration by	The Raska District has an extended exploration history, summarised below:
other parties	other parties.	1929-1932: Selection Trust Ltd conducted prospecting and developed underground drives for exploration sampling at Kizevak.
		1957-1958: Rudnik Bel Brdo company completed five drill holes at Kizevak, total meterage not known.

Criteria	JORC Code explanation	Commentary
		• 1960-1964: Geozavod (Yugoslav state) completed 1:100,000 scale mapping and scout drilling (details not known).
		• 1973-2005: The Geoinstitut (Yugoslav state company) explored the Kizevak, Sastavci and Karadak prospects. At Kizevak, Geoinstitut completed 172 core drill holes totalling 26,727 metres and 29 adits with cross drifts for exploration sampling totalling 7,820m. Open pit mining occurred between 1986 and 2000 and produced 2Mt. At Sastavci, 30 drill holes (7113m) and three adits with cross drives (2626m) were completed leading to small scale open pit mining totalling 40kt of production in 1986. Six core holes (1068m) and 804m of adits and cross drives were completed at Karadak but no mining took place.
		A foreign resource estimate was reported in 1994 by the Geoinstitut as a combined estimate for the Kizevak, Sastavci and Karadak prospects in the A+B+C1+C2 categories in accordance with Yugoslav GKZ reporting requirements, for 8Mt at 45 g/t silver, 5.06 % zinc and 2.96 % lead.
		i. "Report on exploration for lead and zinc at the Kizevak-Karadak area in 1994" dated 1995 and authored by Mr B. Rudulović (Izveštaj o istraživanju olova i cinka u području Kiževak - Karadak u 1994. godini).
		ii. Yugoslav GKZ mineral resource estimates were always stated as "reserves" and classified according to the A+B+C1+C2 or "alphabetical" classification, which was derived from the Russian system and is still applied throughout many countries in southeast Europe. The reserves had to be approved by the official Commission for Ore Reserves. The A, B, C1 and C2 categories reflect the levels of confidence in the actual tonnage exploited from a reserve, with confidence levels being - 95%, 80%, 70% and 35% respectively. Henley (2004) and others have evaluated the alphabetical classification system with respect to the compliant codes in Canada and Australia, and concluded that A+B is comparable to "measured", C1 to "indicated" and C2 to "inferred" in internationally acceptable codes for reporting resources. However, these comparisons are only an approximation, and cannot be considered as equivalents.
		iii. The Company is not treating the foreign estimate as current mineral resources or reserves and considers the foreign estimate to represent an exploration project that requires verification.
		iv. The foreign estimate is considered to be a useful guide to exploration but the company is not treating the foreign estimate as current mineral resources or ore reserves as defined by the JORC Code. The Company has reviewed and digitised original hard copy drill data, geology logs and assay data, but has not had access to drill core or core photographs; descriptions of sampling, sample preparation or analytical methodology; quality control data; core recovery data; downhole or collar survey data; or sample security information.
		 The foreign estimate was based on the results of core drilling and underground sampling completed by the Geoinstitut between 1973-1994. It was estimated using the polygonal method assuming an open pit mining scenario and prevailing metal prices at the time.

Criteria	JORC Code explanation	Commentary
		vi. No more recent estimates or data relevant to the foreign estimate are available to the Company except for the results of KSEDD001 to KSEDD014 drilled by Tethyan Resources during 2018-2019.
		vii. To verify the foreign estimate as mineral resources in accordance with Appendix 5A (JORC Code) the Company intends to perform geological mapping, geophysical surveys and core drilling. An initial 3000m of core drilling is planned to verify the presence and grade of mineralisation, and the results will be used to plan additional exploration programs to facilitate future mineral resource estimation in accordance with the JORC Code, if warranted.
		viii. The exploration work is proposed over a 12 month period commencing on the First Closing and enduring to the Second Closing, at which point the Company will elect whether or not to proceed with the option agreement with EFPP. The Company intends to fund this work using current cash resources.
		ix. The foreign estimate is not reported in accordance with the JORC Code. A competent person has not done sufficient work to classify the foreign estimate as mineral resources or ore reserves in accordance with the JORC Code. It is uncertain that following evaluation and/or further exploration that the foreign estimate will be able to be reported as mineral resources or ore reserves in accordance with the JORC Code.
		2005-2008: no work known to have occurred at the Kizevak-Sastavci prospects.
		• 2004-2007: Phelps Dodge explored the Rudnica copper-gold porphyry including seven core holes for at least 1310 m.
		2007-2009: Euromax drilled one hole at the Rudnica copper-gold porphyry
		2009-2015: Farmakom d.o.o. a private Serbian company explored the Kizevak, Sastavci and Rudnica prospects licences. Work completed not known.
		• 2016-2018: Licence 2176 "Kremice" was granted to Taor do.o., a private Serbian company, who completed a desk-based remote sensing study prior to being acquired by Tethyan Resource Corp on 03.07.2018.
		2016: Licence 2150 "Raska" was granted to Deep Research d.o.o.
		2019: Licence 2345 "Kizevak" and 2346 "Sastavci" were granted to EFPP d.o.o.
Geology	Deposit type, geological setting and style of mineralisation.	Mineralisation in the Raska District is hosted in andesite volcanics and volcaniclastics, intruded by coeval diorite dykes and post-mineral diorite and quartz latite dykes. The volcanic sequence unconformably overlies a serpentinised ophiolitic melange. A massive, grey to red limestone unit is juxtaposed against the andesite package to the south of the Kizevak prospect.
		The Kizevak, Sastavci and Karadak deposits are intermediate sulphidation, polymetallic (Ag-Pb-Zn) epithermal vein arrays hosted in an extensional fault setting. Kizevak occurs over a total strike length of >1.3 km. Approximately 200 m of the known strike length is within exploration licence 2176 "Kremice" which is the southeast extension of the past producing Kizevak open pit mine. Sastavci mineralisation has been defined by historical drilling over a

Criteria	JORC Code explanation	Commentary
		strike length of 1.2 km within a 250m wide zone, which contains several sub-parallel veins and lenses. Karadak has been defined by historical drilling over a strike length of 400 m within one to four sub-parallel veins. Mineralisation comprises <1 to >5 m thick, massive to semi-massive sulphide veins with broad (10-40m thick) zones of crackle breccia and stockwork veins in the hanging walls. All veins are composed of galena-sphalerite-pyrite-bournonite-chalcopyrite-tetrahedrite with intergrowths of Pb-As sulfosalts and quartz-carbonate (rhodochrosite) gangue. The veins are occasionally milled and brecciated as a result of fault reactivation, which forms clay rich, unconsolidated mineralised zones. Mineralisation is associated with an intense pyrite-clay (illite-smectite), magnetite destructive alteration.
		The Rudnica and Kremice Porphyry prospects are copper-gold porphyry deposits which display stockwork A, B and C-type veins composed of variable quartz, pyrite, chalcopyrite and magnetite. Stockwork veins are dominantly hosted within an early diorite porphyry intrusion (P10), an intermediate diorite dyke (P20) and country rocks (serpentinite and andesite). A late diorite dyke (P30) crosscuts mineralisation. At Rudnica, a 50 to 80m thick, gold-mineralised, copper-poor, leached and oxidised cap overlies a 10-50 m thick supergene copper enrichment zone (chalcocite blanket), which overprints the deeper hypogene mineralisation. Mineralisation has been defined over 400 by 250 m, to a depth of 550m below surface, and is open in most directions. At Kremice, mapping has defined an area of 450 by 450m with stockwork A and B type quartz-pyrite ± magnetite veins within a 1200 by 600 m soil anomaly.

Criteria	JORC Code explanation	Commentary
Drill hole information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: o easting and northing of the drill hole collar o elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar o dip and azimuth of the hole o downhole length and interception depth o hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Drilling data for the reported drill holes, KSEDD001 to KSEDD004 and RDD-001, is included in Tables 2 and 3 of the main reporting document.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	For KSEDD001 to KSEDD004 Significant intercepts were truncated by applying a lower cut-off grade of 2% ZnEq (see below assumptions for ZnEq calculation) and maximum internal dilution of 2 metres. No top-cutting was applied. Significant intercepts were reported as weighted averages. For RDD-001 Significant intercepts were truncated by applying a lower cut-off grade of 0.1g/t Au and maximum internal dilution of 2 metres. No top-cutting was applied. Significant intercepts were reported as weighted averages.

Criteria	JORC Code explanation	Commentary				
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	For KSEDD001 to KSEDD004 Short lengths of high-grade results were defined as >10% ZnEq and maximum internal dilution of 2 meters. Results are shown in Table 2 of the main reporting document. For RDD-001 Does not apply.				
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	Zinc Equivalent (ZnEq. %) metal grade was calculated using assumed metal prices of \$1250/oz gold; \$16/oz silver; \$2100/t lead and \$2400/t zinc. Metal recoveries of 100% were applied in the metal equivalent calculations. Zinc equivalent (%) was calculated using the following formula: Zinc Eq. (%) = 100 x ((Au price (g) x Au grade) + (Ag Price (g) x Ag grade) + (Pb price x Pb grade/100) + (Zn price x Zn grade/100))/Zn price.				
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should	Only downhole lengths are reported, true widths are not known. True widths are estimated as between 75 and 90% of the apparent width.				
	If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (e.g. 'downhole length, true width not known').					
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Relevant maps and diagrams are included in the body of the report.				
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative	All assay tables for all reported holes are included in the main reporting document.				

Criteria	JORC Code explanation	Commentary
	reporting of both low and high-grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	No substantive exploration data not already mentioned in the announcement or in this table have been used.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Further drilling will be undertaken for exploration along strike and down dip, the nature of which is dependent on exploration success and funding.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Diagrams have been included in the body of this announcement.

APPENDIX 3- ASSAY TABLES

Table 1 – Significant intercepts for reported drill holes

Dunin of	II-I-ID	From	То	Interval	Au	Ag	Pb	Zn	Pb+Zn
Project	Hole ID	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)	(%)
Kizevak	KSEDD001	161.00	166.60	5.60	0.11	191.50	16.55	1.56	18.11
Kizevak	Including	161.00	165.60	4.60	0.13	254.11	19.28	1.26	20.55
Kizevak	KSEDD001	187.00	208.00	21.00	0.15	15.90	1.73	1.12	2.85
Kizevak	KSEDD001	212.00	235.00	23.00	0.26	35.02	3.16	7.02	10.18
Kizevak	Including	221.00	225.00	4.00	0.30	55.50	4.75	10.87	15.62
Kizevak	KSEDD002	130.00	142.00	12.00	0.18	166.50	10.49	22.03	32.53
Kizevak	KSEDD003	105.00	107.00	2.00	0.11	13.00	1.20	2.24	3.44
Kizevak	KSEDD003	111.00	129.00	18.00	0.20	48.46	2.79	3.40	6.18
Kizevak	KSEDD003	137.00	139.00	2.00	0.25	56.00	3.73	3.43	7.16
Kizevak	KSEDD003	142.00	159.00	17.00	0.36	36.69	2.53	6.66	9.19
Kizevak	Including	150.00	158.00	8.00	0.43	59.21	4.43	11.48	15.91
Kizevak	KSEDD003	164.00	177.00	13.00	0.48	25.38	2.54	3.88	6.41
Kizevak	KSEDD004	163.80	170.60	6.80	0.16	9.84	1.34	3.36	4.70
Kizevak	KSEDD004	177.00	181.00	4.00	0.17	7.25	0.81	1.52	2.32
Kizevak	KSEDD004	212.00	216.00	4.00	0.10	10.25	1.03	1.96	2.99
Kizevak	KSEDD004	223.00	228.00	5.00	0.40	10.60	1.35	1.96	3.31
Kizevak	KSEDD004	248.50	251.00	2.50	0.34	27.00	2.47	4.00	6.47

Project	Hole ID	From To		Interval	Au	Cu	
	Tiole ID	(m)	(m)	(m)	(g/t)	(%)	
Rudnica	RDD-001	0.00	565.00	565.00	0.45	0.28	

Table 2 – Collar information for reported drill holes

Easting (m)	Northing (m)	Elevation (m)	Depth (m)	Azimuth (°)	Inclination (°)
476507	4792486	912	258	225	-55
476485	4792456	909	226	230	-53
476431	4792507	896	213	230	-55
476459	4792533	904	261	230	-60
473927	4787653	604	585	136	-85
	(m) 476507 476485 476431 476459	(m) (m) 476507 4792486 476485 4792456 476431 4792507 476459 4792533	(m) (m) 476507 4792486 912 476485 4792456 909 476431 4792507 896 476459 4792533 904	(m) (m) (m) 476507 4792486 912 258 476485 4792456 909 226 476431 4792507 896 213 476459 4792533 904 261	(m) (m) (m) (m) (c) 476507 4792486 912 258 225 476485 4792456 909 226 230 476431 4792507 896 213 230 476459 4792533 904 261 230

Note: Coordinates are shown using the UTM WGS84 projection, Zone 34 Northern Hemisphere

Table 3 – Assay results for reported drill holes

Project	Hole ID	From	То	Interval	Au	Ag	Pb	Zn
,		(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)
Kizevak	KSEDD001	0.00	118.00	118.00		No A	Assay	
Kizevak	KSEDD001	118.00	120.00	2.00	0.00025	1	0.005	0.01
Kizevak	KSEDD001	120.00	122.00	2.00	0.00025	1	0.005	0.01
Kizevak	KSEDD001	122.00	124.00	2.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD001	124.00	126.00	2.00	0.00025	1	0.005	0.01
Kizevak	KSEDD001	126.00	128.00	2.00	0.00025	2	0.02	0.08
Kizevak	KSEDD001	128.00	128.50	0.50	0.074	28	1.56	3.58
Kizevak	KSEDD001	128.50	129.00	0.50	0.152	30	1.85	4.20
Kizevak	KSEDD001	129.00	129.50	0.50	0.045	31	2.64	5.31
Kizevak	KSEDD001	129.50	130.50	1.00	0.017	2	0.14	0.30
Kizevak	KSEDD001	130.50	132.50	2.00	0.00025	0.5	0.005	0.005
Kizevak	KSEDD001	132.50	134.50	2.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD001	134.50	135.50	1.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD001	135.50	136.20	0.70	0.00025	1	0.005	0.01
Kizevak	KSEDD001	136.20	137.00	0.80	0.01	1	0.01	0.02
Kizevak	KSEDD001	137.00	139.00	2.00	0.00025	1	0.01	0.02
Kizevak	KSEDD001	139.00	141.00	2.00	0.008	1	0.03	0.05
Kizevak	KSEDD001	141.00	142.00	1.00	0.00025	2	0.02	0.04

		From	То	Interval	Au	Ag	Pb	Zn
Project	Hole_ID	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)
Kizevak	KSEDD001	142.00	142.80	0.80	0.00025	0.5	0.005	0.01
Kizevak	KSEDD001	142.80	143.50	0.70	0.035	3	0.26	0.52
Kizevak	KSEDD001	143.50	144.50	1.00	0.007	0.5	0.005	0.01
Kizevak	KSEDD001	144.50	145.00	0.50	0.103	7	0.37	0.72
Kizevak	KSEDD001	145.00	145.50	0.50	0.079	2	0.05	0.07
Kizevak	KSEDD001	145.50	146.50	1.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD001	146.50	147.50	1.00	0.017	2	0.18	0.34
Kizevak	KSEDD001	147.50	148.50	1.00	0.024	2	0.10	0.27
Kizevak	KSEDD001	148.50	149.50	1.00	0.00025	1	0.005	0.01
Kizevak	KSEDD001	149.50	150.50	1.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD001	150.50	151.50	1.00	0.01	1	0.06	0.16
Kizevak	KSEDD001	151.50	152.50	1.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD001	152.50	153.50	1.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD001	153.50	154.00	0.50	0.01	1	0.03	0.05
Kizevak	KSEDD001	154.00	155.00	1.00	0.018	1	0.10	0.21
Kizevak	KSEDD001	155.00	156.00	1.00	0.308	4	0.34	0.68
Kizevak	KSEDD001	156.00	157.00	1.00	0.269	2	0.11	0.29
Kizevak	KSEDD001	157.00	158.00	1.00	0.017	0.5	0.005	0.005
Kizevak	KSEDD001	158.00	158.70	0.70	0.067	3	0.26	0.69
Kizevak	KSEDD001	158.70	160.00	1.30	0.096	1	0.19	0.22
Kizevak	KSEDD001	160.00	161.00	1.00	0.25	10	0.93	0.29
Kizevak	KSEDD001	161.00	162.00	1.00	0.301	25	2.33	1.83
Kizevak	KSEDD001	162.00	163.30	1.30	0.188	95	7.73	1.14
Kizevak	KSEDD001	163.30	164.30	1.00		No A	Assay	
Kizevak	KSEDD001	164.30	165.00	0.70	0.221	920	68.40	2.47
Kizevak	KSEDD001	165.00	165.60	0.60	0.323	669	51.30	4.32
Kizevak	KSEDD001	165.60	166.60	1.00	0.249	27	1.62	1.13
Kizevak	KSEDD001	166.60	167.40	0.80	0.2	3	0.29	0.53
Kizevak	KSEDD001	167.40	168.40	1.00	0.215	8	0.62	0.76
Kizevak	KSEDD001	168.40	169.70	1.30	0.142	11	0.97	0.86
Kizevak	KSEDD001	169.70	170.90	1.20	0.08	3	0.32	0.66
Kizevak	KSEDD001	170.90	172.00	1.10	0.124	5	0.51	1.23
Kizevak	KSEDD001	172.00	173.00	1.00	0.04	2	0.17	0.36
Kizevak	KSEDD001	173.00	174.00	1.00	0.013	1	0.09	0.16

Project	Hole_ID	From	То	Interval	Au	Ag	Pb	Zn
		(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)
Kizevak	KSEDD001	174.00	175.00	1.00	0.124	3	0.33	0.68
Kizevak	KSEDD001	175.00	176.00	1.00	0.065	3	0.37	0.62
Kizevak	KSEDD001	176.00	177.00	1.00	0.324	1	0.10	0.31
Kizevak	KSEDD001	177.00	178.00	1.00	0.207	2	0.35	1.08
Kizevak	KSEDD001	178.00	179.00	1.00	0.205	4	0.57	1.09
Kizevak	KSEDD001	179.00	180.00	1.00	0.107	5	0.55	1.13
Kizevak	KSEDD001	180.00	181.00	1.00	0.254	13	1.38	2.86
Kizevak	KSEDD001	181.00	182.00	1.00	0.033	1	0.10	0.21
Kizevak	KSEDD001	182.00	183.00	1.00	0.00025	0.5	0.005	0.005
Kizevak	KSEDD001	183.00	184.00	1.00	0.00025	0.5	0.005	0.005
Kizevak	KSEDD001	184.00	185.00	1.00	0.00025	0.5	0.005	0.005
Kizevak	KSEDD001	185.00	186.00	1.00	0.025	0.5	0.17	0.28
Kizevak	KSEDD001	186.00	187.00	1.00	0.023	2	0.20	0.30
Kizevak	KSEDD001	187.00	188.00	1.00	0.298	23	2.90	2.15
Kizevak	KSEDD001	188.00	189.00	1.00	0.011	2	0.07	0.15
Kizevak	KSEDD001	189.00	190.00	1.00	0.032	1	0.04	0.05
Kizevak	KSEDD001	190.00	191.00	1.00	0.135	6	0.61	1.35
Kizevak	KSEDD001	191.00	192.00	1.00	0.08	0.5	0.13	0.23
Kizevak	KSEDD001	192.00	193.00	1.00	0.033	0.5	0.01	0.03
Kizevak	KSEDD001	193.00	194.00	1.00	0.241	4	0.44	1.22
Kizevak	KSEDD001	194.00	195.00	1.00	0.266	6	0.63	1.48
Kizevak	KSEDD001	195.00	196.00	1.00	0.317	7	0.69	1.59
Kizevak	KSEDD001	196.00	197.00	1.00	0.171	128	17.25	1.93
Kizevak	KSEDD001	197.00	198.00	1.00	0.042	4	0.50	0.41
Kizevak	KSEDD001	198.00	199.00	1.00	0.192	64	5.52	1.78
Kizevak	KSEDD001	199.00	200.00	1.00	0.052	3	0.36	0.87
Kizevak	KSEDD001	200.00	201.00	1.00	0.068	4	0.19	0.39
Kizevak	KSEDD001	201.00	202.00	1.00	0.106	8	0.78	1.20
Kizevak	KSEDD001	202.00	203.00	1.00	0.196	8	0.85	1.29
Kizevak	KSEDD001	203.00	204.00	1.00	0.12	23	1.59	2.75
Kizevak	KSEDD001	204.00	205.00	1.00	0.246	17	1.74	1.94
Kizevak	KSEDD001	205.00	206.00	1.00	0.15	5	0.40	0.84
Kizevak	KSEDD001	206.00	207.00	1.00	0.298	9	0.72	0.80
Kizevak	KSEDD001	207.00	208.00	1.00	0.182	10	0.96	1.03

		From	То	Interval	Au	Ag	Pb	Zn
Project	Hole_ID	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)
Kizevak	KSEDD001	208.00	209.00	1.00	0.083	4	0.37	0.46
Kizevak	KSEDD001	209.00	210.00	1.00	0.125	4	0.52	0.84
Kizevak	KSEDD001	210.00	211.00	1.00	0.063	3	0.33	0.86
Kizevak	KSEDD001	211.00	212.00	1.00	0.103	4	0.41	0.70
Kizevak	KSEDD001	212.00	213.00	1.00	0.227	13	1.19	2.93
Kizevak	KSEDD001	213.00	214.00	1.00	0.154	4	0.51	1.22
Kizevak	KSEDD001	214.00	215.00	1.00	0.122	5	0.46	1.16
Kizevak	KSEDD001	215.00	216.00	1.00	0.138	7	0.82	1.86
Kizevak	KSEDD001	216.00	217.00	1.00	0.121	3	0.34	0.67
Kizevak	KSEDD001	217.00	218.00	1.00	0.153	14	1.49	1.62
Kizevak	KSEDD001	218.00	219.00	1.00	0.239	3	0.25	0.86
Kizevak	KSEDD001	219.00	220.00	1.00	0.184	1	0.19	0.41
Kizevak	KSEDD001	220.00	221.00	1.00	0.209	5	0.53	1.23
Kizevak	KSEDD001	221.00	222.00	1.00	0.18	31	3.17	7.51
Kizevak	KSEDD001	222.00	223.00	1.00	0.35	88	6.70	16.25
Kizevak	KSEDD001	223.00	224.00	1.00	0.309	76	6.22	10.35
Kizevak	KSEDD001	224.00	225.00	1.00	0.367	27	2.90	9.38
Kizevak	KSEDD001	225.00	226.00	1.00	0.401	23	2.46	4.65
Kizevak	KSEDD001	226.00	227.00	1.00	0.392	16	1.60	5.11
Kizevak	KSEDD001	227.00	228.00	1.00	0.321	7	0.70	4.02
Kizevak	KSEDD001	228.00	229.00	1.00	0.399	77	7.87	11.15
Kizevak	KSEDD001	229.00	230.00	1.00	0.352	29	2.45	9.84
Kizevak	KSEDD001	230.00	231.00	1.00	0.31	36	3.43	15.00
Kizevak	KSEDD001	231.00	232.50	1.50	0.302	22	2.28	5.26
Kizevak	KSEDD001	232.50	233.30	0.80	0.096	188	15.00	25.70
Kizevak	KSEDD001	233.30	234.10	0.80	0.314	185	16.55	32.50
Kizevak	KSEDD001	234.10	235.00	0.90	0.205	10	0.75	2.01
Kizevak	KSEDD001	235.00	236.00	1.00	0.027	1	0.28	1.05
Kizevak	KSEDD001	236.00	238.00	2.00	0.011	0.5	0.13	0.24
Kizevak	KSEDD001	238.00	240.00	2.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD001	240.00	242.00	2.00	0.00025	1	0.005	0.01
Kizevak	KSEDD001	242.00	244.00	2.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD001	244.00	246.00	2.00	0.006	0.5	0.005	0.01
Kizevak	KSEDD002	0.00	114.00	114.00	No Assay			

Project	Hole_ID	From	То	Interval	Au	Ag	Pb	Zn
		(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)
Kizevak	KSEDD002	114.00	116.00	2.00	0.00025	0.5	0.005	0.005
Kizevak	KSEDD002	116.00	118.00	2.00	0.00025	0.5	0.005	0.005
Kizevak	KSEDD002	118.00	120.00	2.00	0.00025	0.5	0.005	0.005
Kizevak	KSEDD002	120.00	122.00	2.00	0.00025	0.5	0.005	0.005
Kizevak	KSEDD002	122.00	124.00	2.00	0.01	0.5	0.01	0.02
Kizevak	KSEDD002	124.00	125.00	1.00	0.04	4	0.31	1.17
Kizevak	KSEDD002	125.00	126.00	1.00	0.016	0.5	0.05	0.08
Kizevak	KSEDD002	126.00	127.00	1.00	0.085	8	0.46	1.10
Kizevak	KSEDD002	127.00	128.00	1.00	0.006	0.5	0.01	0.01
Kizevak	KSEDD002	128.00	129.00	1.00	0.071	1	0.17	0.36
Kizevak	KSEDD002	129.00	130.00	1.00	0.05	1	0.14	0.37
Kizevak	KSEDD002	130.00	131.00	1.00	0.105	43	3.05	8.65
Kizevak	KSEDD002	131.00	132.00	1.00	0.15	365	22.20	26.10
Kizevak	KSEDD002	132.00	133.00	1.00	0.147	266	16.85	38.90
Kizevak	KSEDD002	133.00	134.00	1.00	0.259	157	11.25	24.00
Kizevak	KSEDD002	134.00	135.00	1.00	0.184	231	14.10	27.70
Kizevak	KSEDD002	135.00	136.00	1.00	0.344	341	18.00	46.80
Kizevak	KSEDD002	136.00	137.00	1.00	0.19	136	8.46	28.30
Kizevak	KSEDD002	137.00	138.00	1.00	0.177	55	3.21	6.76
Kizevak	KSEDD002	138.00	139.00	1.00	0.191	85	6.22	14.05
Kizevak	KSEDD002	139.00	140.00	1.00	0.146	238	15.95	29.40
Kizevak	KSEDD002	140.00	141.00	1.00	0.137	71	5.72	12.05
Kizevak	KSEDD002	141.00	142.00	1.00	0.168	10	0.92	1.70
Kizevak	KSEDD002	142.00	144.00	2.00	0.275	5	0.44	0.88
Kizevak	KSEDD002	144.00	146.00	2.00	0.176	2	0.13	0.19
Kizevak	KSEDD002	146.00	148.00	2.00	0.479	3	0.19	0.36
Kizevak	KSEDD002	148.00	150.00	2.00	0.208	2	0.12	0.24
Kizevak	KSEDD002	150.00	151.00	1.00	0.094	1	0.12	0.23
Kizevak	KSEDD002	151.00	153.00	2.00	0.006	0.5	0.02	0.04
Kizevak	KSEDD002	153.00	155.00	2.00	0.00025	0.5	0.005	0.005
Kizevak	KSEDD002	155.00	157.00	2.00	0.005	0.5	0.01	0.005
Kizevak	KSEDD002	157.00	158.50	1.50	0.00025	0.5	0.005	0.005
Kizevak	KSEDD002	158.50	163.00	4.50	No Assay			
Kizevak	KSEDD002	163.00	165.00	2.00	0.005	0.5	0.01	0.005

		From	То	Interval	Au	Ag	Pb	Zn
Project	Hole_ID	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)
Kizevak	KSEDD002	165.00	167.00	2.00	0.01	0.5	0.005	0.005
Kizevak	KSEDD002	167.00	169.00	2.00	0.007	0.5	0.01	0.01
Kizevak	KSEDD002	169.00	171.00	2.00	0.00025	0.5	0.005	0.005
Kizevak	KSEDD002	171.00	173.00	2.00	0.00025	0.5	0.005	0.005
Kizevak	KSEDD002	173.00	175.00	2.00	0.00025	0.5	0.005	0.005
Kizevak	KSEDD002	175.00	177.00	2.00	0.00025	0.5	0.005	0.005
Kizevak	KSEDD002	177.00	179.00	2.00	0.00025	0.5	0.01	0.01
Kizevak	KSEDD002	179.00	181.00	2.00	0.00025	0.5	0.005	0.005
Kizevak	KSEDD002	181.00	182.00	1.00	0.02	0.5	0.05	0.07
Kizevak	KSEDD002	182.00	183.00	1.00	0.116	2	0.29	0.65
Kizevak	KSEDD002	183.00	184.00	1.00	0.784	3	0.23	0.96
Kizevak	KSEDD002	184.00	185.00	1.00	0.271	4	0.47	1.91
Kizevak	KSEDD002	185.00	186.00	1.00	0.109	1	0.10	0.19
Kizevak	KSEDD002	186.00	187.00	1.00	0.042	0.5	0.04	0.06
Kizevak	KSEDD002	187.00	188.50	1.50	0.016	0.5	0.01	0.01
Kizevak	KSEDD002	188.50	189.50	1.00	0.408	26	3.64	1.73
Kizevak	KSEDD002	189.50	190.50	1.00	0.016	0.5	0.01	0.03
Kizevak	KSEDD002	190.50	192.00	1.50	0.034	0.5	0.005	0.005
Kizevak	KSEDD002	192.00	194.00	2.00	0.046	0.5	0.01	0.005
Kizevak	KSEDD002	194.00	196.00	2.00	0.103	0.5	0.06	0.11
Kizevak	KSEDD002	196.00	198.00	2.00	0.093	0.5	0.02	0.04
Kizevak	KSEDD002	198.00	200.00	2.00	0.057	0.5	0.02	0.04
Kizevak	KSEDD003	0.00	84.00	84.00		No A	Assay	
Kizevak	KSEDD003	84.00	86.00	2.00	0.00025	0.5	0.005	0.005
Kizevak	KSEDD003	86.00	88.00	2.00	0.00025	0.5	0.005	0.005
Kizevak	KSEDD003	88.00	90.00	2.00	0.007	0.5	0.02	0.04
Kizevak	KSEDD003	90.00	92.00	2.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD003	92.00	94.00	2.00	0.025	1	0.03	0.05
Kizevak	KSEDD003	94.00	95.00	1.00	0.007	1	0.01	0.02
Kizevak	KSEDD003	95.00	96.40	1.40	0.007	0.5	0.01	0.01
Kizevak	KSEDD003	96.40	97.60	1.20	0.055	2	0.21	0.41
Kizevak	KSEDD003	97.60	99.00	1.40	0.047	1	0.05	0.12
Kizevak	KSEDD003	99.00	100.00	1.00	0.084	3	0.28	0.53
Kizevak	KSEDD003	100.00	101.00	1.00	0.066	4	0.26	0.44

		From	То	Interval	Au	Ag	Pb	Zn
Project	Hole_ID	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)
Kizevak	KSEDD003	101.00	101.50	0.50	0.138	51	3.94	9.42
Kizevak	KSEDD003	101.50	102.50	1.00	0.05	2	0.11	0.17
Kizevak	KSEDD003	102.50	103.50	1.00	0.01	1	0.02	0.04
Kizevak	KSEDD003	103.50	104.50	1.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD003	104.50	105.00	0.50	0.033	6	0.43	0.89
Kizevak	KSEDD003	105.00	106.00	1.00	0.141	13	1.23	2.21
Kizevak	KSEDD003	106.00	107.00	1.00	0.084	13	1.16	2.27
Kizevak	KSEDD003	107.00	108.00	1.00	0.045	4	0.27	0.78
Kizevak	KSEDD003	108.00	109.00	1.00	0.00025	0.5	0.06	0.15
Kizevak	KSEDD003	109.00	110.00	1.00	0.00025	2	0.005	0.01
Kizevak	KSEDD003	110.00	111.00	1.00	0.038	5	0.34	0.78
Kizevak	KSEDD003	111.00	112.00	1.00	0.104	24	2.05	3.37
Kizevak	KSEDD003	112.00	113.00	1.00	0.191	30	2.38	3.98
Kizevak	KSEDD003	113.00	114.00	1.00	0.19	22	1.41	3.79
Kizevak	KSEDD003	114.00	115.00	1.00	0.132	15	1.23	3.12
Kizevak	KSEDD003	115.00	116.00	1.00	0.128	8	0.71	1.45
Kizevak	KSEDD003	116.00	117.00	1.00	0.23	151	6.61	16.80
Kizevak	KSEDD003	117.00	117.50	0.50	0.246	103	5.64	12.30
Kizevak	KSEDD003	117.50	118.00	0.50	0.175	30	2.79	4.28
Kizevak	KSEDD003	118.00	119.00	1.00	0.189	7	0.53	1.13
Kizevak	KSEDD003	119.00	120.00	1.00	0.141	6	0.76	1.72
Kizevak	KSEDD003	120.00	121.00	1.00	0.195	22	2.40	3.41
Kizevak	KSEDD003	121.00	122.00	1.00	0.113	5	0.49	1.08
Kizevak	KSEDD003	122.00	123.00	1.00	0.111	7	0.74	0.93
Kizevak	KSEDD003	123.00	123.70	0.70	0.108	6	0.60	1.17
Kizevak	KSEDD003	123.70	124.20	0.50	0.5	128	5.41	2.39
Kizevak	KSEDD003	124.20	125.20	1.00	0.343	167	5.25	5.75
Kizevak	KSEDD003	125.20	126.00	0.80	0.314	31	2.58	0.37
Kizevak	KSEDD003	126.00	126.70	0.70	0.318	22	0.59	0.46
Kizevak	KSEDD003	126.70	127.20	0.50	0.386	437	29.30	3.61
Kizevak	KSEDD003	127.20	128.00	0.80	0.321	11	0.72	0.81
Kizevak	KSEDD003	128.00	129.00	1.00	0.11	6	0.56	1.22
Kizevak	KSEDD003	129.00	131.00	2.00	0.084	2	0.04	0.09
Kizevak	KSEDD003	131.00	133.00	2.00	0.026	1	0.03	0.09

		From	То	Interval	Au	Ag	Pb	Zn
Project	Hole_ID	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)
Kizevak	KSEDD003	133.00	135.00	2.00	0.011	2	0.02	0.04
Kizevak	KSEDD003	135.00	137.00	2.00	0.017	1	0.05	0.04
Kizevak	KSEDD003	137.00	138.00	1.00	0.066	2	0.36	1.64
Kizevak	KSEDD003	138.00	139.00	1.00	0.442	110	7.09	5.22
Kizevak	KSEDD003	139.00	140.00	1.00	0.04	1	0.22	0.24
Kizevak	KSEDD003	140.00	141.00	1.00	0.006	0.5	0.03	0.05
Kizevak	KSEDD003	141.00	142.00	1.00	0.161	5	0.67	0.90
Kizevak	KSEDD003	142.00	143.00	1.00	0.31	105	2.02	4.86
Kizevak	KSEDD003	143.00	144.00	1.00	0.199	7	0.86	2.03
Kizevak	KSEDD003	144.00	145.00	1.00	0.189	2	0.59	1.52
Kizevak	KSEDD003	145.00	146.00	1.00	0.318	5	0.81	2.10
Kizevak	KSEDD003	146.00	147.00	1.00	0.223	0.5	0.31	0.74
Kizevak	KSEDD003	147.00	148.00	1.00	0.166	1	0.31	0.86
Kizevak	KSEDD003	148.00	149.00	1.00	0.426	8	0.78	4.51
Kizevak	KSEDD003	149.00	150.00	1.00	0.64	12	1.04	3.28
Kizevak	KSEDD003	150.00	150.50	0.50	0.59	31	3.14	8.50
Kizevak	KSEDD003	150.50	151.20	0.70	0.356	11	0.97	2.64
Kizevak	KSEDD003	151.20	152.10	0.90	0.482	124	9.18	28.00
Kizevak	KSEDD003	152.10	153.00	0.90	0.41	31	2.35	8.07
Kizevak	KSEDD003	153.00	154.00	1.00	0.449	75	5.00	18.90
Kizevak	KSEDD003	154.00	155.00	1.00	0.418	21	1.88	5.02
Kizevak	KSEDD003	155.00	156.00	1.00	0.467	28	1.96	7.09
Kizevak	KSEDD003	156.00	157.00	1.00	0.408	16	1.56	4.25
Kizevak	KSEDD003	157.00	158.00	1.00	0.336	171	12.40	18.00
Kizevak	KSEDD003	158.00	159.00	1.00	0.184	9	0.86	1.44
Kizevak	KSEDD003	159.00	160.00	1.00	0.178	1	0.37	0.96
Kizevak	KSEDD003	160.00	161.00	1.00	0.119	1	0.31	0.59
Kizevak	KSEDD003	161.00	162.00	1.00	0.145	1	0.43	0.83
Kizevak	KSEDD003	162.00	163.00	1.00	0.018	0.5	0.01	0.04
Kizevak	KSEDD003	163.00	164.00	1.00	0.058	0.5	0.08	0.17
Kizevak	KSEDD003	164.00	165.00	1.00	0.232	4	0.65	1.31
Kizevak	KSEDD003	165.00	166.30	1.30	0.588	19	1.74	3.87
Kizevak	KSEDD003	166.30	167.00	0.70	0.732	124	11.50	13.20
Kizevak	KSEDD003	167.00	168.00	1.00	2.58	128	10.55	19.80

		From	То	Interval	Au	Ag	Pb	Zn
Project	Hole_ID	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)
Kizevak	KSEDD003	168.00	169.00	1.00	0.484	7	0.68	1.74
Kizevak	KSEDD003	169.00	170.50	1.50	0.22	3	0.39	0.85
Kizevak	KSEDD003	170.50	171.30	0.80	0.444	57	8.07	7.53
Kizevak	KSEDD003	171.30	172.00	0.70	0.262	19	2.82	2.14
Kizevak	KSEDD003	172.00	173.00	1.00	0.065	2	0.16	0.49
Kizevak	KSEDD003	173.00	174.00	1.00	0.24	3	0.25	0.90
Kizevak	KSEDD003	174.00	175.00	1.00	0.223	4	0.54	1.09
Kizevak	KSEDD003	175.00	176.00	1.00	0.114	3	0.34	0.78
Kizevak	KSEDD003	176.00	177.00	1.00	0.156	4	0.49	1.21
Kizevak	KSEDD003	177.00	178.00	1.00	0.018	0.5	0.01	0.02
Kizevak	KSEDD003	178.00	179.00	1.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD003	179.00	180.00	1.00	0.039	4	0.41	0.49
Kizevak	KSEDD003	180.00	181.00	1.00	0.211	6	0.39	1.05
Kizevak	KSEDD003	181.00	182.00	1.00	0.04	1	0.02	0.03
Kizevak	KSEDD003	182.00	184.00	2.00	0.047	1	0.02	0.03
Kizevak	KSEDD003	184.00	186.00	2.00	0.078	1	0.10	0.12
Kizevak	KSEDD003	186.00	188.00	2.00	0.005	0.5	0.01	0.02
Kizevak	KSEDD003	188.00	190.00	2.00	0.00025	1	0.005	0.01
Kizevak	KSEDD003	190.00	192.00	2.00	0.00025	0.5	0.005	0.005
Kizevak	KSEDD004	0.00	106.50	106.50		No A	ssay	
Kizevak	KSEDD004	106.50	108.50	2.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD004	108.50	110.50	2.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD004	110.50	112.50	2.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD004	112.50	114.50	2.00	0.005	0.5	0.005	0.01
Kizevak	KSEDD004	114.50	116.50	2.00	0.012	1	0.02	0.08
Kizevak	KSEDD004	116.50	117.00	0.50	0.103	11	0.95	2.20
Kizevak	KSEDD004	117.00	118.00	1.00	0.118	12	1.26	2.86
Kizevak	KSEDD004	118.00	119.00	1.00	0.037	1	0.02	0.04
Kizevak	KSEDD004	119.00	121.00	2.00	0.007	2	0.005	0.01
Kizevak	KSEDD004	121.00	123.00	2.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD004	123.00	125.00	2.00	0.005	2	0.005	0.01
Kizevak	KSEDD004	125.00	127.00	2.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD004	127.00	129.00	2.00	0.007	0.5	0.005	0.01
Kizevak	KSEDD004	129.00	131.00	2.00	0.013	0.5	0.01	0.01

D 1	11.1.15	From	То	Interval	Au	Ag	Pb	Zn
Project	Hole_ID	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)
Kizevak	KSEDD004	131.00	133.00	2.00	0.008	0.5	0.005	0.01
Kizevak	KSEDD004	133.00	135.00	2.00	0.005	0.5	0.005	0.01
Kizevak	KSEDD004	135.00	136.00	1.00	0.005	0.5	0.005	0.01
Kizevak	KSEDD004	136.00	137.00	1.00	0.008	0.5	0.005	0.01
Kizevak	KSEDD004	137.00	138.00	1.00	0.009	0.5	0.005	0.01
Kizevak	KSEDD004	138.00	138.80	0.80	0.009	1	0.005	0.01
Kizevak	KSEDD004	138.80	139.80	1.00	0.017	1	0.02	0.01
Kizevak	KSEDD004	139.80	140.50	0.70	0.049	1	0.14	0.29
Kizevak	KSEDD004	140.50	141.00	0.50	0.147	9	1.00	1.22
Kizevak	KSEDD004	141.00	141.80	0.80	0.039	2	0.11	0.19
Kizevak	KSEDD004	141.80	142.40	0.60	0.158	3	0.31	0.68
Kizevak	KSEDD004	142.40	144.40	2.00	0.019	1	0.08	0.12
Kizevak	KSEDD004	144.40	146.40	2.00	0.01	2	0.13	0.27
Kizevak	KSEDD004	146.40	148.40	2.00	0.006	1	0.005	0.01
Kizevak	KSEDD004	148.40	149.40	1.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD004	149.40	150.40	1.00	0.005	1	0.005	0.01
Kizevak	KSEDD004	150.40	151.40	1.00	0.018	0.5	0.02	0.04
Kizevak	KSEDD004	151.40	152.40	1.00	0.008	0.5	0.005	0.01
Kizevak	KSEDD004	152.40	153.40	1.00	0.032	2	0.08	0.09
Kizevak	KSEDD004	153.40	154.40	1.00	0.006	0.5	0.005	0.02
Kizevak	KSEDD004	154.40	155.40	1.00	0.054	0.5	0.02	0.06
Kizevak	KSEDD004	155.40	156.40	1.00	0.022	0.5	0.02	0.05
Kizevak	KSEDD004	156.40	157.40	1.00	0.011	0.5	0.01	0.02
Kizevak	KSEDD004	157.40	158.40	1.00	0.049	1	0.11	0.21
Kizevak	KSEDD004	158.40	159.30	0.90	0.072	3	0.43	0.64
Kizevak	KSEDD004	159.30	159.80	0.50	0.052	2	0.21	0.28
Kizevak	KSEDD004	159.80	160.80	1.00	0.156	6	0.72	2.99
Kizevak	KSEDD004	160.80	161.80	1.00	0.111	2	0.40	1.02
Kizevak	KSEDD004	161.80	162.80	1.00	0.112	3	0.39	0.77
Kizevak	KSEDD004	162.80	163.80	1.00	0.063	0.5	0.26	0.39
Kizevak	KSEDD004	163.80	164.30	0.50	0.17	10	1.10	0.73
Kizevak	KSEDD004	164.30	165.20	0.90	0.191	4	0.57	1.36
Kizevak	KSEDD004	165.20	166.20	1.00	0.019	0.5	0.06	0.08
Kizevak	KSEDD004	166.20	167.10	0.90	0.024	0.5	0.06	0.12

		From	То	Interval	Au	Ag	Pb	Zn
Project	Hole_ID	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)
Kizevak	KSEDD004	167.10	167.60	0.50	0.247	12	1.78	3.41
Kizevak	KSEDD004	167.60	168.20	0.60	0.205	27	4.26	7.68
Kizevak	KSEDD004	168.20	168.80	0.60	0.259	15	2.04	2.70
Kizevak	KSEDD004	168.80	169.60	0.80	0.237	9	0.96	7.71
Kizevak	KSEDD004	169.60	170.60	1.00	0.189	18	2.53	6.95
Kizevak	KSEDD004	170.60	171.50	0.90	0.072	2	0.21	0.36
Kizevak	KSEDD004	171.50	173.00	1.50	0.118	4	0.44	0.78
Kizevak	KSEDD004	173.00	174.00	1.00	0.055	2	0.25	0.46
Kizevak	KSEDD004	174.00	175.00	1.00	0.056	2	0.23	0.45
Kizevak	KSEDD004	175.00	176.00	1.00	0.155	3	0.35	0.81
Kizevak	KSEDD004	176.00	177.00	1.00	0.068	2	0.23	0.39
Kizevak	KSEDD004	177.00	178.00	1.00	0.201	8	1.14	1.19
Kizevak	KSEDD004	178.00	179.00	1.00	0.14	5	0.49	0.93
Kizevak	KSEDD004	179.00	180.00	1.00	0.186	7	0.54	2.18
Kizevak	KSEDD004	180.00	181.00	1.00	0.167	9	1.06	1.76
Kizevak	KSEDD004	181.00	182.00	1.00	0.088	4	0.32	0.93
Kizevak	KSEDD004	182.00	183.00	1.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD004	183.00	184.00	1.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD004	184.00	185.00	1.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD004	185.00	186.00	1.00	0.00025	1	0.005	0.01
Kizevak	KSEDD004	186.00	187.00	1.00	0.00025	1	0.005	0.01
Kizevak	KSEDD004	187.00	188.00	1.00	0.01	1	0.005	0.01
Kizevak	KSEDD004	188.00	189.00	1.00	0.019	1	0.005	0.01
Kizevak	KSEDD004	189.00	190.00	1.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD004	190.00	191.00	1.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD004	191.00	192.00	1.00	0.027	0.5	0.07	0.15
Kizevak	KSEDD004	192.00	193.00	1.00	0.045	0.5	0.17	0.23
Kizevak	KSEDD004	193.00	194.00	1.00	0.00025	0.5	0.005	0.02
Kizevak	KSEDD004	194.00	195.00	1.00	0.022	0.5	0.03	0.09
Kizevak	KSEDD004	195.00	196.00	1.00	0.015	1	0.05	0.09
Kizevak	KSEDD004	196.00	197.00	1.00	0.128	3	0.58	1.67
Kizevak	KSEDD004	197.00	198.00	1.00	0.108	2	0.36	0.85
Kizevak	KSEDD004	198.00	199.00	1.00	0.006	0.5	0.02	0.05
Kizevak	KSEDD004	199.00	199.70	0.70	0.05	1	0.24	0.39

		From	То	Interval	Au	Ag	Pb	Zn
Project	Hole_ID	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)
Kizevak	KSEDD004	199.70	200.50	0.80	0.166	3	0.39	0.81
Kizevak	KSEDD004	200.50	201.00	0.50	0.00025	0.5	0.01	0.02
Kizevak	KSEDD004	201.00	202.00	1.00	0.028	0.5	0.16	0.23
Kizevak	KSEDD004	202.00	203.00	1.00	0.018	0.5	0.07	0.10
Kizevak	KSEDD004	203.00	204.00	1.00	0.04	0.5	0.14	0.23
Kizevak	KSEDD004	204.00	205.00	1.00	0.017	0.5	0.05	0.08
Kizevak	KSEDD004	205.00	206.00	1.00	0.02	0.5	0.10	0.15
Kizevak	KSEDD004	206.00	207.00	1.00	0.272	2	0.29	2.93
Kizevak	KSEDD004	207.00	208.00	1.00	0.104	2	0.32	0.74
Kizevak	KSEDD004	208.00	209.00	1.00	0.183	4	0.38	0.73
Kizevak	KSEDD004	209.00	210.00	1.00	0.127	4	0.57	0.69
Kizevak	KSEDD004	210.00	211.00	1.00	0.02	0.5	0.21	0.49
Kizevak	KSEDD004	211.00	212.00	1.00	0.015	0.5	0.09	0.13
Kizevak	KSEDD004	212.00	213.00	1.00	0.089	24	2.29	1.75
Kizevak	KSEDD004	213.00	214.00	1.00	0.072	3	0.44	0.66
Kizevak	KSEDD004	214.00	215.00	1.00	0.075	3	0.46	0.92
Kizevak	KSEDD004	215.00	216.00	1.00	0.172	11	0.92	4.52
Kizevak	KSEDD004	216.00	217.00	1.00	0.101	1	0.04	0.16
Kizevak	KSEDD004	217.00	218.00	1.00	0.017	0.5	0.02	0.03
Kizevak	KSEDD004	218.00	219.00	1.00	0.014	0.5	0.01	0.02
Kizevak	KSEDD004	219.00	220.00	1.00	0.026	0.5	0.06	0.13
Kizevak	KSEDD004	220.00	221.00	1.00	0.242	1	0.18	0.34
Kizevak	KSEDD004	221.00	221.50	0.50	0.301	0.5	0.05	0.07
Kizevak	KSEDD004	221.50	222.00	0.50	0.603	3	0.20	0.28
Kizevak	KSEDD004	222.00	223.00	1.00	0.367	2	0.06	0.13
Kizevak	KSEDD004	223.00	224.00	1.00	0.149	7	0.98	1.40
Kizevak	KSEDD004	224.00	225.00	1.00	0.806	7	0.68	1.18
Kizevak	KSEDD004	225.00	226.00	1.00	0.56	9	1.02	2.01
Kizevak	KSEDD004	226.00	227.00	1.00	0.138	5	0.81	1.55
Kizevak	KSEDD004	227.00	228.00	1.00	0.339	25	3.24	3.66
Kizevak	KSEDD004	228.00	229.00	1.00	0.041	1	0.41	0.48
Kizevak	KSEDD004	229.00	230.00	1.00	0.018	0.5	0.08	0.27
Kizevak	KSEDD004	230.00	231.00	1.00	0.00025	0.5	0.03	0.04
Kizevak	KSEDD004	231.00	232.00	1.00	0.044	1	0.23	0.32

Project	Hole_ID	From (m)	To (m)	Interval (m)	Au (g/t)	Ag (g/t)	Pb (%)	Zn (%)
Kizevak	KSEDD004	232.00	233.00	1.00	0.024	0.5	0.17	0.47
Kizevak	KSEDD004	233.00	235.00	2.00	0.00025	0.5	0.005	0.02
Kizevak	KSEDD004	235.00	237.00	2.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD004	237.00	239.00	2.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD004	239.00	241.00	2.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD004	241.00	243.00	2.00	0.00025	0.5	0.005	0.01
Kizevak	KSEDD004	243.00	245.00	2.00	0.00025	0.5	0.02	0.01
Kizevak	KSEDD004	245.00	247.00	2.00	0.005	0.5	0.04	0.03
Kizevak	KSEDD004	247.00	248.00	1.00	0.042	0.5	0.06	0.16
Kizevak	KSEDD004	248.00	248.50	0.50	0.068	0.5	0.04	0.10
Kizevak	KSEDD004	248.50	249.00	0.50	0.299	29	2.42	3.84
Kizevak	KSEDD004	249.00	250.00	1.00	0.513	37	3.75	5.74
Kizevak	KSEDD004	250.00	251.00	1.00	0.181	16	1.22	2.33
Kizevak	KSEDD004	251.00	253.00	2.00	0.009	0.5	0.05	0.07
Kizevak	KSEDD004	253.00	255.00	2.00	0.006	0.5	0.01	0.02
Kizevak	KSEDD004	255.00	257.00	2.00	0.018	0.5	0.03	0.12
Kizevak	KSEDD004	257.00	259.00	2.00	0.008	0.5	0.02	0.02
Kizevak	KSEDD004	259.00	261.00	2.00	0.005	0.5	0.01	0.02

Project	Hole_ID	From (m)	To (m)	Interval (m)	Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	Zn (%)
Rudnica	RDD-001	0.00	2.00	1.20	0.321	45.7	0.08	2.32	0.06
Rudnica	RDD-001	2.00	4.00	2.00	0.268	17.6	0.07	0.64	0.01
Rudnica	RDD-001	4.00	6.00	2.00	0.264	11.1	0.07	0.49	0.01
Rudnica	RDD-001	6.00	8.00	1.80	0.218	14.3	0.09	0.88	0.01
Rudnica	RDD-001	8.00	10.50	1.30	0.293	16.7	0.11	1.06	0.01
Rudnica	RDD-001	10.50	12.00	1.50	0.264	3.2	0.02	0.09	0.00
Rudnica	RDD-001	12.00	14.00	2.00	0.551	3.6	0.06	0.11	0.00
Rudnica	RDD-001	14.00	16.00	2.00	0.53	2.1	0.09	0.17	0.00
Rudnica	RDD-001	16.00	18.00	2.00	0.591	1.3	0.04	0.08	0.00
Rudnica	RDD-001	18.00	20.00	2.00	0.524	2.4	0.06	0.12	0.00
Rudnica	RDD-001	20.00	22.00	2.00	0.433	1.1	0.06	0.08	0.00
Rudnica	RDD-001	22.00	24.00	2.00	0.451	1.1	0.08	0.08	0.00

		From	То	Interval	Au	Ag	Cu	Pb	Zn
Project	Hole_ID	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)	(%)
Rudnica	RDD-001	24.00	26.00	2.00	0.357	0.6	0.08	0.03	0.01
Rudnica	RDD-001	26.00	28.00	2.00	0.429	1	0.08	0.03	0.01
Rudnica	RDD-001	28.00	30.00	2.00	0.316	1.4	0.07	0.04	0.00
Rudnica	RDD-001	30.00	32.00	2.00	0.469	0.7	0.08	0.02	0.01
Rudnica	RDD-001	32.00	34.00	2.00	0.58	0.9	0.09	0.01	0.00
Rudnica	RDD-001	34.00	36.00	2.00	0.487	1.7	0.11	0.01	0.00
Rudnica	RDD-001	36.00	38.00	2.00	0.549	1.3	0.08	0.01	0.00
Rudnica	RDD-001	38.00	40.00	2.00	0.63	2.9	0.12	0.01	0.00
Rudnica	RDD-001	40.00	42.00	2.00	0.604	1.2	0.16	0.01	0.00
Rudnica	RDD-001	42.00	44.00	2.00	0.656	1.4	0.12	0.01	0.00
Rudnica	RDD-001	44.00	46.00	2.00	0.774	0.7	0.13	0.00	0.00
Rudnica	RDD-001	46.00	48.00	2.00	0.55	1.2	0.08	0.01	0.00
Rudnica	RDD-001	48.00	50.00	2.00	0.301	1.1	0.04	0.01	0.00
Rudnica	RDD-001	50.00	52.00	2.00	0.463	1.1	0.04	0.02	0.00
Rudnica	RDD-001	52.00	54.00	2.00	0.726	1.4	0.06	0.02	0.00
Rudnica	RDD-001	54.00	56.00	2.00	0.286	1.2	0.04	0.01	0.00
Rudnica	RDD-001	56.00	58.00	2.00	0.276	5.1	0.04	0.07	0.01
Rudnica	RDD-001	58.00	60.00	2.00	0.364	1.3	0.07	0.02	0.02
Rudnica	RDD-001	60.00	62.00	2.00	0.587	1.3	0.07	0.00	0.00
Rudnica	RDD-001	62.00	64.00	2.00	0.626	0.6	0.10	0.00	0.01
Rudnica	RDD-001	64.00	66.00	2.00	0.729	0.25	0.14	0.00	0.01
Rudnica	RDD-001	66.00	68.00	2.00	0.211	0.25	0.06	0.00	0.00
Rudnica	RDD-001	68.00	70.00	2.00	0.173	0.8	0.07	0.00	0.00
Rudnica	RDD-001	70.00	72.00	2.00	0.356	1.1	0.14	0.00	0.00
Rudnica	RDD-001	72.00	74.00	2.00	0.56	0.7	0.10	0.01	0.01
Rudnica	RDD-001	74.00	76.00	2.00	0.481	0.8	0.09	0.00	0.03
Rudnica	RDD-001	76.00	78.00	2.00	0.613	0.8	0.12	0.00	0.01
Rudnica	RDD-001	78.00	80.00	2.00	0.509	0.9	0.06	0.00	0.03
Rudnica	RDD-001	80.00	82.00	2.00	0.594	0.7	0.05	0.01	0.03
Rudnica	RDD-001	82.00	84.00	2.00	0.625	0.9	0.03	0.01	0.01
Rudnica	RDD-001	84.00	86.00	2.00	0.359	0.9	0.02	0.01	0.01
Rudnica	RDD-001	86.00	88.00	2.00	0.488	1	0.01	0.01	0.00
Rudnica	RDD-001	88.00	90.00	2.00	0.376	0.25	0.04	0.00	0.00
Rudnica	RDD-001	90.00	92.00	2.00	0.309	0.7	0.03	0.01	0.03

D ottor	11.1.15	From	То	Interval	Au	Ag	Cu	Pb	Zn
Project	Hole_ID	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)	(%)
Rudnica	RDD-001	92.00	94.00	2.00	0.363	0.5	0.06	0.00	0.01
Rudnica	RDD-001	94.00	96.00	2.00	0.476	0.7	0.08	0.01	0.02
Rudnica	RDD-001	96.00	98.00	2.00	0.489	0.6	0.13	0.01	0.02
Rudnica	RDD-001	98.00	100.00	2.00	0.334	0.25	0.10	0.00	0.03
Rudnica	RDD-001	100.00	102.00	2.00	0.549	0.7	0.07	0.00	0.01
Rudnica	RDD-001	102.00	104.00	2.00	0.384	0.9	0.04	0.01	0.01
Rudnica	RDD-001	104.00	106.00	2.00	0.279	2.4	0.05	0.03	0.00
Rudnica	RDD-001	106.00	108.00	2.00	0.448	1.6	0.09	0.12	0.01
Rudnica	RDD-001	108.00	110.00	2.00	0.32	1.3	0.10	0.03	0.00
Rudnica	RDD-001	110.00	112.00	2.00	0.538	1.3	0.11	0.01	0.02
Rudnica	RDD-001	112.00	114.00	2.00	0.342	1	0.08	0.01	0.00
Rudnica	RDD-001	114.00	116.00	2.00	0.418	1.1	0.12	0.00	0.01
Rudnica	RDD-001	116.00	118.00	2.00	0.598	1	0.12	0.00	0.01
Rudnica	RDD-001	118.00	120.00	2.00	0.485	1	0.12	0.00	0.01
Rudnica	RDD-001	120.00	122.00	2.00	0.466	1.3	0.14	0.01	0.01
Rudnica	RDD-001	122.00	124.00	2.00	0.533	1.5	0.99	0.01	0.00
Rudnica	RDD-001	124.00	126.00	2.00	0.495	1.5	1.38	0.01	0.01
Rudnica	RDD-001	126.00	128.00	2.00	0.365	0.7	1.11	0.00	0.01
Rudnica	RDD-001	128.00	130.00	2.00	0.372	1	1.41	0.01	0.02
Rudnica	RDD-001	130.00	132.00	2.00	0.224	0.5	1.11	0.01	0.01
Rudnica	RDD-001	132.00	134.00	2.00	0.327	0.7	1.84	0.01	0.02
Rudnica	RDD-001	134.00	136.00	2.00	0.366	1.1	1.86	0.01	0.01
Rudnica	RDD-001	136.00	138.00	2.00	0.345	5.8	1.85	0.14	0.04
Rudnica	RDD-001	138.00	140.00	2.00	0.598	1.1	1.86	0.01	0.01
Rudnica	RDD-001	140.00	142.00	2.00	0.319	0.9	0.70	0.01	0.01
Rudnica	RDD-001	142.00	144.00	2.00	0.153	0.6	0.66	0.01	0.01
Rudnica	RDD-001	144.00	146.00	2.00	0.365	0.8	1.35	0.01	0.01
Rudnica	RDD-001	146.00	148.00	2.00	0.387	1.6	1.21	0.02	0.02
Rudnica	RDD-001	148.00	150.00	2.00	0.263	2.3	0.89	0.05	0.04
Rudnica	RDD-001	150.00	152.00	2.00	0.374	1.8	0.71	0.03	0.07
Rudnica	RDD-001	152.00	154.00	2.00	0.413	2.1	1.77	0.14	0.03
Rudnica	RDD-001	154.00	156.00	2.00	0.363	0.8	0.51	0.01	0.03
Rudnica	RDD-001	156.00	158.00	2.00	0.509	0.25	0.76	0.01	0.06
Rudnica	RDD-001	158.00	160.00	2.00	0.351	0.5	0.41	0.02	0.12

		From	То	Interval	Au	Ag	Cu	Pb	Zn
Project	Hole_ID	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)	(%)
Rudnica	RDD-001	160.00	162.00	2.00	0.382	0.25	0.32	0.01	0.10
Rudnica	RDD-001	162.00	164.00	2.00	0.403	0.25	0.29	0.00	0.08
Rudnica	RDD-001	164.00	166.00	2.00	0.427	0.7	0.33	0.00	0.08
Rudnica	RDD-001	166.00	168.00	2.00	0.433	0.6	0.34	0.01	0.07
Rudnica	RDD-001	168.00	170.00	2.00	0.352	0.8	0.26	0.01	0.10
Rudnica	RDD-001	170.00	172.00	2.00	0.475	0.5	0.32	0.01	0.08
Rudnica	RDD-001	172.00	174.00	2.00	0.528	8.1	0.42	0.11	0.16
Rudnica	RDD-001	174.00	176.00	2.00	0.322	12.4	0.28	0.24	0.33
Rudnica	RDD-001	176.00	178.00	2.00	0.23	8.9	0.22	0.10	0.19
Rudnica	RDD-001	178.00	180.00	2.00	0.474	2.6	0.19	0.04	0.12
Rudnica	RDD-001	180.00	182.00	2.00	0.435	4.4	0.25	0.08	0.15
Rudnica	RDD-001	182.00	184.00	2.00	0.314	2.5	0.30	0.03	0.11
Rudnica	RDD-001	184.00	186.00	2.00	0.355	0.7	0.28	0.01	0.08
Rudnica	RDD-001	186.00	188.00	2.00	0.307	0.25	0.31	0.01	0.03
Rudnica	RDD-001	188.00	190.00	2.00	0.52	0.25	0.38	0.01	0.05
Rudnica	RDD-001	190.00	192.00	2.00	0.355	0.25	0.28	0.01	0.04
Rudnica	RDD-001	192.00	194.00	2.00	0.28	15.7	0.30	1.38	0.74
Rudnica	RDD-001	194.00	196.00	2.00	0.274	1.1	0.24	0.02	0.07
Rudnica	RDD-001	196.00	198.00	2.00	0.212	3.3	0.13	0.15	0.28
Rudnica	RDD-001	198.00	200.00	2.00	0.441	0.6	0.40	0.01	0.04
Rudnica	RDD-001	200.00	202.00	2.00	0.45	0.6	0.36	0.00	0.03
Rudnica	RDD-001	202.00	204.00	2.00	0.491	0.25	0.35	0.00	0.03
Rudnica	RDD-001	204.00	206.00	2.00	0.537	0.7	0.48	0.00	0.04
Rudnica	RDD-001	206.00	208.00	2.00	0.752	0.8	0.56	0.00	0.04
Rudnica	RDD-001	208.00	210.00	2.00	0.523	0.8	0.50	0.00	0.03
Rudnica	RDD-001	210.00	212.00	2.00	0.401	0.9	0.39	0.01	0.03
Rudnica	RDD-001	212.00	214.00	2.00	0.394	0.25	0.36	0.00	0.02
Rudnica	RDD-001	214.00	216.00	2.00	0.416	0.5	0.18	0.00	0.18
Rudnica	RDD-001	216.00	218.00	2.00	0.708	0.8	0.35	0.00	0.10
Rudnica	RDD-001	218.00	220.00	2.00	1.2	0.25	0.29	0.00	0.13
Rudnica	RDD-001	220.00	222.00	2.00	0.923	0.25	0.35	0.00	0.14
Rudnica	RDD-001	222.00	224.00	2.00	0.571	0.6	0.41	0.00	0.09
Rudnica	RDD-001	224.00	226.00	2.00	0.389	0.6	0.30	0.00	0.08
Rudnica	RDD-001	226.00	228.00	2.00	0.745	0.9	0.44	0.01	0.06

D ottor	11.1.15	From	То	Interval	Au	Ag	Cu	Pb	Zn
Project	Hole_ID	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)	(%)
Rudnica	RDD-001	228.00	230.00	2.00	0.33	0.25	0.25	0.00	0.02
Rudnica	RDD-001	230.00	232.00	2.00	0.511	0.25	0.28	0.00	0.04
Rudnica	RDD-001	232.00	234.00	2.00	0.367	0.25	0.32	0.00	0.04
Rudnica	RDD-001	234.00	236.00	2.00	0.365	0.7	0.29	0.00	0.03
Rudnica	RDD-001	236.00	238.00	2.00	0.446	0.5	0.22	0.00	0.02
Rudnica	RDD-001	238.00	240.00	2.00	0.393	0.7	0.35	0.00	0.03
Rudnica	RDD-001	240.00	242.00	2.00	0.187	0.5	0.20	0.00	0.02
Rudnica	RDD-001	242.00	244.00	2.00	0.648	0.25	0.39	0.00	0.02
Rudnica	RDD-001	244.00	246.00	2.00	0.731	0.25	0.35	0.00	0.02
Rudnica	RDD-001	246.00	248.00	2.00	1.18	0.25	0.61	0.00	0.02
Rudnica	RDD-001	248.00	250.00	2.00	1.09	0.25	0.26	0.00	0.01
Rudnica	RDD-001	250.00	252.00	2.00	0.527	0.6	0.38	0.00	0.01
Rudnica	RDD-001	252.00	254.00	2.00	0.465	0.7	0.34	0.00	0.01
Rudnica	RDD-001	254.00	256.00	2.00	0.371	0.5	0.34	0.00	0.01
Rudnica	RDD-001	256.00	258.00	2.00	0.415	0.25	0.25	0.00	0.01
Rudnica	RDD-001	258.00	259.90	1.90	0.606	0.8	0.39	0.00	0.01
Rudnica	RDD-001	259.90	262.00	2.10	0.524	0.5	0.43	0.01	0.00
Rudnica	RDD-001	262.00	264.00	2.00	0.411	0.5	0.28	0.00	0.01
Rudnica	RDD-001	264.00	266.00	2.00	0.427	0.25	0.24	0.00	0.01
Rudnica	RDD-001	266.00	268.00	2.00	0.559	0.25	0.32	0.00	0.01
Rudnica	RDD-001	268.00	270.00	2.00	0.501	0.25	0.32	0.00	0.01
Rudnica	RDD-001	270.00	272.00	2.00	0.59	0.6	0.47	0.01	0.01
Rudnica	RDD-001	272.00	274.00	2.00	0.718	0.8	0.48	0.01	0.01
Rudnica	RDD-001	274.00	276.00	2.00	0.444	0.6	0.32	0.02	0.01
Rudnica	RDD-001	276.00	278.00	2.00	0.507	2.2	0.24	0.03	0.06
Rudnica	RDD-001	278.00	280.00	2.00	0.443	0.6	0.22	0.01	0.02
Rudnica	RDD-001	280.00	282.00	2.00	0.543	1.2	0.36	0.03	0.04
Rudnica	RDD-001	282.00	284.00	2.00	0.686	0.8	0.38	0.00	0.01
Rudnica	RDD-001	284.00	286.00	2.00	0.469	0.9	0.30	0.00	0.01
Rudnica	RDD-001	286.00	288.00	2.00	0.609	0.9	0.41	0.00	0.01
Rudnica	RDD-001	288.00	290.00	2.00	0.534	0.7	0.32	0.00	0.01
Rudnica	RDD-001	290.00	292.00	2.00	0.427	0.5	0.25	0.00	0.01
Rudnica	RDD-001	292.00	294.00	2.00	0.566	0.6	0.36	0.00	0.01
Rudnica	RDD-001	294.00	296.00	2.00	0.749	3	0.54	0.01	0.02

		From	То	Interval	Au	Ag	Cu	Pb	Zn
Project	Hole_ID	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)	(%)
Rudnica	RDD-001	296.00	298.00	2.00	0.516	0.8	0.33	0.00	0.01
Rudnica	RDD-001	298.00	300.00	2.00	0.346	0.8	0.25	0.00	0.01
Rudnica	RDD-001	300.00	302.00	2.00	0.428	1.2	0.24	0.00	0.01
Rudnica	RDD-001	302.00	304.00	2.00	0.615	0.7	0.31	0.00	0.02
Rudnica	RDD-001	304.00	306.00	2.00	0.32	0.25	0.18	0.00	0.00
Rudnica	RDD-001	306.00	308.00	2.00	0.367	0.25	0.18	0.00	0.01
Rudnica	RDD-001	308.00	310.00	2.00	0.389	0.6	0.22	0.00	0.01
Rudnica	RDD-001	310.00	312.00	2.00	0.414	0.9	0.29	0.00	0.01
Rudnica	RDD-001	312.00	314.00	2.00	0.487	0.6	0.09	0.01	0.01
Rudnica	RDD-001	314.00	316.00	2.00	0.563	0.7	0.31	0.00	0.01
Rudnica	RDD-001	316.00	318.00	2.00	0.589	1.1	0.35	0.01	0.01
Rudnica	RDD-001	318.00	320.00	2.00	0.612	0.6	0.32	0.00	0.01
Rudnica	RDD-001	320.00	322.00	2.00	0.518	0.25	0.27	0.00	0.01
Rudnica	RDD-001	322.00	324.00	2.00	0.512	0.25	0.30	0.00	0.02
Rudnica	RDD-001	324.00	326.00	2.00	0.391	0.7	0.24	0.00	0.01
Rudnica	RDD-001	326.00	328.00	2.00	0.413	0.7	0.33	0.00	0.01
Rudnica	RDD-001	328.00	330.00	2.00	0.399	0.6	0.23	0.01	0.01
Rudnica	RDD-001	330.00	332.00	2.00	0.461	0.7	0.27	0.00	0.01
Rudnica	RDD-001	332.00	334.00	2.00	0.558	1	0.33	0.00	0.01
Rudnica	RDD-001	334.00	336.00	2.00	0.547	0.9	0.32	0.00	0.01
Rudnica	RDD-001	336.00	338.00	2.00	0.364	0.6	0.24	0.00	0.01
Rudnica	RDD-001	338.00	340.00	2.00	0.277	0.7	0.23	0.00	0.01
Rudnica	RDD-001	340.00	342.00	2.00	0.28	0.25	0.21	0.00	0.01
Rudnica	RDD-001	342.00	344.00	2.00	0.218	0.25	0.12	0.00	0.01
Rudnica	RDD-001	344.00	346.00	2.00	0.252	0.5	0.16	0.00	0.01
Rudnica	RDD-001	346.00	348.00	2.00	0.4	0.25	0.23	0.00	0.01
Rudnica	RDD-001	348.00	350.00	2.00	0.652	0.9	0.28	0.00	0.01
Rudnica	RDD-001	350.00	352.00	2.00	0.178	0.25	0.09	0.00	0.02
Rudnica	RDD-001	352.00	354.00	2.00	0.159	0.25	0.08	0.00	0.02
Rudnica	RDD-001	354.00	356.00	2.00	0.19	0.25	0.13	0.00	0.02
Rudnica	RDD-001	356.00	358.00	2.00	0.434	0.25	0.22	0.00	0.01
Rudnica	RDD-001	358.00	360.00	2.00	0.099	0.25	0.06	0.00	0.01
Rudnica	RDD-001	360.00	362.00	2.00	0.188	0.25	0.11	0.00	0.01
Rudnica	RDD-001	362.00	364.00	2.00	0.194	0.25	0.11	0.00	0.01

		From	То	Interval	Au	Ag	Cu	Pb	Zn
Project	Hole_ID	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)	(%)
Rudnica	RDD-001	364.00	366.00	2.00	0.223	0.25	0.12	0.00	0.01
Rudnica	RDD-001	366.00	368.00	2.00	0.114	0.25	0.05	0.00	0.01
Rudnica	RDD-001	368.00	370.00	2.00	0.204	0.25	0.14	0.00	0.01
Rudnica	RDD-001	370.00	372.00	2.00	0.127	0.25	0.07	0.00	0.01
Rudnica	RDD-001	372.00	374.00	2.00	0.175	0.25	0.08	0.01	0.01
Rudnica	RDD-001	374.00	376.00	2.00	0.147	0.25	0.07	0.00	0.01
Rudnica	RDD-001	376.00	378.00	2.00	0.224	0.25	0.11	0.00	0.01
Rudnica	RDD-001	378.00	380.00	2.00	0.15	0.25	0.08	0.01	0.01
Rudnica	RDD-001	380.00	382.00	2.00	0.215	0.6	0.12	0.00	0.01
Rudnica	RDD-001	382.00	384.00	2.00	0.252	0.25	0.11	0.00	0.01
Rudnica	RDD-001	384.00	386.00	2.00	0.248	0.25	0.12	0.00	0.00
Rudnica	RDD-001	386.00	388.00	2.00	0.285	0.25	0.14	0.00	0.00
Rudnica	RDD-001	388.00	390.00	2.00	0.265	0.25	0.11	0.00	0.01
Rudnica	RDD-001	390.00	392.00	2.00	0.331	0.25	0.17	0.00	0.01
Rudnica	RDD-001	392.00	394.00	2.00	0.252	0.25	0.12	0.00	0.00
Rudnica	RDD-001	394.00	396.00	2.00	0.268	0.25	0.12	0.00	0.00
Rudnica	RDD-001	396.00	398.00	2.00	0.296	0.25	0.14	0.00	0.00
Rudnica	RDD-001	398.00	400.00	2.00	0.195	0.6	0.11	0.00	0.00
Rudnica	RDD-001	400.00	402.00	2.00	0.436	0.25	0.20	0.00	0.00
Rudnica	RDD-001	402.00	404.00	2.00	0.423	0.25	0.21	0.00	0.01
Rudnica	RDD-001	404.00	406.00	2.00	0.598	0.25	0.26	0.00	0.01
Rudnica	RDD-001	406.00	408.00	2.00	0.344	0.25	0.17	0.00	0.01
Rudnica	RDD-001	408.00	410.00	2.00	0.347	0.25	0.17	0.00	0.00
Rudnica	RDD-001	410.00	412.00	2.00	0.79	0.6	0.37	0.00	0.00
Rudnica	RDD-001	412.00	414.00	2.00	0.559	0.5	0.29	0.00	0.00
Rudnica	RDD-001	414.00	416.00	2.00	0.359	0.25	0.14	0.00	0.00
Rudnica	RDD-001	416.00	418.00	2.00	0.451	0.25	0.20	0.00	0.00
Rudnica	RDD-001	418.00	420.00	2.00	0.701	0.6	0.32	0.00	0.00
Rudnica	RDD-001	420.00	422.00	2.00	0.302	0.25	0.13	0.00	0.00
Rudnica	RDD-001	422.00	424.00	2.00	0.5	0.25	0.25	0.00	0.00
Rudnica	RDD-001	424.00	426.00	2.00	0.734	0.25	0.34	0.00	0.00
Rudnica	RDD-001	426.00	428.00	2.00	0.719	0.8	0.38	0.00	0.00
Rudnica	RDD-001	428.00	430.00	2.00	0.778	0.5	0.34	0.00	0.00
Rudnica	RDD-001	430.00	432.00	2.00	0.496	0.5	0.23	0.00	0.00

		From	То	Interval	Au	Ag	Cu	Pb	Zn
Project	Hole_ID	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)	(%)
Rudnica	RDD-001	432.00	434.00	2.00	0.731	0.25	0.31	0.00	0.00
Rudnica	RDD-001	434.00	436.00	2.00	0.528	0.6	0.26	0.00	0.00
Rudnica	RDD-001	436.00	438.00	2.00	0.448	0.25	0.20	0.00	0.00
Rudnica	RDD-001	438.00	440.00	2.00	0.584	0.5	0.36	0.00	0.00
Rudnica	RDD-001	440.00	442.00	2.00	0.76	0.5	0.39	0.00	0.00
Rudnica	RDD-001	442.00	444.00	2.00	0.643	0.25	0.33	0.00	0.00
Rudnica	RDD-001	444.00	446.00	2.00	0.984	0.7	0.48	0.00	0.00
Rudnica	RDD-001	446.00	448.00	2.00	1.535	1.6	0.74	0.00	0.00
Rudnica	RDD-001	448.00	450.00	2.00	0.666	0.6	0.32	0.00	0.00
Rudnica	RDD-001	450.00	452.00	2.00	0.48	0.6	0.24	0.00	0.00
Rudnica	RDD-001	452.00	454.00	2.00	0.959	1	0.49	0.00	0.00
Rudnica	RDD-001	454.00	456.00	2.00	0.715	1	0.40	0.00	0.00
Rudnica	RDD-001	456.00	458.00	2.00	0.49	0.5	0.24	0.00	0.00
Rudnica	RDD-001	458.00	460.00	2.00	0.538	0.5	0.24	0.00	0.00
Rudnica	RDD-001	460.00	462.00	2.00	0.652	0.6	0.23	0.00	0.00
Rudnica	RDD-001	462.00	464.00	2.00	0.422	0.25	0.21	0.00	0.00
Rudnica	RDD-001	464.00	466.00	2.00	0.587	0.5	0.32	0.00	0.00
Rudnica	RDD-001	466.00	468.00	2.00	0.406	0.5	0.26	0.00	0.00
Rudnica	RDD-001	468.00	470.00	2.00	0.398	0.25	0.18	0.00	0.00
Rudnica	RDD-001	470.00	472.00	2.00	0.246	0.25	0.09	0.00	0.00
Rudnica	RDD-001	472.00	474.00	2.00	0.532	0.25	0.23	0.00	0.00
Rudnica	RDD-001	474.00	476.00	2.00	0.275	0.25	0.12	0.00	0.00
Rudnica	RDD-001	476.00	478.00	2.00	0.383	0.5	0.16	0.00	0.00
Rudnica	RDD-001	478.00	480.00	2.00	0.407	0.25	0.18	0.00	0.01
Rudnica	RDD-001	480.00	482.00	2.00	0.437	0.25	0.22	0.00	0.00
Rudnica	RDD-001	482.00	484.00	2.00	0.417	0.25	0.22	0.00	0.00
Rudnica	RDD-001	484.00	486.00	2.00	0.486	0.25	0.23	0.00	0.00
Rudnica	RDD-001	486.00	488.00	2.00	0.613	0.5	0.28	0.00	0.00
Rudnica	RDD-001	488.00	490.00	2.00	0.529	0.6	0.31	0.00	0.00
Rudnica	RDD-001	490.00	492.00	2.00	0.676	0.9	0.35	0.00	0.00
Rudnica	RDD-001	492.00	494.00	2.00	0.522	0.7	0.29	0.00	0.00
Rudnica	RDD-001	494.00	496.00	2.00	0.856	0.6	0.42	0.00	0.00
Rudnica	RDD-001	496.00	498.00	2.00	0.476	0.25	0.29	0.00	0.00
Rudnica	RDD-001	498.00	500.00	2.00	1.08	0.5	0.36	0.00	0.00

D octori	11.1.15	From	То	Interval	Au	Ag	Cu	Pb	Zn
Project	Hole_ID	(m)	(m)	(m)	(g/t)	(g/t)	(%)	(%)	(%)
Rudnica	RDD-001	500.00	502.00	2.00	1.025	0.8	0.54	0.00	0.00
Rudnica	RDD-001	502.00	504.00	2.00	0.449	0.25	0.25	0.00	0.01
Rudnica	RDD-001	504.00	506.00	2.00	0.595	0.7	0.32	0.00	0.00
Rudnica	RDD-001	506.00	508.00	2.00	0.565	0.6	0.35	0.00	0.00
Rudnica	RDD-001	508.00	510.00	2.00	0.524	11.2	0.25	0.14	0.14
Rudnica	RDD-001	510.00	512.00	2.00	0.696	3.7	0.37	0.03	0.05
Rudnica	RDD-001	512.00	514.00	2.00	0.486	21.3	0.24	0.57	0.59
Rudnica	RDD-001	514.00	516.00	2.00	0.396	60.2	0.26	3.30	2.90
Rudnica	RDD-001	516.00	518.00	2.00	0.356	56.8	0.18	3.71	2.98
Rudnica	RDD-001	518.00	520.00	2.00	0.269	25	0.17	1.56	1.17
Rudnica	RDD-001	520.00	522.00	2.00	0.322	44.3	0.21	1.58	1.61
Rudnica	RDD-001	522.00	524.00	2.00	0.303	10.5	0.20	0.25	0.83
Rudnica	RDD-001	524.00	526.00	2.00	0.419	0.5	0.26	0.01	0.02
Rudnica	RDD-001	526.00	528.00	2.00	0.287	0.25	0.17	0.01	0.01
Rudnica	RDD-001	528.00	530.00	2.00	0.348	2.6	0.17	0.07	0.23
Rudnica	RDD-001	530.00	532.00	2.00	0.48	0.25	0.18	0.00	0.00
Rudnica	RDD-001	532.00	534.00	2.00	0.212	0.25	0.13	0.00	0.01
Rudnica	RDD-001	534.00	536.00	2.00	0.152	0.25	0.09	0.00	0.00
Rudnica	RDD-001	536.00	538.00	2.00	0.183	0.25	0.10	0.00	0.01
Rudnica	RDD-001	538.00	540.00	2.00	0.126	0.25	0.07	0.00	0.00
Rudnica	RDD-001	540.00	542.00	2.00	0.163	0.25	0.08	0.00	0.00
Rudnica	RDD-001	542.00	544.00	2.00	0.241	0.25	0.11	0.00	0.00
Rudnica	RDD-001	544.00	546.00	2.00	0.318	0.25	0.15	0.00	0.00
Rudnica	RDD-001	546.00	548.00	2.00	0.142	0.5	0.08	0.03	0.00
Rudnica	RDD-001	548.00	550.00	2.00	0.198	0.25	0.14	0.00	0.00
Rudnica	RDD-001	550.00	552.00	2.00	0.266	0.25	0.15	0.00	0.00
Rudnica	RDD-001	552.00	554.00	2.00	0.125	0.25	0.04	0.00	0.00
Rudnica	RDD-001	554.00	556.00	2.00	0.077	0.25	0.05	0.00	0.00
Rudnica	RDD-001	556.00	557.60	1.60	0.381	0.6	0.12	0.00	0.00
Rudnica	RDD-001	557.60	559.00	1.40	0.123	0.25	0.06	0.01	0.01
Rudnica	RDD-001	559.00	561.00	2.00	0.312	98	0.19	7.64	0.41
Rudnica	RDD-001	561.00	563.00	2.00	0.16	3.4	0.09	0.22	0.03
Rudnica	RDD-001	563.00	565.00	2.00	0.173	0.5	0.10	0.01	0.01
Rudnica	RDD-001	565.00	567.00	2.00	0.132	0.25	0.11	0.00	0.01

Project	Hole_ID	From (m)	To (m)	Interval (m)	Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	Zn (%)
Rudnica	RDD-001	567.00	569.00	2.00	0.111	0.25	0.08	0.00	0.01
Rudnica	RDD-001	569.00	571.00	2.00	0.099	0.25	0.08	0.00	0.01
Rudnica	RDD-001	571.00	573.00	2.00	0.097	0.25	0.06	0.00	0.01
Rudnica	RDD-001	573.00	575.00	2.00	0.168	0.25	0.10	0.00	0.01
Rudnica	RDD-001	575.00	577.00	2.00	0.083	0.25	0.05	0.00	0.01
Rudnica	RDD-001	577.00	579.00	2.00	0.091	0.25	0.05	0.00	0.01
Rudnica	RDD-001	579.00	581.00	2.00	0.091	0.25	0.06	0.00	0.01
Rudnica	RDD-001	581.00	583.00	2.00	0.098	0.25	0.05	0.00	0.01
Rudnica	RDD-001	583.00	584.60	1.60	0.048	0.25	0.03	0.00	0.01

Table 4 – Assay results for reported soil samples

Project	Soil Grid	х	Υ	Z	Weight	Au	Ag	Pb	Zn	Cu
		(m)	(m)	(m)	(kg)	(g/t)	(g/t)	(%)	(%)	(%)
Sastavci	200x100	476201	4797204	1014	2.67	0.008	5.56	0.82	0.0252	0.00691
Sastavci	200x100	476198	4797299	1023	2.38	0.0085	0.84	0.235	0.005	0.00122
Sastavci	200x100	476195	4797405	1022	2.89	0.0037	1.96	0.31	0.0086	0.0043
Sastavci	200x100	476199	4797499	1004	2.63	0.0223	0.33	0.00887	0.0122	0.0033
Sastavci	200x100	476000	4797404	964	2.66	0.0018	0.78	0.0421	0.0164	0.00142
Sastavci	200x100	475997	4797502	924	2.6	0.0184	1.07	0.127	0.021	0.00452
Sastavci	200x100	476002	4797099	919	2.55	0.0055	1.07	0.165	0.0684	0.00269
Sastavci	200x100	475976	4797206	907	2.19	0.0749	1.79	0.0924	0.0147	0.00391
Sastavci	200x100	476005	4797282	957	2.39	0.0012	0.15	0.0179	0.0166	0.00135
Sastavci	200x100	476401	4797303	1087	2.92	0.24	19.5	1.27	0.0101	0.0139
Sastavci	200x100	476403	4797211	1054	2.83	0.0588	0.28	0.0283	0.126	0.00176
Sastavci	200x100	476387	4797431	1048	2.55	0.0966	15.75	1.935	0.007	0.0196
Sastavci	200x100	476383	4797509	1038	2.34	0.0059	1.59	0.301	0.0187	0.00237
Sastavci	200x100	476619	4797310	1112	2.43	0.24	21.7	1.635	0.0663	0.0159
Sastavci	200x100	476598	4797400	1125	2.85	0.11	52	6.24	0.345	0.00771
Sastavci	200x100	476602	4797498	1122	3.06	0.12	5.2	0.22	0.0479	0.00264
Sastavci	200x100	476598	4797593	1080	2.86	0.0958	1.42	0.159	0.0346	0.00199
Sastavci	200x100	476399	4797599	1037	2.65	0.026	1.16	0.0284	0.0124	0.0107
Sastavci	200x100	476794	4797304	1148	2.57	0.057	2.55	0.0844	0.164	0.00897
Sastavci	200x100	476813	4797425	1149	2.74	0.0093	1.08	0.0688	0.314	0.00456

D	6.3.6.1	х	Υ	Z	Weight	Au	Ag	Pb	Zn	Cu
Project	Soil Grid	(m)	(m)	(m)	(kg)	(g/t)	(g/t)	(%)	(%)	(%)
Sastavci	200x100	476814	4797519	1142	2.6	0.0793	2.49	0.166	0.17	0.01665
Sastavci	200x100	476814	4797623	1116	2.85	0.065	0.44	0.0144	0.0136	0.00316
Sastavci	200x100	476812	4797718	1123	2.77	0.0138	0.48	0.024	0.0168	0.00586
Sastavci	200x100	477000	4797820	1111	2.42	0.0195	0.3	0.00988	0.0083	0.00809
Sastavci	200x100	477006	4797314	1185	2.68	0.0447	2.26	0.127	0.0604	0.00549
Sastavci	200x100	477012	4797414	1220	2.79	0.24	2.94	0.129	0.0147	0.00317
Sastavci	200x100	477012	4797513	1191	2.34	0.21	0.6	0.0288	0.0504	0.00492
Sastavci	200x100	477000	4797613	1152	2.23	0.0253	0.58	0.0401	0.0586	0.00488
Sastavci	200x100	477006	4797718	1125	2.53	0.0328	0.42	0.032	0.0206	0.00597
Sastavci	200x100	477405	4797820	1260	2.15	2.29	1.2	0.0231	0.0087	0.0051
Sastavci	200x100	477403	4797721	1251	2.33	0.0125	0.37	0.0107	0.0047	0.00103
Sastavci	200x100	477405	4797615	1253	2.28	0.0184	0.57	0.0485	0.0124	0.0031
Sastavci	200x100	477404	4797522	1227	2.2	0.0065	0.47	0.0286	0.0096	0.0032
Sastavci	200x100	477407	4797425	1171	2.33	0.0153	2.08	0.0376	0.0201	0.0135
Sastavci	200x100	477407	4797320	1127	2.54	0.019	0.55	0.01565	0.0121	0.01515
Sastavci	200x100	477204	4797522	1185	2.76	0.0064	0.6	0.0333	0.0059	0.00181
Sastavci	200x100	477200	4797415	1196	2.33	0.0288	1.31	0.0271	0.0084	0.00475
Sastavci	200x100	477208	4797339	1148	2.99	0.72	0.92	0.0418	0.0141	0.0027
Sastavci	200x100	477209	4797617	1216	2.53	0.0309	1.53	0.0455	0.0293	0.00344
Sastavci	200x100	477209	4797716	1216	2.55	0.0276	1.08	0.0478	0.0696	0.01135
Sastavci	200x100	477207	4797809	1159	3.02	0.0166	0.24	0.01295	0.0082	0.00755
Sastavci	200x100	477609	4797820	1231	2.51	0.0098	0.3	0.01085	0.0049	0.00224
Sastavci	200x100	477608	4797724	1197	2.3	0.0277	0.21	0.00923	0.0047	0.00242
Sastavci	200x100	477608	4797631	1159	2.85	0.26	0.48	0.0291	0.0203	0.00697
Sastavci	200x100	477592	4797518	1144	2.5	0.0531	0.21	0.0101	0.0068	0.00313
Sastavci	200x100	477602	4797421	1105	2.53	0.0304	0.28	0.0122	0.0068	0.00458
Sastavci	200x100	477615	4797323	1066	2.53	0.0164	0.43	0.0207	0.0112	0.0135
Sastavci	200x100	477812	4797838	1222	2.51	0.0017	0.11	0.00866	0.0054	0.00218
Sastavci	200x100	477800	4797729	1172	2.65	0.0035	0.13	0.00967	0.0064	0.00475
Sastavci	200x100	477789	4797602	1129	2.23	0.002	0.07	0.00763	0.0052	0.0033
Sastavci	200x100	477814	4797533	1130	2.21	0.001	0.19	0.01405	0.0068	0.00365
Sastavci	200x100	477800	4797442	1135	2.74	0.0015	0.17	0.0121	0.0061	0.00146
Sastavci	200x100	477793	4797329	1128	2.67	0.0008	0.1	0.00927	0.0064	0.00214
	Note:	Coordinates	are shown usii	ng the UTM	WGS84 proje	ection, Zone	34 Norther	n Hemisphere		

Desta	Х	Y	Z	Weight	OC/FL :	Au	Ag	Pb	Zn	Cu
Project	(m)	(m)	(m)	(kg)	OC/Float	(g/t)	(g/t)	(%)	(%)	(%)
Sastavci	476887	4797152	1149			0.04	5.9	0.193	0.0055	0.0032
Sastavci	477511	4797813	1256			0.01	0.25	0.0016	0.0021	0.0013
Sastavci	476657	4796532	979			0.012	2.3	0.127	0.712	0.0035
Sastavci	476657	4796532	979			0.199	1.8	0.0518	0.129	0.0072
Sastavci	476657	4796532	979			0.399	94.3	7.12	13.3	0.0662
Sastavci	476657	4796532	979			0.468	28.5	1.34	30	0.0626
Sastavci	476657	4796532	979			0.207	2.4	0.11	1.435	0.0043
Sastavci	476657	4796532	979			0.034	0.25	0.0055	0.0387	0.0014
Sastavci	476657	4796532	979			0.023	0.6	0.0191	0.049	0.0002
Sastavci	476657	4796532	979			0.145	0.6	0.0235	0.146	0.0132
Sastavci	476790	4796523	967			0.062	3	0.155	0.039	0.0016
Sastavci	476228	4797391	1035	4.02	FL	0.009	1.6	0.021	0.0017	0.0004
Sastavci	475984	4797350	979	2.91	ОС	0.007	<0.5	0.0051	0.0146	0.0006
Sastavci	476167	4797284	1001	3	ОС	0.014	1.2	0.148	0.0026	0.0004
Sastavci	476187	4797273	1002	3.13	ОС	0.009	<0.5	0.0724	0.0031	0.0003
Sastavci	476190	4797969	1004	3.26	ОС	0.033	0.6	0.271	0.0027	0.0003
Sastavci	476198	4797259	1002	2.3	FL	0.014	3.5	0.263	0.0023	0.0009
Sastavci	477455	4797808	1248	2.65	ОС	0.009	0.7	0.184	0.004	0.0009
Sastavci	477335	4797606	1237	3.53	FL	0.094	<0.5	0.0084	0.0016	0.0014
Sastavci	477335	4797606	1237	2.99	ОС	0.071	1	0.028	0.0056	0.0197
Sastavci	477337	4797597	1242	2.47	SC	0.029	2.3	0.0219	0.0036	0.0011
Sastavci	477099	4797466	1193	3.62	ОС	0.038	0.5	0.0627	0.0029	0.0004
Sastavci	477095	4797464	1193	2.93	ОС	0.207	<0.5	0.0071	0.0014	0.0003
Sastavci	477060	4797442	1200	4.8	ОС	0.216	<0.5	0.0119	0.0013	0.0009
Sastavci	477028	4797419	1202	2.95	ОС	1.06	1.7	0.0244	0.0026	0.0024
Sastavci	477026	4797417	1202	3.84	ОС	0.031	0.9	0.0363	0.01	0.0012
Sastavci	476951	4797275	1182	3.53	ОС	0.126	6.6	0.0508	0.003	0.0004
Sastavci	476936	4797255	1184	4.46	ОС	0.04	1.2	0.107	0.0354	0.0099
Sastavci	476939	4797240	1183	3.96	ОС	0.019	<0.5	0.009	0.0063	0.0012
Sastavci	476933	4797240	1183	3.47	ОС	0.234	<0.5	0.0116	0.0095	0.0042
Sastavci	476694	4797388	1155	3.87	ОС	0.024	<0.5	0.008	0.0091	0.0029
Sastavci	476696	4797394	1160	3.66	ОС	0.088	16.7	0.496	0.0061	0.0011
Sastavci	476674	4797365	1145	2.67	ОС	0.018	1.4	0.475	0.0207	0.0024
Sastavci	476656	4797376	1145	4.11	ОС	0.011	1.2	0.451	0.0217	0.0025
Sastavci	476648	4797385	1146	3.84	ОС	0.031	9.6	0.101	0.0026	0.0006
Sastavci	476659	4797367	1142	3.46	ОС	0.046	8.9	0.174	0.0033	0.0014
Sastavci	476667	4797361	1145	3.47	ОС	0.009	8.4	0.501	0.025	0.0008

Sastavci	476665	4797353	1138	3.61	FL	0.202	10.1	0.423	0.0066	0.0022
Sastavci	476672	4797357	1145	3.97	ОС	0.016	2.4	0.323	0.0333	0.0252
Sastavci	476672	4797359	1146	2.7	ОС	0.029	4.9	0.395	0.0137	0.0008
Sastavci	476644	4797377	1142	2.14	ОС	0.022	1.7	0.348	0.0107	0.0009
Sastavci	476640	4797378	1143	2.53	FL	0.014	14.2	1.28	0.0038	0.0007
Sastavci	477018	4797255	1150	2.91	OC	0.026	1	0.0187	0.0115	0.0086
Sastavci	477070	4797315	1148	3.36	FL	0.02	3	0.0815	0.008	0.001
Sastavci	477092	4797326	1155	2.8	SC	0.256	1.1	0.0376	0.0023	0.0003
Sastavci	477146	4797340	1158	2.68	ОС	0.08	2.6	0.027	0.0022	0.0008
Sastavci	477167	4797343	1148	2.56	ОС	0.023	3.4	0.0336	0.0304	0.0114
Sastavci	477179	4797356	1149	2.6	ОС	3.68	0.222	0.0056	0.0011	0.0004
Sastavci	477296	4797380	1148	1.6	FL	0.398	1.9	0.0029	0.005	0.0095
Sastavci	477372	4797464	1184	1.92	ОС	0.08	0.7	0.0148	0.0116	0.0056
Sastavci	477466	4797627	1245	2.54	FL	0.048	1.1	0.005	0.004	0.0038
Sastavci	477633	4797609	1143	2.4	ОС	0.007	<0.5	0.0021	0.0041	0.0021
Sastavci	477712	4797689	1142	2.495	ОС	0.006	<0.5	0.0034	0.0059	0.0033
Sastavci	477712	4797692	1143	3.35	ОС	0.027	0.5	0.0021	0.0055	0.0112
Sastavci	477695	4797929	1229	2.785	FL	0.16	3	0.0028	0.0018	0.0099
Sastavci	476210	4797036	938	2	FL	0.059	12.1	0.519	0.052	0.0193
Sastavci	476080	4797054	903	2.475	FL	0.055	4.4	0.133	2.24	0.0018
Sastavci	475940	4797107	877	2.98	ОС	0.035	<0.5	0.0039	0.034	0.0217
Sastavci	476276	4797420	1048	4.25	FL	0.015	0.9	0.0676	0.002	0.0008
Sastavci	476323	4797421	1053	3	FL	0.064	2.5	0.205	0.0053	0.0086
Sastavci	476293	4797472	1032	2.5	ОС	0.127	6	0.468	0.0061	0.0012
Sastavci	475890	4797359	944	2.27	SC	0.084	2.7	0.128	0.0034	0.0023
Sastavci	475792	4797334	915	3.69	ОС	0.034	<0.5	0.0037	0.0099	0.008
Sastavci	477235	4798198	1167	4	FL	0.006	0.5	0.0025	0.0042	0.0012
Sastavci	477034	4798196	1135	1.94	FL	0.005	<0.5	0.002	0.0053	0.0006
Sastavci	476944	4798175	1073	3.84	FL	0.011	0.5	0.0018	0.0024	0.0081
Sastavci	475565	4797250	836	2.43	ОС	0.007	<0.5	0.0071	0.0308	0.0026
Sastavci	475452	4797217	863	2.87	FL	0.008	0.9	0.027	0.0039	0.0007