

27 MAY 2020

KANINKO AUGER RESULTS DOUBLE STRIKE LENGTH OF GOLD MINERALISED ZONE

Predictive Discovery Limited ("Predictive" or "Company") (ASX: PDI) is pleased to announce assay results from new power auger drilling undertaken along strike of the previously outlined gold trend at NE Bankan, within the Company's flagship Kaninko Project, located in Guinea.

HIGHLIGHTS

- Results from 124 shallow power auger holes (totalling 2,423m) have successfully doubled the strike of the gold anomaly¹ at NE Bankan from approximately 0.5km to 1km
- A **possible new high-grade gold zone identified** on the northernmost line drilled to date.
- The following significant results from composite samples taken from a depth of 4m (just below the surface laterite layer):
 - ▶ 10m at 20.88g/t gold from 10-20m, within a broader zone of 16m @ 6.81 g/t gold
 - ▶ 16m at 1.05g/t gold, including 2m at 7.67g/t gold from 18-20m
 - ▶ 16m at 0.90g/t gold
 - ▶ 16m at 0.72g/t gold
 - ▶ 16m at 0.66g/t gold
- The plus-0.25g/t gold anomaly in power auger defined the footprint of the initial goldmineralised zone from which AC/RC drilling subsequently obtained the following outstanding "discovery" intercepts (ASX release, 15 April 2020):
 - 46m (to EOH) at 6.58 g/t gold from 4m
 - ▶ 42m (to EOH) at 2.92 g/t gold from 8m
 - ▶ 50m (to EOH) at 1.53 g/t gold from surface
 - ▶ 42m at 1.56g/t gold from surface
 - ► 50m (to EOH) at 1.27 g/t gold from surface
- The mineralisation remains open to the north, with these new results forming part of a larger power auger program that is continuing to explore multiple targets within the Kaninko permit.
- One diamond drill (DD) rig and one reverse circulation (RC) drill rig are now both on site at NE Bankan. Diamond drilling has commenced and RC drilling is expected to start shortly.
- The power auger assays reported in this release were received from the SGS laboratory in Bamako on the evening of Monday 25 May.

¹ Defined with a grade of greater than 0.25g/t Au

Commented Paul Roberts, Predictive Discovery Managing Director:

"We are very pleased with these results which have now doubled the known mineralised strike length at NE Bankan from the 0.5km strike length that was initially recognised, to nearly 1km and remaining open. The identification of high-grade gold mineralisation on the most northern drill line also suggests that a possible new high grade gold zone may extend even further to the north.

These new results also add to the impression of a single, broad, continuous gold mineralised zone on this prospect. We look forward to receiving additional results from ongoing power auger drilling both along strike from NE Bankan and from other prospects on the Kaninko permit from which previous encouraging gold values have been obtained.

We are also very pleased that DD and RC drill rigs are now on site and we look forward to exploring the NE Bankan gold mineralised system along strike and at greater depths with these two rigs."

Figure 1 – Kaninko Project - new power auger results overlain on previous AC/RC and auger results (reported to the ASX on 26/2/20, 19/3/20 and 15/4/20)

POWER AUGER DRILLING DETAILS

Power auger drilling is a rapid and cost-effective exploration method for the collection of bedrock samples below tracts of lateritic and transported cover. The auger holes reported in this release were focused on the NE Bankan Prospect, a large gold-anomalous zone identified through previously completed soil and laterite sampling programs.

124 holes totalling 2423m (Figure 1) were completed on an 80m x 80m grid. All but five holes were drilled to a depth of 20m. Samples were assayed for gold in 2m intervals in contrast to the initial program (reported on 26 February 2020), where single 5-10m composites were assayed. The drill holes penetrated through the overlying laterite into mottled clay and saprolite with numerous gold anomalous 2m composite sample results obtained, including a peak grade of 25.8g/t gold. All results are reported in Table 1 and shown on Figure 1.

The drilling and trenching program was undertaken by Sahara Mining Services and the samples were assayed by fire assay at the SGS laboratory in Bamako, Mali.

NEXT STEPS

A large power auger drilling program is ongoing on the Kaninko permit, testing multiple targets where earlier geochemical sampling identified anomalous gold grades.

A diamond drill (DD) and a reverse circulation (RC) rig are now on site at NE Bankan. The diamond drill rig has now commenced drilling a hole beneath the highest-grade gold intercept from the earlier AC/RC drill program (46m at 6.58g/t Au - reported on 15 April 2020) and the RC rig is expected to commence drilling shortly. The diamond drilling is designed to test fresh rock at depth beneath known mineralisation, and the RC drilling will begin by drilling parts of the central plus-0.25g/t gold anomalous zone which were untested by the earlier AC/RC program to a vertical depth of 80m.

PROJECT BACKGROUND

Predictive holds approximately 500km² of prospective landholdings across five projects all containing artisanal gold workings (Figure 2). Four of the projects are within the Siguiri Basin which hosts Anglogold's large Siguiri Mine (+10Moz). The Guinea projects were identified by Predictive during its terrain-scale assessment of the Siguiri Basin in late 2018 using the Company's Predictore[™] gold targeting system.

The Kaninko Project forms part of the richly mineralised West African Birimian gold belt and consists of metavolcanics and mafic to ultramafic intrusives with minor granitic rocks.

Page 3 of 12 predictivediscovery.com

Figure 2 – Predictive Discovery's Guinea Projects

Hole ID	Easting (UTM, 29N)	Northing (UTM, 29N)	Dip	RL	Hole depth (m)	Comp from 4	osite inte m depth t of hole	rvals :o end	Plus interv	0.25g/t g als (in pp g/t)	gold m i.e.	Comments
						Depth from (m)	Interval (m)	Gold (ppb)	Depth from (m)	Interval (m)	Gold g/t	
KKOAU0196	396448	1175340	Vertical	426	9	4.00	5.00	15				
KKOAU0197	396446	1175257	Vertical	421	8	4.00	4.00	44				
KKOAU0198	396521	1175258	Vertical	422	8	4.00	4.00	112				
KKOAU0199	396451	1175176	Vertical	413	8	4.00	4.00	26				
KKOAU0200	396532	1175177	Vertical	413	10	4.00	6.00	35				
KKOAU0201	396606	1175175	Vertical	423	20	4.00	16.00	37				
KKOAU0202	396454	1175105	Vertical	416	20	4.00	16.00	25				
KKOAU0203	396530	1175100	Vertical	421	20	4.00	16.00	74				
KKOAU0204	396609	1175098	Vertical	428	20	4.00	16.00	99				

TABLE 1 – NEW POWER AUGER DRILL RESULTS, NE BANKAN PERMIT

KKOAU0205	396694	1175102	Vertical	429	20	4.00	16.00	98				
KKOAU0206	396768	1175105	Vertical	439	20	4.00	16.00	214	10	4	0.49	
KKOAU0207	396850	1175022	Vertical	440	20	4.00	16.00	657	4	16	0.66	Stopped in gold mineralisation
KKOAU0208	396769	1175018	Vertical	434	20	4.00	16.00	109				
KKOAU0209	396686	1175018	Vertical	431	20	4.00	16.00	26				
KKOAU0210	396612	1175021	Vertical	426	20	4.00	16.00	20				
KKOAU0211	396532	1175018	Vertical	424	20	4.00	16.00	297	10	6	0.62	
KKOAU0212	396438	1175022	Vertical	415	20	4.00	16.00	48				
KKOAU0213	396368	1175019	Vertical	417	20	4.00	16.00	147				
KKOAU0214	396930	1174940	Vertical	427	20	4.00	16.00	271	4	8	0.42	
KKOAU0215	396848	1174937	Vertical	434	20	4.00	16.00	417	6	14	0.47	Stopped in gold mineralisation
KKOAU0216	396774	1174942	Vertical	422	20	4.00	16.00	78				
KKOAU0217	396688	1174942	Vertical	429	20	4.00	16.00	49				
KKOAU0218	396606	1174944	Vertical	429	20	4.00	16.00	27				
KKOAU0219	396526	1174941	Vertical	430	20	4.00	16.00	28				
KKOAU0220	396448	1174940	Vertical	407	20	4.00	16.00	74				
KKOAU0221	396368	1174938	Vertical	409	20	4.00	16.00	21				
KKOAU0222	396529	1174860	Vertical	417	20	4.00	16.00	57				
KKOAU0223	396369	1174859	Vertical	411	20	4.00	16.00	17				
KKOAU0224	396447	1174858	Vertical	419	20	4.00	16.00	20				
KKOAU0225	396609	1174860	Vertical	420	20	4.00	16.00	82				
KKOAU0226	396689	1174861	Vertical	429	20	4.00	16.00	55				
KKOAU0227	396766	1174855	Vertical	437	20	4.00	16.00	80				
KKOAU0228	396849	1174856	Vertical	436	20	4.00	16.00	903	4	16	0.90	Stopped in gold mineralisation
KKOAU0229	396928	1174859	Vertical	432	20	4.00	16.00	198	8	4	0.37	
KKOAU0230	397010	1174863	Vertical	423	20	4.00	16.00	58				
KKOAU0231	397088	1174860	Vertical	431	20	4.00	16.00	55				
KKOAU0232	397170	1174780	Vertical	429	20	4.00	16.00	33				
KKOAU0233	397090	1174782	Vertical	431	20	4.00	16.00	94				
KKOAU0234	397007	1174783	Vertical	438	20	4.00	16.00	49				
KKOAU0235	396930	1174783	Vertical	437	20	4.00	16.00	293	4	12	0.32	
KKOAU0236	396848	1174781	Vertical	436	20	4.00	16.00	1053	18	2	7.67	Stopped in high grade gold mineralisation
KKOAU0237	396772	1174784	Vertical	427	20	4.00	16.00	28				
KKOAU0238	396693	1174782	Vertical	413	20	4.00	16.00	18				
KKOAU0239	396612	1174781	Vertical	411	20	4.00	16.00	220	8	4	0.33	
KKOAU0240	396531	1174782	Vertical	408	20	4.00	16.00	16				
KKOAU0241	396448	1174785	Vertical	409	20	4.00	16.00	32				
KKOAU0242	396369	1174785	Vertical	410	20	4.00	16.00	9				
KKOAU0243	396372	1174696	Vertical	409	20	4.00	16.00	23				
KKOAU0244	396448	1174699	Vertical	403	20	4.00	16.00	158	16	2	0.78	
KKOAU0245	396525	1174703	Vertical	411	20	4.00	16.00	54				
KKOAU0246	396612	1174695	Vertical	416	20	4.00	16.00	17				
KKOAU0247	396688	1174702	Vertical	413	20	4.00	16.00	102	8	2	0.64	
KKOAU0248	396768	1174693	Vertical	428	20	4.00	16.00	73				
KKOAU0249	396851	1174700	Vertical	431	20	4.00	16.00	134				
KKOAU0250	396928	1174703	Vertical	433	20	4.00	16.00	185	18	2	0.56	Stopped in gold mineralisation

KKOAU0301	396850	1175661	Vertical	398	20	4.00	16.00	218	4	4	0.35	
KKOAU0300	396920	1175660	Vertical	406	20	4.00	16.00	277	12	8	0.44	mineralisation
110700233	337003	11/3003	vertical	712	20	4.00	10.00	21				Stopped in gold
KKOALIO298	3970032	1175665	Vertical	412	20	4.00	16.00	27				
	397109	1175667	Vertical	403	20	4.00	16.00	30				
KKOA00290	397160	1175662	Vertical	400	20	4.00	16.00	-+ 20				
	397251	1175660	Vertical	400	20	4.00	16.00	4				
	397323	1175650	Vertical	306	20	4.00	16.00	0 10				
KKOAU0293	207275	1175577	Vertical	300	20	4.00	16.00	21Z				
KKOAU0292	39/109	1175501	Vertical	408 205	20	4.00	16.00	12				
	39/08/	1175580	Vertical	414	20	4.00	16.00	25				
	39/010	1175580	Vertical	413	20	4.00	16.00	39 25				
KKUAU0289	396925	1175584	Vertical	415	20	4.00	16.00	1/1				
	396850	1175580	Vertical	405	20	4.00	16.00	132				
	397013	1175503	Vertical	407	20	4.00	16.00	95				
KKUAU0286	39/087	11/5501	Vertical	405	20	4.00	16.00	88				
KKUAU0285	39/167	11/5499	Vertical	411	20	4.00	16.00	27				
KKOAU0284	39/330	11/5502	Vertical	411	20	4.00	16.00	12				
KKUAU0283	397248	1175504	Vertical	407	20	4.00	16.00	16				
KKUAU0282	397326	1175343	Vertical	412	20	4.00	16.00	16				
KKUAU0281	397328	1175419	Vertical	405	20	4.00	16.00	15				
KKOAU0280	397249	1175418	Vertical	410	20	4.00	16.00	16				
KKOAU0279	397173	1175418	Vertical	412	20	4.00	16.00	121				
KKOAU0278	397247	1174539	Vertical	408	20	4.00	16.00	10				
KKUAU0277	397177	1174538	Vertical	409	20	4.00	16.00	163	4	2	0.51	
KKOAU0276	397092	1174533	Vertical	422	20	4.00	16.00	20				
KKOAU0275	397011	1174535	Vertical	425	20	4.00	16.00	22				
KKOAU0274	396931	1174540	Vertical	424	20	4.00	16.00	25				
KKOAU0273	396847	1174540	Vertical	409	20	4.00	16.00	52				
KKOAU0272	396770	1174538	Vertical	411	20	4.00	16.00	45				
KKOAU0271	396694	1174537	Vertical	408	20	4.00	16.00	47				
KKOAU0270	396620	1174545	Vertical	407	20	4.00	16.00	17				
KKOAU0269	396531	1174541	Vertical	409	20	4.00	16.00	31				
KKOAU0268	396451	1174539	Vertical	400	20	4.00	16.00	32		ļ		
KKOAU0267	396373	1174539	Vertical	395	20	4.00	16.00	20				
KKOAU0266	396370	1174622	Vertical	393	20	4.00	16.00	159	10	2	0.76	
KKOAU0265	396451	1174617	Vertical	396	20	4.00	16.00	11				
KKOAU0264	396534	1174623	Vertical	432	20	4.00	16.00	30				
KKOAU0263	396612	1174630	Vertical	409	20	4.00	16.00	20				
KKOAU0262	396688	1174609	Vertical	436	20	4.00	16.00	18				
KKOAU0261	396773	1174617	Vertical	425	20	4.00	16.00	33				
KKOAU0260	396849	1174624	Vertical	446	20	4.00	16.00	41				
KKOAU0259	396930	1174617	Vertical	420	20	4.00	16.00	42				
KKOAU0258	397008	1174617	Vertical	421	20	4.00	16.00	117				
KKOAU0257	397103	1174627	Vertical	435	20	4.00	16.00	20				
KKOAU0256	397169	1174623	Vertical	427	20	4.00	16.00	39				
KKOAU0255	397247	1174619	Vertical	425	20	4.00	16.00	19				
KKOAU0254	397246	1174702	Vertical	425	20	4.00	16.00	19				
KKOAU0253	397168	1174702	Vertical	424	20	4.00	16.00	32				
KKOAU0252	397084	1174701	Vertical	427	20	4.00	16.00	115				
KKOAU0251	397007	1174701	Vertical	432	20	4.00	16.00	125				

KKOAU0302	396774	1175654	Vertical	403	20	4.00	16.00	726	4	16	0.73	Stopped in gold mineralisation
KKOAU0303	396528	1175657	Vertical	400	20	4.00	16.00	29				
KKOAU0304	396448	1175654	Vertical	402	20	4.00	16.00	17				
KKOAU0305	396446	1175583	Vertical	405	20	4.00	16.00	25				
KKOAU0306	396446	1175503	Vertical	407	20	4.00	16.00	20				
KKOAU0307	396615	1175739	Vertical	403	20	4.00	16.00	17				
KKOAU0308	396526	1175736	Vertical	403	20	4.00	16.00	39				
KKOAU0309	396449	1175742	Vertical	394	20	4.00	16.00	74				
KKOAU0310	396693	1175740	Vertical	391	20	4.00	16.00	27				
KKOAU0311	396771	1175738	Vertical	389	20	4.00	16.00	162				
KKOAU0312	396845	1175728	Vertical	405	20	4.00	16.00	205				
KKOAU0313	396929	1175739	Vertical	414	20	4.00	16.00	32				
KKOAU0314	397007	1175734	Vertical	408	20	4.00	16.00	27				
KKOAU0315	397090	1175741	Vertical	415	20	4.00	16.00	6815	10	10	10.88	Includes 2m at 25.8g/t gold at 18 to 20m. Stopped in high grade gold mineralisation
KKOAU0316	397171	1175738	Vertical	402	20	4.00	16.00	34				
KKOAU0317	397253	1175738	Vertical	390	20	4.00	16.00	8				
KKOAU0318	397329	1175735	Vertical	393	20	4.00	16.00	9				
KKOAU0319	397408	1175737	Vertical	388	20	4.00	16.00	6				

Section 1: Sampling Techniques and Data						
Criteria	JORC Code Explanation	Commentary				
Sampling Technique	Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	The sampling described in this report refers to power auger drill samples. In all the power auger drill holes reported here, 2kg samples were every 2m downhole. The samples were submitted for fire assay gold analysis at the SGS laboratory in Bamako, Mali with a 5ppb detection limit.				
Drilling	Drill type (eg core, reverse circulation, open- hole hammer,	The power drilling was carried out using a 4WD-mounted power auger rig.				

	rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Sample recovery is not assessed for power auger drilling as it is a geochemical method. In general, however, recoveries are good because the hole has to be cleared by the screw-type rods in order for the drill rods to advance downwards.
Logging	Whether core and chip samples have been geologically and geotechnical logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean/Trench, channel, etc) photography. The total length and percentage of the relevant intersections logged.	None of these samples will be used in a Mineral Resource estimation. Nonetheless, all power auger holes were geologically logged in a qualitative fashion.
Sub-Sampling Technique and Sample Preparation	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled.	Each 1 m interval in the composite interval was subsampled using a scoop. The sample is considered sufficiently representative of the drilled material in a geochemical drilling program.

Page 8 of 12 predictivediscovery.com

Quality of Assay Data and Laboratory Tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	The analytical method used was an SGS fire method with a 5ppb Au detection which is appropriate for a geochemical drilling program. No company standards or blanks were added to the sample batch. Based on SGS's own repeat results, the analytical results are judged to be suitable for a geochemical drilling program.
Verification of Sampling and Assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes The verification of significant intersections by either independent or alternative company personnel. Discuss any adjustment to assay data	Hole twinning is not normally practised with power auger drilling.
Location of Data points	Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used Quality and adequacy of topographic control	Collar locations were located using a hand held GPS with a location error of +/-3m. Collar coordinates referenced in the table are for Universal Transverse Mercator (UTM), Datum WGS 84, Zone 29 - Northern Hemisphere.
Data Spacing and Distribution	Data spacing for reporting of Exploration Results Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied	Power auger holes were located on an 80m square grid consistent with the hole spacing in previous power auger drill programs at Kaninko. This type of drilling is not appropriate for the calculation of any Mineral Resource estimate.
Orientation of Data in Relation to Geological Structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Power auger holes were spaced on an 80m square grid because the orientation of the target zone remains uncertain. There is no rock outcrop in the area to guide sample line orientations
Sample Security		Reference samples are stored at PDI's sample store in Kouroussa, Guinea.
p	The measures taken to ensure sample security	
	Section 2 Repo	rting of Exploration Results 🦰 👘

Mineral Tenement and Land Tenure Status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	The Kaninko Reconnaissance Authorisation was granted to a Predictive subsidiary in Guinea in June 2019. It was converted to an Exploration Permit in early October 2019. It is 100% owned by Predictive.
Exploration Done by Other Parties	Acknowledgment and appraisal of exploration by other parties.	Predictive is not aware of any significant previous gold exploration over the permit.
Geology	Deposit type, geological setting and style of mineralisation.	The geology of the Kaninko permit consists of mafic volcanics and intrusives, and granitic rocks.
Drill Hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case 	The required information is provided in Table 1.
Data Aggregation Methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any	No weighted average or truncation methods were used for the power auger results.
	reporting of metal equivalent values should be clearly stated.	
Relationship Between Mineralisation Widths and Intercept Lengths	These relationships are particularly important in the reporting of Exploration Results	True widths cannot be estimated for the power auger drill results as the orientation of the underlying weathered rocks is not known.

	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	An appropriate map is provided in Figure 1.
Balanced Reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results are reported in Table 1.
Other Substantive Exploration Data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Apart from the previously reported surface gold geochemistry and power auger drill results, there are no other exploration data which are relevant to the results reported in this release.
Further Work	The nature and scale of planned further work (eg tests for lateral extensions or large scale step out drilling. Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	RC drilling will be carried out to follow up the results reported in this release.

Predictive advises that it is not aware of any new information or data that materially affects the exploration results contained in this announcement.

Competent Persons Statement

The exploration results reported herein are based on information compiled by Mr Paul Roberts (Fellow of the Australian Institute of Geoscientists). Mr Roberts is a full-time employee of the company and has sufficient experience relevant to the style of mineralisation and type of deposits being considered to qualify as a Competent Person as defined by the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Roberts consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

-END-

Page 11 of 12 predictivediscovery.com

This announcement is authorised for release by Predictive Managing Director, Paul Roberts.

For further information visit our website at <u>www.predictivediscovery</u> or contact:

Paul Roberts

Managing Director

Tel: +61 402 857 249 Email: paul.roberts@predictivediscovery.com

About Predictive Discovery

100%-OWNED GUINEA PORTFOLIO

Predictive holds approximately 800km² of prospective landholdings across nine permits/authorisations in Guinea, all containing artisanal gold workings.

All projects are within the Siguiri Basin which hosts AngloGold's large Siguiri Mine (+10Moz), the Siguiri Basin forms part of the richly mineralised West African Birimian gold belt.

JOINT VENTURE PORTFOLIO

Predictive holds a number important Joint Ventures across Cote D'Ivoire and Burkina Faso. The Cote D'Ivoire joint venture has provided Predictive with an experienced and well-funded project partner (Resolute Mining) to manage our exciting Ferkessedougou North and Boundiali Projects.

