

8 June 2020

SECOND ROUND OF INTEGRATED RESULTS FROM RIQUEZA

IN THIS ANNOUNCEMENT

- Review of mapping and sample results from the Ajo Orjo Area of Riqueza
- Initial integration of these results with interim IP profiles, AMAGRAD and geochemical targets
- An assessment of the Ajo Orjo and SW Areas in terms of the presence of an epithermal/Cu-porphyry system
- Importance of results and the next steps at Riqueza

INCA MINERALS LTD

ACN: 128 512 907

- Sample location plan and assay tables (Appendix 1 & 2)
- Competent Person Statement, Key words and ASX JORC 2012 compliance statements (Appendix 3)

HIGHLIGHTS

- Several copper (Cu), silver (Ag) ± molybdenum (Mo), lead (Pb) and zinc (Zn) bearing structures identified in mapping and sampling program at the Ajo Orjo Area of Riqueza
- Sample assay results of note include:
 - 3.99% Cu, 32g/t Ag, 21.1ppm Mo in BM-00499 over 0.4m channel true width (ctw) INSERT PHOTO RIGHT
 - o 1.9% Cu, 20g/t Ag, 34.9ppm Mo in BM-00641 0.4m ctw
 - 1.36% Cu, 6.45g/t Ag in BM-00688 1.0m ctw
- Mineralised structures coincident with interim induced polarisation, AMAGRAD, 3D magnetic and geochemical anomalies
- Upper parts of a possible epithermal/Cu-porphyry system indicated
- Materially increased prospectivity for possible epithermal/Cu-porphyry system based on integrated data review of Ajo Orjo and SW Areas
- Independent final IP interpretation and Riqueza drill target proposal still being finalised

Inca Minerals Limited (**Inca** or the **Company**) has completed the second review of mapping and sampling results, on this occasion, of the Ajo Orjo Area in the south-central part of Riqueza. The first review was completed for the SW Area and reported to the market previously (ASX announcement 27 May 2020). The third review will be for the NE Area of Riqueza (areas are shown in Figure 2).

The mapping and sampling program was designed to cover targets generated in airborne air magnetic and radiometric (AMAGRAD), soil geochemical and induced polarisation (IP) geophysical programs.

The results of this second review are again highly encouraging. The Company has identified an array of mineralised structures centred in the Ajo Orjo Area (mineralised outcrop - Figure 1). These mineralised structures are coincident with AMAGRAD targets, 3D magnetic inversion model targets, geochemical anomalies (Figures 2 to 5) and interim IP profile targets (Figure 6). The mineralisation is interpreted as representing the possible upper parts of the epithermal/Cu-porphyry system that, is itself, indicated by the AMAGRAD, IP and 3D magnetic anomalies at depth. It is possible that the Ajo Orjo Area is further out from the centre of an epithermal/Cu-porphyry system that of the SW Area. Alternately, Ajo Orjo could represent the top of a second mineralised intrusion within the same epithermal/Cu-porphyry system.

The Ajo Orjo Area

The Ajo Orjo Area was mapped and sampled by Inca geologists during an ongoing program to follow up on areas of interest generated in other exploration programs. A total of 276 samples were taken (two sample assay results are not available at the time of writing). Maximum and minimum assay values are provided (Table 1). Sample location plans comprise Appendix 1. Assay tables comprise Appendix 2.

Item	Au ppb	Cu %	Ag g/t	Pb %	Zn %	Mo ppm
# samples	264	264	264	264	264	264
Minimum	0.5	0.00033	0.01	0.00028	0.0016	0.95
Maximum	5	3.99	32	0.051	0.31	34.86

INCA MINERALS LTD

ACN: 128 512 907

Table 1 **ABOVE**: Maximum and minimum gold (**Au**), Cu , Ag, Pb, Zn and Mo values from sampling in the Ajo Orjo Area. Refer to Appendix 2 for complete assay results.

Mineralisation at the Ajo Orjo Area is related to a dominant southwest-northeast (SW-NE) structural fabric and to a less dominant, north-south (N-S) and northwest-southeast (NW-SE) fabric. Host material includes faulted and brecciated volcanics (Figure 1) with localised quartz-sericite alteration. Cu and iron (Fe)-Manganese (Mn)-oxide minerals include malachite, chrysocolla, neotocite, limonite and jarosite (Figure 1).

The mineralised structures occurring at the Ajo Orjo Area are similar to those occurring at the SW Area.

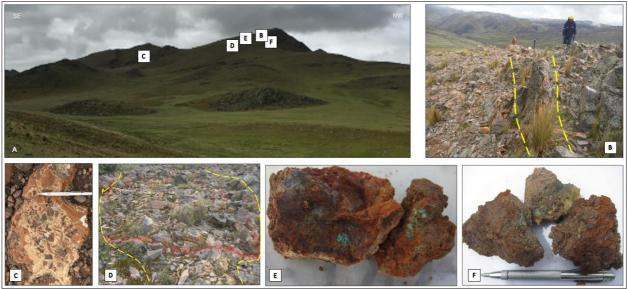


Figure 1 **ABOVE Photo A**: Panoramic view facing southwest of the Ajo Orjo Area. This location is presented as point "A" in Figure 6. **Photo B**: Vein-fault breccia structure, silicified with Fe-Mn oxides and copper mineralisation in fractures; the wallrock hosts quartz-veinlets with Fe-Mn oxides. **Photo C**: Volcanic breccia with calcite-matrix with jarosite coatings. **Photo D**: Volcanic rock with quartz-veinlets with halos of sericite and orthoclase. The veinlets represent sutures of oxides (possible leached sulphides). **Photo E**: Mineralised sample (BM-00499) with malachite, chrysocolla (traces), calcite, limonite and jarosite, grading 3.99% Cu and 32g/t Ag over 0.4m. **Photo F**: Mineralised breccia sample (BM-00613) with clasts of weakly argillically altered rock with limonite and jarosite coatings; and a matrix of limonite, malachite, chrysocolla, Mn-Oxides, grading 0.76% Cu and 4.98g/t Ag over 0.45m.

Page2

INCA MINERALS LTD

ACN: 128 512 907

ASX ANNOUNCEMENT ASX Code: ICG

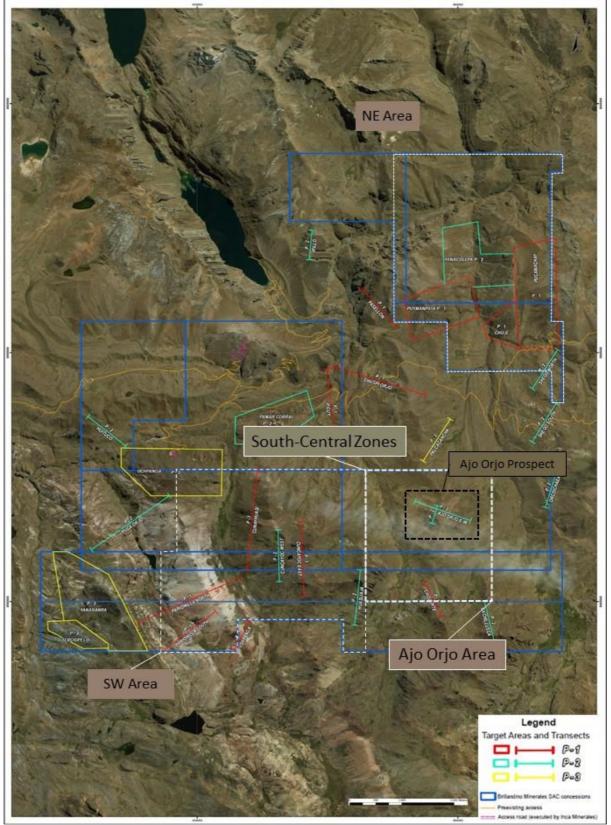


Figure 2 **ABOVE**: Satellite plan showing the three mapping and sampling areas and positions of the AMAGRAD targets. Ajo Orjo has two P-2 AMAGRAD targets defining a specific zone of interest within the area (black dashed line).

INCA MINERALS LTD

ACN: 128 512 907

ASX ANNOUNCEMENT ASX Code: ICG

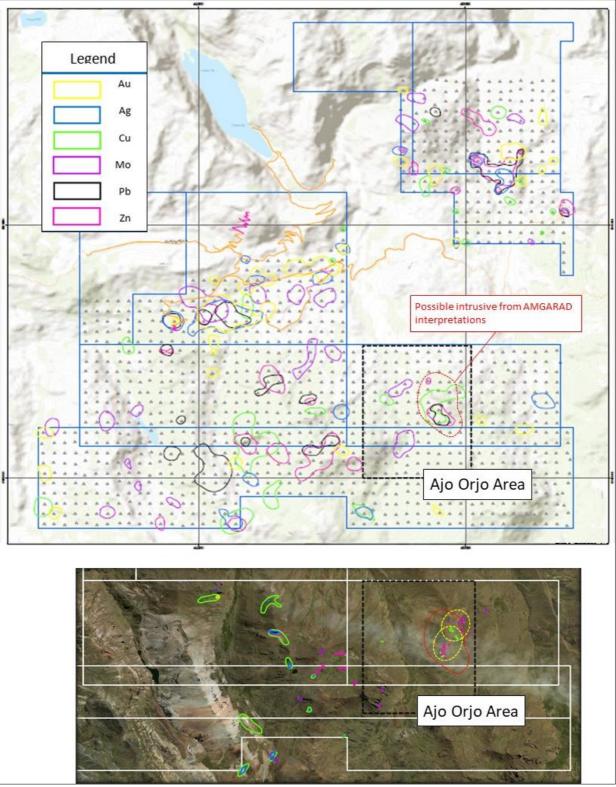


Figure 3 **ABOVE TOP**: Plan showing the soil geochemistry results on the soil sample location grid (ASX announcement 15 October 2019). Also shown is the outline of an interpreted intrusion from AMAGRAD data. **ABOVE BOTTOM**: A satellite plan of the approximate lower half of the plan above, with the rock chip results and interpreted intrusion. The legend is the same for both plans. The coincidence of the AMAGRAD targets (and interpreted intrusion) with both the soil and rockchip geochemical targets is very clear, thus defining a specific area of interest.

A specific area of interest within Ajo Orjo has now recognised which hosts coincident targets from all of the exploration programs conducted there. These are listed below and include:

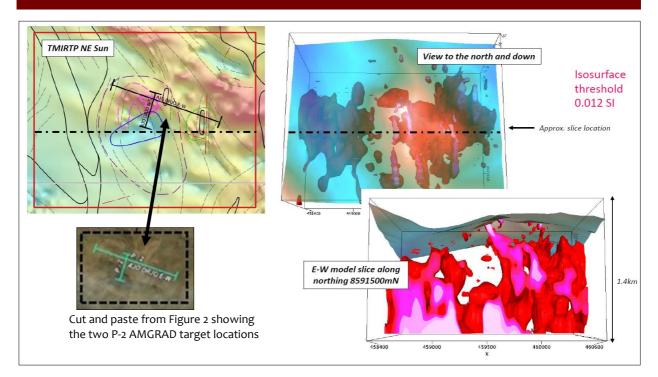
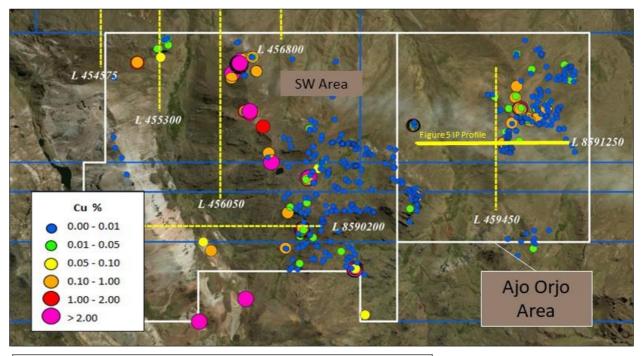
- Mineralised Cu-Ag±Mo±Pb±Zn structures from the mapping and sampling program (Figure 1).
- Two P-2 AMAGRAD targets (Ajo Orjo NS and Ajo Orjo EW) from the AMAGRAD program (Figures 2 and 3) which incorporates:
 - A strong near-surface magnetic signature,

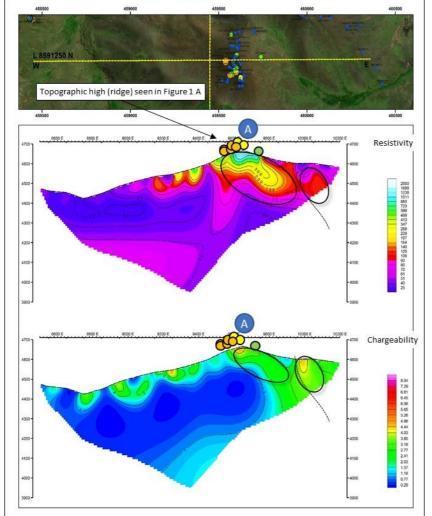
INCA MINERALS LTD

ACN: 128 512 907

- A broader magnetic high at depth,
- A broad interpreted phyllic alteration zone,
- A large interpreted possible intrusion (integrated into Figure 3).
- Notable soil geochemical targets from the soil geochemical program (Figures 2 and 3) including:
 - Coincident Cu-Pb-Zn anomalism (Inca interpretation),
 - Cu and perimeter Mo (independent interpretation).
- Unaccounted magnetic bodies from the 3D magnetic inversion modelling program (Figure 4).
- Large interim IP profile targets from the IP program (Figure 6).

"The coincidence of multiple geophysical and geochemical targets is very encouraging and defines a drill-worthy target at Ajo Orjo" says Inca's Managing Director, Mr Ross Brown. "This success illustrates why multi-phase drill-target generation programs are justified; in our case, to assess, prioritise and derisk porphyry and skarn targets for future drilling."


Figure 4 **ABOVE**: 3D modelling of the Ajo Orjo E and Ajo Orjo W P-2 airborne geophysical targets. The top left image shows the Ajo Orjo E and Ajo Orjo W P-2 in plan-view showing a strong magnetic low (blue line) and broad magnetic high possibly intrusive-related (dashed pink line) within a broad phyllic halo (purple dashed line). The top right image shows a large unaccounted magnetic body in plan-view; the bottom image shows the same magnetic body in cross section. This magnetic body extends from surface to over 1.4km depth. Refer also to Figure 2 (portion copied as **INSERT** showing the AMGRAD targets).

Page5

ASX ANNOUNCEMENT ASX Code: ICG

INCA MINERALS LTD

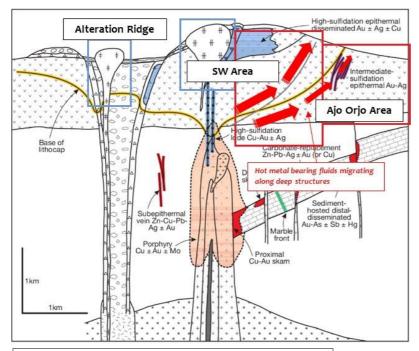
ACN: 128 512 907

Figure 5 **ABOVE**: Satellite location plan showing the sample locations in the south-central area (including the SW Area and the Ajo Orjo Area highlighting the Cu results. The IP coverage is shown (yellow lines) and the specific IP profiles mentioned in this announcement, in Figure 6 is highlighted (thick yellow line). Numbered sample locations are provided in Appendix 1.

Figure 6 **LEFT**: Stacked EW orientated IP Profile L8591250 (Resistivity and Chargeability) where west is left, and east is right (Figure 5). Interim targets are indicated (solid black lines), as well as interpreted structures (dashed black lines) and sample locations (coloured dots). The ridge-top cluster of samples, marked A, returned good grades in Cu and Ag, including 3.99% Cu in a breccia (Figure 1).

Suite 1/16 Nicholson Road, Subiaco, WA 6008 • PO BOX 38, West Perth, WA 6872 Telephone: +61 (08) 6145 0300 • ABN: 36 128 512 907 Website: www.incaminerals.com.au Page6

ASX ANNOUNCEMENT ASX Code: ICG


Importance of Results

INCAMINERALS LTD

ACN: 128 512 907

Inca has completed the second of three in-house reviews in which mapping and sampling program results are integrated with AMAGRAD, 3D magnetic inversion modelling imagery, soil geochemistry and interim IP profiles. The review, the subject of this announcement, was for the Ajo Orjo Area, the second area comprising the south-central part of Riqueza. The Ajo Orjo Area hosts an array of predominantly SW-NE trending mineralised faults and breccias that contain Cu and Ag, with Mo and/or Pb and Zn. This area hosts a specific target with multiple coincident geochemical (surface) and geophysical (below surface) anomalies.

Although less mineralisation has been identified during mapping and sampling at the Ajo Orjo Area compared to the SW Area, it cannot be certain that all zones of mineralisation have been discovered. Nevertheless, it is concluded that the difference between the two areas in terms of apparent mineralisation is not an artifact of exploration coverage. Rather, it is believed that the Ajo Orjo Area may represent a more distal part of a possible epithermal/Cu-porphyry system than that of the SW Area (as shown in Figure 7). In both areas, mineralisation occurs at levels consistent with epithermal/Cu-porphyry grades. It's worth reflecting that the median global Cu-porphyry mine grade is 0.5% Cu. It cannot also be ruled out that another, separate mineralised intrusion occurs below Ajo Orjo. The strong geophysical signatures of Ajo Orjo supports this hypothesis, as well as elevated levels of Mo—a metal typically occurring at elevated levels closer to a heat source (Figure 7).

PERIPHERAL

cp-gal-sl-Au-Ag

LOW

GRADE

ср-ру

LOW

PYRITE

SHELL

DV 2%

ADVANCED

ARGILLIC Q-Kaol-Alun

PROPYLITIC

Chl-Epi-Carb

OTASSIC

Q-K-feld

-Bi +- anh

0

Ser Chl K-feld

Chl-Ser-Epi-mag

Figure 7 **LEFT**: Geological model of a Cuporphyry from Sillitoe (2010). Surface mineralisation at the Ajo Orjo and SW Areas of Riqueza (red boxes) are believed analogous to the upper and lateral extensions of a Cu-porphyry system. The rhyolite dome at Alteration Ridge is likened to the dacite domes of the Sillitoe model (blue boxes).

Note that the previously reported expert mapping program concluded the likely existence of an <u>Intermediate Sulphidation</u> <u>Epithermal System</u> in the south-central part of Riqueza - entirely consistent with the Sillitoe model. The metal-mix of the Ajo Orjo and SW Areas are also consistent (See also Figure 8).

Figure 8 **LEFT**: Schematic cross section through a Cuporphyry showing the hydrothermal alteration zoning pattern from Lowell and Guilbert (1970). The alteration minerals that are associated with mineralisation at the Ajo Orjo and SW Areas are characteristic of the propylitic and sericitic zones (blue and green shaded areas on left hand model respectively). The metal-mix of the Ajo Orjo and SW Areas is also consistent with the equivalent peripheral zone (white and grey shaded areas of the right hand model).

PYRITE SHELL

py 10% cp .01-3%

ORE

SHELL

py 1% cp 1-3%

mb .003%

Assessment of a Possible Epithermal/Cu-Porphyry System at South-central Riqueza

INCA MINERALS LTD

ACN: 128 512 907

The completion of the review of the Ajo Orjo Area allows an overall assessment of the south-central part of Riqueza. The integration of data from all programs for this large focus-area allows us to create a "scorecard" to objectively assess the likely presence of an epithermal/Cu-porphyry system.

As a general comment, the juxtaposition of multiple elements and expressions characteristic of an epithermal/Cu-porphyry system (as displayed in the Sillitoe 2010 model) in the south-central part of Riqueza (including the SW Area and the Ajo Orjo Area) provides a strong foundation to believe that such a system may be present.

The "scorecard" is in three sections: 1. Regional parameters 2. Surface parameters and 3. Below-surface (atdepth) parameters. It is important to note that pre-drilling methods of investigating below surface, is by default, indirect and mainly achieved through geophysical methods.

• REGIONAL: Presence of known epithermal/Cu-porphyry systems in the vicinity.

Are there specific examples of epithermal/Cu-porphyry systems in the near vicinity? **YES**.

- There is a known Cu-Au porphyry 8km southwest of Riqueza, partially owned by Anglo American. The porphyry has undergone preliminary drill testing and Au and Cu intersections over 100m are known. The porphyry is associated with a high sulphidation epithermal system (literature review; pers comm Anglo American 2018).
- There is a known Cu-Au porphyry 15km northwest of Riqueza. It is particularly interesting in that it is adjacent (and genetically linked) to the Bethania Ag-Pb-Zn veins. These previously mined veins are very similar to those occurring at the Humaspunco Prospect at Riqueza.
- Riqueza is located within a known Miocene epithermal/Cu-porphyry belt (literature review).
- REGIONAL: Presence of deep regional structures important in the emplacement and distribution of epithermal/Cu-porphyries within mineral belts.

Are there deep structures traversing Riqueza that may provide avenues for epithermal/Cu-porphyry emplacement? **YES**.

- Riqueza falls within the Chonta Fault System, well documented to control the emplacement and distribution of epithermal and/or Cu-porphyry system in the vicinity (literature review).
- The south-central area has a strong regional NW-SE structural fabric and a strong project-scale mineralised SW-NE structural fabric (mapping and sampling program).
- A regional SW-NE transfer zone corridor has been interpreted, crossing the south-central area (AMAGRAD program).
- AT SURFACE: Presence of intrusive rocks at Riqueza.

Are there existing intrusions at Riqueza that prove that intrusive emplacement has occurred? **YES**.

- At Pampa Corral two hydrothermally altered intrusive stocks were identified by Inca (Inca mapping and sampling programs <2019) (ASX announcement 14 April 2017).
- A large rhyolite dome (sub-volcanic) intrusive complex was identified at Alteration Ridge (expert mapping program) (ASX announcement 20 June 2019).
- AT SURFACE: Presence of mineralisation related to epithermal and/or Cu-porphyry systems.\

Are there existing forms of mineralisation that may relate to epithermal and/or Cu-porphyry systems? YES.

- Probable intermediate sulphidation epithermal Cu±Au±Ag mineralisation has been recognised at the Uchpanga, Colina Roja, Cuncayoc Copper and Alteration Ridge prospects (expert mapping program).
- Multiple Cu-Ag±Au SW-NE structures have been recognised at the SW Area (mapping and sampling program) (ASX announcement 27 May 2020).

- Several Cu-Ag±Mo SW-NE structures have been recognised at the Ajo Orjo Area (mapping and sampling program) (this announcement).
- Skarnoid Cu mineralisation was recognised at Pampa Corral (expert mapping program).
- Carbonate replacement Ag-Pb-Zn mineralisation (veins, mantos and breccias) is widespread at the Humaspunco and Pinto prosects (Inca mapping and sampling programs <2019).
- **AT SURFACE: Presence of metal zoning characteristic of epithermal and/or Cu-porphyry systems** *Is the spread of elements like Cu, Ag, Mo typical of epithermal and/or Cu-porphyry systems?* **YES**.
 - The mineralisation occurring at Humaspunco, Pinto, Uchpanga, Colina Roja, Cuncayoc Copper and Alteration Ridge defines a metal distribution pattern which is consistent with that of epithermal and/or Cu-porphyry systems (expert mapping program, mapping and sampling program) (Figures 7 and 8).
- AT SURFACE: Presence of geochemical signatures indicative of an epithermal and/or Cu-porphyry system.

Are there combinations of lots of different elements that are like "signatures" of epithermal and/or Cuporphyry systems? **YES**.

- Several geochemical anomalies have been recognised in the south-central area that may be indicative of an epithermal and/or Cu-porphyry system (soil geochemical program);
 - At Pampa Corral: Multi-element halo¹.

INCA MINERALS LTD

ACN: 128 512 907

- At Alteration Ridge and Cuncayoc Copper: Cu ± As, Sb anomalism.
- At Ajo Orjo: Cu-Pb-Zn anomalism ± Mo (Figure 3).
- AT SURFACE: Presence of alteration indicative of an epithermal and/or Cu-porphyry system.

Are there minerals present that are created through exposure to hot fluids that are typical of epithermal and/or Cu-porphyry systems? **YES**.

- Widespread argillic alteration is recognised at Alteration Ridge. This alteration is related to the rhyolite dome. The alteration is stronger along the dome margins (expert mapping program).
- Widespread patchy and weak chlorite, epidote, sericite and quartz alteration, locally stronger in mineralised structures, has been recognised in the south-central area that is characteristic of upper and outer zones of an epithermal and/or Cu-porphyry system.
- The alteration assemblage of the south-central area is characteristic of propylitic and sericitic zones of a Cu-porphyry system (Figure 8).
- **AT DEPTH: Presence of geophysical anomalies indicative of an epithermal and/or Cu-porphyry system.** Are there targets below the surface that have properties, such as conductivity, chargeability, magnetics, that are characteristic of epithermal and/or Cu-porphyry systems? **YES**.
 - Multiple high- priority targets have been discovered within the south-central area of Riqueza. These targets are defined by several varying criteria including the interpretation of phyllic alteration halos, broad potassium alteration halos, broad magnetic highs at depth, strong magnetic highs at surface and/or strong magnetic lows from alteration halos (AMAGRAD program) (31 October 2019).
 - Several unaccounted 3D magnetic inversion modelled bodies have been identified in the southcentral part of Riqueza, including at the Cuncayoc Copper Prospect, at Huasijaja and at Ajo Orjo (ASX announcement 19 August 2019).
 - INTERIM resistivity and chargeability IP anomalies have been recognised at the SW and Ajo Orjo areas (IP program) (ASX announcement 27 May 2020 & this announcement).
- COINCIDENT TARGETS: The presence of both surface and sub-surface (at depth) targets indicative of an epithermal and/or Cu-porphyry system.

¹ Arsenic (As), Ag, bismuth (Bi), antimony (Sb), tellurium (Te), thallium (TI) ± Mo, Cu.

ASX ANNOUNCEMENT ASX Code: ICG

Are there specific areas where all these "yeses" occur together that are a size and magnitude characteristic of epithermal and/or Cu-porphyry systems? **YES**.

• The above listed targets and anomalism are strongly coincident in specific areas. These areas include (to date) the Cuncayoc-Huasijaja-Alteration Ridge area and the Ajo Orjo Area.

It is the Company's view that the scorecard result is high and the evidence strong for a possible epithermal and/or Cu-porphyry system being present below the surface in the south-central part of Riqueza. The scorecard may be cross referenced to the Sillitoe (2010) Cu-porphyry model to reveal is high level of compatibility. The knock-on conclusion is that certain targets in the south-central part of Riqueza now warrant drill testing.

Next Steps

As announced previously (ASX announcement 27 May 2020), the final IP interpretation will be incorporated into an independent drill targets recommendation report and be available in mid to late June. This combined report is currently being compiled by an expert consultancy.

Inca is now reviewing the final NE Area of the Program and will release conclusions as soon as the review is completed. The NE is prospective for skarn mineralisation, as well as for epithermal/Cu-porphyry mineralisation.

As soon as the combined IP interpretation and drill targets recommendation report is received and reviewed by Inca, it is Inca's intention to begin the processes of drill permitting. A drill permit service provider has already been identified, informally engaged and preparatory actions commenced.

Competent Person Statement

INCA MINERALS LTD

ACN: 128 512 907

The information in this report that relates to exploration results and mineralisation for Riqueza located in Peru, is based on information reviewed and compiled by Mr Ross Brown BSc (Hons), MAusIMM, SEG, MAICD Managing Director, Inca Minerals Limited, who is a Member of the Australasian Institute of Mining and Metallurgy. He has sufficient experience, which is relevant to exploration results, the style of mineralisation and types of deposits under consideration, and to the activity which has been undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Brown is a fulltime employee of Inca Minerals Limited and consents to the report being issued in the form and context in which it appears.

Selected Key Words Used in this Announcement (copied without change from the 27 May 2020 ASX announcement)

Induced polarization	 (IP) is the Earth's capacity to hold an electric charge over time. IP measures the voltage decay curve (or loss) after the injected current is shut off. The higher the IP, the longer over time the charge is held (or retained) (<i>chargeability</i>). IP decays (or fades away) over a period of time, typically a few seconds but sometimes up to minutes, and will eventually disappear. Rocks, and more relevantly, mineralisation, have IP signatures that can be recognised in the data. IP <i>chargeability</i> is a derivative of <i>resistivity</i>—in order to measure IP, resistivity is first measured. IP is measured at the end of a resistivity cycle. DC electric current is transmitted into the ground through two electrode stakes that are
	driven into the ground. The resulting electric potential field is measured between two other electrode stakes.
	 Raw measured data—i.e., apparent <u>resistivity</u> values—are inverted to produce a model of the true subsurface resistivity distribution.
	A time component is added to derive IP.
	• IP <u>chargeability</u> and <u>resistivity</u> false-colour "heat" profiles are a way of presenting IP data.
<u>IP Survey</u>	A ground geophysical method involving the measurement of the slow decay of voltage in the ground following the cessation of an excitation current pulse.
<u>Airborne</u>	Said of a <u>geophysical</u> survey in which the <u>geophysical</u> tool is above the ground.
<u>Geophysics(-ical)</u>	An exploration method using instruments to collect and analyse properties as magnetics, radioactivity, gravity, electronic conductivity, etc. Instruments can be located on surface (ground survey) or above the ground (<i>airborne</i> survey).
<u>Geochemistry(-ical)</u>	The study of the distribution and amounts of the chemical elements in minerals, ores, rocks, soils, water and the atmosphere.
ç	Suite 1/16 Nicholson Road, Subjaco, WA 6008 • PO BOX 38, West Perth, WA 6872

²age10

Selected Key Words Used in this Announcement continued

INCA MINERALS LTD

ACN: 128 512 907

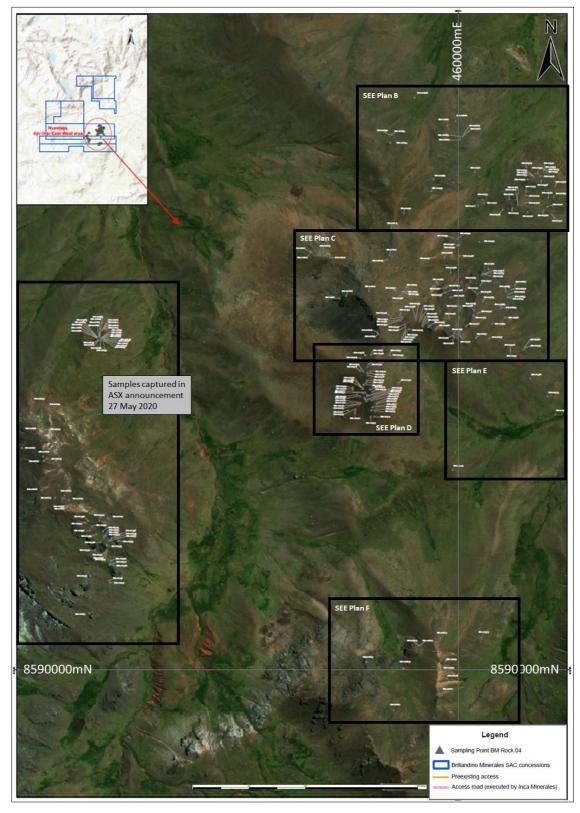
<u>Magnetic Survey</u>	of rock-forming magnetic minerals in the Earth's	magnetic field caused by the contrasting content crust. This allows sub-surface mapped of geology, lown either by plane or helicopter with the
Radiometric Survey	magnetometer kept at a constant height above th Or gamma-ray spectrometric survey measures of uranium (U) and thorium (Th), specifically the ga All rocks and soils contain radioactive isotopes a the result of radioactive decay of K, U and Th. <u>Rad</u>	ne surface. concentrations of radio-elements potassium (K), mma rays emitted by isotopes of these elements. nd almost all gamma-rays detected at surface are <u>iometrics</u> is therefore capable of directly detecting
<u>Mineralisation</u>	into a rock (or geological feature such as a <u>vein</u> , does not necessarily involve a process or process <u>mineralisation</u> is very commonly used to descri <u>minerals</u> are introduced into a rock at concentrat	thermal processing and formation of deposits. ses by which a mineral or minerals are introduced fault, etc). In the strictest sense, <u>mineralisation</u> ses involving <u>ore-forming minerals</u> . Nevertheless, be a process or processes in which <u>ore-forming</u> ions that are economically valuable or potentially at Riqueza is <u>epithermal</u> , <u>porphyry</u> and porphyry-
<u>Epithermal</u>		peratures ranging from 50°C to 200°C, and within
Intermediate	1,000m of the Earth's surface. Please refer to inserts immediately below (from A	Andrew Jackson, Sprott International).
Sulphidation	Commonly abbreviated IS.	
	Intermediate-sulfidation	The Porphyry – Epithermal connection
	Characteristics Generally veins and breccias, like 	NW b SE
	 Low-sulfidation epithermals but coarser banding But may contain alunite like High-sulfidation epithermals In addition to gold, usually contain significant silver, lead (galena), zinc (sphalerite) at depth Gold and silver deposition is controlled by boiling. Base metals mainly by fluid mixing/cooling. 	(m) Epithermal ore >2.5 wt% Cu equiv. Porphyry ore >1.0 wt% Cu equiv. a 400 m
<u>Hydrothermal</u>	Of, or pertaining to "hot water" usually used in th	ne context of <u>ore-forming</u> processes.
<u>Ore-forming Minerals</u> <u>Porphyry (Deposit)</u>	volume of rock. The rock is typically porphyritic (occurring as disseminations and veinlets in a large (a texture of large crystals in a fine groundmass).
<u>Skarn (Deposit)</u>		on which occurs when hydrothermal fluids interact ases, skarns are associated with the intrusion o
Carbonate	A process in which carbonate minerals are "replace	
Replacement (Deposit)	A <u>Manto</u> is a form of <u>Carbonate Replacement</u> inasm are "replaced" by ore-forming minerals like sphal	nuch as the carbonate minerals of a limestone layer erite and galena
<u>Deposit</u>	A <u>deposit</u> is a naturally occurring accumulation of size and concentration that might, under fa (Geoscience Australia). It is not a defined term in Exploration Results, Mineral Resources and Ore R	concentration of metals or minerals of sufficient vourable circumstances, have economic value the JORC Code 2012 for Australasian Reporting of eserves (JORC 2012).
<u>Country Rock</u>	Rock that encloses or is cut by <i>mineralisation</i> . And an area.	i more broadly, rock that makes up the geology of
Rhyolite(-ic)		Ily porphyritic which exhibit flow texture. <u>Rhyolitic</u>
Volcanic Dome	A steep sided, rounded extrusion (quasi-intrusive) Domes often occur within volcano craters, w) of highly viscous magma erupted from a volcano. hich may be later eroded away leaving a high
Intrusion (-ive)	topographic dome feature. The process of emplacement of <u>magma</u> in pre-exi	sting country rock.
<u>Structure</u>		sed to describe linear features such as geological

Page11

Selected Key Words Used in this Announcement continued

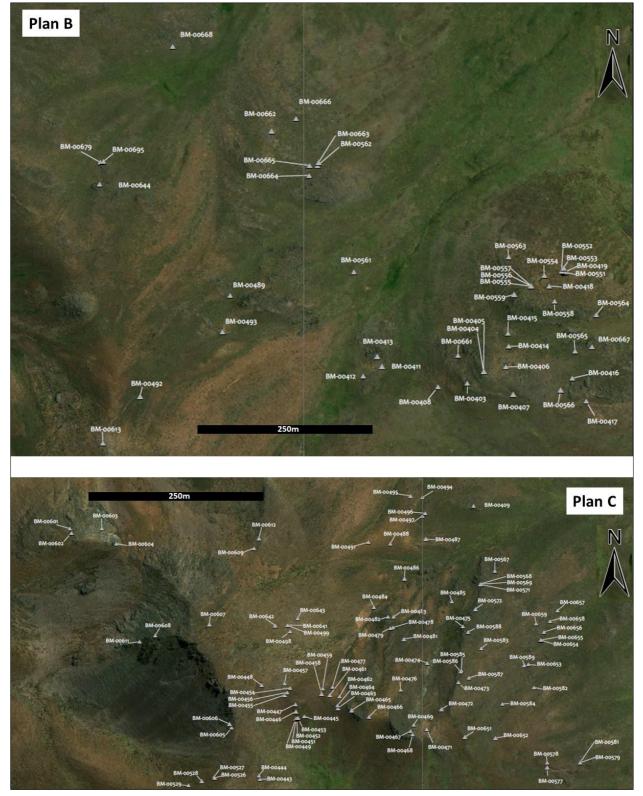
INCA MINERALS LTD

ACN: 128 512 907


<u>Breccia</u>	Broken or fragmented rock. <u>Breccia veins</u> which are common at Riqueza, are narrow fissures containing numerous rock fragments. The rock fragments are called <u>clasts</u> and the space around the clasts is called the <u>matrix</u> . Often the <u>matrix</u> in the <u>breccia veins</u> at Riqueza contains the <u>ore-forming</u> minerals.
<u>Vein(s)</u>	A tabular or sheet-like form of <i>mineralisation</i> , often resulting from in-filling a vertical or near-vertical fracture. They often cut across <u>country rock</u> .
<u>Veinlet(s)</u>	A small and narrow mineral filling of a fracture in <u>country rock</u> that is tabular or sheet-like in shape. <u>Veinlets</u> are narrow versions of <u>veins</u> .
Matrix	The fine component of a <i>breccia</i> , occurring between the <i>clasts</i> .
Channel Sampling	A technique whereby a continuous section of rock is collected for geochemical analysis, usually in a
	perpendicular orientation to mineralisation. A single channel sample is typically one metre long in
	length or shorter. A series of <i>channel samples</i> may extend for tens of metres. This technique is often
	used in trenches or across large expanses of rock outcrop.
Soil Grid Sampling	A method of sampling whereby samples (typically soil samples)
	are taken from a prescribed grid-location often orientated to the
	cardinal points NS-EW. The grid spacing is arbitrary, but can be
	from 10m to 10km depending on the purpose and survey area.
Dock chin Compling	An exploration method to obtain geochemical data from real, outgrap. This program tupo is often
Rock chip Sampling	An exploration method to obtain <u>geochemical</u> data from rock outcrop. This program type is often deployed as part of <u>reconnaissance</u> exploration [mapping and sampling] but may also be deployed
	over targets that are relatively well defined.
Reconnaissance	Refers to very early-stage, in some cases, first-pass, [often rock] sampling recording <u>Sampling</u>
Reconnaissance	location, rock type, <u>structure</u> , <u>alteration</u> and <u>mineralisation</u> (if present).
Bonanza Grade	An informal term denoting very high-grade ore or <u>mineralisation</u> . Grades in excess of 500g/t Ag
<u>ponanza orade</u>	reported in this announcement might be considered <u>bonanza grade</u> .
Calcite	A common carbonate mineral with the chemical formula: $CaCO_3$.
Chalcopyrite	Copper iron sulphide with the chemical formula $CuFeS_2$ with 34.63% Cu by mol. weight.
Malachite	A hydrated copper oxide with a chemical formula: $Cu_2(CO_3)(OH)_2$; 57.48% Cu mol weight.
Azurite	A hydrated copper oxide with a chemical formula: $Cu_3(CO_3)_2(OH)_2$; 55.31% Cu mol weight.
<u>Chrysocolla</u>	A hydrated copper aluminium oxide with a chemical formula: (Cu,Al) ₂ H ₂ Si ₂ O ₅ (OH) ₂ .n(H ₂ O) ₂ ; 33.86%
	Cu mol weight.
<u>Sphalerite</u>	Zinc sulphide mineral with the chemical formula ZnS with 64.06% Zn by mol. weight.
<u>Galena</u>	Lead sulphide mineral with the chemical formula PbS with 86.60% Pb by mol. weight.
<u>Fe-oxides</u>	A group of oxide minerals containing iron (Fe), including but not limited to haematite, limonite and goethite.
<u>Mn-oxides</u>	A group of oxide minerals containing manganese (Mn), including but not limited to pyrolusite, franklinite, jacobsite.

ASX ANNOUNCEMENT ASX Code: ICG

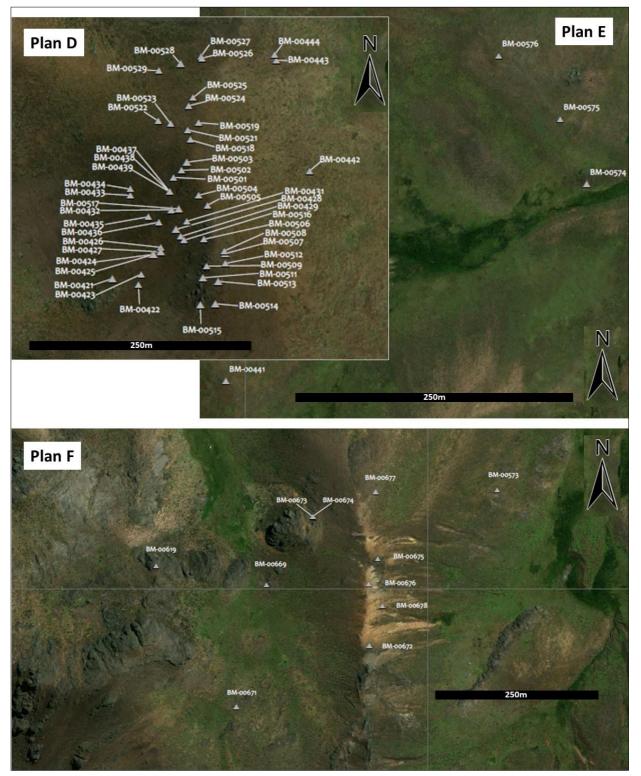
Appendix 1: Sample Location Plan (Plan A).


NOTE: Due to the widespread nature of the sample locations and large-scale plan is required to show the distribution. To counter the loss of detail when reduced to A4 format, this plan is enlarged in sections which are provided as separate plans (plans B to I) in the following pages. Each plan shows the sample location and number. Approach scales are provided.

Page13

ASX ANNOUNCEMENT ASX Code: ICG

Appendix 1: Sample Location Plan continued PLANS B & C.



Suite 1/16 Nicholson Road, Subiaco, WA 6008 • PO BOX 38, West Perth, WA 6872 Telephone: +61 (08) 6145 0300 • ABN: 36 128 512 907 Website: www.incaminerals.com.au Page14

ASX ANNOUNCEMENT

Appendix 1: Sample Location Plan continued PLANS D, E & F.

Sample Number	Easting WGS84	Northing WGS84	ALS (m)	Target Area	Structure	Sampling dimensions (m)	Channel length (m)	Au_PPB	Cu_PPM	Cu_%	Ag_PPM	Pb_PPM	Pb_%	Zn_PPM	Zn_%	Mo_PPM
BM-00403	460262	8592045	4530	Ajo Orjo East - West	Breccia structure	0.9 x 1.00		0.5	46.1	0.005	0.03	10.0	0.001	83.0	0.008	<mark>8.</mark> 14
BM-00404	460262	8592062	4626	Ajo Orjo East - West	Alteration rock	0.95		1	52.7	0.005	0.03	6.9	0.001	154.0	0.015	3 .42
BM-00405	460262	8592062	4626	Ajo Orjo East - West	Alteration rock	0.95	1.9	1	86.7	0.009	0.26	7.6	0.001	77.0	0.008	1.82
BM-00406	460294	8592069	4510	Ajo Orjo East - West	Breccia	0.6		1	49.1	0.005	0.21	7.5	0.001	58.0	0.006	2.24
BM-00407	460305	8592029	4512	Ajo Orjo East - West	Breccia	1.2		1	42.7	0.004	0.33	13.6	0.001	96.0	0.010	1.00
BM-00408	460195	8592040	4522	Ajo Orjo East - West	Breccia	1.00 X 1.00		0.5	25.3	0.003	0.35	9.5	0.001	210.0	0.021	4.28
BM-00409	460094	8591897	4543	Ajo Orjo East - West	Breccia	0.3		0.5	58.7	0.006	0.26	23.2	0.002	134.0	0.013	5.93
BM-00411	460114	8592070	4510	Ajo Orjo East - West	Breccia	1		0.5	22.8	0.002	0.25	25.4	0.003	110.0	0.011	4.73
BM-00412	460087	8592055	4519	Ajo Orjo East - West	Breccia	0.8		0.5	35.4	0.004	0.36	23.8	0.002	78.0	0.008	7.00
BM-00413	460107	8592084	4510	Ajo Orjo East - West	Breccia	1.20 X 1.00		0.5	88.6	0.009	0.46	15.2	0.002	119.0	0.012	2.42
BM-00414	460298	8592099	4510	Ajo Orjo East - West	Breccia	0.65		0.5	14	0.001	0.28	10.4	0.001	136.0	0.014	6.00
BM-00415	460297	8592118	4501	Ajo Orjo East - West	Breccia	0.35		0.5	33.1	0.003	0.19	21.3	0.002	281.0	0.028	6.78
BM-00416	460391	8592053	4478		Vein	0.5		1	156	0.016	0.58	12.2	0.001	46.0	0.005	33.47
BM-00417	460411	8592019		Ajo Orjo East - West	Alteration rock	1		0.5	28.4	0.003	0.23	7.8	0.001	143.0	0.014	1.63
BM-00418	460357	8592187	4427		Vein	0.45 x 0.25		0.5	25.9	0.003	0.11	4.5	0.000	23.0	0.002	16.77
BM-00419	460379	8592207		Ajo Orjo East - West	Breccia	0.9		0.5	28.9	0.003	0.19	9.4	0.001	136.0	0.014	3.46
BM-00419 BM-00421	459519	8591151		Ajo Orjo East - West	Breccia	0.5		0.5	36.8	0.004	0.14	57.3	0.006	537.0	0.054	4.18
BM-00421 BM-00422	459548	8591144	4504		Crackle- Breccia	0.25		0.5	12.6	0.004	0.12	100.4	0.010	898.0	0.090	4.23
BM-00422 BM-00423	459551	8591156		Ajo Orjo East - West	Breccia	0.25		0.5	56.2	0.006	0.05	152.3	0.015	749.0	0.075	2.21
BM-00423 BM-00424		8591178		Ajo Orjo East - West	Breccia	0.5		0.5	1420.3	0.142	1.23	26.3	0.003	249.0	0.025	3.70
	459564							1						-		1.82
BM-00425	459565	8591178		Ajo Orjo East - West	Breccia	0.2		1	1620.5	0.162	0.90	57.7	0.006	5 <mark>09.0</mark>	0.051	
BM-00426	459573	8591186		Ajo Orjo East - West	Breccia	0.45		0.5	116.7	0.012	0.28	85.4	0.009	1053.0	0.105	2.47
BM-00427	459573	8591181		Ajo Orjo East - West	Crackle- Breccia	0.45		2	3223.9	0.322	2.05	25.9	0.003	186.0	0.019	3.42
BM-00428	459590	8591206	4655	Ajo Orjo East - West	Breccia	0.45		0.5	338.5	0.034		77.4	0.008	<mark>5</mark> 94.0	<mark>0</mark> .059	2.19
BM-00429	459595	8591198		Ajo Orjo East - West	Breccia	0.3		2	686.6	0.069	0.46	62.8	0.006	398.0	0 .040	2.04
BM-00431	459602	8591215	4661		Breccia	0.4		2	132.3	0.013	0.22	100.0	0.010	<mark>86</mark> 9.0	0.087	2.61
BM-00432	459585	8591228	4655	1 1	Breccia	0.5		2	20.5	0.002	0.09	12 <mark>8.6</mark>	0.013	1323.0	0.132	3.05
BM-00433	459539	8591244	4643	Ajo Orjo East - West	Crackle- Breccia	0.3		3	1094.7	0.109	0.79	39.5	0.004	3 33.0	0 .033	5 -47
BM-00434	459539	8591251	4644	Ajo Orjo East - West	Crackle- Breccia	0.90 x 0.80		2	2569.3	0.257	1.63	35.0	0.004	336.0	0 .034	2.49
BM-00435	459559	8591220	4633	Ajo Orjo East - West	Breccia	0.65		2	34.6	0.003	0.15	11 <mark>0.0</mark>	0.011	<mark>2060.</mark> 0	0.206	2.36
BM-00436	459571	8591214	4648	Ajo Orjo East - West	Crackle- Breccia	0.35		1	15.8	0.002	0.09	<mark>8</mark> 6.6	0.009	<mark>76</mark> 2.0	<mark>0.</mark> 076	4 .30
BM-00437	459583	8591248	4665	Ajo Orjo East - West	Breccia	0.4		1	373-5	0.037	0.32	<mark>6</mark> 6.8	0.007	<mark>96</mark> 9.0	0.097	3 .76
BM-00438	459583	8591248	4666	Ajo Orjo East - West	Breccia	0.3		0.5	4	0.000	0.03	30.6	0.003	354.0	0.035	<mark>6.</mark> 88
BM-00439	459583	8591248	4665	Ajo Orjo East - West	Breccia	0.25	0.95	1	4.6	0.000	0.03	<mark>8</mark> 6.2	0 .009	<mark>80</mark> 9.0	0.081	3.81
BM-00441	459976	8590888	4578	Ajo Orjo East - West	Dacite tuff	1.00 x 1.00		0.5	3.3	0.000	0.33	16.1	0.002	95.0	0.010	2.46
BM-00442	459739	8591271	4649	Ajo Orjo East - West	Alteration zone	0.2		2	206.8	0.021	0.19	71.0	0.007	774.0	<mark>0.</mark> 077	7.95
BM-00443	459702	8591395	4658	Ajo Orjo East - West	Crackle-Breccia	0.2		2	36.8	0.004	0.09	33.8	0.003	<mark>5</mark> 07.0	0.051	15.4 <mark>6</mark>
BM-00444	459700	8591401	4662	Ajo Orjo East - West	Crackle-Breccia	0.25		2	16.4	0.002	0.14	105.2	0.011	1636 .0	0.164	4.54
BM-00445	459783	8591510	4668	Ajo Orjo East - West	Crackle-Breccia	0.2		1	6.3	0.001	0.05	2.8	0.000	19.0	0.002	7.00
BM-00446	459768	8591519	4675	Ajo Orjo East - West	Veinlets	1.00 X 1.00		0.5	17.5	0.002	0.19	19.7	0.002	134.0	0.013	2.32
BM-00447	459767	8591532	4675	Ajo Orjo East - West	Alteration volcanic	1.00 X 1.00		0.5	31.2	0.003	0.17	25.4	0.003	135.0	0.014	3.65
BM-00448	459705	8591567	4698	Ajo Orjo East - West	Veinltes (Chalcedonic)	1.00 x 0.80		0.5	34.1	0.003	0.19	16.1	0.002	72.0	0.007	13.10
BM-00449	459768	8591505	4664	Ajo Orjo East - West	Alteration zone	1.2		0.5	81.9	0.008	0.28	19.6	0.002	146.0	0.015	1.46
BM-00449 BM-00451	459769	8591506		Ajo Orjo East - West	Alteration zone	1.2	1	0.5	51.6	0.005	0.20	18.9	0.002	129.0	0.013	0.99
BM-00451 BM-00452	459770	8591506		Ajo Orjo East - West	Fault zone	1.2	3.6	1	41.1	0.005	0.25	20.1	0.002	139.0	0.013	1.00
BM-00452 BM-00453	459772	8591507	4664	Ajo Orjo East - West	Altered andesite	0.6		0.5		0.004	0.17	16.9	0.002	65.0	0.007	3.30
BM-00453 BM-00454	459772	8591507		Ajo Orjo East - West	Crackle	0.6		1		0.002	0.17	97.5	0.002	1565.0	0.007	2.47
BM-00455 BM-00455	102101		4665		Alteration zone	0.6		0.5	24.1	0.003	0.11	97.5 21.5	0.002	198.0	0.020	
BM-00455 BM-00456	459747	8591549			Alteration zone	0.6		0.5			0.24	21.5 18.6		206.0	0.020	1.24
	459752	8591554	4666						87.5	0.009	-	-	0.002	-	-	3.04
BM-00457	459747	8591570		Ajo Orjo East - West	Veinlets	0.2		0.5	226.7	0.023	0.45	14.5	0.001	90.0	0.009	1.64
BM-00458	459815	8591551	4674	Ajo Orjo East - West	Alteration zone	0.2		1	584.1	0.058	0.56	63.5	0.006	419.0	0.042	3 .26
BM-00459	459817	8591561		Ajo Orjo East - West	Alteration zone	1 X 1		0.5	20.8	0.002	0.28	16.2	0.002	128.0	0.013	1.07
BM-00461	459830	8591549	4664	Ajo Orjo East - West	Alteration (volcanic)	1 X 1		2	92.5	0.009	0.43	16.3	0.002	186.0	0.019	0.95

INCA MINERALS LTD

ACN: 128 512 907

Sample Number	Easting WGS84	Northing WGS84	ALS (m)	Target Area	Structure	Sampling dimensions (m)	Channel length (m)	Au_PPB	Cu_PPM	Cu_%	Ag_PPM	Pb_PPM	Pb_%	Zn_PPM	Zn_%	Mo_PPM
BM-00462	459848	8591546	4570	Ajo Orjo East - West	Alteration zone	1 X 1		0.5	21.6	0.002	0.28	12.0	0.001	108.0	0.011	1.65
BM-00463	459845	8591525	4671	Ajo Orjo East - West	Veinlets and alteration	0.4		1	299.3	0.030	0.62	24.6	0.002	192.0	0.019	2.25
BM-00464	459844	8591530	4659	Ajo Orjo East - West	Veinlets	0.2		0.5	1481.4	0.148	0.97	54.0	0.005	517.0	0.052	15.09
BM-00465	459870	8591521	4671	Ajo Orjo East - West	Crackle	0.4		0.5	1209.1	0.121	0.56	29.1	0.003	<mark>3</mark> 83.0	0.038	9.37
BM-00466	459902	8591509	4671	Ajo Orjo East - West	Alteration zone	1.00 X 1.00		0.5	27.3	0.003	0.39	20.4	0.002	201.0	0.020	1.76
BM-00467	459978	8591483	4668	Ajo Orjo East - West	Irregular veinlets	1.00 X 1.00		0.5	25.5	0.003	0.28	29.8	0.003	186.0	0.019	2.96
BM-00468	459982	8591477	4667	Ajo Orjo East - West	Crackle	0.4		0.5	7.8	0.001	0.09	82.7	0.008	746.0	0.075	1.36
BM-00469	459984	8591494	4669	Ajo Orjo East - West	Veinlets	1.00 x 1.00		1	22.8	0.002	0.27	33.4	0.003	199.0	0.020	4.15
BM-00471	460008	8591486	4663	Ajo Orjo East - West	Crackle-Breccia	1.00 x 1.00		1	19.2	0.002	0.23	26.4	0.003	106.0	0.011	1.68
BM-00472	460035	8591523	4646	Ajo Orjo East - West	Alteration zone	1.00 x 1.00		1	18.1	0.002	0.28	19.7	0.002	163.0	0.016	1.50
	460066	8591572		Ajo Orjo East - West	Crackle	1.00 x 1.00		0.5	18.2	0.002	0.12	117.9	0.012	649.0	0.065	1.13
	460009	8591608	4627		Veinlets - Crakle	0.4		0.5	21.6	0.002	0.30	54.8	0.005	326.0	0.033	2.52
BM-00475	460074	8591675		Ajo Orjo East - West	Irregular veinlets	0.6		0.5	2680.2	0.268	1.41	25.4	0.003	127.0	0.013	3.67
	459960	8591559		Ajo Orjo East - West	Crackle	0.25		1	4250.7	0.425	3.46	43.9	0.004	161.0	0.016	2.62
BM-00477	459835	8591564		Ajo Orjo East - West	Veinlets system	0.45		0.5	2017.2	0.202	1.33	52.5	0.005	638.0	0.064	7.92
BM-00478	459946	8591673		Ajo Orjo East - West	Veinlets	0.3		0.5	145.3	0.015	0.19	25.2	0.003	268.0	0.027	14.39
BM-00479	459941	8591672		Ajo Orjo East - West	Crackle-Breccia	0.3		0.5	437.4	0.044	0.36	8.4	0.001	49.0	0.005	21.34
BM-00479 BM-00481	459966	8591652		Ajo Orjo East - West	Crackle	0.3		0.5	20.8	0.002	0.06	57.0	0.006	434.0	0.003	3.96
BM-00481 BM-00482	459937	8591693		Ajo Orjo East - West	Leached crackle	0.3		0.5	326.9	0.033	0.34	19.4	0.002	145.0	0.015	23.24
BM-00482 BM-00483		8591693	4608		Alteration zone -Crakle	0.3		0.5	43.3	0.033	0.34 0.38	4.2	0.002	22.0	0.005	26.06
BM-00483 BM-00484	459947			Ajo Orjo East - West	Crackle	-				0.004	0.30	60.8	0.000	22.0	0.002	9.86
	459911	8591711				1.00 X 1.00		0.5	12.3							
BM-00485	460054	8591721		Ajo Orjo East - West	Vein and veinlets	1.00 X 1.00		0.5	47.6	0.005	0.27	14.0	0.001	41.0	0.004	8. ₁₃
BM-00486	459967	8591763	4585		Alteration zone	1.00 X 1.00		0.5	11.9	0.001	0.04	49.5	0.005	222.0	0.022	<mark>8.</mark> 33
BM-00487	460006	8591836		Ajo Orjo East - West	Alteration zone	1.00 X 1.00		0.5	22.6	0.002	0.03	12.8	0.001	152.0	0.015	1.15
BM-00488	459941	8591827		Ajo Orjo East - West	Vein and veinlets	1.00 X 1.00		0.5	20.7	0.002	0.04	7.5	0.001	56.0	0.006	19.90
BM-00489	459893	8592173	4533	Ajo Orjo East - West	Crackle	0.3		0.5	105.4	0.011	0.19	29.7	0.003	324.0	0.032	5.71
BM-00491	459901	8591830		Ajo Orjo East - West	Vein and veinlets	4.00 x 4.00		0.5	55.7	0.006	0.10	12.1	0.001	48.0	0.005	20.12
BM-00492	459762	8592026		Ajo Orjo East - West	Alteration zone	0.6 x 0.6		0.5	26	0.003	0.01	12.8	0.001	182.0	0.018	1.15
BM-00493	459882	8592120		Ajo Orjo East - West	Irregular veinlets	0.8 x 1.00		0.5	30.2	0.003	0.05	11.1	0.001	48.0	0.005	4.26
121	460000	8591912	1001	Ajo Orjo East - West	Crackle	0.3		0.5	5	0.001	0.02	7.5	0.001	16.0	0.002	15.52
BM-00495	459978	8591915		Ajo Orjo East - West	Veinlets	0.2		0.5	6.4	0.001	0.13	4.1	0.000	17.0	0.002	22.02
BM-00496	460005	8591883	4558	Ajo Orjo East - West	Crackle	0.2		0.5	9.6	0.001	0.04	5 3.7	0.005	<mark>5</mark> 69.0	0.057	4.98
BM-00497	460000	8591878	4579	Ajo Orjo East - West	Veinlets	1.00 X 1.00		<mark>0</mark> .5	7.2	0.001	0.03	7.3	0.001	66.0	0.007	30.82
BM-00498	459757	8591666	4688	Ajo Orjo East - West	Crakle	0.80 x 1.00		0.5	1096	0.110	2.21	38.7	0.004	50.0	0.005	<u>5</u> .08
BM-00499	459752	8591677	4688	Ajo Orjo East - West	Oxidation zone	0.4		0.5	39940	3.994	32.00	174.5	0.017	<mark>74</mark> 3.0	<mark>0.</mark> 074	21.13
BM-00501	459587	8591264	4666	Ajo Orjo East - West	Breccia	0.35		0.5	80.9	0.008	0.11	110.9	0.011	<mark>98</mark> 6.0	<mark>0.0</mark> 99	3.62
BM-00502	459596	8591272	4674	Ajo Orjo East - West	Breccia	0.95		0.5	86	0.009	0.09	11 <mark>6.4</mark>	0. <mark>012</mark>	<mark>87</mark> 4.0	0.087	4 .47
BM-00503	459602	8591281	4679	Ajo Orjo East - West	Breccia	0.85		0.5	114	0.011	0.07	71.0	0.007	772.0	<mark>0.</mark> 077	2.54
BM-00504	459615	8591244	4675	Ajo Orjo East - West	Breccia	0.8		0.5	20.7	0.002	0.05	184.7	0.0 <mark>18</mark>	134 <mark>8</mark> .0	0.135	1.30
BM-00505	459625	8591233	4679	Ajo Orjo East - West	Crackle- Breccia	0.4		0.5	28.3	0.003	0.01	54.5	0.005	1714.0	0.171	3.10
BM-00506	459621	8591195	4674	Ajo Orjo East - West	Vein	0.3		0.5	18.7	0.002	0.02	47.0	0.005	370.0	0.037	<mark>6.</mark> 86
BM-00507	459645	8591179	4673	Ajo Orjo East - West	Breccia	0.6		0.5	24.1	0.002	0.05	39.5	0.004	350.0	0.035	2.90
BM-00508	459644	8591182	4639	Ajo Orjo East - West	Brecha	0.6		0.5	16	0.002	0.04	89.2	0.009	9 51.0	0.095	3.37
BM-00509	459624	8591165	4662	Ajo Orjo East - West	Brecha	0.45		0.5	735.7	0.074	0.32	26.8	0.003	271.0	0.027	9.33
BM-00511	459620	8591152	4652	Ajo Orjo East - West	Crackle- Breccia	0.35		0.5	19.5	0.002	0.02	62.8	0.006	520.0	0.052	2.36
BM-00512	459645	8591168		Ajo Orjo East - West	Brecha	0.4		0.5	15.3	0.002	0.04	113.9	0.011	987.0	0.099	2.32
BM-00513	459637	8591148		Ajo Orjo East - West	Veinlts	0.3		0.5	5.8	0.001	0.02	101.3	0.010	1407.0	0.14 1	1.63
BM-00514	459634	8591123	4636		Breccia	0.3		0.5	7.6	0.001	0.05	78.1	0.008	467.0	0.047	3.22
BM-00515	459617	8591122		Ajo Orjo East - West	Crackle- Breccia	0.55		0.5	14.9	0.001	0.03	36.9	0.004	317.0	0.032	3.66
BM-00516	459599	8591194		Ajo Orjo East - West	Crackle- Breccia	0.3		0.5	2310.3	0.231	1.41	34.3	0.003	209.0	0.021	3.27
BM-00517	459593	8591229	4660		Fractured and oxidized rock	0.80 x 0.80		0.5	98.2	0.010	0.05	40.1	0.004	348.0	0.035	2.52
BM-00517 BM-00518	459606	8591306		Ajo Orjo East - West	Breccia	0.00 x 0.00		1	23.4	0.002	0.05	56.0	0.004	3112.0	0.311	2.30
BM-00510 BM-00519	459615	8591325		Ajo Orjo East - West	Breccia	0.45		3	20.4 52	0.002	0.02	45.7	0.005	1690.0	0.169	2.98
5101-00519	777015	3031025	4004	100000 2002 11000	Diccela	0.40		2	2ر	0.005	0.02	/•ر	v.005	1090.0	0.109	₽ •90

Sample Number	Easting WGS84	Northing WGS84	ALS (m)	Target Area	Structure	Sampling dimensions (m)	Channel length (m)	Au_PPB	Cu_PPM	Cu_%	Ag_PPM	Pb_PPM	Pb_%	Zn_PPM	Zn_%	Mo_PPM
BM-00521	459603	8591317	4683	Ajo Orjo East - West	Crackle- Breccia	0.55		1	20.8	0.002	0.21	49-5	0.005	<mark>4</mark> 96.0	0.050	3.51
BM-00522	459570	8591327	4670	Ajo Orjo East - West	Breccia	0.4		2	27.2	0.003	0.02	40.6	0.004	369.0	0.037	2.10
BM-00523	459584	8591324	4675	Ajo Orjo East - West	Breccia	0.35		0.5	14.5	0.001	0.05	102.6	0.010	127 <mark>8</mark> .0	0.128	1 .79
BM-00524	459604	8591344	4678	Ajo Orjo East - West	Breccia	0.3		0.5	12.6	0.001	0.02	56.9	0.006	<mark>116</mark> 9.0	0.117	1.68
BM-00525	459609	8591353	4679	Ajo Orjo East - West	Breccia	0.4		0.5	22.5	0.002	0.01	47.5	0.005	<mark>2345.0</mark>	0.235	2.31
BM-00526	459618	8591399	4676	Ajo Orjo East - West	Breccia	0.65		0.5	7.3	0.001	0.04	8 <mark>2.8</mark>	o.oo8	<mark>92</mark> 6.0	0.093	2.87
BM-00527	459619	8591397	4677	Ajo Orjo East - West	Breccia	0.5		0.5	57.5	0.006	0.05	87.0	0.009	1434.0	0. 143	5.02
BM-00528	459571	8591383	4663	Ajo Orjo East - West	Breccia	0.45		0.5	283.5	0.028	0.10	23.2	0.002	<mark>98</mark> 2.0	0.098	2.92
BM-00529	459595	8591391	4666	Ajo Orjo East - West	Breccia	0.9		0.5	8.7	0.001	0.02	78.0	0.008	916 .0	0.092	4.14
BM-00531	458474	8590396	4563	Ajo Orjo East - West & Huasijaja	Fractures with iron oxides	1.00 x 1.00		2	49.5	0.005	0.07	10.3	0.001	41.0	0.004	1.25
BM-00532	458477	8590389	4560		Stock work de silica and calcite	1.20 X 1.00		3	37.5	0.004	0.08	17.9	0.002	47.0	0.005	2.55
BM-00533	458391	8590418	4628	Ajo Orjo East - West & Huasijaja	Breccia structure	1.00 x 0.50		0.5	121.4	0.012	1.01	22.1	0.002	64.0	0.006	5.07
BM-00534	458410	8590532	4622	Ajo Orjo East - West & Huasijaja	Stock work de silica and calcite	1.00 x 1.00		0.5	19.1	0.002	0.06	6.4	0.001	16.0	0.002	9.96
BM-00535	458510	8590575	4506	1 1 11	Breccia structure	0.5		0.5	68.9	0.007	0.08	193.8	0.019	756.0	0.076	1.66
BM-00536	458434	8590568	4630		Stock work de silica and calcite	1.00 x 0,5		1	17	0.002	0.10	9.8	0.001	29.0	0.003	24.27
BM-00537	458480	8590573	4630	1 1 11	Breccia structure	0.60 x 0.30		0.5	6.8	0.001	0.01	52.6	0.005	365.0	0.037	2.48
BM-00538	458482	8590585		1 1 11	Breccia structure	1.00 x 0.40		0.5	25.4	0.003	0.11	110.9	0.011	1091.0	0.109	1.85
BM-00539	458471	8590575	4636	Ajo Orjo East - West & Huasijaja	Veinlts	1.00 x 0.40		0.5	7654.9	0.765	7.57	25.2	0.003	78.0	0.008	2.63
BM-00541	458449	8590594	4670		Veins	1.00 X 0.40		0.5	6748.8	0.675	5.00	40.3	0.003	94.0	0.000	2.38
BM-00542	458454	8590600	4070		Veins	1.00 X 1.00		0.5		0.004	0.07	93.2	0.009	493.0	0.009 0.049	2.66
								1	35			h	1	196.0	1	
BM-00543	458446	8590617	4685		Breccia	0.3		0.5	21.1	0.002	0.01	35.5	0.004		0.020	3.23
BM-00544	458430	8590665		, , , , , , , , , , , , , , , , , , ,	Breccia	1.20 X 0.30		0.5	10.9	0.001	0.01	48.1	0.005	86.0	0.009	<mark>16.4</mark> 7
BM-00545	458370	8590654	4720	1 1 11	Breccia	1.00 x 0.30		1	15.6	0.002	0.03	4.9	0.000	137.0	0.014	3.57
BM-00546	458481	8590483	4575	Ajo Orjo East - West & Huasijaja	Stock work de silica and calcite	1.00 X 1.00		0.5	27.5	0.003	0.05	4.5	0.000	53.0	0.005	8.29
BM-00547	458477	8590469		1 1 11	Breccia	1.00 x 0.80		0.5	17	0.002	0.04	3.7	0.000	30.0	0.003	4.02
BM-00548	458475	8590466	4602		Breccia	1.00 X 0.70		1	9.7	0.001	0.04	4.0	0.000	34.0	0.003	3.16
BM-00549	458465	8590529	4615		Breccia	1.00 x 0.40		0.5	52.8	0.005	0.05	8.4	0.001	70.0	0.007	2.04
BM-00551	460378	8592207	4443	Ajo Orjo East - West	Breccia	0.55		0.5	20.2	0.002	0.04	7.2	0.001	49.0	0.005	15.10
BM-00552	460375	8592208	4452	Ajo Orjo East - West	Crakle Breccia	0.55 x 0.25		0.5	14.5	0.001	0.03	6.6	0.001	99.0	0.010	<mark>8.</mark> 68
BM-00553	460378	8592213	4413	Ajo Orjo East - West	Breccia	0.5		0.5	20	0.002	0.02	5.8	0.001	52.0	0.005	15.35
BM-00554	460350	8592202	4462	Ajo Orjo East - West	Vein	0.3		0.5	15.6	0.002	0.01	4.3	0.000	36.0	0.004	12.45
BM-00555	460331	8592186	4374	Ajo Orjo East - West	Breccia	0.9		0.5	29.9	0.003	0.01	16.1	0.002	166.0	0.017	<mark>8.</mark> 18
BM-00556	460331	8592187	4374	Ajo Orjo East - West	Breccia	0.30 x 0.25		0.5	57.2	0.006	0.04	26.2	0.003	185.0	0.019	5 ,55
BM-00557	460331	8592187	4374	Ajo Orjo East - West	Breccia	1	2.2	2	106.8	0.011	0.07	21.5	0.002	145.0	0.015	<mark>9.8</mark> 6
BM-00558	460365	8592165	4461	Ajo Orjo East - West	Vein	0.55 x 0.25		0.5	81.9	0.008	0.03	2.9	0.000	33.0	0.003	18.15
BM-00559	460306	8592175	4485	Ajo Orjo East - West	Alteration rock	0.5		1	78.8	0.008	0.21	19.9	0.002	110.0	0.011	4.85
BM-00561	460073	8592207	4491	Ajo Orjo East - West	Vein	0.5		0.5	19.5	0.002	0.01	24.6	0.002	224.0	0.022	<mark>8.</mark> 38
BM-00562	460020	8592362	4477	Ajo Orjo East - West	Breccia	0.9		1	11.8	0.001	0.02	16.8	0.002	48.0	0.005	13.48
BM-00563	460298	8592229	4459	Ajo Orjo East - West	Crakle Breccia	0.9		0.5	300.4	0.030	0.13	18.8	0.002	161.0	0.016	4.88
BM-00564	460426	8592145	4450	Ajo Orjo East - West	Breccia	0.5		0.5	20.9	0.002	0.02	16.2	0.002	73.0	0.007	7.37
BM-00565	460395	8592092	4453		Breccia	0.5		0.5	45.1	0.005	0.08	19.8	0.002	72.0	0.007	3.82
BM-00566	460374	8592035	4487	Ajo Orjo East - West	Breccia	1		0.5	219.2	0.022	0.19	23.2	0.002	149.0	0.015	10.10
BM-00567	460133	8591777	4544		Breccia	0.30 x 0.25		0.5	60.2	0.006	0.02	15.6	0.002	90.0	0.009	2.14
BM-00568	460108	8591754	4466	, ,	Breccia	0.4		0.5	13.3	0.000	0.02	18.5	0.002	170.0	0.009	20.04
BM-00569	460108	8591753	4567	, ,	Breccia	0.4		0.5 0.5	245.1	0.025	0.37	19.6	0.002	80.0	0.008	8.57
BM-00571	460106	8591752			Breccia	1.1		0.5	213.4	0.021	0.45	18.2	0.002	71.0	0.000	8.13
BM-00572	460097	8591707	4584		Breccia	0.25		0.5	215.4	0.002	0.03	64.7	0.002	501.0	0.007	2.97
BM-00573	460103	8590147	4504		Breccia			1	6.2	0.002	0.03	27.8	0.003	80.0	0.008	3.92
					Fault	0.35 x 0.25		0.5	18.5	0.001	0.02	27.0 10.0	0.003	80.0 118.0	0.008	3.92 3.76
BM-00574	460425	8591133				0.9					-					
BM-00575	460392	8591213	4541		Alteration rock	0.5		0.5	13.6	0.001	0.01	22.6	0.002	182.0	0.018	3.40
BM-00576	460315	8591293	4566		Breccia	0.5		0 .5	15.2	0.002	0.03	28.5	0.003	73.0	0.007	16.47
BM-00577	460229	8591416		1. 1	vein	0.4		2	16.7	0.002	0.01	8.3	0.001	66.0	0.007	18.10
BM-00578	460229	8591425	4596	Ajo Orjo East - West	Breccia	0.8		1	29.9	0.003	0.03	14.7	0.001	80.0	0.008	<mark>1.88</mark>

ACN: 128 512 907

Sample Number	Easting WGS84	Northing WGS84	ALS (m)	Target Area	Structure	Sampling dimensions (m)	Channel length (m)	Au_PPB	Cu_PPM	Cu_%	Ag_PPM	Pb_PPM	Pb_%	Zn_PPM	Zn_%	Mo_PPM
BM-00579	460290	8591425	4574	Ajo Orjo East - West	Breccia fault	0.8		0.5	11	0.001	0.01	42.6	0.004	274.0	0.027	<mark>6.</mark> 50
BM-00581	460289	8591425	4574	Ajo Orjo East - West	Breccia fault	0.8	1.6	1	23	0.002	0.10	53.2	0.005	4 33.0	0.043	<mark>7.</mark> 20
BM-00582	460205	8591563	4577	Ajo Orjo East - West	Breccia	0.8		1	7.8	0.001	0.04	18.7	0.002	122.0	0.012	14.1 <mark>8</mark>
BM-00583	460108	8591635	4595	Ajo Orjo East - West	Vein	0.40 x 0.25		0.5	49.7	0.005	0.05	6.8	0.001	28.0	0.003	24.50
BM-00584	460147	8591533	4612	Ajo Orjo East - West	Breccia fault	0.90 x 0.90		0.5	35.6	0.004	0.01	5 5-3	0.006	362.0	0.036	<mark>5</mark> .11
BM-00585	460071	8591594	4628	Ajo Orjo East - West	Breccia	0.5		1	10.3	0.001	0.03	25.0	0.003	76.0	0.008	6.87
BM-00586	460070	8591592	4629	Ajo Orjo East - West	Breccia	0.30 x 0.25		0.5	9.2	0.001	0.02	22.2	0.002	68.0	0.007	10.08
BM-00587	460085	8591581	4626	Ajo Orjo East - West	Vein	0.3		0.5	11.2	0.001	0.01	110.6	0.011	<mark>58</mark> 5.0	0.059	1.97
BM-00588	460084	8591665	4604	Ajo Orjo East - West	Alteration rock	0.85		2	25.6	0.003	0.03	32.4	0.003	133.0	0.013	2.33
BM-00589	460187	8591604	4576	Ajo Orjo East - West	Breccia fault	0.40 x 0.25		0.5	24.5	0.002	0.02	56.3	0.006	408.0	0.041	2.73
BM-00591	458460	8590530	4616	Ajo Orjo East - West & Huasijaja	Structure de quartz	0.50 x 0.30		0.5	27.8	0.003	0.01	6.3	0.001	25.0	0.003	16.88
BM-00592	458460	8590530	4616	Ajo Orjo East - West & Huasijaja	Andesite altered	1 x 0.7		1	34.4	0.003	0.03	35.5	0.004	291.0	0.029	3.21
BM-00593	458462	8590552	4618		stockwork of iron oxides	1x1		0.5	54.6	0.005	0.04	14.6	0.001	110.0	0.011	2.23
BM-00594	458450	8590588	4620	Ajo Orjo East - West & Huasijaja	Veinlts with copper oxides	0.60 x 0.50		2	1798.1	0.180	2.11	19.6	0.002	68.0	0.007	7.60
BM-00595	458416	8590602	4673	Ajo Orjo East - West & Huasijaja	Breccia	0.3		0.5	11	0.001	0.06	9.9	0.001	67.0	0.007	3.05
BM-00596	458388	8590619	4687		Veinlts system	0.6		1	17.9	0.002	0.01	12.7	0.001	46.0	0.005	13.98
BM-00597	458398	8590638		Ajo Orjo East - West & Huasijaja	Dyke	1.20 X 1.20		2	21.5	0.002	0.02	17.8	0.002	121.0	0.012	2.55
BM-00598	458381	8590661	4698	Ajo Orjo East - West & Huasijaja	Dyke	1X1		2	21.2	0.002	0.02	9.7	0.001	100.0	0.010	4.90
BM-00599	458297	8590733	4090		Breccia	0.60 x 0.40		0.5	11.8	0.001	0.02	194.7	0.019	797.0	0.010	1.24
BM-00599	459353	8591855	4/51	Ajo Orjo East - West	Crackle- Breccia	0.35		0.5	14.1	0.001	0.02	16.1	0.002	352.0	0.035	2.92
BM-00602	459356	8591847	4621	Ajo Orjo East - West	Crackle- Breccia	0.55		4.5	12.2	0.001	0.01	19.7	0.002	371.0	0.037	3.80
BM-00603		8591855			Crackle- Breccia					0.001	0.02	26.1	0.002	560.0	0.037	3.10
	459412			Ajo Orjo East - West		0.55		3	59.5		· ·			-	-	i i
BM-00604	459438	8591827	4585	Ajo Orjo East - West	Crackle- Breccia	0.9		1	265.2	0.027	0.79	59.4	0.006	549.0	0.055	4.34
BM-00605	459650	8591489	4688		Breccia	0.55		0.5	41.3	0.004	0.01	46.6	0.005	616.0	0,062	3.98 5.80
BM-00606	459646	8591496		Ajo Orjo East - West	Crackle- Breccia	0.6		2	4505.2	0.451	2.52	18.8	0.002	104.0	0.010	
BM-00607	459609	8591679	4730		Crackle- Breccia	0.3		0.5	499.7	0.050	0.24	46.1	0.005	175.0	0.018	4.91
BM-00608	459510	8591659	4709		Breccia	0.8		1	17.3	0.002	0.03	56.9	0.006	<mark>4</mark> 83.0	<mark>0</mark> .048	2.54
BM-00609	459691	8591819	4673	Ajo Orjo East - West	Breccia	0.25		2	3112.1	0.311	3.03	35.6	0.004	121.0	0.012	7. 53
BM-00611	459481	8591647	4680	Ajo Orjo East - West	Breccia	0.45		1	16.3	0.002	0.06	84.2	0.008	4 14.0	0.041	1.84
BM-00612	459700	8591837	4658		Breccia	0.3		3	287	0.029	0.17	20.9	0.002	190.0	0.019	21.58
BM-00613	459708	8591958	4631		Crackle- Breccia	0.45		4	7198.7	0.720	4.98	102.8	0,010	223.0	0.022	1.93
BM-00614	458431	8591463	4482		Breccia	1.00 X 0.30		3	4025	0.403	2.22	16.2	0.002	114.0	0.011	3 .31
BM-00615	458444	8591505	4475	Ajo Orjo East - West & Huasijaja	Breccia	1.20 X 0.30		1	30.1	0.003	0.03	18.5	0.002	134.0	0.013	6,24
BM-00616	458444	8591506	4475	1 1 11	Breccia	1.20 X 0.30		2	30.2	0.003	0.01	16.5	0.002	84.0	0.008	<mark>6.</mark> 72
BM-00617	458444	8591507	4475	Ajo Orjo East - West & Huasijaja	Breccia	1.20 X 0.30		2	31.2	0.003	0.01	17.1	0.002	125.0	0.013	5.49
BM-00618	458444	8591509	4475	Ajo Orjo East - West & Huasijaja	Breccia	1.20 X 0.30		4	31.7	0.003	0.01	14.9	0.001	48.0	0.005	<mark>5</mark> .21
BM-00619	459598	8590034	4702	Ajo Orjo East - West & Huasijaja	Breccia and fault zone	1.00 x 0.30		2	37.6	0.004	0.07	18.8	0.002	95.0	0.010	9.62
BM-00621	458296	8590729	4733	Ajo Orjo East - West & Huasijaja	Breccia	1 x 0.40		0.5	23.1	0.002	0.02	290.7	0.029	<mark>5</mark> 18.0	0.052	1.81
BM-00622	458468	8590675	4650	Ajo Orjo East - West & Huasijaja	Breccia	0.60 x 0.30		1	13.6	0.001	0.41	52.1	0.005	293.0	0.029	4 .30
BM-00623	458297	8590755	4718	Ajo Orjo East - West & Huasijaja	Breccia	1 x 0.40		1	7.8	0.001	0.03	308.6	0.031	107.0	0.011	1.66
BM-00624	458277	8590774	4725	Ajo Orjo East - West & Huasijaja	Breccia and fault zone	0.80 x 0.40		1	7.4	0.001	0.04	123.7	0. 012	<mark>1624</mark> .0	0.162	2.60
BM-00625	458236	8590764	4733	Ajo Orjo East - West & Huasijaja	Breccia and fault zone	0.90 x 0.40		1	11.3	0.001	0.12	180.0	0.018	<mark>110</mark> 5.0	0.1 <mark>1</mark> 1	1.31
BM-00626	458178	8590800	4740	Ajo Orjo East - West & Huasijaja	Breccia and fault zone	1 x 0.50		2	47.7	0.005	0.03	54.6	0.005	120.0	0.012	10. <mark>55</mark>
BM-00627	458090	8590984	4676	Ajo Orjo East - West & Huasijaja	Breccia and fault zone	1 X 0.70		1	12.5	0.001	0.03	518.7	0.052	355.0	0.036	1.67
BM-00628	458184	8590949		Ajo Orjo East - West & Huasijaja	Breccia and fault zone?	0.60 x 0.40		1	27.1	0.003	0.05	19.7	0.002	32.0	0.003	6.15
BM-00629	458200	8590937	4713	Ajo Orjo East - West & Huasijaja	Breccia and fault zone?	1.20 x 0.40		2	11.6	0.001	0.05	139.0	0.014	778.0	0.078	3.85
BM-00631	458187	8590925		Ajo Orjo East - West & Huasijaja	Breccia and fault zone?	0.50 x 0.40		2	18.9	0.002	0.06	55.2	0.006	366.0	0.037	5.13
BM-00632	458385	8590252	4595		Breccia and fault zone?	1		4	11.9	0.001	0.01	12.5	0.001	38.0	0.004	17.52
BM-00633	458140	8591186	4613	Ajo Orjo East - West & Huasijaja	Breccia and fault zone?	0.4		2	22.5	0.002	0.02	230.0	0.023	1703.0	0.170	0.97
BM-00634	458209	8591161		Ajo Orjo East - West & Huasijaja	Breccia	0.1		0.5	14.9	0.001	0.04	73.6	0.007	624.0	0.062	2.55
BM-00635	458187	8591065	4657		Breccia	1.20 X 0.30		1	6.9	0.001	0.04	126.0	0.013	674.0	0.067	2.62
BM-00636	458181	8591067		Ajo Orjo East - West & Huasijaja	Veinlets	1.20 x 1.00		1	6.4	0.001	0.01	84.5	0.008	672.0	0.067	1.90
BM-00637	458446	8591461		1 1 11	Fractures	1.20 X 0.70		2	2831.8	0.283	1.30	22.1	0.002	259.0	0.026	3.20
5/11-0003/	420440	3791401	499/	nio olio cast- mest a nudsijaja	ractures	1.20 × 0.70	1	4	¥031.0	0.205	تر.	22.1	0.002	×)9.0	v .020	9 .20

Suite 1/16 Nicholson Road, Subiaco, WA 6008 • PO BOX 38, West Perth, WA 6872 Telephone: +61 (08) 6145 0300 • ABN: 36 128 512 907 Website: www.incaminerals.com.au

Page19

INCA MINERALS LTD

ACN: 128 512 907

Sample Number	Easting WGS84	Northing WGS84	ALS (m)	Target Area	Structure	Sampling dimensions (m)	Channel length (m)	Au_	_PPB	Cu_PPM	Cu_%	Ag_PPM	Pb_PPM	Pb_%	Zn_PPM	Zn_%	Mo_PPM
BM-00638	458438	8591463	4498	Ajo Orjo East - West & Huasijaja	stock work	1.00 x 1.00		2		4781.2	0.478	1.64	11.8	0.001	93.0	0.009	2.72
BM-00639	458430	8591463	4482	Ajo Orjo East - West & Huasijaja	fines veinlets and fractures	1.00 x 0.30		2		1020.4	0.102	0.45	61.8	0.006	341.0	0.034	2.87
BM-00641	459752	8591678	4688	Ajo Orjo East - West	Veinlets jaspe	0.4		3		19040	1.904	20.00	65.9	0.007	322.0	0.032	34.86
BM-00642	459730	8591677	4691	Ajo Orjo East - West	Crackle and Fractures	0.4		3		2456.8	0.246	3.10	45.3	0.005	56.0	0.006	5.99
BM-00643	459771	8591690	4680	Ajo Orjo East - West	Veinlets - Crackle breccia	1X1		2			0.028	1.15	43.7	0.004	48.0	0.005	4.08
BM-00644	459703	8592335	4542	Ajo Orjo East - West	Alteration zone	1X1		1		20.1	0.002	0.06	19.5	0.002	232.0	0.023	1.05
BM-00645	458437	8591466	4499		fractures	1.20 x 0.30		2		405	0.041	0.12	12.9	0.001	195.0	0.020	2.87
BM-00646	458438	8591465			fractures	1.20 x 0.30		2		97.6	0.010	0.01	11.9	0.001	200.0	0.020	3.00
BM-00647	458439	8591465			fractures	1.20 X 0.30		5		289.9	0.029	0.10	11.6	0.001	227.0	0.023	2.80
BM-00648	458440	8591464			fines veins and fractures	1.20 X 0.30		2			0.065	0.21	12.4	0.001	183.0	0.018	3.27
BM-00649	458442	8591464	4490		stock work	1.20 X 0.30		2			0.208	0.87	17.4	0.002	227.0	0.023	3.39
BM-00651	460078	8591472		, , , , , , , , , , , , , , , , , , , ,	Breccia fault	0.4		1		24.6	0.002	0.02	12 <mark>4.4</mark>	0.012	1234.0	0.123	1.76
BM-00051 BM-00652	460134	8591472	4632		Breccia fault	0.4		-			0.002	0.02	68.4	0.007	466.0	0.047	3.73
	460134	8591606						2			0.002	0.01		0.007		/	3.17 8.17
BM-00653			191	1 1 11	Breccia fault	0.3		2		13.1			77.5		94.0	0.009	
BM-00654	460217	8591650	4551	, , , , , , , , , , , , , , , , , , , ,	Breccia fault	0.9	. 0	1		16.5	0.002	0.06	67.9	0.007	336.0	0.034	2.74
BM-00655	460217	8591650		, , , , , , , , , , , , , , , , , , , ,	Breccia fault	0.9	1.8	2			0.003	0.01	61.4	0.006	4 38.0	0.044	3.22
BM-00656	460223	8591665			Alteration rock	1.50 x 1.00		2			0.002	0.01	37-3	0.004	163.0	0.016	3 .56
BM-00657	460248	8591705	4502	,,	Breccia	0.7		0.5		15.8	0.002	0.01	64.5	0.006	<mark>84</mark> 2.0	<mark>0.</mark> 084	4.11
BM-00658	460234	8591685	121	1 1 11	Breccia	1.00 X 1.00		2			0.002	0.01	46.0	0.005	3 30.0	0 .033	4.40
BM-00659	460209	8591680	4557	Ajo Orjo East - West & Huasijaja	Breccia	0.45 x 0.25		1		22.6	0.002	0.01	28.2	0.003	93.0	0.009	3.18
BM-00661	460225	8592086	4519	Ajo Orjo East - West & Huasijaja	Breccia	0.5		1		25.7	0.003	0.01	27.2	0.003	162.0	0.016	8.12
BM-00662	459953	8592413	4443	Ajo Orjo East - West & Huasijaja	Fault	0.5		2		18.3	0.002	0.01	25.1	0.003	64.0	0.006	2 .93
BM-00663	460022	8592367	4478	Ajo Orjo East - West & Huasijaja	Breccia	0.6		2		10.1	0.001	0.01	11.9	0.001	42.0	0.004	18.15
BM-00664	460008	8592348	4488	Ajo Orjo East - West & Huasijaja	Breccia	0.5		2		12.1	0.001	0.09	21.8	0.002	66.0	0.007	2.68
BM-00665	460009	8592362	4480	Ajo Orjo East - West & Huasijaja	Breccia	1.10 x 1.00		0.5		34-3	0.003	0.06	17.8	0.002	56.0	0.006	10. <mark>66</mark>
BM-00666	459989	8592431	4475	Ajo Orjo East - West & Huasijaja	Breccia fault	0.6		2		18.6	0.002	0.01	17.8	0.002	55.0	0.006	4.05
BM-00667	460420	8592098	4553	Ajo Orjo East - West & Huasijaja	Breccia	0.55		2		46.8	0.005	0.15	11.6	0.001	40.0	0.004	17.20
BM-00668	459809	8592536	4484	Ajo Orjo East - West & Huasijaja	Breccia	1.00 x 1.00		1		45.1	0.005	0.01	19.5	0.002	47.0	0.005	4.35
BM-00669		8590006	4699		Breccia fault	0.3		0.5			0.001	0.01	33.4	0.003	115.0	0.012	7.23
BM-00671	459717	8589826	4740	Ajo Orjo East - West & Huasijaja	Breccia fault	0.35		2		8.7	0.001	0.01	21.3	0.002	43.0	0.004	13.26
, BM-00672	459914	8589916	4752	1 1 11	Breccia fault	0.5		2			0.010	0.06	18.1	0.002	136.0	0.014	4.01
, BM-00673	459831	8590106			Breccia fault	0.75		2			0.001	0.07	26.3	0.003	86.0	0.009	6.07
BM-00674	459830	8590107		Ajo Orjo East - West & Huasijaja		0.6	1.35	1		5.9	0.001	0.03	36.7	0.004	85.0	0.009	5.71
BM-00675	459926	8590045	4731		Breccia	0.6	,,,	2		10.4	0.001	0.01	58.8	0.006	750.0	0.075	3.99
BM-00676	459913	8590007	4739		Breccia	1.1		2			0.004	0.06	18.5	0.002	74.0	0.007	15.34
BM-00677	459923	8590144		Ajo Orjo East - West & Huasijaja		0.40 x 0.25		4			0.002		-	0.002	64.0	0.007	8.16
BM-00678	459923	8589975	4726		Breccia	0.40 x 0.25		2		22.1	0.002	0.39 0.01	24.4 51.9	0.002	346.0	0.000	2.42
BM-00679		8592367	4528		Breccia fault	0.5		2			0.002	0.04		0.005		0.035	
BM-006/9 BM-00681	459704				fines veinlets and fractures			1		ń			39.9		244.0 178.0	0.024	3.03 2.68
	458423	8591468				1.20 X 0.30		1			0 .437	2.30	57.2	0.006			
BM-00682	458424	8591468	4500		fines veinlets and fractures	1.20 X 0.30		1		297.6	0.030	0.07	30.2	0.003	106.0	0.011	3.15
BM-00683	458425	8591468			fines veinlets and fractures	1.20 X 0.30		1			0.067	0.20	27.1	0.003	160.0	0.016	2.89
BM-00684	458426	8591468			fines veinlets and fractures	1.20 X 0.30		2			0.046	0.15	24.3	0.002	144.0	0.014	2.35
BM-00685	458427	8591468	4501		fines veinlets and fractures	1.00 x 0.30		2			0.073	0.36	37.5	0.004	162.0	0.016	3.02
BM-00686	458428	8591468	4501		Estructure breccia - mineralized	1.00 x 0.30		0.5			0.278	1.71	65.3	0.007	425.0	0 .043	3.20
BM-00687	458429	8591468		, , , , , , , , , , , , , , , , , , , ,	fines veinlets	1.00 x 0.30		1			0.710	2.95	52.3	0.005	111.0	0.011	3.67
BM-00688	458430	8591468	4501	1 1 11	fines veinlets and fractures	1.00 x 0.30		0.5		13620	1.362	6.45	149.3	0.015	135.0	0.014	2.54
BM-00689	458431	8591468	4501		stockwork	1.20 x 0.30		1		3599.1	0.360	3.06	<mark>7</mark> 0.8	0.007	<mark>3</mark> 62.0	0 .036	3.68
BM-00691	458433	8591467	4501	Ajo Orjo East - West & Huasijaja	fines veins and fractures	1.20 x 0.30		2		2907.3	0.291	1.10	26.7	0.003	137.0	0.014	3.18
BM-00692	458434	8591467	4501	Ajo Orjo East - West & Huasijaja	fines veinlets	1.20 x 0.30		1		362.6	0.036	0.12	21.6	0.002	165.0	0.017	2.67
BM-00693	458435	8591466	4500	Ajo Orjo East - West & Huasijaja	fines veinlets	1.20 X 0.30		0.5		247	0.025	0.04	16.6	0.002	206.0	0.021	2.25
BM-00694	458436	8591466	4500	Ajo Orjo East - West & Huasijaja	fractures	1.20 x 0.30		1		2374.7	0.237	1.46	17.3	0.002	192.0	0.019	2.55
				Ajo Orjo East - West	Breccia	0.75				395.1	0.040	2.85	33.6	0.003	105.0	0.011	8.52

Appendix 3

The following information is provided to comply with the JORC Code (2012) exploration reporting requirements.

SECTION 1 SAMPLING TECHNIQUES AND DATA

INCAMINERALS LTD

ACN: 128 512 907

Criteria: Sampling techniques

JORC CODE Explanation

Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or hand-held XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.

Company Commentary

This announcement refers to integrated interpretations and review of a sustained mapping and sampling program (264 samples and assay results) with previously released results from an AMAGRAD, 3D inversion modelling, interim IP and soil geochemical programs. The 264 samples are either surface rockchip, trench-channel or surface-channel samples taken during a 1:5,000 to 1:50 scale mapping program at the Company's Riqueza Project in Peru.

JORC CODE Explanation

Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.

Company Commentary

Trench-channel and surface-channel sample intervals were determined through tape measurement made relative to a handheld GPS location.

JORC CODE Explanation

Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30g charge for fire assay'). In other cases, more explanation may be required, such as where there is a coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.

Company Commentary

Channels, perpendicular to the exposed mineralisation within trenches or across outcrop, were used to obtain continuous samples approximately 2kg in weight and between 0.2m and 1.5m long. Where mineralisation was not over a large area, rockchip samples were taken with no specific orientation.

Criteria: Drilling techniques

JORC CODE Explanation

Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).

Company Commentary

No drilling or drilling results are referred to in this announcement.

Criteria: Drill sample recovery

JORC CODE Explanation

Method of recording and assessing core and chip sample recoveries and results assessed.

Company Commentary

No drilling or drilling results are referred to in this announcement.

JORC CODE Explanation

Measures taken to maximise sample recovery and ensure representative nature of the samples.

Company Commentary

No drilling or drilling results are referred to in this announcement.

JORC CODE Explanation

Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.

Company Commentary

No drilling or drilling results are referred to in this announcement.

Criteria: Logging

JORC CODE Explanation

Whether core and chip samples have been geologically and geo-technically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.

Company Commentary

No drilling or drilling results are referred to in this announcement.

JORC CODE Explanation

Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography

Company Commentary

No drilling or drilling results are referred to in this announcement.

JORC CODE Explanation

The total length and percentage of the relevant intersections logged.

Company Commentary

No drilling or drilling results are referred to in this announcement.

Criteria: Sub-sampling techniques and sample preparation

JORC CODE Explanation

If core, whether cut or sawn and whether quarter, half or all core taken.

Company Commentary

No drilling or drilling results are referred to in this announcement.

JORC CODE Explanation

If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.

Company Commentary

No drilling or drilling results are referred to in this announcement.

JORC CODE Explanation

For all sample types, the nature, quality and appropriateness of the sample preparation technique.

Company Commentary

Channel (trench and surface) sampling and rockchip sampling followed industry best practice.

JORC CODE Explanation

Quality control procedures adopted for all sub-sampling stages to maximise "representivity" of samples.

Company Commentary

No sub-sampling procedures were undertaken.

JORC CODE Explanation

Measures taken to ensure that the sampling is representative of the in-situ material collected, including for instance results for field duplicate/second-half sampling.

Company Commentary

The orientations of the channels (trench and surface) were aligned perpendicular to the visible zone of mineralisation.

JORC CODE Explanation

Whether sample sizes are appropriate to the grain size of the material being sampled.

Company Commentary

The sample sizes are adequate in terms of the nature and distribution of mineralisation visible in the trenches and outcrop.

Criteria: Quality of assay data and laboratory tests

JORC CODE Explanation

The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.

Company Commentary

The analytical assay technique used in the elemental testing of the channel samples for non-Au was 4-acid digestion and HCl leach, which is considered a complete digestion for most material types. Elemental analysis was via ICP and atomic emission spectrometry. The analytical assay technique used in the elemental testing is considered industry best practice.

JORC CODE Explanation

For geophysical tools, spectrometers, hand-held XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.

Company Commentary

N/A – No geophysical tool or electronic device was used in the generation of the channel sample results other than those used by the laboratory in line with industry best practice.

JORC CODE Explanation

Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.

Company Commentary

Blanks, duplicates and standards were used as standard laboratory procedures. The Company also entered blanks, duplicates and standards as an additional QAQC measure.

Criteria: Verification of sampling and assaying

JORC CODE Explanation

The verification of significant intersections by either independent or alternative company personnel.

Company Commentary

The sample assay results are independently generated by SGS Del Peru (**SGS**) who conduct QAQC procedures, which follow industry best practice.

JORC CODE Explanation

The use of twinned holes.

Company Commentary

No drilling or drilling results are referred to in this announcement.

JORC CODE Explanation

Documentation of primary data, data entry procedures, date verification, data storage (physical and electronic) protocols.

Company Commentary

Primary data (regarding assay results) was supplied to the Company from SGS in two forms: Excel and PDF form (the latter serving as a certificate of authenticity). Both formats were captured on Company laptops/desktops/iPads which are backed up from time to time. Following critical assessment (e.g. price sensitivity, *inter alia*), when time otherwise permits, the data was entered into a database by Company GIS personnel.

JORC CODE Explanation

Discuss any adjustment to assay data.

Company Commentary

No adjustments were made.

Criteria: Location of data points

JORC CODE Explanation

Page 13

Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.

Company Commentary

The sample locations were determined using handheld GPS.

JORC CODE Explanation

Specification of the grid system used.

Company Commentary

WGS846-18L.

JORC CODE Explanation

Quality and adequacy of topographic control.

Company Commentary

Topographic control was achieved via the use of government topographic maps, in association with GPS and Digital Terrain Maps (DTM's), the latter generated during antecedent detailed geophysical surveys.

Criteria: Data spacing and distribution

JORC CODE Explanation

Data spacing for reporting of Exploration Results.

Company Commentary

Regarding channel sampling, the channels were spaced so as to form a continuous line of sampling within each trench, or across each outcrop perpendicularly across the known mineralisation with individual samples taken 1.4m to <1m lengths along each channel.

JORC CODE Explanation

Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.

Company Commentary

No grade continuity, Mineral Resource or Ore Reserve estimations are referred to in this announcement.

JORC CODE Explanation

Whether sample compositing has been applied.

Company Commentary

No sample compositing had been applied to generate assay results subject of this announcement.

Criteria: Orientation of data in relation to geological structure

INCA MINERALS LTD

ACN: 128 512 907

JORC CODE Explanation

Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.

Company Commentary

Assay results subject of this announcement are believed associated with structure-hosted epithermal mineralisation. The area of visible mineralisation exposed in the trenches/outcrop were accurately mapped.

JORC CODE Explanation

If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.

Company Commentary

No drilling results are referred to in this announcement.

Criteria: Sample security

JORC CODE Explanation

The measures taken to ensure sample security.

Company Commentary

Sample security was managed by the Company in line with industry best practice.

Criteria: Audits and reviews

JORC CODE Explanation

The results of any audits or reviews of sampling techniques and data.

Company Commentary

Where considered appropriate, assay data is independently audited. None were required in relation to assay data subject of this announcement.

SECTION 2 REPORTING OF EXPLORATION RESULTS

Criteria: Mineral tenement and land tenure status

JORC CODE Explanation

Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.

Company Commentary

Tenement Type: The Riqueza Project area comprises nine Peruvian mining concessions: Nueva Santa Rita, Antacocha I, Antacocha II, Rita Maria, Maihuasi, Uchpanga, Uchpanga II, Uchpanga III and Picuy.

Nueva Santa Rita ownership: The Company has a 5-year concession transfer option and assignment agreement ("**Agreement**") whereby the Company may earn 100% outright ownership of the concession.

All other above-named concessions: The Company has direct 100% ownership.

JORC CODE Explanation

The security of the land tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.

Company Commentary

The Agreement and all concessions are in good standing at the time of writing.

Criteria: Exploration done by other parties

JORC CODE Explanation

Acknowledgement and appraisal of exploration by other parties.

Company Commentary

This announcement does not refer to exploration conducted by previous parties.

Criteria: Geology

JORC CODE Explanation

Deposit type, geological setting and style of mineralisation.

Company Commentary

The geological setting of the area is that of a gently SW dipping sequence of Cretaceous limestones, Tertiary "red-beds" and volcanics on a western limb of a NW-SE trending anticline; subsequently affected by an intrusive rhyolite volcanic dome believed responsible for a series of near vertical large scale structures and multiple and pervasive zones of epithermal/porphyry related Au-Cu-Ag-Mn-Zn-Pb mineralisation.

Criteria: Drill hole information

JORC CODE Explanation

A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:

- Easting and northing of the drill hole collar
- Elevation or RL (Reduced Level elevation above sea level in metres) of the drill hole collar.
- Dip and azimuth of the hole.
- Down hole length and interception depth.
- Hole length.

Company Commentary

No drilling or drilling results are referred to in this announcement.

JORC CODE Explanation

If the exclusion of this information is justified on the basis that the information is not material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.

Company Commentary

No drilling or drilling results are referred to in this announcement.

Criteria: Data aggregation methods

JORC CODE Explanation

In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations shown in detail

Company Commentary

No weighted averages, maximum/minimum truncations and cut-off grades were applied to assay reporting in this announcement.

JORC CODE Explanation

The assumptions used for any reporting of metal equivalent values should be clearly stated.

Company Commentary

No metal equivalents are referred to in this announcement.

Criteria: Relationship between mineralisation widths and intercept lengths

JORC CODE Explanation

These relationships are particularly important in the reporting of Exploration Results.

If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.

If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known.')

Company Commentary

The orientation of the zones of mineralisation encountered in the trenches/outcrop are relatively well known through concurrent detailed mapping, therefore the widths are considered true widths.

Criteria: Diagrams

JORC CODE Explanation

Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not limited to a plan view of drill hole collar locations and appropriate sectional views

Company Commentary

Plans are provided showing the position of the samples subject of this announcement. Plans are also provided for all other exploration results (previously released to the market) that are cross referenced to the sample results.

Criteria: Balanced reporting

JORC CODE Explanation

Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced avoiding misleading reporting of Exploration Results.

Company Commentary

The Company believes the ASX announcement provides a balanced report of its exploration results referred to in this announcement.

Criteria: Other substantive exploration data

JORC CODE Explanation

Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.

Company Commentary

This announcement makes reference to six previous ASX announcements dated: 14 April 2017, 20 June 2019, 19 August 2019, 15 October 2019, 31 October 2019 and 27 May 2020.

Criteria: Further work

JORC CODE Explanation

The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).

Company Commentary

By nature of early phase exploration, further work is necessary to better understand the mineralisation appearing in the trenches/outcrop subject of this announcement. Further work is also necessary to better understand the relationship between the mineralisation associated with these samples and the AMAGRAD, IP, 3D magnetic inversion models and soil anomalies.

JORC CODE Explanation

Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.

Company Commentary

Refer above.
