30 July 2020

# Geochemistry substantiates nickel and PGE targets at Wundowie, Western Australia

#### HIGHLIGHTS

- Lithium Australia NL, Mercator Metals Pty Ltd and Australian Vanadium Ltd hold contiguous tenements with a combined area of 59 square kilometres covering the entire Coates Mafic Intrusive Complex, near Wundowie in Western Australia (collectively, 'the Coates project').
- The tenements are located 29 kilometres southeast of the recent nickel, copper and platinum group elements ('PGE') discovery at Chalice Gold Mines' Julimar project.
- Coincident drill-geochemistry anomalies generated from copper, PGE and gold assays have been identified adjacent to the Coates Mafic Intrusion.
- Field work will include extensive geochemical and geophysical programmes across the combined Lithium Australia, Australian Vanadium and Mercator tenement area.

#### Background

In an announcement to the ASX dated 25 May 2020, Lithium Australia NL ('LIT'), Australian Vanadium Ltd ('AVL') and Mercator Metals Pty Ltd ('Mercator') (together 'the Companies') provided details of a collaboration to advance exploration for nickel ('Ni'), copper ('Cu'), PGE and gold at the Coates Mafic Intrusive Complex near Wundowie in Western Australia (Figures 1 & 2). Drilling geochemistry completed in 2013 by a Mercator joint-venture ('JV') partner supports this exploration strategy.



ACN: 126 129 413 ASX: LIT Level 1 675 Murray St West Perth WA 6005

PO Box 1088 West Perth WA 6872 Phone +61 (0) 8 6145 0288

Fax +61 (0) 8 9475 0847 info@lithium-au.com lithium-au.com

ASX ANNOUNCEMENT Raw materials



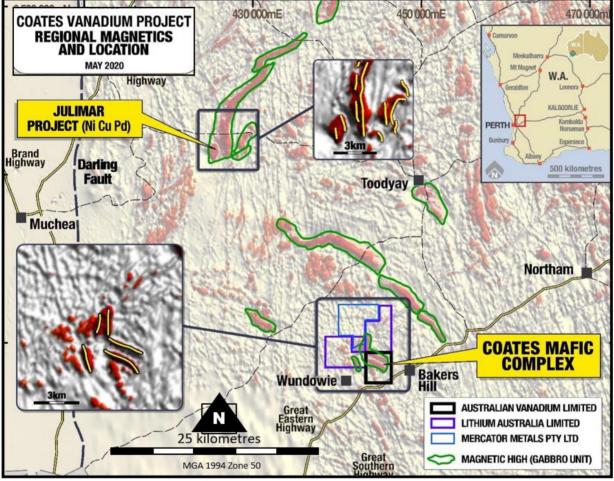



Figure 1. Location of Coates project alongside known base metal, vanadiferous titanomagnetite and PGE projects.



Figure 2. Tenements outlined over Google Earth image. The interpreted outline of the Coates Mafic Intrusion is shown in red, while the overlying colour image of Pd + Pt geochemistry reveals the extent of the Mercator vacuum drilling and two anomalous areas, the priority T1 target being on the outer margin of the Coates Mafic Intrusion.



### 2013 drilling data demonstrated PGE anomalies

Together, LIT and AVL have compiled much of the available geological and geochemical information for the Coates project, including geochemical analyses from 522 vacuum holes drilled in 2013 within Mercator's R70/59 by its JV partner (Figure 3). Drill-hole collar co-ordinates are tabulated in Appendix I, Table 1, and selected and assay results are shown in Appendix 1, Table 2.

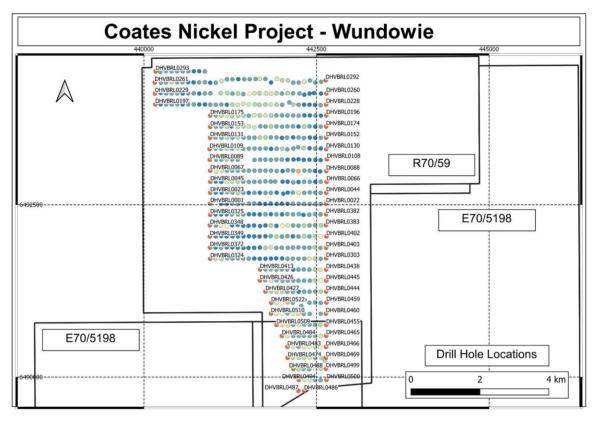



Figure 3. Collar locations of Mercator geochemical drill holes.

While bauxite was being targeted at the time, end-of-hole samples were also analysed for a range of precious and base metals. It is noteworthy that where drill locations are adjacent to the interpreted margin of the Coates Mafic Intrusion, anomalous and often coincident Cu, platinum ('Pt') (maximum 37 parts per billion ('ppb')), palladium ('Pd') (maximum 53 ppb) and gold ('Au') (maximum 108 ppb) are evident. (Cu, Pt and Pd are often considered pathfinder elements for nickel sulphide mineralisation.) Element distribution maps are shown in Figure 4.

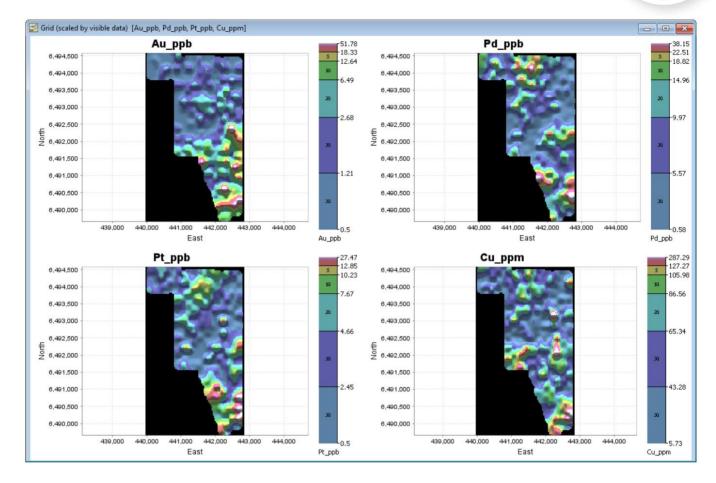



Figure 4. Element distribution maps from geochemical drilling on Mercator's R70/59.

### **Upcoming fieldwork**

Before fieldwork can begin, statutory approvals are required. To that end, the Companies are developing a conservation management plan and drawing up land-owner access agreements. Meanwhile, the Companies have completed early modelling of available aeromagnetic data to determine the extent of proposed soil geochemistry and geological mapping programmes.

Rapid analysis of soil samples for Ni, Cu and chromium using field-portable X-ray fluorescence will be followed by analysis for precious metals (Au, palladium and platinum) by a commercial laboratory. The resulting Ni geochemical targets will be surveyed using moving-loop electromagnetic equipment to detect conductive rock types, which may include Ni sulphides. Conductive targets will then be drilled.

#### About the Coates project

The recent discovery of Ni-Cu-PGE sulphide mineralisation at Chalice Gold Mines' Julimar project, as well as indications of mineralisation discovered by other explorers in mafic and ultramafic rocks within the Jimperding Metamorphic Belt, serve to highlight the great potential of this geological terrain. Combined, the Companies' adjoining tenements cover 59 square kilometres of a mafic-ultramafic sequence similar to that which hosts the mineralisation at Julimar.



Although the timeframe for commencing fieldwork is dependent on receiving the statutory approvals referred to previously, it is anticipated that geochemical sampling and electromagnetic surveys will commence in the September 2020 quarter.

### **Comment from Lithium Australia MD Adrian Griffin**

"The Companies are well aware of the market excitement generated by nickel and PGE targets such as the Coates Mafic Intrusion and are keen to get onto the ground; however, we take our social and environmental responsibilities very seriously, and getting these things right at the start of a project will pave the way for enduring good relations with all stakeholders as the project develops."

#### **Comment from Australian Vanadium MD Vincent Algar**

"The discovery of nickel-copper-PGE at the Julimar project is generating a lot of interest in the Western Yilgarn as a new province for nickel and PGE. Already, the Companies' strategic alliance is bearing fruit as we streamline our exploration activity to target potential new discoveries in this exciting region."

Authorised for release by the Board.

### Adrian Griffin Managing Director Mobile +61 (0) 418 927 658 Adrian.Griffin@lithium-au.com

Barry Woodhouse CFO and Company Secretary Mobile +61 (0) 438 674 259 Barry.Woodhouse@lithium-au.com

#### **About Lithium Australia NL**

Lithium Australia aims to ensure an ethical and sustainable supply of energy metals to the battery industry (enhancing energy security in the process) by creating a circular battery economy. The recycling of old lithium-ion batteries to new is intrinsic to this plan. While rationalising its portfolio of lithium projects/alliances, the Company continues with R&D on its proprietary extraction processes for the conversion of *all* lithium silicates (including mine waste), and of unused fines from spodumene processing, to lithium chemicals. From those chemicals, Lithium Australia plans to produce advanced components for the battery industry globally, and for stationary energy storage systems within Australia. By uniting resources and innovation, the Company seeks to vertically integrate lithium extraction, processing and recycling.

#### **Media contacts**

| Adrian Griffin, Lithium Australia NL  | 08 6145 0288   +61 (0) 418 927 658 |
|---------------------------------------|------------------------------------|
| Kevin Skinner, Field Public Relations | 08 8234 9555   +61 (0) 414 822 631 |



#### Competent person's statement – exploration strategy

The information in this statement that relates to exploration strategy and geochemical results is based on information provided to, and compiled by, consulting geologist David Crook BSc GAICD, who is a member of The Australian Institute of Mining and Metallurgy and the Australian Institute of Geoscientists. Mr Crook provides the service of Manager – Raw Materials to Lithium Australia NL.

Mr Crook has sufficient experience which is relevant to the style of mineralisation and exploration processes as reported herein to qualify as a Competent Person as defined in the 2012 edition of the *Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.* 

Mr Crook consents to the inclusion in the report of the matters based on the information made available to him, in the form and context in which it appears.



#### **APPENDIX 1**

| Table 1. End-point coordinates | for aeochemistr | v drilling traverses.        |
|--------------------------------|-----------------|------------------------------|
|                                | ioi gooononnon  | <i>y</i> aniining traverees. |

|          | 1          |         |           | 1  |            |         |           |
|----------|------------|---------|-----------|----|------------|---------|-----------|
| Traverse | Hole ID    | East    | North     |    | Hole ID    | East    | North     |
| 1        | DHVBRL0302 | 440,883 | 6,494,435 | to | DHVBRL0293 | 440,169 | 6,494,435 |
| 2        | DHVBRL0261 | 440,158 | 6,494,275 | to | DHVBRL0292 | 442,631 | 6,494,306 |
| 3        | DHVBRL0229 | 440,159 | 6,494,114 | to | DHVBRL0260 | 442,642 | 6,494,116 |
| 4        | DHVBRL0197 | 440,164 | 6,493,955 | to | DHVBRL0228 | 442,639 | 6,493,954 |
| 5        | DHVBRL0175 | 440,961 | 6,493,794 | to | DHVBRL0196 | 442,642 | 6,493,796 |
| 6        | DHVBRL0153 | 440,961 | 6,493,629 | to | DHVBRL0174 | 442,640 | 6,493,635 |
| 7        | DHVBRL0131 | 440,959 | 6,493,473 | to | DHVBRL0152 | 442,640 | 6,493,475 |
| 8        | DHVBRL0109 | 440,952 | 6,493,306 | to | DHVBRL0130 | 442,640 | 6,493,309 |
| 9        | DHVBRL0108 | 442,650 | 6,493,160 | to | DHVBRL0089 | 440,954 | 6,493,153 |
| 10       | DHVBRL0067 | 440,961 | 6,492,994 | to | DHVBRL0088 | 442,641 | 6,492,988 |
| 11       | DHVBRL0045 | 440,962 | 6,492,834 | to | DHVBRL0066 | 442,646 | 6,492,833 |
| 12       | DHVBRL0023 | 440,961 | 6,492,674 | to | DHVBRL0044 | 442,641 | 6,492,674 |
| 13       | DHVBRL0001 | 440,961 | 6,492,518 | to | DHVBRL0022 | 442,640 | 6,492,516 |
| 14       | DHVBRL0325 | 440,960 | 6,492,355 | to | DHVBRL0382 | 442,638 | 6,492,362 |
| 15       | DHVBRL0348 | 440,955 | 6,492,202 | to | DHVBRL0383 | 442,637 | 6,492,204 |
| 16       | DHVBRL0349 | 440,957 | 6,492,039 | to | DHVBRL0402 | 442,643 | 6,492,041 |
| 17       | DHVBRL0372 | 440,957 | 6,491,879 | to | DHVBRL0403 | 442,639 | 6,491,877 |
| 18       | DHVBRL0303 | 442,640 | 6,491,724 | to | DHVBRL0324 | 440,961 | 6,491,717 |
| 19       | DHVBRL0413 | 441,681 | 6,491,560 | to | DHVBRL0438 | 442,638 | 6,491,560 |
| 20       | DHVBRL0426 | 441,680 | 6,491,400 | to | DHVBRL0445 | 442,641 | 6,491,400 |
| 21       | DHVBRL0427 | 441,761 | 6,491,241 | to | DHVBRL0444 | 442,639 | 6,491,240 |
| 22       | DHVBRL0460 | 442,637 | 6,490,920 | to | DHVBRL0510 | 441,841 | 6,490,921 |
| 23       | DHVBRL0455 | 442,640 | 6,490,757 | to | DHVBRL0509 | 441,921 | 6,490,759 |
| 24       | DHVBRL0465 | 442,640 | 6,490,601 | to | DHVBRL0484 | 441,998 | 6,490,599 |
| 25       | DHVBRL0466 | 442,636 | 6,490,439 | to | DHVBRL0483 | 442,077 | 6,490,439 |
| 26       | DHVBRL0469 | 442,637 | 6,490,281 | to | DHVBRL0474 | 442,082 | 6,490,279 |
| 27       | DHVBRL0488 | 442,164 | 6,490,119 | to | DHVBRL0499 | 442,637 | 6,490,122 |
| 28       | DHVBRL0494 | 442,244 | 6,489,960 | to | DHVBRL0500 | 442,644 | 6,489,960 |
| 29       | DHVBRL0486 | 442,322 | 6,489,799 | to | DHVBRL0487 | 442,237 | 6,489,801 |

• Grid: GDA94-50.

• All vacuum holes drilled vertically: dip -90, azimuth 0.

• Holes nominally spaced 80m apart along lines that are 150m apart.

• One sample analysed from the bottom of each vacuum hole for Au, Pt, Pd by fire assay, Ag, As, Cu, Pb, V and Zn by chemical digestion, ICP finish. Refer to Table 1 for further details.



### Table 2. Selected assay results.

| Hole ID    | East    | North     | RL  | Sample ID | From | То   | Au_ppb | Pd_ppb | Pt_ppb | Ag_ppm | As_ppm | Cu_ppm | Pb_ppm | V_ppm | Zn_ppm |
|------------|---------|-----------|-----|-----------|------|------|--------|--------|--------|--------|--------|--------|--------|-------|--------|
| DHVBRL0082 | 442,160 | 6,492,996 | 407 | BRL006664 | 3.5  | 4    | 8      | 13     | 3      | 0.02   | 4      | 12     | 5      | 315   | 6      |
| DHVBRL0083 | 442,237 | 6,492,987 | 407 | BRL006656 | 9.5  | 10   | 5      | 32     | 29     | 0.02   | 4      | 166    | 5      | 515   | 22     |
| DHVBRL0084 | 442,323 | 6,492,996 | 402 | BRL006293 | 8    | 8.5  | 2      | 3      | 2      | 0.02   | 4      | 30     | 5      | 280   | 16     |
| DHVBRL0102 | 442,166 | 6,493,156 | 409 | BRL006635 | 5    | 5.5  | 2      | 3      | 0.5    | 0.02   | 3      | 14     | 5      | 420   | 4      |
| DHVBRL0103 | 442,239 | 6,493,159 | 409 | BRL006624 | 6    | 6.5  | 7      | 0.5    | 0.5    | 0.02   | 3      | 602    | 5      | 445   | 10     |
| DHVBRL0104 | 442,314 | 6,493,152 | 403 | BRL006304 | 5    | 5.5  | 0.5    | 0.5    | 0.5    | 0.02   | 5      | 22     | 5      | 805   | 6      |
| DHVBRL0159 | 441,443 | 6,493,638 | 392 | BRL007261 | 8    | 8.5  | 3      | 6      | 10     | 0.02   | 4      | 66     | 5      | 535   | 1      |
| DHVBRL0160 | 441,519 | 6,493,636 | 392 | BRL007244 | 9    | 9.5  | 3      | 39     | 15     | 0.02   | 2      | 90     | 5      | 485   | 10     |
| DHVBRL0161 | 441,601 | 6,493,626 | 390 | BRL007224 | 12   | 12.5 | 2      | 28     | 13     | 0.02   | 2      | 70     | 5      | 535   | 12     |
| DHVBRL0177 | 441,122 | 6,493,793 | 370 | BRL003232 | 11.5 | 12   | 1      | 6      | 7      | 0.02   | 2      | 52     | 5      | 525   | 24     |
| DHVBRL0178 | 441,200 | 6,493,790 | 378 | BRL007054 | 10.5 | 11   | 1      | 42     | 12     | 0.02   | 2      | 122    | 5      | 395   | 14     |
| DHVBRL0179 | 441,278 | 6,493,785 | 387 | BRL007070 | 7.5  | 8    | 0.5    | 23     | 8      | 0.02   | 4      | 76     | 10     | 495   | 12     |
| DHVBRL0213 | 441,440 | 6,493,962 | 396 | BRL006980 | 7.5  | 8    | 0.5    | 11     | 13     | 0.02   | 2      | 64     | 5      | 530   | 6      |
| DHVBRL0214 | 441,521 | 6,493,958 | 398 | BRL006964 | 14.5 | 15   | 3      | 42     | 13     | 0.02   | 4      | 90     | 5      | 440   | 10     |
| DHVBRL0215 | 441,606 | 6,493,955 | 398 | BRL006933 | 6.5  | 7    | 0.5    | 5      | 10     | 0.02   | 4      | 98     | 5      | 570   | 2      |
| DHVBRL0239 | 440,962 | 6,494,117 | 351 | BRL003074 | 10   | 10.5 | 0.5    | 8      | 4      | 0.02   | 5      | 50     | 10     | 845   | 28     |
| DHVBRL0241 | 441,114 | 6,494,120 | 365 | BRL006731 | 11.5 | 12   | 0.5    | 35     | 9      | 0.02   | 2      | 58     | 5      | 515   | 12     |
| DHVBRL0242 | 441,207 | 6,494,120 | 375 | BRL006745 | 6.5  | 7    | 3      | 19     | 7      | 0.02   | 4      | 72     | 5      | 475   | 16     |
| DHVBRL0243 | 441,282 | 6,494,113 | 381 | BRL006767 | 10   | 10.5 | 2      | 13     | 3      | 0.02   | 2      | 34     | 5      | 450   | 14     |
| DHVBRL0244 | 441,362 | 6,494,112 | 387 | BRL006785 | 8.5  | 9    | 0.5    | 31     | 9      | 0.02   | 2      | 80     | 5      | 395   | 74     |
| DHVBRL0245 | 441,440 | 6,494,105 | 388 | BRL006801 | 7    | 7.5  | 0.5    | 19     | 3      | 0.02   | 3      | 16     | 5      | 505   | 6      |
| DHVBRL0246 | 441,530 | 6,494,108 | 389 | BRL006823 | 10.5 | 11   | 2      | 44     | 16     | 0.02   | 0.5    | 86     | 5      | 420   | 22     |
| DHVBRL0247 | 441,599 | 6,494,117 | 387 | BRL006850 | 12.5 | 13   | 0.5    | 32     | 12     | 0.02   | 0.5    | 124    | 5      | 420   | 10     |
| DHVBRL0248 | 441,675 | 6,494,116 | 385 | BRL006865 | 7    | 7.5  | 2      | 4      | 9      | 0.02   | 5      | 36     | 5      | 1280  | 4      |
| DHVBRL0249 | 441,765 | 6,494,115 | 382 | BRL006888 | 10.5 | 11   | 4      | 43     | 12     | 0.02   | 6      | 54     | 5      | 540   | 6      |



| Hole ID    | East    | North     | RL  | Sample ID | From | То   | Au_ppb | Pd_ppb | Pt_ppb | Ag_ppm | As_ppm | Cu_ppm | Pb_ppm | V_ppm | Zn_ppm |
|------------|---------|-----------|-----|-----------|------|------|--------|--------|--------|--------|--------|--------|--------|-------|--------|
| DHVBRL0250 | 441,843 | 6,494,112 | 377 | BRL005577 | 11.5 | 12   | 0.5    | 5      | 11     | 0.02   | 1      | 54     | 5      | 520   | 8      |
| DHVBRL0264 | 440,402 | 6,494,278 | 374 | BRL001645 | 12   | 12.5 | 0.5    | 15     | 7      | 0.02   | 2      | 58     | 5      | 660   | 30     |
| DHVBRL0265 | 440,481 | 6,494,278 | 367 | BRL001673 | 13.5 | 14   | 0.5    | 35     | 5      | 0.02   | 0.5    | 76     | 5      | 315   | 16     |
| DHVBRL0266 | 440,559 | 6,494,277 | 362 | BRL001702 | 13.5 | 14   | 0.5    | 11     | 2      | 0.02   | 1      | 34     | 5      | 375   | 18     |
| DHVBRL0272 | 441,040 | 6,494,271 | 350 | BRL001827 | 12   | 12.5 | 2      | 7      | 2      | 0.5    | 3      | 58     | 5      | 685   | 58     |
| DHVBRL0273 | 441,127 | 6,494,296 | 356 | BRL001871 | 8    | 8.5  | 0.5    | 41     | 12     | 0.02   | 2      | 180    | 5      | 470   | 30     |
| DHVBRL0274 | 441,202 | 6,494,319 | 360 | BRL001886 | 6.5  | 7    | 0.5    | 11     | 2      | 0.02   | 2      | 34     | 5      | 445   | 12     |
| DHVBRL0306 | 442,397 | 6,491,717 | 367 | BRL007585 | 13   | 13.5 | 4      | 13     | 11     | 0.02   | 6      | 124    | 5      | 530   | 16     |
| DHVBRL0307 | 442,324 | 6,491,719 | 366 | BRL007609 | 11   | 11.5 | 34     | 6      | 2      | 0.02   | 5      | 66     | 5      | 130   | 10     |
| DHVBRL0308 | 442,239 | 6,491,718 | 366 | BRL007631 | 9.5  | 10   | 9      | 12     | 4      | 0.02   | 4      | 120    | 10     | 1130  | 32     |
| DHVBRL0379 | 442,397 | 6,492,356 | 373 | BRL009283 | 11   | 11.5 | 8      | 7      | 2      | 0.02   | 2      | 104    | 5      | 580   | 32     |
| DHVBRL0380 | 442,477 | 6,492,363 | 372 | BRL009308 | 11.5 | 12   | 108    | 28     | 5      | 0.02   | 4      | 56     | 5      | 280   | 18     |
| DHVBRL0381 | 442,558 | 6,492,361 | 372 | BRL009332 | 11   | 11.5 | 7      | 10     | 5      | 0.02   | 3      | 86     | 5      | 445   | 6      |
| DHVBRL0386 | 442,399 | 6,492,200 | 371 | BRL009449 | 10.5 | 11   | 31     | 13     | 2      | 0.02   | 5      | 44     | 5      | 160   | 10     |
| DHVBRL0387 | 442,320 | 6,492,200 | 372 | BRL009479 | 13.5 | 14   | 3      | 14     | 6      | 0.02   | 3      | 316    | 10     | 1710  | 96     |
| DHVBRL0388 | 442,239 | 6,492,196 | 374 | BRL009505 | 12   | 12.5 | 3      | 18     | 4      | 0.02   | 8      | 88     | 5      | 630   | 12     |
| DHVBRL0389 | 442,161 | 6,492,200 | 377 | BRL009527 | 10   | 10.5 | 0.5    | 9      | 3      | 0.02   | 5      | 18     | 5      | 290   | 4      |
| DHVBRL0390 | 442,083 | 6,492,199 | 383 | BRL009554 | 13   | 13.5 | 2      | 36     | 11     | 0.02   | 4      | 98     | 5      | 440   | 10     |
| DHVBRL0391 | 442,004 | 6,492,198 | 390 | BRL009571 | 7.5  | 8    | 2      | 32     | 17     | 0.02   | 5      | 48     | 5      | 320   | 8      |
| DHVBRL0397 | 442,239 | 6,492,039 | 372 | BRL009721 | 11   | 11.5 | 5      | 12     | 2      | 0.02   | 2      | 98     | 5      | 465   | 6      |
| DHVBRL0398 | 442,321 | 6,492,044 | 371 | BRL009746 | 11.5 | 12   | 2      | 20     | 7      | 0.02   | 2      | 470    | 10     | 1770  | 16     |
| DHVBRL0427 | 441,761 | 6,491,241 | 367 | BRL010438 | 12   | 12.5 | 2      | 17     | 10     | 0.02   | 4      | 46     | 5      | 405   | 12     |
| DHVBRL0442 | 442,481 | 6,491,241 | 353 | BRL010732 | 6    | 6.5  | 2      | 4      | 2      | 0.02   | 10     | 52     | 10     | 445   | 8      |
| DHVBRL0443 | 442,560 | 6,491,241 | 353 | BRL010745 | 5.5  | 6    | 60     | 12     | 8      | 0.02   | 5      | 80     | 5      | 360   | 8      |
| DHVBRL0444 | 442,639 | 6,491,240 | 353 | BRL010758 | 6    | 6.5  | 18     | 7      | 3      | 0.02   | 18     | 26     | 5      | 310   | 14     |
| DHVBRL0448 | 442,403 | 6,491,398 | 361 | BRL010838 | 10   | 10.5 | 2      | 10     | 5      | 0.02   | 3      | 88     | 5      | 475   | 8      |
| DHVBRL0449 | 442,320 | 6,491,401 | 360 | BRL010864 | 12   | 12.5 | 45     | 8      | 2      | 0.02   | 0.5    | 16     | 5      | 70    | 12     |



| Hole ID    | East    | North     | RL  | Sample ID | From | То   | Au_ppb | Pd_ppb | Pt_ppb | Ag_ppm | As_ppm | Cu_ppm | Pb_ppm | V_ppm | Zn_ppm |
|------------|---------|-----------|-----|-----------|------|------|--------|--------|--------|--------|--------|--------|--------|-------|--------|
| DHVBRL0450 | 442,239 | 6,491,398 | 361 | BRL010885 | 9.5  | 10   | 2      | 3      | 2      | 0.02   | 12     | 16     | 10     | 475   | 6      |
| DHVBRL0454 | 442,243 | 6,490,758 | 353 | BRL010952 | 11   | 11.5 | 2      | 17     | 14     | 0.02   | 6      | 92     | 5      | 200   | 38     |
| DHVBRL0455 | 442,640 | 6,490,757 | 355 | BRL010977 | 12   | 12.5 | 2      | 26     | 28     | 0.02   | 10     | 50     | 5      | 610   | 30     |
| DHVBRL0468 | 442,479 | 6,490,435 | 341 | BRL011199 | 9.5  | 10   | 10     | 17     | 10     | 0.02   | 54     | 118    | 10     | 410   | 64     |
| DHVBRL0469 | 442,637 | 6,490,281 | 342 | BRL011229 | 14   | 14.5 | 57     | 53     | 22     | 0.02   | 17     | 400    | 40     | 390   | 44     |
| DHVBRL0470 | 442,571 | 6,490,278 | 339 | BRL011238 | 3.5  | 4    | 3      | 8      | 7      | 0.02   | 90     | 50     | 5      | 1100  | 8      |
| DHVBRL0497 | 442,479 | 6,490,120 | 345 | BRL011843 | 9    | 9.5  | 15     | 16     | 19     | 0.02   | 169    | 118    | 5      | 460   | 70     |
| DHVBRL0498 | 442,563 | 6,490,124 | 341 | BRL011867 | 11   | 11.5 | 64     | 18     | 6      | 0.02   | 7      | 178    | 5      | 460   | 54     |
| DHVBRL0499 | 442,637 | 6,490,122 | 337 | BRL011885 | 8.5  | 9    | 14     | 28     | 37     | 0.02   | 20     | 260    | 20     | 435   | 36     |
| DHVBRL0500 | 442,644 | 6,489,960 | 341 | BRL011913 | 13   | 13.5 | 8      | 3      | 0.5    | 0.02   | 3      | 36     | 10     | 245   | 46     |
| DHVBRL0501 | 442,317 | 6,490,598 | 346 | BRL011928 | 7    | 7.5  | 85     | 3      | 3      | 0.02   | 11     | 126    | 10     | 520   | 20     |
| DHVBRL0502 | 442,243 | 6,490,597 | 349 | BRL011951 | 10.5 | 11   | 71     | 4      | 3      | 0.02   | 0.5    | 48     | 5      | 130   | 38     |
| DHVBRL0503 | 442,162 | 6,490,598 | 354 | BRL011971 | 9.5  | 10   | 5      | 6      | 5      | 0.02   | 0.5    | 138    | 5      | 395   | 28     |
| DHVBRL0504 | 442,560 | 6,490,919 | 346 | BRL011979 | 3.5  | 4    | 8      | 15     | 4      | 0.02   | 12     | 34     | 10     | 365   | 12     |
| DHVBRL0505 | 442,622 | 6,490,234 | 339 | BRL012000 | 9    | 9.5  | 48     | 16     | 8      | 0.02   | 17     | 54     | 20     | 190   | 78     |
| DHVBRL0514 | 442,155 | 6,491,080 | 360 | BRL012182 | 12.5 | 13   | 12     | 11     | 3      | 0.02   | 3      | 58     | 5      | 320   | 12     |
| DHVBRL0515 | 442,083 | 6,491,085 | 362 | BRL012210 | 13.5 | 14   | 3      | 33     | 28     | 0.02   | 4      | 98     | 10     | 210   | 22     |
| DHVBRL0516 | 441,999 | 6,491,079 | 365 | BRL012241 | 14   | 14.5 | 3      | 21     | 17     | 0.02   | 6      | 122    | 5      | 285   | 22     |
| DHVBRL0519 | 442,159 | 6,490,921 | 361 | BRL012300 | 7    | 7.5  | 0.5    | 8      | 13     | 0.02   | 5      | 100    | 5      | 630   | 10     |
| DHVBRL0520 | 442,238 | 6,490,920 | 356 | BRL012323 | 10.5 | 11   | 2      | 37     | 21     | 0.02   | 4      | 108    | 5      | 695   | 26     |
| DHVBRL0521 | 442,315 | 6,490,917 | 351 | BRL012341 | 8    | 8.5  | 2      | 6      | 4      | 0.02   | 3      | 44     | 5      | 320   | 6      |

• Grid: GDA94-50.

• All vacuum holes drilled vertically: dip -90, azimuth 0.

• Au, Pd, Pt by ultratrace FA003 fire assay, Ag and As by Ultratrace ICP302 chemical analysis and Cu, Pb, V, Zn by Ultratrace ICP102 Chemical analysis.



Appendix 2

# JORC Code, 2012 Edition – Table 1 report template

### **Section 1 Sampling Techniques and Data**

(Criteria in this section apply to all succeeding sections.)

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | <ul> <li>Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> <li>Aspects of the determination of mineralisation that are Material to the Public Report.</li> <li>In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.</li> </ul> | <ul> <li>The Fortuna Bauxite Project was drilled by Bauxite Resources Limited ("BRL" now Australian Silica Quartz Group ASX: ASQ) with results, including JORC 2012 Tables, released to the market on 26 June 2014.</li> <li>Vacuum drilling used to generate samples generally at 0.5m intervals. Whole samples were taken when sample return was less than 2kg.</li> <li>Sampling and QAQC procedures were carried out to industry standards.</li> <li>BRL attests to sample representivity in the 26 June 2016 announcement, and Lithium Australia believes that the results are "fit for purpose", being exploration level geochemistry.</li> <li>Approximately 520 end-of-hole samples relevant to this announcement were analysed by Ultratrace Laboratories, Perth for As, Cu, V, Zn, Pb and Ag by 4 acid, ICP determination and for Au, Pt and Pd by fire assay.</li> <li>The information reported herein is from WAMEX A101004.</li> </ul> |
| Drilling<br>techniques | Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast,<br>auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard<br>tube, depth of diamond tails, face-sampling bit or other type, whether core<br>is oriented and if so, by what method, etc).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • All Drilling was undertaken using a tractor mounted vacuum drill rig utilising a 45mm drill bit ("VAC").                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |



| Drill sample<br>recovery                                | Method of recording and assessing core and chip sample recoveries and<br>results assessed.<br>Measures taken to maximise sample recovery and ensure representative<br>nature of the samples.<br>Whether a relationship exists between sample recovery and grade and<br>whether sample bias may have occurred due to preferential loss/gain of<br>fine/coarse material.                                                                                                                                                                                                                                                                                                            | <ul> <li>All samples were weighed. This provides an indirect record of sample recovery.</li> <li>All VAC samples were visually checked for recovery, moisture and contamination.</li> <li>No relationship exists between sample recovery and grade.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Logging                                                 | Whether core and chip samples have been geologically and geotechnically<br>logged to a level of detail to support appropriate Mineral Resource<br>estimation, mining studies and metallurgical studies.<br>Whether logging is qualitative or quantitative in nature. Core (or costean,<br>channel, etc.) photography.<br>The total length and percentage of the relevant intersections logged.                                                                                                                                                                                                                                                                                    | <ul> <li>All holes were field logged by company (BRL) supervised geologists.<br/>Weathering, lithology, alteration and mineralogy information were recorded.</li> <li>No diamond core was drilled.</li> <li>All drill holes were logged in full.</li> <li>Logging was qualitative in nature</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sub-sampling<br>techniques and<br>sample<br>preparation | If core, whether cut or sawn and whether quarter, half or all core taken.<br>If non-core, whether riffled, tube sampled, rotary split, etc and whether<br>sampled wet or dry.<br>For all sample types, the nature, quality and appropriateness of the sample<br>preparation technique.<br>Quality control procedures adopted for all sub-sampling stages to<br>maximise representivity of samples.<br>Measures taken to ensure that the sampling is representative of the in situ<br>material collected, including for instance results for field duplicate/second-<br>half sampling.<br>Whether sample sizes are appropriate to the grain size of the material<br>being sampled. | <ul> <li>All 0.5m VAC samples are collected at the rig.</li> <li>Typically, entire samples were analysed, however those weighing more than 2kg were split using a twin riffle splitter (50:50) used at the rig.</li> <li>All samples were dry.</li> <li>Samples were first submitted to Nagrom Laboratories in Perth for analysis. Samples at Nagrom were dried in a convection oven for 12 hours at 105°C. Dried samples were weighed to determine that they were less than 2kg and any overweight samples were crushed to -6.3mm if necessary then split to less than 2kg. Samples were then pulverised in a vibrating disc LM-5 pulveriser to produce a 150µm pulp. These pulps were split into 100g samples for retention and analysis.</li> <li>Field QC procedures involved the use of certified reference materials (1 in 40), and field duplicates (1 in 20 for samples &gt;2kg in weight). The field duplicates have accurately reflected the original assay. Recognised laboratories have been used for analysis of samples.</li> <li>The standard sampling procedure used by BRL is to submit the entire sample to Nagrom for analysis. Samples were only split at the rig when the sample weight exceeded 2kg.</li> <li>A twin riffle splitter is used to collect a sample for analysis with the remainder dropped on the ground. Field duplicates are collected from these split samples at a rate of 1:20.</li> </ul> |



|                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sample sizes are considered fit for purpose.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Quality of<br>assay data and<br>laboratory<br>tests | The nature, quality and appropriateness of the assaying and laboratory<br>procedures used and whether the technique is considered partial or total.<br>For geophysical tools, spectrometers, handheld XRF instruments, etc, the<br>parameters used in determining the analysis including instrument make<br>and model, reading times, calibrations factors applied and their derivation,<br>etc.<br>Nature of quality control procedures adopted (e.g. standards, blanks,<br>duplicates, external laboratory checks) and whether acceptable levels of<br>accuracy (i.e. lack of bias) and precision have been established. | <ul> <li>Samples were initially analysed at Nagrom Laboratories, Perth by Fourier-Transform Infrared (FTIR). Samples returning greater than or equal to 23% available alumina subsequently underwent low temperature caustic analysis (148°) bomb digestion (BOMB) for analysis by ICP-OES using 1.0 ± 0.04g samples to determine available alumina and reactive silica.</li> <li>End of hole sample pulps (representing saprolite beneath the bauxite horizon) from approximately 520 drill holes were further analysed by Ultratrace for Au, Pt and Pd (FA-003) using a 50g charge Fire Assay, plus Ag, As (ICP_302), Cu, Pb, V and Zn (ICP_102) by a mixed acid digest and ICP finish. The results were provided to Mercator Metals Pty Ltd and then Lithium Australia NL as SIF and CSV files as received from Nagrom or Ultratrace. Data is recorded in WAMEX A101004.</li> <li>No geophysical tools were used to determine any element concentrations used in this resource estimate.</li> <li>Laboratory QAQC includes the use of internal standards using certified reference material, laboratory duplicates and pulp repeats. The QAQC results confirm the suitability of the drilling data as fit for purpose, being geochemical indicators for further prospecting.</li> </ul> |
| Verification of<br>sampling and<br>assaying         | The verification of significant intersections by either independent or<br>alternative company personnel.<br>The use of twinned holes.<br>Documentation of primary data, data entry procedures, data verification,<br>data storage (physical and electronic) protocols.<br>Discuss any adjustment to assay data.                                                                                                                                                                                                                                                                                                            | <ul> <li>No additional checks have been undertaken as the samples are for early stage mineral prospecting and are fit for purpose for the stage of the project.</li> <li>Original result files have been backed up, with collated spreadsheets dispersed to allow data analysis.</li> <li>No adjustments have been made to assay data.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Location of<br>data points                          | Accuracy and quality of surveys used to locate drill holes (collar and down-<br>hole surveys), trenches, mine workings and other locations used in Mineral<br>Resource estimation.<br>Specification of the grid system used.<br>Quality and adequacy of topographic control.                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Sample locations picked up with hand-held Garmin GPSmap 62sc, with approximately 3-5m accuracy, which is sufficient for first pass pegmatite mapping.</li> <li>All locations recorded in MGA 94 Zone 51.</li> <li>Topographic locations interpreted from GPS pickups (barometric altimeter) and field observations. Adequate for first pass pegmatite mapping.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |



| Data spacing<br>and<br>distribution                              | Data spacing for reporting of Exploration Results.<br>Whether the data spacing and distribution is sufficient to establish the<br>degree of geological and grade continuity appropriate for the Mineral<br>Resource and Ore Reserve estimation procedure(s) and classifications<br>applied.<br>Whether sample compositing has been applied.                                          | • | Vacuum drill holes were generally on an approximate 150x80m grid. Bottom<br>of hole samples reported herein were to provide geochemical information, not<br>material for resource or reserve calculations.<br>Sample compositing was not applied. |
|------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Orientation of<br>data in relation<br>to geological<br>structure | Whether the orientation of sampling achieves unbiased sampling of<br>possible structures and the extent to which this is known, considering the<br>deposit type.<br>If the relationship between the drilling orientation and the orientation of<br>key mineralised structures is considered to have introduced a sampling<br>bias, this should be assessed and reported if material. | • | The density and orientation of sample points is considered "fit-for-purpose".                                                                                                                                                                     |
| Sample<br>security                                               | The measures taken to ensure sample security.                                                                                                                                                                                                                                                                                                                                        | • | Samples were securely packaged when transported to ensure safe arrival at assay facility. Samples continue to be securely stored.                                                                                                                 |
| Audits or<br>reviews                                             | The results of any audits or reviews of sampling techniques and data.                                                                                                                                                                                                                                                                                                                | • | None considered necessary at this stage of the exploration.                                                                                                                                                                                       |



### **Section 2 Reporting of Exploration Results**

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status | <ul> <li>Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.</li> <li>The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.</li> </ul>                                                                                                                                                                                                                                                                                          | <ul> <li>The results reported in this announcement are from within a granted retention licence, R70/59. Registered Title is held by Mercator Metals Pty Ltd. Yankuang Resources Pty Ltd holds the rights to Bauxite within the Retention Licence.</li> <li>The Wundowie Project is located about 60km east of Perth in WA.</li> <li>Retention Licence R70/59 is in good standing. Conditions that apply to the tenement are listed on the DMIRS 'Mineral Titles On-line' service. The releasing party is not aware of any additional impediments exist.</li> </ul> |
| Exploration<br>done by other<br>parties          | Acknowledgment and appraisal of exploration by other parties.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <ul> <li>Other than the work of Bauxite Resources Limited, no prior work is<br/>acknowledged herein.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Geology                                          | Deposit type, geological setting and style of mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Archaean-aged Mafic-hosted nickel-copper-platinum group metal<br>mineralisation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Drill hole<br>Information                        | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | • Refer to Appendix 1, Tables 1 and 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |



| Data              | In reporting Exploration Results, weighting averaging techniques, maximum      | • | Not applicable. Bottom of hole sample results reported as individual   |
|-------------------|--------------------------------------------------------------------------------|---|------------------------------------------------------------------------|
| aggregation       | and/or minimum grade truncations (eg cutting of high grades) and cut-off       |   | samples without modification.                                          |
| methods           | grades are usually Material and should be stated.                              |   |                                                                        |
|                   | Where aggregate intercepts incorporate short lengths of high grade results     |   |                                                                        |
|                   | and longer lengths of low grade results, the procedure used for such           |   |                                                                        |
|                   | aggregation should be stated and some typical examples of such                 |   |                                                                        |
|                   | aggregations should be shown in detail.                                        |   |                                                                        |
|                   | The assumptions used for any reporting of metal equivalent values should be    |   |                                                                        |
|                   | clearly stated.                                                                |   |                                                                        |
| Relationship      | These relationships are particularly important in the reporting of Exploration | • | Not applicable. Bottom of hole sample results reported as individual   |
| between           | Results.                                                                       |   | samples providing a 2-dimensional data spread. They do not provide any |
| mineralisation    | If the geometry of the mineralisation with respect to the drill hole angle is  |   | guidance for geometry.                                                 |
| widths and        | known, its nature should be reported.                                          |   |                                                                        |
| intercept lengths | If it is not known and only the down hole lengths are reported, there should   |   |                                                                        |
|                   | be a clear statement to this effect (eg 'down hole length, true width not      |   |                                                                        |
|                   | known').                                                                       |   |                                                                        |
| Diagrams          | Appropriate maps and sections (with scales) and tabulations of intercepts      | • | Refer to maps within the text and Appendix 1 of the Announcement.      |
|                   | should be included for any significant discovery being reported These should   |   |                                                                        |
|                   | include, but not be limited to a plan view of drill hole collar locations and  |   |                                                                        |
|                   | appropriate sectional views.                                                   |   |                                                                        |
| Balanced          | Where comprehensive reporting of all Exploration Results is not practicable,   | • | A selection of results is presented in Appendix 1, Table 2.            |
| reporting         | representative reporting of both low and high grades and/or widths should      |   |                                                                        |
|                   | be practiced to avoid misleading reporting of Exploration Results.             |   |                                                                        |



| Other            | Other exploration data, if meaningful and material, should be reported         | • | All meaningful & material exploration data has been reported.                                           |
|------------------|--------------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------|
| substantive      | including (but not limited to): geological observations; geophysical survey    |   |                                                                                                         |
| exploration data | results; geochemical survey results; bulk samples – size and method of         |   |                                                                                                         |
|                  | treatment; metallurgical test results; bulk density, groundwater, geotechnical |   |                                                                                                         |
|                  | and rock characteristics; potential deleterious or contaminating substances.   |   |                                                                                                         |
| Further work     | The nature and scale of planned further work (eg tests for lateral extensions  |   | The next programs of work will include soil geochemistry, followed by, if warranted, ground EM surveys. |
|                  | or depth extensions or large-scale step-out drilling).                         |   |                                                                                                         |
|                  | Diagrams clearly highlighting the areas of possible extensions, including the  |   |                                                                                                         |
|                  | main geological interpretations and future drilling areas, provided this       |   |                                                                                                         |
|                  | information is not commercially sensitive.                                     |   |                                                                                                         |