

High impact, expanded 45,000 metre drilling program commences at Hualilan Gold Project

Highlights

- First two additional rigs on site and drilling commenced on a 45,000 metre drill program.
- Planned 35,000 metre program has been expanded to 45,000 metres at no additional cost due to increased competition between contractors resulting in lower rates.
- Third additional rig due to arrive on site this week with a drilling contract for two further rigs currently being finalised.
- The Company anticipates that it will have a minimum of five drill rigs on site completing approximately 40 holes monthly for the now expanded 45,000 metre drill program.
- High resolution ground magnetic survey completed with the preliminary review of the data, indicating a number of new targets and likely extensions to the existing mineralisation.

Challenger Exploration (ASX: CEL) ("CEL" or the "Company") is pleased to provide an update on the Company's progress on its high impact exploration program at its flagship Hualilan Gold Project ("Project"), located in San Juan Province Argentina.

Following the recent \$20M placement, CEL has rapidly advanced exploration on the Hualilan Gold Project, with the first two new drill rigs on site and drilling, and three additional drill rigs to arrive on site over the coming weeks. The drilling contract allows the Company the option of adding a third rig which is capable of drilling low angle holes, and CEL aims to utilise this rig after the completion of the final 1,000 metres of the current 7,500 metre program. Another rig, from an alternate contractor, is expected to arrive on site later this week, and the Company is finalising a contract for two further rigs with a leading San Juan based drilling contractor.

The Company will have five to six rigs on site for the majority of the expanded 45,000 metre program and expects to complete approximately 6,000 metres, for 40 holes, monthly over the next 7-8 months.

Managing Director, Kris Knauer commented on the program: "This will be the first time Hualilan has had an aggressive and systematic drilling program to unlock the true potential of the Project. We received strong competition for the drill contracts, resulting in a significant reduction in rates, which has allowed the Company to increase the program to 45,000 metres for the same budget originally allocated to the 35,000 metre program. Importantly, we have used all three successful contractors at Hualilan previously and all achieved excellent core recoveries and good drilling rates."

Kris Knauer continued: "With the high impact drilling program underway, and to ensure that we do not create a back-log drilling results, two separate labs will undertake the assays. In our commitment to delivering updates to our shareholders, we have also employed a number of new technical staff on site at San Juan including three geologists and a second drilling supervisor."

The first 10,000 metres of the expanded 45,000 metre program (Figure 1 and Figure 2) will focus on:

- Extending the high grade mineralisation at Cerro Norte south from drill hole GNDD-035 (previously announced), which returned 5.8 metres at 9.5 g/t gold, 29 g/t silver and 3.5% zinc, and extended Cerro Norte 100 metres south along strike.
- Extending the new intrusion-hosted gold discovery south along strike from the GNDD-025 discovery hole (previously announced), which returned 88 metres at 0.94 g/t gold, 2.2 g/t silver, 0.10% zinc in dacite porphyry with the hole ending in 1 g/t gold.
- Extending the intrusion-hosted mineralisation north from GNDD-032 (previously announced 116 metres at 1.1 g/t gold, 4.0 g/t silver, 0.2 % zinc) north into an area with extensive surface veining and alteration in porphyry dacite in outcrop.
- Extending and infilling the high-grade Magnata Vein mineralisation along strike.
- Extending the mineralisation at Sentazon along strike and both up and down dip.

The current 7,500 metre program will be completed in approximately 30 days, with a total of 80 holes drilled. Results have been released for the first 15 of these holes and in recent weeks, and the Company has seen the turnaround time for assays reduced from over 6 weeks to 3-4 weeks, with timeframes continuing to improve.

Additionally the Company has completed Stage 1 of the acquisition of approximately 20 square kilometres of 40 metre spaced ground magnetics. The survey was designed to assist in providing geological and structural control to better target extensions of the existing mineralisaton and recent intrusive-hosted gold discovery. The data is currently being processed prior to more detailed interpretation, with the raw data indicating a number of anomalies, believed to relate to previously unrecognised intrusive systems, which may be mineralised.

This announcement was approved by the board.

For further information contact:

Kris Knauer
Managing Director
+61 411 885 979
kris.knauer@challengerex.com

Scott Funston
Chief Financial Officer
+61 413 867 600
scott.funston@challengerex.co

Media Enquiries
Jane Morgan
+ 61 405 555 618

scott.funston@challengerex.com jm@janemorganmanagement.com.au

Photo - new Major Drilling diamond core rig on site and drilling hole GNDD-073 at Sentazon

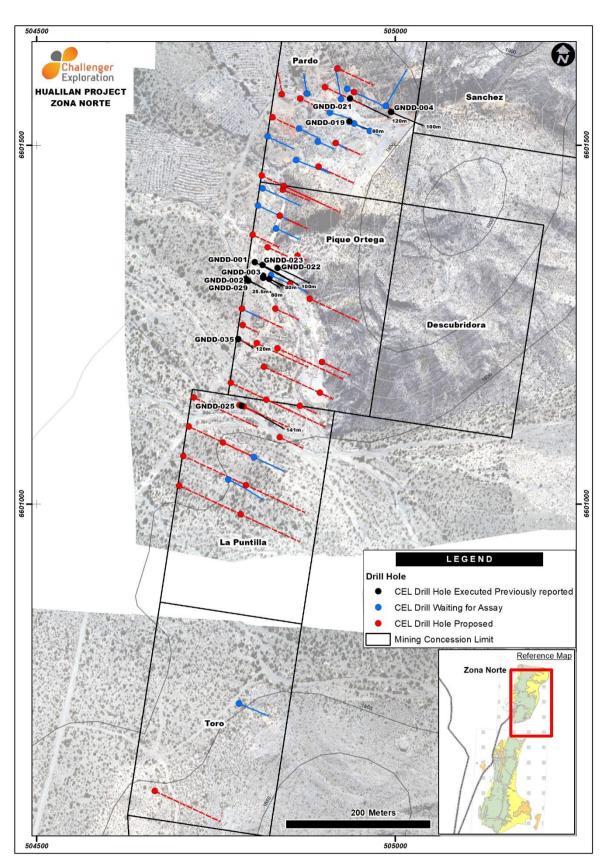


Figure 1 - Showing proposed and current drilling Cerro Norte

Challenger Exploration Limited ACN 123 591 382 ASX: CEL Website: www.challengerex.com **Issued Capital** 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

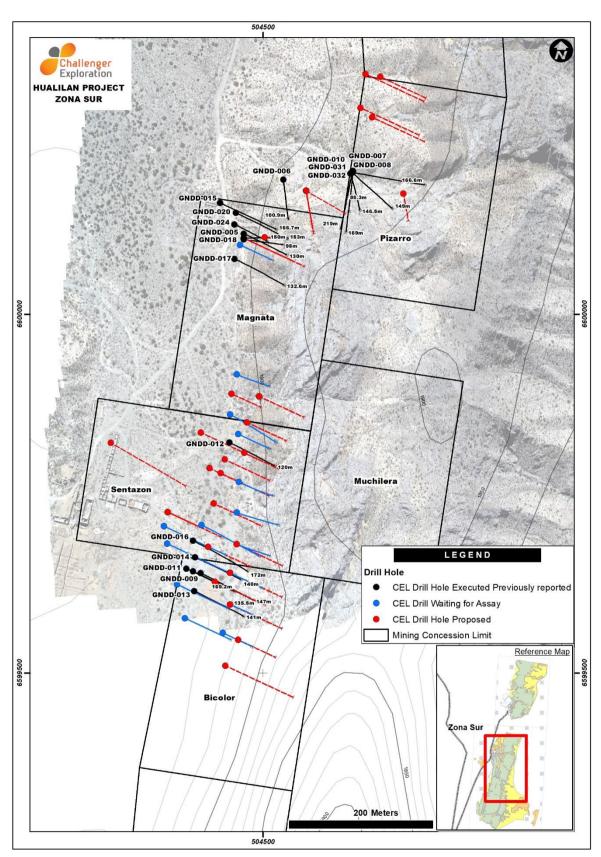


Figure 2 - Showing proposed and current drilling Cerro Sur

Challenger Exploration Limited ACN 123 591 382 ASX: CEL

ASX: CEL Website: www.challengerex.com **Issued Capital** 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

About Challenger Exploration

Challenger Exploration Limited's (ASX: CEL) aspiration is to become a globally significant gold producer. The Company is developing two complementary gold/copper projects in South America. The strategy for the Hualilan Gold project is for it to provide a high-grade low capex operation in the near term. This underpins CEL with a low risk, high margin source of cashflow while it prepares for a much larger bulk gold operation in Ecuador.

- 1. **Hualilan Gold Project**, located in San Juan Province Argentina, is a near term development opportunity. It has extensive historical drilling with over 150 drill-holes and a non-JORC historical resource ⁽²⁾ of 627,000 Oz @ 13.7 g/t gold which remains open in most directions. The project was locked up in a dispute for the past 15 years and as a consequence had seen no modern exploration until CEL acquired the project in 2019. Results from CEL's first drilling program included 6.1m @ 34.6 g/t Au, 21.9 g/t Ag, 2.9% Zn, 6.7m @ 14.3 g/t Au, 140 g/t Ag, 7.3% Zn and 10.3m @ 10.4 g/t Au, 28 g/t Ag, 4.6% Zn. This drilling intersected high-grade gold over almost 2 kilometres of strike and extended the known mineralisation along strike and at depth in multiple locations. CEL's 2020 program will include 7,500 metres of drilling, metallurgical test work of key ore types, and an initial JORC Compliant Resource which will allow an economic review.
- 2. **El Guayabo Project** covers 35 sqkms in southern Ecuador and was last drilled by Newmont Mining in 1995 and 1997 targeting gold in hydrothermal breccias. Historical drilling has demonstrated potential to host significant gold and associated copper and silver mineralisation. Historical drilling has returned a number of intersections of plus 100m of intrusion related breccia and vein hosted mineralisation. The Project has multiple targets including breccia hosted mineralization, an extensive flat lying late stage vein system and an underlying porphyry system target neither of which has been drill tested. CEL's first results confirm the discovery of large-scale gold system with over 250 metres of bulk gold mineralisation encountered in drill hole ZK-02 which contains a significant high-grade core of 134m at 1.0 g/t gold and 4.1 g/t silver including 63m at 1.6 g/t gold and 5.1 g/t silver.

Foreign Resource Estimate Hualilan Project

La Mancha Resources 2003 foreign resource estimate for the Hualilan Project ^									
Category	Tonnes	Gold Grade	Contained Gold						
catego. y	(kt)	(g/t)	(koz)						
Measured	218	14.2	100						
Indicated	226	14.6	106						
Total of Measured & Indicated	445	14.4	206						
Inferred	977	13.4	421						
Total of Measured, Indicated & Inferred	1,421	13.7	627						

[^] Source: La Mancha Resources Toronto Stock Exchange Release dated 14 May 2003 -Independent Report on Gold Resource Estimate. Rounding errors may be present. Troy ounces (oz) tabled here

#1 For details of the foreign non-JORC compliant resource and to ensure compliance with LR 5.12 please refer to the Company's ASX Release dated 22 February 2019. These estimates are foreign estimates and not reported in accordance with the JORC Code. A competent person has not done sufficient work to clarify the foreign estimates as a mineral resource in accordance with the JORC Code. It is uncertain that following evaluation and/or further exploration work that the foreign estimate will be able to be reported as a mineral resource. The company is not in possession of any new information or data relating to the foreign estimates that materially impact on the reliability of the estimates that materially impacts on the reliability of the estimates or CEL's ability to verify the foreign estimates estimate as minimal resources in accordance with Appendix 5A (JORC Code). The company confirms that the supporting information provided in the initial market announcement on February 22, 2019 continues to apply and is not materially changed

Competent Person Statement – Exploration results

The information in this release provided under ASX Listing Rules 5.12.2 to 5.12.7 is an accurate representation of the available data and studies for the material mining project. The information that relates to sampling techniques and data, exploration results and geological interpretation has been compiled Dr Stuart Munroe, BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as a Competent Person as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

Competent Person Statement – Foreign Resource Estimate

The information in this release provided under ASX Listing Rules 5.12.2 to 5.12.7 is an accurate representation of the available data and studies for the material mining project. The information that relates to Mineral Resources has been compiled by Dr Stuart Munroe , BSc (Hons), PhD (Structural Geology), GDip (AppFin&Inv) who is a full-time employee of the Company. Dr Munroe is a Member of the AusIMM. Dr Munroe has over 20 years' experience in the mining and metals industry and qualifies as a Competent Person as defined in the JORC Code (2012).

Dr Munroe and has sufficient experience which is relevant to the style of mineralisation and type of deposits under consideration to qualify as Competent Person as defined in the 2012 Edition of the JORC Code for Reporting of, Mineral Resources and Ore Reserves. Dr Munroe consents to the inclusion in this report of the matters based on information in the form and context in which it appears. The Australian Securities Exchange has not reviewed and does not accept responsibility for the accuracy or adequacy of this release.

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data - Hualilan Project

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	For historic exploration data, there is little information provided by previous explorers to detail sampling techniques. Drill core was cut with a diamond saw longitudinally and one half submitted for assay. Assay was generally done for Au. In some drill campaigns, Ag and Zn were also analysed. There is limited multielement data available. No information is available for RC drill techniques and sampling. For CEL drilling, diamond core (HQ3) was cut longitudinally on site using a diamond saw. Samples lengths are from 0.5m to 2.0m in length (average 1m), taken according to lithology, alteration, and mineralization contacts. For CEL reverse circulation (RC) drilling, 2-4 kg sub-samples from each 1m drilled are collected from a face sample recovery cyclone mounted on the drill machine. Core samples were crushed to approximately 85% passing 2mm. A 500g or a 1 kg sub-sample was taken and pulverized to 85% passing 75µm. A 50g charge was analysed for Au by fire assay with AA determination. Where the fire assay grade is > 10 g/t gold, a 50g charge was analysed for Au by Fire assay with gravimetric determination. A 10g charge was analysed for 48 elements by 4-acid digest and ICP-MS determination. Elements determined were Ag, As, Ba, Be, Bi, Ca, Ce, Co, Cr, Cs, Cu, Fe, Ga, Ge, Hf, In, K, La, Li, Mg, Mn, Mo, Na, Nb, Ni, P, Pb, Rb, Re, S, Sb Sc, Se, Sn, Sr, Ta, Te, Th, Ti, Tl, U, V, W, Y, Zn and Zr. Ag > 100 g/t, Zn, Pb and Cu > 10,000 ppm and S > 10% were re-analysed by the same method using a different calibration. Sample intervals were selected according to geological boundaries. There was no coarse gold observed in any of the core.

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

JORC Code explanation Criteria Commentary

Drilling techniques

Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).

Collar details for diamond core drilling (DD) and reverse circulation (RC) historic drilling campaigns is provided below from archival data cross checked with drill logs and available plans and sections where available. Collars shown below are in WGS84, zone 19s which is the standard projection used by CEL for the Project. Collar locations have been check surveyed using differential GPS (DGPS) by CEL to verify if the site coincides with a marked collar or tagged drill site. In most cases the drill collars coincide with historic drill site, some of which (but not all) are tagged. The collar check surveys were reported in POSGAR (2007) projection and converted to WGS84.

Hole_id	Туре	East (m)	North (m)	Elevation (m ASL)	Azimuth (°)	Dip (°)	Depth (m)	Date
AG01	DD	2504908.0	6602132.3	1807.6	000	-90	84.5	Jan-84
AG02	DD	2504846.5	6602041.1	1803.4	112	-70	60.0	Jan-84
AG03	DD	2504794.5	6601925.6	1803.1	080	-55	110.0	Jan-84
AG04	DD	2504797.1	6602065.5	1806.6	000	-90	168.0	Jan-84
AG05	DD	2504843.5	6601820.3	1798.1	000	-90	121.8	Jan-84
AG06	DD	2504781.9	6601922.8	1803.8	000	-90	182.2	Jan-84
AG07	DD	2504826.3	6601731.0	1796.9	000	-90	111.5	Jan-84
AG08	DD	2504469.8	6600673.7	1779.7	090	-57	80.2	Jan-84
AG09	DD	2504455.7	6600458.5	1772.6	000	-90	139.7	Jan-84
AG10	DD	2504415.5	6600263.9	1767.7	000	-90	200.8	Jan-84
AG11	DD	2504464.8	6600566.5	1775.9	000	-90	141.0	Jan-84
AG12	DD	2504847.6	6602161.7	1808.8	000	-90	171.4	Jan-84
AG13	DD	2504773.6	6601731.3	1798.7	000	-90	159.5	Jan-84
AG14	DD	2504774.7	6601818.8	1801.2	000	-90	150.2	Jan-84
AG15	DD	2504770.7	6601631.4	1796.7	000	-90	91.3	Jan-84
AG16	DD	2504429.5	6600665.8	1779.8	000	-90	68.8	Jan-84

Hole_id	Туре	East (m)	North (m)	Elevation (m ASL)	Azimuth (°)	Dip (°)	Depth (m)	Date
MG01	RC	2504825.5	6602755.4	1800.0	100	-60	51.0	Jan-95

Challenger Exploration Limited ACN 123 591 382

ASX: CEL Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact

Criteria	JORC Code explanation	Commentar	У							
		MG01A	RC	2504810.5	6602755.4	1800.0	100	-60	116.0	Jan-95
		MG02	RC	2504835.5	6602805.4	1800.0	100	-60	90.0	Jan-95
		MG03	RC	2504853.5	6602880.4	1795.0	100	-60	102.0	Jan-95
		MG04	RC	2504843.5	6602975.4	1800.0	100	-60	120.0	Jan-95
		MG05	RC	2506130.5	6605055.4	1750.0	85	-60	96.0	Jan-95
		MG06	RC	2506005.5	6605115.4	1750.0	100	-60	90.0	Jan-95
		MG07	RC	2506100.5	6605015.4	1750.0	100	-60	96.0	Jan-95
		MG08	RC	2505300.5	6603070.4	1740.0	95	-70	66.0	Jan-95
		MG09	RC	2505285.5	6603015.4	1740.0	0	-90	102.0	Jan-95
		MG10	RC	2505025.5	6600225.4	1724.0	100	-60	120.0	Jan-95
		MG11	RC	2503380.5	6598560.5	1740.0	100	-60	78.0	Jan-95
		MG12	RC	2503270.5	6597820.5	1740.0	100	-60	66.0	Jan-95
		Hole_id	Туре	East	North	Elevation (m ASL)	Azimuth (°)	Dip	Depth	Date
		Hua01	RC	(m) 2504845.3	(m) 6602041.2	1809.7	117	(°) -50	(m) 60.0	1999
		Hua01	RC	2504889.5	6602041.2	1809.7	125	-50 -55	45.0	1999
		Hua03	RC	2505003.3	6602158.6	1810.7	000	-90	100.0	1999
		Hua04	RC	2504873.3	6602169.1	1809.7	000	-90	100.0	1999
		Hua05	RC	2505003.2	6602152.6	1810.7	180	-60	100.0	1999
		Hua06	RC	2505003.3	6602161.6	1810.7	360	-60	100.0	1999
		Hua07	RC	2504967.7	6602153.2	1810.2	000	-90	100.0	1999
		Hua08	RC	2504973.2	6602153.7	1810.2	000	-90	13.0	1999
		Hua09	RC	2504940.7	6602150.3	1809.7	180	-60	100.0	1999
		Hua10	RC	2504941.8	6602156.8	1809.7	360	-60	100.0	1999
		Hua11	RC	2504913.3	6602167.4	1809.7	360	-60	88.0	1999
		Hua12	RC	2504912.8	6602165.9	1809.7	000	-90	100.0	1999
		Hua13	RC	2504912.3	6602156.9	1809.7	180	-60	90.0	1999
		Hua14	RC	2504854.3	6602168.2	1809.7	360	-60	100.0	1999
		Hua15	RC	2504854.8	6602166.2	1809.7	117	-60	100.0	1999
		Hua16	RC	2504834.2	6601877.8	1800.7	000	-90	100.0	1999

Challenger Exploration Limited ACN 123 591 382

ASX: CEL Website: www.challengerex.com Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact

Criteria	JORC Code explanation	Commenta	ry							
		Hua17	RC	2504865.9	6602449.8	1814.1	90	-50	42.0	1999
		Hua20	RC	2504004.1	6600846.4	1792.7	000	-90	106.0	1999
		Hua21	RC	2504552.9	6600795.0	1793.9	000	-90	54.0	1999
		Hole_id	Туре	East (m)	North (m)	Elevation (m ASL)	Azimuth (°)	Dip (°)	Depth (m)	Date
		DDH20	DD	2504977.3	6602133.3	1804.8	116	-54	49.1	1999-00
		DDH21	DD	2504978.3	6602118.3	1804.8	000	-90	88.6	1999-00
		DDH22	DD	2504762.9	6601587.1	1769.8	116	-65	66.0	1999-00
		DDH23	DD	2504920.4	6601994.3	1767.9	000	-90	58.8	1999-00
		DDH24	DD	2504821.0	6601938.8	1802.0	116	-80	100.3	1999-00
		DDH25	DD	2504862.6	6601964.5	1803.7	116	-74	49.2	1999-00
		DDH26	DD	2504920.4	6601975.3	1795.0	312	-60	80.3	1999-00
		DDH27	DD	2504752.7	6601565.1	1806.6	116	-60	43.2	1999-00
		DDH28	DD	2505003.6	6602174.3	1806.6	116	-50	41.7	1999-00
		DDH29	DD	2504964.1	6602136.6	1810.0	350	-52	113.5	1999-00
		DDH30	DD	2505004.1	6602156.3	1809.3	059	-85	62.1	1999-00
		DDH31	DD	2504897.6	6602112.7	1808.1	116	-75	41.4	1999-00
		DDH32	DD	2504939.4	6602139.2	1809.1	350	-51	100.7	1999-00
		DDH33	DD	2504939.4	6602139.2	1809.1	350	-65	62.9	1999-00
		DDH34	DD	2504826.5	6601920.2	1801.3	116	-70	69.4	1999-00
		DDH35	DD	2505003.9	6602156.7	1808.8	310	-85	174.6	1999-00
		DDH36	DD	2504637.5	6600777.3	1799.9	330	-50	45.5	1999-00
		DDH37	DD	2504826.5	6601920.2	1809.4	000	-90	121.0	1999-00
		DDH38	DD	2504820.8	6601912.2	1801.1	116	-75	67.7	1999-00
		DDH39	DD	2504820.8	6601912.2	1801.1	116	-81	90.7	1999-00
		DDH40	DD	2504832.3	6601928.1	1801.7	116	-70	85.7	1999-00
		DDH41	DD	2504837.8	6601937.5	1801.6	116	-70	64.2	1999-00
		DDH42	DD	2504829.2	6601952.5	1801.8	116	-60	65.1	1999-00
		DDH43 DDH44	DD DD	2504829.2 2504811.3	6601952.5 6601895.1	1801.8 1802.0	116 116	-70 -60	70.8 102.2	1999-00 1999-00

Challenger Exploration Limited ACN 123 591 382

ASX: CEL Website: www.challengerex.com Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact

Criteria	JORC Code explanation	Commentary	У							
		DDH45	DD	2504811.3	6601895.1	1802.0	116	-83	95.3	1999-00
		DDH46	DD	2504884.4	6601976.3	1805.9	116	-45	71.6	1999-00
		DDH47	DD	2504884.4	6601976.3	1805.9	116	-65	71.0	1999-00
		DDH48	DD	2504866.9	6601962.7	1803.1	116	-47	30.7	1999-00
		DDH49	DD	2504866.9	6601962.7	1803.1	116	-72	41.9	1999-00
		DDH50	DD	2504821.4	6601913.9	1801.1	116	-77	87.5	1999-00
		DDH51	DD	2504821.4	6601913.9	1801.1	116	-80	87.5	1999-00
		DDH52	DD	2504825.5	6601901.1	1800.9	116	-83	74.0	1999-00
		DDH53	DD	2504504.1	6600714.0	1788.7	090	-62	85.7	1999-00
		DDH54	DD	2504504.1	6600714.0	1788.7	090	-45	69.1	1999-00
		DDH55	DD	2504997.9	6602163.5	1808.6	360	-53	63.1	1999-00
		DDH56	DD	2504943.1	6602171.3	1810.5	360	-75	50.6	1999-00
		DDH57	DD	2504943.1	6602171.3	1810.5	000	-90	66.2	1999-00
		DDH58	DD	2504970.3	6602153.3	1809.1	360	-71	62.0	1999-00
		DDH59	DD	2504970.3	6602153.3	1809.1	000	-90	66.3	1999-00
		DDH60	DD	2504997.9	6602162.5	1809.0	360	-67	59.9	1999-00
		DDH61	DD	2504997.9	6602162.5	1809.0	000	-90	58.1	1999-00
		DDH62	DD	2504751.4	6601602.6	1789.2	170	-45	68.4	1999-00
		DDH63	DD	2504751.4	6601602.6	1789.2	170	-70	131.5	1999-00
		DDH64	DD	2504776.3	6601596.9	1789.1	170	-45	66.7	1999-00
		DDH65	DD	2504552.7	6600792.0	1793.8	194	-45	124.8	1999-00
		DDH66	DD	2504552.7	6600792.0	1793.8	194	-57	117.0	1999-00
		DDH67	DD	2504552.7	6600792.0	1793.8	194	-66	126.1	1999-00
		DDH68	DD	2504623.9	6600779.0	1800.7	000	-90	79.5	1999-00
		DDH69	DD	2504623.9	6600779.0	1800.7	194	-60	101.5	1999-00
		DDH70	DD	2504595.5	6600797.7	1798.1	190	-81	128.0	1999-00
		DDH71	DD	2504631.6	6600797.4	1799.0	194	-63	136.3	1999-00
		DDH72	DD	2504547.2	6600764.1	1799.6	194	-45	75.6	1999-00
		DDH73	DD	2504593.4	6600766.5	1807.5	190	-57	70.8	1999-00
		DDH74	DD	2504598.2	6600831.8	1795.3	190	-62	190.9	1999-00
		DDH75	DD	2504731.2	6600784.7	1821.4	194	-45	40.2	1999-00
		DDH76	DD	2504731.2	6600784.7	1821.4	180	-60	138.7	1999-00

Challenger Exploration Limited ACN 123 591 382

ASX: CEL Website: www.challengerex.com **Issued Capital** 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact

Criteria	JORC Code explanation	Commentar	у							
		DDH77	DD	2504734.1	6600785.0	1821.6	000	-90	85.6 1999-00	
		DDH78	DD	2504731.2	6600784.7	1821.4	180	-75	132.9 1999-00	
		DDH79	DD	2504721.6	6600790.1	1820.4	060	-70	38.6 1999-00	
										-
		Hole_id	Тур	East	North	Elevation	Azimuth	Dip	Depth	
			е	(m)	(m)	(m ASL)	(°)	(°)	(m)	
		03HD01A	DD	2504627.8	6600800.1	1798.4	180	-60	130.2	
		03HD02	DD	2504457.9	6600747.8	1782.9	180	-60	130.5	
		03HD03	DD	2504480.1	6600448.6	1774.0	360	-45	100.2	
		04HD04	DD	2504436.6	6600439.3	1773.4	360	-60	104.6	
		04HD05	DD	2504420.9	6600256.8	1769.5	110	-68	122.6	
		04HD06	DD	2504428.6	6600236.6	1768.1	110	-68	136.0	
		04HD07	DD	2504415.7	6600277.7	1769.0	100	-63	108.2	
		04HD08	DD	2504826.5	6601920.2	1801.3	116	-70 -70	70.0	
		04HD09 04HD10	DD	2504832.3 2504648.5	6601928.1 6600788.9	1801.7	116 205	-70	75.9	
		04HD10 04HD11	DD DD	2504648.5	6600428.3	1801.5 1773.6	205 075	-60 -62	120.0 95.1	
		04HD11 04HD12	DD	2504449.3	6600648.9	1779.6	360	-62 -60	93.1 77.4	
		04HD13	DD	2504434.5	6600646.6	1779.7	360	-60	74.0	
		04HD14	DD	2504461.1	6600748.4	1783.1	180	-70	130.6	
		04HD15	DD	2504449.9	6600646.2	1779.6	360	-64	160.0	
		04HD16C	DD	2504457.1	6600311.7	1770.3	195	-65	225.5	
		04HD17	DD	2504417.5	6600256.6	1769.5	110	-72	213.2	
		04HD18	DD	2504528.5	6600792.0	1791.9	170	-50	140.7	
		04HD19	DD	2504648.5	6600788.9	1801.5	205	-77	120.0	
		04HD20	DD	2504648.5	6600788.9	1801.5	205	-80	120.0	
		04HD21	DD	2504648.5	6600788.9	1801.5	205	-60	120.0	
		04HD23	DD	2504441.0	6600456.0	1772.5	075	-82	499.7	
		04HD24	DD	2504389.0	6600252.0	1766.5	090	-81	188.2	
		04HD25	DD	2504456.0	6600294.0	1768.5	155	-84	500.8	
		04HD26	DD	2504424.0	6600409.0	1771.5	180	-69	464.9	

Challenger Exploration Limited ACN 123 591 382

ASX: CEL Website: www.challengerex.com

imited Issued Capital
648.7m shares
86.6m options
ex.com 120m perf shares
16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact

Criteria	JORC Code explanation	Commentary							
		04HD27	DD	2504461.0	6600428.0	1773.0	100	-45	60.0
		04HD28	DD	2504461.0	6600428.0	1773.0	100	-60	63.7
		04HD29	DD	2504438.0	6600087.0	1764.5	108	-45	265.0
		04HD30	DD	2504421.0	6600044.0	1764.0	108	-45	128.2
		04HD31	DD	2504687.0	6601326.0	1794.0	045	-60	242.9
		04HD32	DD	2504828.0	6601916.0	1801.3	116	-70	68.4
		05HD33	DD	2505410.0	6601983.0	1765.0	000	-60	81.4
		05HD34	DD	2505451.0	6602079.0	1763.0	273	-60	269.0
		05HD35	DD	2504905.0	6601689.0	1794.0	140	-65	350.0
		05HD36	DD	2504880.0	6601860.0	1802.0	295	-70	130.0
		05HD37	DD	2504866.0	6601888.0	1797.0	295	-70	130.0
		05HD38	DD	2504838.0	6601937.0	1796.0	115	-70	70.0
		05HD39	DD	2504964.0	6602128.0	1814.0	030	-70	217.5
		05HD40	DD	2504964.0	6602128.0	1814.0	030	-50	150.0
		05HD41	DD	2504931.0	6602125.0	1812.0	022	-60	142.5
		05HD42	DD	2504552.7	6600791.5	1797.0	194	-57	120.0
		05HD43	DD	2504552.7	6600791.5	1797.0	194	-45	95.5
		05HD44	DD	2504603.0	6600799.0	1798.0	190	-61.5	130.5
		05HD45	DD	2504362.0	6600710.0	1767.0	088	-60	121.5
		05HD46	DD	2504405.0	6600282.0	1766.0	090	-75	130.7
		05HD47	DD	2504212.0	6599177.0	1729.0	065	-45	181.5
		05HD48	DD	2504160.0	6599164.0	1728.0	065	-60	100.7
		by Foraco Argo Drilling (Mend CEL drilling of drill rig set up	entina S loza). T reverse for reve	6.A. (Mendoza) he core has no circulation (RC erse circulation	and a trailer mo t been oriented c) drill holes is b drilling. Drilling	ounted Hydro . eing done usi g is being don	core drill m ng a track- e using a 5	nachine op mounted L .25 inch ha	ine that is operated erated by Energold M650 universal immer bit.

Challenger Exploration Limited ACN 123 591 382

ASX: CEL Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
			ar locations for drill h are surveyed with a l		•	-		
		Hole_id	East (m)	North (m)	Elevation (m)	Dip (°)	Azimuth (°)	Depth (m)
		GNDD001	504803.987	6601337.067	1829.289	-57	115	109.0
		GNDD002	504793.101	6601312.095	1829.393	-60	115	25.6
		GNDD002A	504795.405	6601311.104	1829.286	-60	115	84.5
		GNDD003	504824.427	6601313.623	1827.768	-70	115	90.2
		GNDD004	504994.416	6601546.302	1835.345	-60	115	100.0
		GNDD005	504473.042	6600105.922	1806.448	-55	090	110.0
		GNDD006	504527.975	6600187.234	1817.856	-55	170	100.9
		GNDD007	504623.738	6600196.677	1823.447	-68	190	86.3
		GNDD007A	504624.021	6600198.394	1823.379	-68	190	219.0
		GNDD008	504625.047	6600198.059	1823.457	-60	184	109.4
		GNDD008A	504625.080	6600199.718	1823.264	-60	184	169.0
		GNDD009	504412.848	6599638.914	1794.22	-55	115	147.0
		GNDD010	504621.652	6600196.048	1823.452	-68	165	146.5
		GNDD011	504393	6599645	1795	-64	115	169.2
		GNDD012	504453	6599821	1799	-55	115	120.0
		GNDD013	504404	6599614	1793	-58	112	141.0
		GNDD014	504405	6599661	1795	-59	114	140.0
		GNDD015	504440	6600155	1809	-62	115	166.7
		GNDD016	504402	6599684	1795	-60	115	172.0

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GNDD017	504460	6600077	1806	-55	115	132.6
		GNDD018	504473	6600112	1806	-60	115	130.0
		GNDD019	504936	6601533	1834	-70	115	80.0
		GNDD020	504462	6600141	1809	-58	115	153.0
		GNDD021	504937	6601565	1838	-60	115	120.0
		GNDD022	504836	6601329	1830	-60	113	100.0
		GNDD023	504815	6601333	1830	-55	117	100.0
		GNDD024	504460	6600125	1808	-70	115	150.0
		GNDD025	504786	6601137	1825	-60	115	141.0
		GNDD026	504815	6601440	1834	-55	115	100.0
		GNDD028	504827	6601319	1829	-57	115	100.0
		GNDD029	504792	6601314	1829	-71	115	120.2
		GNDD030	504792	6601314	1829	-60	115	148.0
		GNDD031	504454	6599860	1794	-60	130	149.0
		GNDD032	504624	6600197	1822	-55	097	166.6
		GNDD033	504624	6600197	1822	-55	115	62.0
		GNDD034	504834	6601384	1830	-60	115	60.0
		GNDD035	504866	6601523	1837	-78	115	119.5
		GNDD036	504781	6601230	1829	-55	115	131.0
		GNDD037	504305	6599130	1777	-55	115	83.5
		GNDD038	504465	6599833	1796	-55	115	87.7
		GMDD039	504468	6600096	1806	-70	115	80.0
		GMDD040	504816	6601315	1829	-55	115	135.5

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary						
		GMDD041	504402	6599642	1795	-55	095	95.0
		GNDD042	504471	6600104	1806	-60	115	140.0
		GMDD043	504391	6599576	1791	-67	115	80.0
		GNDD044	504816	6601318	1829	-65	115	185.0
		GNDD045	504380	6599623	1793	-57	115	242.0
		GNDD046	504362	6599704	1795	-60	115	191.0
		GNDD047	504454	6599640	1792	-60	115	101.0
		GNDD048	504786	6601272	1828	-74	115	95.0
		GNDD049	504809	6601416	1834	-60	115	90.0
		GNDD050	504822	6601512	1836	-60	115	80.0
		GNDD051	504767	6601034	1822	-60	115	120.0
		GNRC052	504444	6599556	1790	-60	115	90
		GNRC053	504454	6599595	1791	-60	115	96
		GNRC054	504463	6599679	1793	-60	115	90
		GNRC055	504463	6599724	1796	-60	115	102
		GNRC056	504466	6599766	1796	-60	115	102
		GNRC057	504463	6599916	1801	-60	115	96
		GNRC058	504718	6600487	1822	-60	115	102
		GNRD059	504782	6600722	1811	-60	115	84
		GNRD061	504965	6601520	1838	-60	115	30
		GNRD062	504943	6601530	1835	-60	115	30
		GNRC063	504917	6601503	1836	-60	115	36
		GNRC064	504893	6601470	1835	-60	115	36

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact

Criteria	JORC Code explanation	Commentary						
		GNRC065	504862	6601479	1833	-60	115	60
		GNRC066	504892	6601505	1837	-60	115	48
		GNRC067	504909	6601546	1834	-60	115	50
		GNRC068	504987	6601555	1835	-60	030	114
		GNRC069	504933	6601579	1836	-60	115	120
		GNRC070	504925	6601564	1838	-60	350	84
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure 	the end of each ru	l into wooden boxes b in. These depths are	reconciled by CEL go	eologists wh	en measui		
	representative nature of the samples.	Triple tube drilling	g has been being done	by CEL to maximise	e core recove	ery.		
	 Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	kg sub-samples is every 25-30 samp	re collected from a ro collected for each me les using a riffle splitt ure sample recovery a	etre of RC drilling. Der to split out a 2-4	ouplicate sam kg sub-samp	nples are t	aken at the ra	ate of I
		whereby low reco available to more fracturing in the r	nship has been observ veries have resulted i accurately quantify th ock. A positive correla cally post mineral and	n underreporting of his. Core recovery is ation between reco	f grade. Insuf s influenced very and RQ	fficient inf by the into D has been	ormation is needs of nature of natur	ot yet ral
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation mining studies 	core photographs	available for most of t from the historic drill ct. No RC sample chip	ing have been foun	d. No drill co			
	 and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean channel etc) photography. The total length and percentage of the relevant intersections logged. 	structure to a leve work. RC drill chip	I the core is logged foel that is suitable for gos are logged for geolological logging is done	eological modelling ogy, alteration and i	resource es mineralisatio	timation a	nd metallurgi possible logg	ical test ging is

Challenger Exploration Limited ACN 123 591 382

ASX: CEL Website: www.challengerex.com **Issued Capital** 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

DirectorsMr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
		database which holds all drilling logging sample and assay data.
Sub-sampling techniques and sample preparation	 If core whether cut or sawn and whether quarter half or all core taken. If non-core whether riffled tube sampled rotary split etc and whether sampled wet or dry. For all sample types the nature quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in-situ material collected including for instance results for field duplicate/second-half sampling. 	Competent drill core is cut longitudinally using a diamond saw for sampling of ½ the core. Soft core is split using a wide blade chisel. The geologist logging the core indicates on the drill core where the saw cut is to be made to ensure half-core sample representivity. Sample intervals are selected based on lithology alteration and mineralization boundaries. Sample lengths average 1.16m. No second-half core samples have been submitted. The second half of the core samples has been retained in the core trays for future reference. RC sub-samples are collected at the drill site. A duplicate RC sample is collected for every 25-30m drilled. CEL samples have been submitted to the MSA laboratory in San Juan and the ALS laboratory in Mendoza for sample preparation. The sample preparation technique is considered appropriate for the style of mineralization present in the Project.
	 Whether sample sizes are appropriate to the grain size of the material being sampled. 	Sample sizes are appropriate for the mineralisation style and grain size of the deposit.
Quality of assay data and laboratory tests	 The nature quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools spectrometers handheld XRF instruments etc the parameters used in determining the analysis including instrument make and model reading times calibrations factors applied and their derivation etc. Nature of quality control procedures adopted (eg standards blanks duplicates external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	The MSA laboratory used for sample preparation in San Juan has been inspected by Stuart Munroe (Exploration Manager) and Sergio Rotondo (COO) prior to any samples being submitted. The laboratory procedures are consistent with international best practice and are suitable for samples from the Project. The ALS laboratory in Mendoza has not yet been inspected by CEL representatives. Internal laboratory standards were used for each job to ensure correct calibration of elements. CEL submit blank samples (cobble and gravel material from a quarry nearby to Las Flores San Yuan) to both the MSA laboratory and the ALS laboratory which were strategically placed in the sample sequence immediately after samples that were suspected of containing high grade Au Ag Zn or Cu to test the lab preparation contamination procedures. 21 blanks have been received from MSA laboratory and 18 blanks have been received from ALS laboratory. The values received from the blank samples suggest no significant contamination of the samples during sample preparation.
		For GNDD001 – GNDD010 three different Certified Standard Reference pulp samples (CRM) with known

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary							
		values for Au Ag Pb Cu and Z accuracy of the analytic proc samples were analysed in the 2 standard deviations (SD) al below the certified value. Fo other analyses are within 2SI accuracy of the analytic proc	edures and one samples subsection the certain the certain CRM 3 one of the expe	determina Ibmitted in tified value e sample r ected valu	tion of the n 2019. Fo e. For CRI eturned a e. The sta	e MSA lal or CRM 1 M 2 one s Cu value andards c	boratory in one samp sample ret e > 2SD abo	Canada. le returne urned an A	22 reference d an Au value > Au value < 2SD tified value. All
		For drill holes from GNDD01 with known values for Au Ag precision and accuracy of the the results received to date a values returned have been we precision and accuracy of the	Fe S Pb Cu a e analytic pro 30 CRM stan vithin +/- 2SE	and Zn have ocedures a dards have O of the m	e been su ind deterr e been rec ean value	Ibmitted mination ceived fro . The sta	with samp of the ALS om ALS Lab indards dei	les of drill Laborator ooratory. I	core to test the y in Canada. In n all cased the
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data data entry procedures data verification data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Repeat sampling of 186 coar Original samples were from the Vancouver analysis). Repeat analysis). The repeat analysis closely with the original anal MSA and ALS. A summary of	the 2019 DD samples we s technique yses providin	drilling where analyse was identing a high c	nich were d by ALS (cal to the onfidence	analysed (Mendoz original. e in the sa pairs for	I by MSA (S a preparat The repea ample prep	San Juan p ion and Va at analyses paration ar ats is provi	reparation and ncouver correlate very nd analysis from
			Wiean		IVICUIAII		 	ation	Correlation
		Element	MSA	ALS	MSA	ALS	MSA	ALS	coefficient
		Au (FA and GFA ppm)	4.24	4.27	0.50	0.49	11.15	11.00	0.9972
		Ag (ICP and ICF ppm)	30.1	31.1	5.8	6.2	72.4	73.9	0.9903

Challenger Exploration Limited ACN 123 591 382

ASX: CEL Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary							
		Zn ppm (ICP ppm and ICF %)	12312	12636	2574	2715	32648	33744	0.9997
		Cu ppm (ICP ppm and ICF %)	464	474	74	80	1028	1050	0.9994
		Pb ppm (ICP ppm and ICF %)	1944	1983	403	427	6626	6704	0.9997
		S (ICP and ICF %)	2.05	1.95	0.05	0.06	5.53	5.10	0.9987
		Cd (ICP ppm)	68.5	68.8	12.4	12.8	162.4	159.3	0.9988
		As (ICP ppm))	76.0	79.5	45.8	47.6	88.1	90.6	0.9983
		Fe (ICP %)	4.96	4.91	2.12	2.19	6.87	6.72	0.9994
		REE (ICP ppm)	55.1	56.2	28.7	31.6	98.2	97.6	0.9954
		Cd values >1000 are set at 1000 REE is the sum off Ce, La, Sc, Y. CEL have sought to twin some of analysis of the twin holes has yellow the sum of the twin holes has yellow the sum of the twin hole data copied into a drill hole data. Assay results summarised in the figures. No assay data have been	CE > 500 of the historet to be colligital file in abase for the context of the c	oric drill hompleted. n PDF and geological of this rep	oles to che CSV form modelling	eck the re at. The o	esults of pr	evious ex s are back	ed-up and the
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys) trenches mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	Following completion of drilling Argentinian SGM survey. The lo WGS84 UTM zone 19s. The drill machine is set-up on th	ocations h	ave been	surveyed i	n POSGA	R 2007 zor	ne 2 and c	onverted to

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
		design.
		Drill holes are surveyed at 30-40m intervals down hole using a Reflex tool.
		All current and previous drill collar sites Minas corner pegs and strategic surface points have been surveyed using DGPS to provide topographic control for the Project.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	No regular drill hole spacing has been applied across the Project, although a nominal 40m x 40m drill spacing is being applied to infill and extension drilling where appropriate. The current drilling is designed to check previous exploration, extend mineralisation along strike, and provide some information to establish controls on mineralization and exploration potential. No Mineral Resource Estimate to JORC 2012 reporting standards has been made at this time. Samples have not been composited.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias this should be assessed and reported if material. 	As far as is currently understood the orientation of sampling achieves unbiased sampling of structures and geology controlling the mineralisation. Drilling has been designed to provide an unbiased sample of the geology and mineralisation targeted.
Sample security	- The measures taken to ensure sample security.	Samples were under constant supervision by site security, senior personnel and courier contractors prior to delivery to the preparation laboratory in San Juan or Mendoza.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	There has not yet been any independent reviews of the sampling techniques and data.

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria JORC Code explanation Mineral tenement and land tenure status - Type reference name/number location and ownership including agreements or material issues with third parties such as joint ventures partnerships overriding royalties native title interests historical sites wilderness or national park and environmental settings. - The security of the tenure held at the time of reporting along with any known impediments to

obtaining a licence to operate in the area.

Commentary

The current Hualilan project comprises 15 Minas (equivalent of mining leases) and 2 Demasias (mining lease extensions). This covers approximately 4 km of strike and includes all of the currently defined mineralization. There are no royalties on the project. CEL is earning a 75% interest in the Project by funding exploration to a Definitive Feasibility Study (DFS).

Granted mining leases (Minas Otorgadas) at the Hualilan Project

Name	Number	Current Owner	Status	Grant Date	Area (ha)
Cerro Sur					
Divisadero	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Flor de Hualilan	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Pereyra y Aciar	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Bicolor	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Sentazon	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
Muchilera	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary					
		Magnata	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Pizarro	5448-M-1960	Golden Mining S.R.L.	Granted	30/04/2015	6
		Cerro Norte					
		La Toro	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		La Puntilla	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Pique de Ortega	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Descrubidora	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Pardo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Sanchez	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Andacollo	5448-M-1960	CIA GPL S.R.L.	Granted	30/04/2015	6
		Mining Lease exten	nsions (Demasias) a	t the Hualilan Project			
		Name	Number	Current Owner	Status	Grant date	Area (ha)
		Cerro Sur					
		North of "Pizarro" Mine	195-152-C-1981	Golden Mining S.R.L.	Granted	05/12/2014	1.9
		Cerro Norte					

Challenger Exploration Limited ACN 123 591 382

ASX: CEL Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary								
		South of "La Toro" Mine	195-152-C-198	31 CIA GPL	. S.R.L.	Granted	05/12/2014	1.9		
		15 Minas has be	e Minas and Demas en accepted by the	San Juan Dep	partment of M	ines and is cu	rrently being pr	ocessed.		
		Name	Number	Status	Grant Date	е Ехр	iry Date	Area (ha)		
		Josefina	30.591.654	Pending	-	5 year	application	2570		
Exploration done by other parties	- Acknowledgment and appraisal of exploration by other parties.	Intermittent sam sampling geolog resource estimat	npling dating back concentration in the property of the property exports the property exports has been compared to the property exports has been compared to the property exports has been compared to the property of the property exports has been compared to the property of the property	over 500 year nching data u kaminations a	s has produced inderground w and detailed st	l a great deal orkings drill l	of information nole results geop	and data including		
		There is 6 km of underground workings that pass through mineralised zones. Records of the underground geology and sampling are currently being compiled and digitised as are sample data geological mapping trench data adit exposures and drill hole results. Geophysical surveys exist but have largely yet to be check located and digitised.								
		Drilling on the Hualilan Project (Cerro Sur and Cerro Norte combined) extends to over 150 drill holes. The key historical exploration drilling and sampling results are listed below.								
			Lixivia SA channel s Plata Mining Limited		•	-	-			

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO

Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235

E: admin@challengerex.com

1998 - Chilean consulting firm EPROM (on behalf of Plata Mining) systematic underground mapping and

Criteria	JORC Code explanation	Commentary
		 channel sampling 1999 – Compania Mineral El Colorado SA ("CMEC") 59 core holes (DDH-20 to 79) plus 1700m RC program 2003 – 2005 – La Mancha (TSE Listed) undertook 7447m of DDH core drilling (HD-01 to HD-48) Detailed resource estimation studies were undertaken by EPROM Ltda. (EPROM) in 1996 and CMEC (1999 revised 2000) both of which were written to professional standards and La Mancha 2003 and 2006. The collection of all exploration data by the various operators was of a high standard and had appropriate sampling techniques intervals and custody procedures were used.
Geology	 Deposit type geological setting and style of mineralisation. 	Mineralisation occurs in all rock types but it preferentially replaces limestone shale and sandstone and occurs in fault zones.
		The mineralisation has previously been classified as a Zn-Cu distal skarn (or manto-style skarn) with vein-hosted Au-Ag mineralisation. It has been divided into three phases – prograde skarn retrograde skarn and a late quartz–galena event the evolution of the hydrothermal system and mineral paragenesis is the subject of more detailed geometallurgical work.
		Gold occurs in native form in tellurides (hessite) and as inclusions with pyrite and chalcopyrite. The mineralisation also commonly contains chalcopyrite sphalerite and galena.
		Mineralisation is either parallel to bedding in bedding-parallel faults or in east-west striking steeply dipping siliceous quartz-dominated veins that cross the bedding at a high angle. The veins have thicknesses of 1–4 m and contain abundant sulphides. The intersection between the bedding-parallel mineralisation and east-striking cross veins seems to be important in localising the mineralisation.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea 	The following significant intersections have been reported by previous explorers. A cut-off grade of 1 g/t Au equivalent (calculated using a price of US\$1,300/oz for Au, \$15/oz for Ag and \$2,500/t. for Zn) has been used with up to 2m of internal diltion or a cut-off grade of 0.2 g/t Au equivalent and up to 4m of internal diltion has been allowed. No metallurcial or recovery factors have been used. Drill collar location is provided in the previous section.

Contact

T: +61 8 6380 9235

E: admin@challengerex.com

Directors

Mr Kris Knauer, MD and CEO

Mr Fletcher Quinn, Chairman

Mr Scott Funston, Finance Director

Australian Registered Office

Level 1

1205 Hay Street

West Perth WA 6005

www.challengerex.com

Issued Capital

648.7m shares

86.6m options

120m perf shares

16m perf rights

Challenger Exploration Limited

Website: www.challengerex.com

ACN 123 591 382

ASX: CEL

Criteria	JORC Code explanation	1	Commentary					
	level in metres) of the	e drill hole collar	Hole_id	From (m)	Interval (m)	Au (g/t)	Ag (g/t)	Zn (%)
	 dip and azimuth of th 	ne hole	AG16	38.6	1.2	0.1	28.6	1.7
	 down hole length and 	d interception depth	MG10	108.0	3.0	1.3	No assay	No assay
	- hole length.		DDH36	24.7	9.3	1.6	46.3	1.2
	 If the exclusion of this 	s information is justified on the	DDH53	17.3	1.4	1.0	1.7	0.00
	-	ation is not Material and this	DDH53	24.0	8.9	3.7	239.5	0.03
	•	etract from the understanding of	DDH53	35.7	3.9	3.9	87.8	0.06
		etent Person should clearly	DDH53	41.0	3.0	2.6	7.6	0.20
	explain why this is th		DDH54	20.0	1.1	1.2	0.7	0.00
1	, ,		DDH54	31.1	8.3	3.9	32.1	0.80
l			DDH65	62.0	8.2	11.0	60.6	1.2
			DDH65	82.0	1.0	1.8	33.4	0.30
			DDH66	83.1	7.2	23.7	42.9	2.4
			DDH66	87.9	2.4	69.9	114.4	2.2
			DDH66	104.9	2.8	1.8	29.0	0.10
			DDH67	98.7	1.3	0.2	7.8	1.3
			DDH68	4.0	17.9	2.2	6.3	0.20
			DDH68	73.7	0.5	0.8	9.0	1.2
			DDH69	4.0	16.1	2.3	1.6	0.10
			DDH69	76.9	0.3	0.1	7.0	28.0
			DDH69	79.7	0.8	1.3	120.0	4.5
			DDH70	84.0	7.0	5.2	13.5	0.70
			DDH71	11.0	2.0	0.5	218.0	0.06
			DDH71	39.9	1.0	1.3	6.0	0.03
			DDH71	45.5	1.1	0.4	22.8	0.60
			DDH71	104.0	10.0	33.5	126.7	7.9
			DDH72	26.0	11.7	3.8	14.1	1.3
			DDH72	52.7	6.3	1.5	30.4	0.04
			DDH73	62.5	3.5	0.5	15.6	0.60
			DDH74	119.9	0.5	7.3	98.5	2.6
l			DDH76	61.3	0.7	4.0	11.1	0.50
Challenger Exploration	Limited Issued Capital	3	Directors	Contact	200 0225			

T: +61 8 6380 9235

E: admin@challengerex.com

Mr Kris Knauer, MD and CEO

Mr Fletcher Quinn, Chairman

Mr Scott Funston, Finance Director

www.challengerex.com

Website: www.challengerex.com

ACN 123 591 382

ASX: CEL

648.7m shares

86.6m options

120m perf shares

16m perf rights

Level 1

1205 Hay Street

West Perth WA 6005

Criteria	JORC Code explanation	Commentary						
		DDH76	74.4	4.0	0.8	8.8	0.30	
		DDH76	84.8	1.2	1.4	10.9	2.0	
		DDH78	109.1	0.7	1.1	13.4	1.9	
		03HD01A	90.1	1.7	2.1	37.4	2.4	
		03HD03	55.0	2.4	2.5	25.6	2.3	
		04HD05	80.3	2.0	0.9	42.7	0.02	
		04HD05	97.5	1.8	1.9	35.0	0.04	
		04HD05	102.0	1.0	1.3	42.1	0.01	
		04HD05	106.0	1.0	0.7	28.0	0.05	
		04HD05	108.0	5.6	2.8	19.9	1.2	
		04HD06	65.4	1.2	46.6	846.0	0.50	
		04HD06	75.0	1.0	1.0	2.9	0.01	
		04HD06	104.5	7.6	1.8	5.0	1.2	
		04HD06	115.1	0.9	16.4	23.1	7.7	
		04HD07	98.3	2.2	1.4	32.5	0.90	
		04HD10	44.3	0.2	3.9	81.5	5.6	
		04HD10	55.5	0.5	1.3	11.5	0.46	
		04HD10	78.6	1.7	4.8	93.7	2.4	
		04HD11	28.0	1.0	0.1	9.3	1.4	
		04HD12	49.3	0.7	1.5	16.1	0.10	
		04HD13	61.5	1.0	0.8	7.9	0.20	
		04HD15	103.7	0.3	1.7	32.9	0.80	
		04HD16C	107.5	6.8	8.6	117.1	9.1	
		04HD16C	111.8	2.5	7.6	75.6	11.5	
		04HD16C	144.9	1.9	9.1	31.2	5.5	
		04HD16C	171.1	0.4	0.5	9.4	1.7	
		04HD17	134.9	0.7	2.5	14.3	4.1	
		04HD17	139.1	0.5	10.5	9.4	0.20	
		04HD17	199.6	0.2	0.8	3.5	5.9	
		04HD17	202.1	1.9	4.5	1.5	0.70	
1		04HD20	43.2	1.8	0.9	83.9	0.20	

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary					
		04HD21	70.1	0.2	4.8	60.6	6.4
		04HD21	141.1	0.6	12.9	105.0	4.8
		04HD24	72.0	2.0	2.5	3.2	0.04
		04HD24	83.0	2.0	3.1	25.3	0.04
		04HD24	94.0	4.2	0.7	21.2	0.10
		04HD25	92.0	1.7	2.4	51.5	6.3
		04HD26	21.7	2.3	1.5	32.5	3.0
		04HD28	42.8	0.4	1.9	4.5	0.10
		04HD29	37.0	1.0	0.1	112.0	0.01
		05HD42	90.5	1.0	1.9	6.1	0.03
		05HD42	115.0	3.0	29.0	103.1	0.20
		05HD43	69.0	1.0	1.8	2.3	0.01
		05HD43	81.0	3.0	2.8	51.5	0.50
		05HD43	90.7	2.3	1.4	29.6	0.30
		05HD44	87.5	1.1	3.8	3.4	0.01
		05HD44	91.2	1.4	0.0	3.6	2.8

For GNDD001 – GNDD010 the following significant assay results have been received reported to a cut-off of 1 g/t Au (equivalent) unless otherwise indicated. Drill collar location is provided in the previous section.

Hole_id	Interval (m)	From	Au (g/t)	Ag (g/t)	Zn (%)	Au eq (g/t)	
GNDD001	3.00	32.00	2.3	5.8	0.50	2.6	
GNDD002A	1.00	31.00	1.0	2.4	0.89	1.4	
GNDD002A	1.00	35.00	1.4	2.8	0.75	1.8	
GNDD002A	0.60	81.50	2.8	27	28.1	16.4	
GNDD003	6.10	55.00	34.6	22	2.9	36.2	(1)

Challenger Exploration Limited ACN 123 591 382

ASX: CEL Website: www.challengerex.com **Issued Capital** 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235

E: admin@challengerex.com

teria	JORC Code explanation	Commentary							
		GNDD004	8.47	6.03	2.0	7.8	0.68	2.4	
		GNDD004	3.43	18.67	1.2	3.2	0.26	1.3	
		GNDD005	3.00	29.00	0.7	14	2.5	2.0	
		GNDD005	1.00	43.00	0.4	10	1.4	1.1	
		GNDD005	5.00	59.00	10.9	101	1.5	12.7	
		inc	3.00	61.00	16.5	135	1.6	18.8	(1)
		GNDD005	3.00	77.00	1.7	39	0.43	2.3	
		GNDD005	1.00	83.00	1.2	156	0.72	3.2	
		GNDD006	6.50	78.50	4.2	21	0.29	4.6	
		inc	3.80	78.50	6.8	34	0.41	7.4	
		GNDD006	1.45	90.00	2.1	41	0.92	3.0	
		GNDD007A	27.00	25.00	0.43	7.2	0.09	0.55	(2)
		GNDD007A	1.80	46.00	2.4	3.1	0.12	2.5	
		GNDD007A	0.70	60.30	0.8	25	0.21	1.1	
		GNDD007A	6.70	149.00	14.3	140	7.3	19.3	
		inc	3.06	150.60	27.5	260	12.9	36.5	(1)
		GNDD007A	0.60	176.40	1.9	6.7	0.99	2.4	

Challenger Exploration Limited ACN 123 591 382

ASX: CEL Website: www.challengerex.com **Issued Capital** 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact

plana	ion Co	ommentary						
	(GNDD008 35.50	16.50	0.33	8.1	0.10	0.46	(2)
	(GNDD008 1.15	47.85	1.2	16	0.56	1.7	
		GNDD008 1.00	90.00	49.1	557	1.2	55.8	(1)
		GNDD008 2.70	94.00	7.7	173	0.89	10.1	(1)
	C	GNDD008 1.00	99.70	0.9	43	0.52	1.6	
		GNDD008A 2.64	96.60	22.8	218	0.68	25.5	(1)
	C	GNDD008A 10.00	105.00	0.6	28.2	0.71	1.2	
		GNDD009 3.00	100.00	0.85	50	0.02	1.4	
		GNDD009 10.32	109.10	10.4	28	4.6	12.9	
	i	nc 4.22	115.20	21.9	58	8.7	26.7	(1)
		GNDD010 27.30	27.0	0.28	8.4	0.08	0.41	(2)
	C	GNDD010 2.00	30.00	0.91	37	0.14	1.4	
	C	GNDD010 1.00	34.00	0.92	7.6	0.09	1.0	
	C	GNDD010 1.30	55.00	1.1	30	0.80	1.8	
		GNDD010 3.00	139.00	17.7	143	2.5	20.5	(1)

(1) cut-off 10 g/t Au equivalent

(2) cut-off 0.2 Au equivalent

Challenger Exploration Limited ACN 123 591 382

ASX: CEL Website: www.challengerex.com **Issued Capital** 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact

Criteria	JORC Code explanation	Commentary									
		Hole_id	interval (m)	From (m)	Au (g/t)	Ag (g/t)	Cu (%)	Pb (%)	Zn (%)	AuEq (g/t)	
		GNDD011	1.00	81.00	1.9	43	0.01	0.06	0.13	2.4	_
		GNDD011	4.80	139.80	1.4	5.7	0.02	0.02	2.6	2.7	
		GNDD011	0.70	147.20	9.4	13	0.07	0.00	6.6	12.6	(1)
		GNDD011	0.50	151.40	1.2	5.5	0.00	0.00	0.25	1.4	
		GNDD012	1.00	40.70	6.3	290	0.18	1.2	0.12	9.6	
		GNDD013	6.93	116.40	1.3	12	0.05	0.18	2.7	2.7	
		inc	0.83	122.50	4.0	61	0.21	1.2	10.1	9.4	
		GNDD014	7.55	118.50	2.4	15	0.05	0.16	3.6	4.3	
		GNDD015	1.00	54.00	0.69	8.6	0.03	0.24	0.39	1.0	
		GNDD015	1.90	156.00	1.0	31	0.02	0.79	2.8	2.7	
		GNDD016	1.00	64.00	0.80	27	0.02	0.06	0	1.1	
		GNDD016	5.00	109.50	1.8	27	0.16	0.01	8.3	6.0	
		GNDD016	4.45	116.55	6.0	83	0.13	0.02	3.9	8.8	
		GNDD018	0.85	37.75	1.1	3.6	0.01	0.05	0.1	1.1	
		GNDD018	3.75	63.20	7.1	78	0.28	3.6	3.6	9.6	
		inc	2.55	64.40	10.3	114	0.41	5.2	4.9	13.9	(1)

Challenger Exploration Limited ACN 123 591 382

ASX: CEL Website: www.challengerex.com **Issued Capital** 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact

GNDD020 8.25 71.25 17.7 257 0.60 0.68 0.30 20.7 inc 5.50 74.00 26.0 355 0.05 0.21 0.42 30.1 (1) GNDD020 0.65 83.30 0.03 2.7 0.00 0.02 10.7 5.1 GNDD025 50.00 53.00 1.4 3.4 0.01 0.15 0.17 1.5 (2) inc 14.00 61.00 3.1 5.3 0.01 0.11 0.19 3.2 inc 11.00 79.00 1.3 4.1 0.00 0.25 0.16 1.4 inc 1.00 93.00 1.1 2.5 0.00 0.37 0.09 1.1 GNDD031 28.0 32.0 0.43 5.7 0.01 0.04 0.15 0.56 (2) inc 1.1 48.0 3.3 17.1 0.02 0.33 0.34 3.7 inc 1.0 53.0 4.2 54.2 0.12 0.22 0.92 5.3 GNDD032 20.0 9.0 0.16 6.7 0.00 0.02 0.09 0.28 (2) GNDD032 116.0 49.0 1.05 4.0 0.01 0.07 0.20 1.2 (2) inc 3.0 77.0 0.93 33.7 0.09 0.02 2.11 2.3 and 10.0 101.0 6.1 18.1 0.04 0.47 0.11 6.4 inc 6.0 101.0 9.6 18.7 0.05 0.61 0.15 9.9 (1)	Criteria	JORC Code explanation	Commentary									
GNDD020 0.65 83.30 0.03 2.7 0.00 0.02 10.7 5.1 GNDD025 50.00 53.00 1.4 3.4 0.01 0.15 0.17 1.5 (2) inc 14.00 61.00 3.1 5.3 0.01 0.11 0.19 3.2 inc 11.00 79.00 1.3 4.1 0.00 0.25 0.16 1.4 inc 1.00 93.00 1.1 2.5 0.00 0.37 0.09 1.1 GNDD031 28.0 32.0 0.43 5.7 0.01 0.04 0.15 0.56 (2) inc 1.1 48.0 3.3 17.1 0.02 0.33 0.34 3.7 inc 1.0 53.0 4.2 54.2 0.12 0.22 0.92 5.3 GNDD032 20.0 9.0 0.16 6.7 0.00 0.02 0.09 0.28 (2) GNDD032 116.0 49.0 1.05 4.0 0.01 0.07 0.20 1.2 (2) inc 3.0 77.0 0.93 33.7 0.09 0.02 2.11 2.3 and 10.0 10.0 10.0 6.1 18.1 0.04 0.47 0.11 6.4			GNDD020	8.25	71.25	17.7	257	0.60	0.68	0.30	20.7	
GNDD025 50.00 53.00 1.4 3.4 0.01 0.15 0.17 1.5 (2) inc 14.00 61.00 3.1 5.3 0.01 0.11 0.19 3.2 inc 11.00 79.00 1.3 4.1 0.00 0.25 0.16 1.4 inc 1.00 93.00 1.1 2.5 0.00 0.37 0.09 1.1 GNDD031 28.0 32.0 0.43 5.7 0.01 0.04 0.15 0.56 (2) inc 1.1 48.0 3.3 17.1 0.02 0.33 0.34 3.7 inc 1.0 53.0 4.2 54.2 0.12 0.22 0.92 5.3 GNDD032 20.0 9.0 0.16 6.7 0.00 0.02 0.09 0.28 (2) GNDD032 116.0 49.0 1.05 4.0 0.01 0.07 0.20 1.2 (2) inc 3.0 77.0 0.93 33.7 0.09 0.02 2.11 2.3 and 10.0 101.0 6.1 18.1 0.04 0.47 0.11 6.4			inc	5.50	74.00	26.0	355	0.05	0.21	0.42	30.1	(1)
inc 14.00 61.00 3.1 5.3 0.01 0.11 0.19 3.2 inc 11.00 79.00 1.3 4.1 0.00 0.25 0.16 1.4 inc 1.00 93.00 1.1 2.5 0.00 0.37 0.09 1.1 GNDD031 28.0 32.0 0.43 5.7 0.01 0.04 0.15 0.56 (2) inc 1.1 48.0 3.3 17.1 0.02 0.33 0.34 3.7 inc 1.0 53.0 4.2 54.2 0.12 0.22 0.92 5.3 GNDD032 20.0 9.0 0.16 6.7 0.00 0.02 0.09 0.28 (2) GNDD032 116.0 49.0 1.05 4.0 0.01 0.07 0.20 1.2 (2) inc 3.0 77.0 0.93 33.7 0.09 0.02 2.11 2.3 and 10.0 101.0 6.1 18.1 0.04 0.47 0.11 6.4			GNDD020	0.65	83.30	0.03	2.7	0.00	0.02	10.7	5.1	
inc 11.00 79.00 1.3 4.1 0.00 0.25 0.16 1.4 inc 1.00 93.00 1.1 2.5 0.00 0.37 0.09 1.1 GNDD031 28.0 32.0 0.43 5.7 0.01 0.04 0.15 0.56 (2) inc 1.1 48.0 3.3 17.1 0.02 0.33 0.34 3.7 inc 1.0 53.0 4.2 54.2 0.12 0.22 0.92 5.3 GNDD032 20.0 9.0 0.16 6.7 0.00 0.02 0.09 0.28 (2) GNDD032 116.0 49.0 1.05 4.0 0.01 0.07 0.20 1.2 (2) inc 3.0 77.0 0.93 33.7 0.09 0.02 2.11 2.3 and 10.0 101.0 6.1 18.1 0.04 0.47 0.11 6.4			GNDD025	50.00	53.00	1.4	3.4	0.01	0.15	0.17	1.5	(2)
inc 1.00 93.00 1.1 2.5 0.00 0.37 0.09 1.1 GNDD031 28.0 32.0 0.43 5.7 0.01 0.04 0.15 0.56 (2) inc 1.1 48.0 3.3 17.1 0.02 0.33 0.34 3.7 inc 1.0 53.0 4.2 54.2 0.12 0.22 0.92 5.3 GNDD032 20.0 9.0 0.16 6.7 0.00 0.02 0.09 0.28 (2) GNDD032 116.0 49.0 1.05 4.0 0.01 0.07 0.20 1.2 (2) inc 3.0 77.0 0.93 33.7 0.09 0.02 2.11 2.3 and 10.0 101.0 6.1 18.1 0.04 0.47 0.11 6.4			inc	14.00	61.00	3.1	5.3	0.01	0.11	0.19	3.2	
GNDD031 28.0 32.0 0.43 5.7 0.01 0.04 0.15 0.56 (2) inc 1.1 48.0 3.3 17.1 0.02 0.33 0.34 3.7 inc 1.0 53.0 4.2 54.2 0.12 0.22 0.92 5.3 GNDD032 20.0 9.0 0.16 6.7 0.00 0.02 0.09 0.28 (2) inc 3.0 77.0 0.93 33.7 0.09 0.02 2.11 2.3 and 10.0 101.0 6.1 18.1 0.04 0.47 0.11 6.4			inc	11.00	79.00	1.3	4.1	0.00	0.25	0.16	1.4	
inc 1.1 48.0 3.3 17.1 0.02 0.33 0.34 3.7 inc 1.0 53.0 4.2 54.2 0.12 0.22 0.92 5.3 GNDD032 20.0 9.0 0.16 6.7 0.00 0.02 0.09 0.28 (2) GNDD032 116.0 49.0 1.05 4.0 0.01 0.07 0.20 1.2 (2) inc 3.0 77.0 0.93 33.7 0.09 0.02 2.11 2.3 and 10.0 101.0 6.1 18.1 0.04 0.47 0.11 6.4			inc	1.00	93.00	1.1	2.5	0.00	0.37	0.09	1.1	
inc 1.0 53.0 4.2 54.2 0.12 0.22 0.92 5.3 GNDD032 20.0 9.0 0.16 6.7 0.00 0.02 0.09 0.28 (2) GNDD032 116.0 49.0 1.05 4.0 0.01 0.07 0.20 1.2 (2) inc 3.0 77.0 0.93 33.7 0.09 0.02 2.11 2.3 and 10.0 101.0 6.1 18.1 0.04 0.47 0.11 6.4			GNDD031	28.0	32.0	0.43	5.7	0.01	0.04	0.15	0.56	(2)
GNDD032 20.0 9.0 0.16 6.7 0.00 0.02 0.09 0.28 (2) GNDD032 116.0 49.0 1.05 4.0 0.01 0.07 0.20 1.2 (2) inc 3.0 77.0 0.93 33.7 0.09 0.02 2.11 2.3 and 10.0 101.0 6.1 18.1 0.04 0.47 0.11 6.4			inc	1.1	48.0	3.3	17.1	0.02	0.33	0.34	3.7	
GNDD032 116.0 49.0 1.05 4.0 0.01 0.07 0.20 1.2 (2) inc 3.0 77.0 0.93 33.7 0.09 0.02 2.11 2.3 and 10.0 101.0 6.1 18.1 0.04 0.47 0.11 6.4			inc	1.0	53.0	4.2	54.2	0.12	0.22	0.92	5.3	
inc 3.0 77.0 0.93 33.7 0.09 0.02 2.11 2.3 and 10.0 101.0 6.1 18.1 0.04 0.47 0.11 6.4			GNDD032	20.0	9.0	0.16	6.7	0.00	0.02	0.09	0.28	(2)
and 10.0 101.0 6.1 18.1 0.04 0.47 0.11 6.4			GNDD032	116.0	49.0	1.05	4.0	0.01	0.07	0.20	1.2	(2)
			inc	3.0	77.0	0.93	33.7	0.09	0.02	2.11	2.3	
inc 6.0 101.0 9.6 18.7 0.05 0.61 0.15 9.9 (1)			and	10.0	101.0	6.1	18.1	0.04	0.47	0.11	6.4	
I			inc	6.0	101.0	9.6	18.7	0.05	0.61	0.15	9.9	(1)
and 4.0 136.0 9.8 18.5 0.06 0.27 1.50 10.7			and	4.0	136.0	9.8	18.5	0.06	0.27	1.50	10.7	
GNDD035 5.75 88.75 9.5 29 0.10 0.44 3.5 11.5			GNDD035	5.75	88.75	9.5	29	0.10	0.44	3.5	11.5	

Challenger Exploration Limited ACN 123 591 382

ASX: CEL Website: www.challengerex.com Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary									
			3.15 0 g/t Au equiva .2 g/t Au equiva		17.1	29	0.14	0.56	5.6	20.1	(1)
Data aggregation methods	 In reporting Exploration Results weighting averaging techniques maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short length of high-grade results and longer lengths of low-grade results the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	to cut-off grade of 1.0 g/t Au equivalent and 10 g/t Au equivalent allowing for up to 2m of internal dilution between samples above the cut-off grade and 0.2 g/t Au equivalent allowing up to 4m of internal dilution between samples above the cut-off grade. The following metals and metal prices have been used to report gold grade equivalent: Au US\$ 1450 / oz Ag US\$16 /oz and Zn US\$ 2200 /t.					oplied to 6/1450) all the mic				
Relationship between mineralisation widths and	reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known its nature should be		n is moderately est cases to con ogram. may be thicker	nfidently estal	olish the true	e width of	the mine	ralized int	ersection	s at this	stage of
intercept lengths	reported. - If it is not known and only the down hole lengths are reported there should be a clear statement to this effect (eg 'down hole length true width not known').	Cross section diag	cross faults and veins. Cross section diagrams have been provided with release of significant intersections to allow estimation of true widths from individual drill intercepts.						of true		
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should 	Representative m	aps and sectio	ns are provide	ed in the boo	dy of repo	rt.				

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares

16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
	include but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All available data have been reported.
Other substantive exploration data	 Other exploration data if meaningful and material should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density groundwater geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Geological context and observations about the controls on mineralisation where these have been made are provided in the body of the report. 229 specific gravity measurements have been taken from the drill core recovered during the drilling program. These data are expected to be used to estimate bulk densities in future resource estimates. Eight Induced Polarisation (IP) lines have been completed in the northern area. Each line is approximately 1 kilometre in length lines are spaced 100m apart with a 50m dipole. The initial results indicate possible extension of the mineralisation with depth. Data will be interpreted including detailed re-processing and drill testing.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions including the main geological interpretations and future drilling areas provided this information is not commercially sensitive. 	 CEL Plans to undertake the following over the next 12 months Additional data precision validation and drilling as required; Detailed interpretation of known mineralized zones; Geophysical tests for undercover areas. Structural interpretation and alteration mapping using high resolution satellite data and geophysics to better target extensions of known mineralisation. Field mapping program targeting extensions of known mineralisation. Investigate further drilling requirements to upgrade both the unclassified mineralisation and mineralisation in the existing historical resources to meet JORC 2012 requirements; Initial drill program comprising verification (twin holes) and targeting extensions of the historically defined mineralisation;

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

ASX Release

11 August 2020

Criter	ia JORC Code explanation	Commentary
		Metallurgical test work.

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Database integrity	 Measures taken to ensure that data has not been corrupted by for example transcription or keying errors between its initial collection and its use for Mineral Resource estimation purposes. Data validation procedures used. 	Geological logging completed by previous explorers was done on paper copies and transcribed into the drill hole database. The data was checked for errors. Checks can be made against the original logs and core photographs. Assay data is received in digital format. Backup copies are kept and the data is copied into the drill hole database.
		The drill hole data is backed up and is updated periodically by a Company GIS and data team.
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	Site visits have been undertaken from 3 to 16 October 2019 15 to 30 November 2019 and 1-19 February 2020. The performance of the drilling program collection of data and sampling procedures were initiated during these visits.
Geological interpretation	 Confidence in (or conversely the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect if any of alternative interpretations on Mineral Resource 	The interpretation is considered appropriate given the stage of the project and the nature of activities that have been conducted. The interpretation captures the essential geometry of the mineralised structure and lithologies with drill data supporting the findings from the initial underground sampling activities.
	 estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	The most recent resource calculation (2006 and 2003 – La Mancha) used all core drilling at the time and detailed underground channel sampling collected by EPROM CMEC and La Mancha. Overlying assumptions included a reduction of the calculated grade in each resource block by a factor of 10% to account for possible errors in the analyses and samples. An arbitrary reduction factor was applied to the 2006 resource whereby the net reported tonnage was reduced by 25% for indicated resource blocks 50% for inferred resource blocks and 75% of potential mineral resource blocks. The reason for the application of these tonnage reduction factors was not outlined in the resource report. It is noted that at the time of this report La Mancha was in a legal dispute concerning the project with its joint venture partner and given the acquisition of a 200000 Oz per annum producing portfolio the project was likely no longer a core asset for La Mancha at that time. Additionally under the original

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
		acquisition agreement La Mancha had to issue additional acquisition shares based on resource targets.
		The effect of removing the assumptions relating to application of the arbitrary tonnage reduction factors applied increases the overall resource tonnage by in excess of 50%. Removing these correction factors would bring the overall tonnage and grade close the earlier (2003 1999 and 1996) tonnage and grade estimates albeit in different categories (lower confidence) which are considered more appropriate.
		The mineralisation is defined to the skarn and vein bodies detailed cross section and plan maps were prepared for these bodies with their shapes used in controlling the resource estimate.
		The structure of the area is complex and a detailed structural interpretation is recommended as this may provide a better understanding of the continuity of mineralisation and possible extensions to it. The deposit contains bonanza gold values and while very limited twinning has indicated acceptable repeatability a rigorous study of grade continuity needs to be undertaken as part of future resource calculations.
Dimensions	 The extent and variability of the Mineral Resource expressed as length (along strike or otherwise) plan width and depth below surface to the upper and lower limits of the Mineral Resource. 	For the historic resource no reliable information has been provided to the owner however through further ongoing investigation is being conducted by the owner to address this information gap.
Estimation and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions including treatment of extreme grade values domaining interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. 	The historic resource estimation techniques are considered appropriate. The 2003 and 2006 resources used a longitudinal section polygonal method was used for estimating resources with individual blocs representing weighted averages of sampled underground and/or areas of diamond drill pierce points with zones of influence halfway to adjacent holes. The area of the block was calculated in AutoCad directly from the longitudinal sections. Check assaying by PG Consulting returned values in the check assay sample which were 3.4% and 13% greater for Au and Ag than the original assays. A number pf previous resource estimates were available to check the 2006 resource estimate when the arbitrary tonnage reduction factors are

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235 E: admin@challengerex.com

www.challengerex.com

Criteria	JORC Code explanation	Commentary
	Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage	removed brings the overall tonnage and grade close the earlier (2003 1999 and 1996) tonnage and grade estimates albeit indifferent categories which are considered more appropriate.
	 characterisation). In the case of block model interpolation the block size in relation to the average sample spacing and the search employed. Any assumptions behind modelling of selective mining units. 	It was assumed only gold silver and zinc would be recovered and that no other by products would be recovered. This is viewed as conservative given metallurgical data pointing to the production of a salable zinc concentrate.
	 Any assumptions about correlation between variables. Description of how the geological interpretation was used to control the resource estimates. 	Based on the preliminary metallurgy estimation of deleterious elements or other non-grade variables of economic significance was not required.
	 Discussion of basis for using or not using grade cutting or capping. The process of validation the checking process used the comparison of 	The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.
	model data to drill hole data and use of reconciliation data if available	No assumptions were made regarding correlation between variables.
		The mineralisation is defined within skarn and associated vein deposits. Detailed cross section and plan maps were prepared for these domains with their shapes used in controlling the resource estimate. Long sections of the veins and skarn were taken and sampling was plotted and the blocks outlined considering this.
		Grade cutting was not used in the calculation of the resource and no discussion was given as to why it was not employed. It is recommended that a study be undertaken to determine if an appropriate top cut need be applied
		No data is available on the process of validation.
Moisture	 Whether the tonnages are estimated on a dry basis or with natural moisture and the method of determination of the moisture content. 	No data is available.
Cut-off parameters	- The basis of the adopted cut-off grade(s) or quality parameters applied.	The Mineral Resource Estimate is above a cut-off grade of 3.89 g/t Au. This is based on the assumed mining cost at the time of the estimate.

Challenger Exploration Limited

ACN 123 591 382 ASX: **CEL**

Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
Mining factors or assumptions	- Assumptions made regarding possible mining methods minimum mining dimensions and internal (or if applicable external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the mining assumptions made.	 The Mineral Resource Estimate considered the assumptions outlined below which are considered appropriate; Metal prices: Au US\$550 Oz Ag US\$10 Oz Metallurgical Recovery; Au – 80% Ag – 70% Zn - nil Operating cost: US\$55t based on underground cut and fill mining and flotation and cyanidation combined The minimum mining width of 0.8m was assumed for veins less than 0.6m and for wider widths a dilution of 0.2m was used to calculate the grade.
Metallurgical factors or assumptions	- The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential metallurgical methods but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case this should be reported with an explanation of the basis of the metallurgical assumptions made.	 Historical metallurgical test-work is currently under review however the assumptions used (80% recovery for Au, Ag and Zn based on initial test results) seem conservative. The most recent test work was conducted in 1999 by Lakefield Research (cyanidation) and CIMM Labs (flotation) in Chile on 4 samples which all contain primary sulphide minerals and so can be considered primary, partial oxide or fracture oxide samples. The test work was conducted using a 150 micron grind which would appear to coarse based on petrography conducted by CEL which shows that the gold particles average 30-40 microns. Rougher flotation tests were performed with a 20 minute and 30 minute floatation time. Generally, the longer residence time improved recovery. Recoveries to concentrate for gold range from 59.6% - 80.6% and for silver from 63.1% - 87.2%. Knelson concentrate tests with floatation of tailings were also completed. Applying a joint process Knelson concentrator and floatation of the tailings of the concentrator it is found that the global recovery is approximately 80% for gold. While the testwork was focused predominantly on gold recovery some rougher flotation testwork was undertaken targeting Zn recovery producing up to 85% recoveries. In sulphide samples this produced a Zn concentrate containing 42% Zn with grades of in excess of 50% Zn in concentrate expected with additional floatation stages.

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
		 The report concluded that it was possible to produce a commercial Au-Ag concentrate and a Zn concentrate. Extraction of gold and silver by cyanidation was tested on 3/8 and ¾ inch (9.525mm and 19.05mm) crush sizes that are designed to test a heap leach processing scenario. Bottle roll of these crush size resulted in 41-39% gold recovery and 31-32% silver recovery with high cyanide consumption. No tests have been done on material at a finer grind size.
Environmental factors or assumptions	 Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts particularly for a greenfields project may not always be well advanced the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made. 	It is considered that there are no significant environmental factors which would prevent the eventual extraction of gold from the project. Environmental surveys and assessments will form a part of future pre-feasibility.
Bulk density	 Whether assumed or determined. If assumed the basis for the assumptions. If determined the method used whether wet or dry the frequency of the measurements the nature size and representativeness of the samples. The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs porosity etc) moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	Densities of 2.7 t/m3 were used for mineralised veins and 2.6 t/m3 for wall rock. No data of how densities were determined is available.
		The bulk densities used in the evaluation process are viewed as appropriate at this stage of the Project.
		CEL is collecting specific gravity measurements from drill core recovered in 2019 and 2020 drilling programs, which it is expected will be able to be used to estimate the block and bulk densities in future resource estimates. For RC drilling, the weights of material recovered from the drill hole is able to be used as a measure
		of the bulk density.

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary
 Classification The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations reliability of input data confidence in continuity of geology and metal values quality quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. 	The Mineral Resource Estimate has both Indicated and Inferred Mineral Resource classifications under the National Instrument 43-101 code and is considered foreign. These classifications are considered appropriate given the confidence that can be gained from the existing data and results from drilling. The reliability of input data for the 2003 and 2006 resources is acceptable as is the confidence in continuity of geology and metal values quality quantity and distribution of the data. Appropriate account has been taken of all relevant factors with the exception of studies into the appropriateness of the application of a top cut.	
		The reported 2006 NI43-101 (non-JORC Code compliant Measured and Indicated) estimate for the Hualilan Project is measured resource of 164294 tonnes averaging 12.6 grams per tonne gold and 52.1 g/t silver and 2.5% zinc plus an indicated resource of 51022 tonnes averaging 12.4 grams per tonne gold and 36.2 g/t silver and 2.6% zinc plus an inferred resource of 213952 tonnes grading 11.7 grams per tonne gold and 46.6 g/t silver and 2.3% zinc. (Source La Mancha resources Toronto Stock Exchange Release April 7 2007 - Interim Financials) – See Table 1.
	The 2006 estimate did not include the east-west mineralised Magnata Vein despite the known mineralisation in the Magnata Vein being drilled on a 25×50 -metre spacing. The 2003 NI43-101 (non-JORC Code compliant) estimate attributed approximately half of its measured and indicated tonnage to the Magnata Vein. The 2006 estimate also included arbitrary tonnage reduction factors of 25% for indicated category 50% for inferred category and 75% for potential category.	
		The 2006 estimate also included a significant tonnage of Potential Category Resources which have not been reported.
		The reported 2003 NI43-101 (non-JORC Code compliant) estimate for the Hualilan project is a measured resource of 299578 tonnes averaging 14.2 grams per tonne gold plus an indicated resource of 145001 tonnes averaging 14.6 grams per tonne gold plus an inferred resource of 976539 tonnes grading 13.4 grams per tonne gold representing some 647809 ounces gold. (Source La Mancha

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman

Criteria	JORC Code explanation	Commentary				
			resources Toronto Stock Exchange Release May 14 2003 - Independent Report on Gold Resource Estimate) – See Table 1. The 2003 Mineral Resource classification and results appropriately reflect the Competent Person's view of the deposit and the current level of risk associated with the project to date. Historic 2003 NI43-101 (non-JORC Code compliant):			
		view of the deposit and				
		CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%
		Measured	299578	14.2		
		Indicated	145001	14.6		
		Inferred	976539	13.4		
		Historic 2006 NI43-10	Historic 2006 NI43-101 (non-JORC Code compliant)			
		CATEGORY	TONNES	Au (g/t)	Ag (g/t)	Zn%
		Measured	164294	12.5	52.1	2.5
		Indicated	51022	12.4	36.2	2.6
		Inferred	213952	11.7	46.6	2.3
Audits or revie	ws - The results of any audits or reviews of Mineral Re	esource estimates. The historic resource es	The historic resource estimate has not been audited.			

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights

Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005

Directors Mr Kris Knauer, MD and CEO Mr Scott Funston, Finance Director Mr Fletcher Quinn, Chairman

Contact T: +61 8 6380 9235

E: admin@challengerex.com

Criteria	JORC Code explanation	Commentary
		The earlier (1996 and 2000) Mineral Resource Estimates were audited and re-stated in a 2003 resource report. This independent report was done to NI-43-101 standard and the results of this report were released to the TSX. This report concluded that "Detailed resource calculations made by three different groups are seen to be realistic.
Discussion of relative accuracy/confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits or if such an approach is not deemed appropriate a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates and if local state the relevant tonnages which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data where available. 	There is sufficient confidence in the data quality drilling methods and analytical results that they can be relied upon. The available geology and assay data correlate well. The approach or procedure are deemed appropriate given the confidence limits. The main two factors which could affect relative accuracy is grade continuity and top cut.
		Grade continuity is variable in nature in this style of deposit and has not been demonstrated to date and closer spaced drilling is required to improve the understanding of the grade continuity in both strike and dip directions. It is noted that the results from the twinning of three holes by La Mancha are encouraging in terms of grade repeatability.
		The deposit contains very high grades and there is a potential need for the use of a top cut. It is noted that an arbitrary grade reduction factor of 10% has already been applied to the resource as reported.
		No production data is available for comparison

Challenger Exploration Limited ACN 123 591 382

ASX: CEL

Website: www.challengerex.com

Issued Capital 648.7m shares 86.6m options 120m perf shares 16m perf rights Australian Registered Office Level 1 1205 Hay Street West Perth WA 6005 **Directors**Mr Kris Knauer, MD and CEO
Mr Scott Funston, Finance Director
Mr Fletcher Quinn, Chairman