ASX Announcement 20 August 2020 # **New Ore Zone Discovered at Scotia Mining Centre** Pantoro Limited (**ASX:PNR**) (**Pantoro**) is pleased to advise that the Scotia Mining Centre has once again been expanded with the discovery a new zone of near surface mineralisation at Green Lantern, south east of the existing Scotia open pit. ### **Key Highlights** - Drilling at the Green Lantern discovery has returned a number of wide, ore grade intersections in a zone which has not been previously drilled. - Substantial near surface mineralisation at Green Lantern has been identified over a strike length of approximately 300 metres. Mineralisation remains open to the north and down dip. - Drilling indicates multiple surface lode structures are present at Green Lantern, with a wide, lower grade mineralised lode and higher grade zones typical of other orebodies known within the mining centre: #### **Green Lantern Wide Zone** ## • 16 m @ 2.61 g/t Au. ### • 21 m @ 2.36 g/t Au. - 12 m @ 2.03 g/t Au. - 15 m @ 1.88 g/t Au. - 11 m @ 1.52 g/t Au. - 13 m @ 1.43 g/t Au. - 8 m @ 2.86 g/t Au. - 8 m @ 1.57 g/t Au. - 12 m @ 1.12 g/t Au. - 5 m @ 1.88 g/t Au. # **Green Lantern High Grade Zones** - 3 m @ 6.09 g/t Au. - 2 m @ 4.51 g/t Au. - 4 m @ 3.22 g/t Au. - 2 m @ 5.81 g/t Au. - 4 m @ 3.41 g/t Au. - 2 m @ 3.60 g/t Au. 2 m @ 3.77 g/t Au. - 2 m @ 3.50 g/t Au. - 4 m @ 4.05 g/t Au Additional drilling ongoing at Green Lantern is designed to test for northerly extensions, and to infill ore zones to suitable drilling density for Mineral Resource estimation. Ongoing infill and step out drilling at the existing Lady Eleanor Mineral Resource has also returned excellent results including: - 4.4 m @ 3.14 g/t Au. - 3 m @ 3.18 g/t Au. - 2 m @ 3.12 g/t Au. - 7 m @ 3.31 g/t Au. - 2 m @ 11.25 g/t Au. - 10 m @ 2.06 g/t Au. - 5 m @ 2.3 g/t Au. - 2 m @ 3.8 g/t Au. - 10 m @ 1.31 g/t Au. Pantoro Limited ABN 30 003 207 467 Commenting on the results Pantoro Managing Director Paul Cmrlec said: "Pantoro continues to have great success from drilling at the Scotia Mining Centre, with new discoveries first at Panda to the West, and now at Green Lantern to the east, both made within six months of commencing work in the area. These areas have not been drilled previously and the results highlight the potential for increases to the Mineral Resource at Scotia which has not been effectively explored since the mid 1990's. We are excited about the long-term potential of the area, and continue to test additional surface targets while we commence the drill out of depth extensions to the existing high grade orebodies." #### **About the Scotia Mining Centre** The Scotia mining centre is located approximately 25 km south of Norseman and was discovered in 1893. The historic production recorded from the Scotia mine via open pit and underground mining was 811,000 tonnes @ 5.9 g/t Au for 155,000 ounces. Scotia was actively mined from 1987 until 1996. Scotia hosts a number of Mineral Resource areas in close proximity, and several zones where high grade mineral occurrences have not yet been classified. Figure 1: Location of Green Lantern and Lady Eleanor within the Scotia Mining Centre The mineralisation at Scotia is hosted by a shear zone that transects the Woolyeenyer Formation. The geological environment differs from that at Norseman, in that the stratigraphy has been subjected to higher metamorphic grades. Primary gold is located in shear zones with quartz sulphide veins predominantly pyrrhotite and is structurally controlled by closely spaced brittle faults of varying orientations. The current Mineral Resource at Scotia is estimated to contain 2.43 Mt @ 5.30 g/t Au for 413,000 ounces (refer to ASX Announcement entitled 'Strategic Transaction and Capital Raising Presentation', dated 15 May 2019). Pantoro has committed to a large scale exploration and resource extension program at the Scotia Mining Centre, and expects drilling to continue in the area for at least the next six to twelve months. #### **Green Lantern** Green Lantern lies approximately 270 metres to the South East of the Scotia Pit, and is open at depth and along strike. The current drilling has defined multiple lodes which remain open up and down dip. Pantoro is continuing its drilling program in the area with a focus on near term addition to the Mineral Resource in the area. Results indicate a wide lode system as well as a narrower high grade system at Green Lantern, and include: - 16 m @ 2.61 g/t Au. - 21 m @ 2.36 g/t Au. - 12 m @ 2.03 g/t Au. - 11 m @ 1.52 g/t Au. - 8 m @ 2.86 g/t Au. - 13 m @ 1.43 g/t Au. - 15 m @ 1.88 g/t Au. - 8 m @ 1.57 g/t Au. Figure 2: Plan view of recent drilling at Green Lantern and Lady Eleanor ### **Lady Eleanor** Lady Eleanor lies approximately 450 metres south of the Scotia deposit. Infill drilling has confirmed the higher grade areas of the deposit, and identified additional mineralised lodes within the system. Initial results include: - 2 m @ 3.12 g/t Au. - 7 m @ 3.31 g/t Au. - 2 m @ 11.25 g/t Au. - 10 m @ 2.06 g/t Au. - 2 m @ 3.8 g/t Au. - 10 m @ 1.31 g/t Au. Recent results at Lady Eleanor include (refer to ASX Announcement entitled 'Exceptional Drill Results Confirm Scotia as Key Mining Centre' dated 9 June 2020): - 5 m @ 3.77 g/t Au. - 2 m @ 3.69 g/t Au. - 2 m @ 3.80 g/t Au. - 2 m @ 3.40 g/t Au. - 11 m @ 1.70 g/t Au. - 5 m @ 2.55 g/t Au. Additional drilling is planned at Lady Eleanor to fully define a potential Eastern Lode identified during the current round of drilling, as well as potential southern extensions to the Mineral Resource. There is potential for the Eastern Lode at Lady Eleanor to extend to the north and join up with the newly discovered Green Lantern mineralisation. #### **About the Norseman Gold Project (Pantoro 50%)** Pantoro Limited announced the major acquisition of 50% of the Norseman Gold Project in May 2019 and completion occurred on 9 July 2019. Pantoro is the manager of the unincorporated joint venture, and is responsible for defining and implementing work programs, and the day to day management of the operation. The Norseman Gold Project is located in the Eastern Goldfields of Western Australia, at the southern end of the highly productive Norseman-Wiluna greenstone belt. The project lies approximately 725 km east of Perth, 200 km south of Kalgoorlie, and 200 km north of Esperance. The current Mineral Resource is 4.4 million ounces of gold (100% basis). Many of the Mineral Resources defined to date remain open along strike and at depth, and many of the Mineral Resources have only been tested to shallow depths. Mineral Resources have been estimated by Independent Expert HGS Australia Exploration Services. Pantoro is systematically drilling Mineral Resource areas and updating Mineral Resources and Ore Reserves as additional data becomes available. In addition, there are numerous anomalies and mineralisation occurrences which are yet to be tested adequately to be placed into Mineral Resources, with a number of highly prospective targets already identified by drilling. The project comprises 146 near-contiguous mining tenements, most of which are pre-1994 Mining Leases. The tenure extends approximately 70 lineal kilometres of the highly prospective Norseman–Wiluna greenstone belt covering more than 1,000 square kilometres. Pantoro is focused on establishing a clear production development plan, and execution of that plan. The aim will be to initially establish an initial inventory of ~500,000 ounces to support a restart of operations. Historically, the Norseman Gold Project areas have produced over 5.5 million ounces of gold since operations began in 1935, and is one of, if not the highest grade fields within the Yilgarn Craton. Pantoro is focused on establishing a clear production development plan, and has commenced drilling and other works required to convert Mineral Resources to Ore Reserves. Pantoro has focused Mineral Resource definition drilling on six initial mining areas containing multiple deposits which are amenable to both open pit and underground mining. The initial drill out of these first areas is nearing completion, Mineral Resource modelling is underway and due for completion in the September quarter. The project is serviced by first class infrastructure at the project, local shire, and national infrastructure levels with MACA Interquip recently appointed to oversee the processing aspects of the feasibility study. #### **Enquiries** Paul Cmrlec | Managing Director I Ph: +61 8 6263 1110 I Email: admin@pantoro.com.au This announcement was authorised for release by Paul Cmrlec, Managing Director. # **Appendix 1 – Table of Drill Results – Green Lantern** | Hole Number | Northing | Easting | RL | Dip (degrees) | Azimuth
(degrees) | End of Hole
Depth (m) | Downhole
From (m) | Downhole To
(m) | Downhole
Intersection
(m) | Au gpt
(uncut) | | | | | | | | | | | | | | |-------------|----------|---------|-----|---------------|----------------------|--------------------------|----------------------|--------------------|---------------------------------|-------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|------|------|------| | | | | | | | | 9 | 11 | 2 | 3.77 | 18 | 20 | 2 | 3.6 | 28 | 29 | 1 | 1.3 | | | | | | | | | | | | | | | LERC20_035 | 6405648 | 386866 | 289 | -60 | 270 | 88 | 38 | 39 | 1 | 1.61 | 52 | 68 | 16 | 2.61 | 75 | 77 | 2 | 1.32 | 86 | 88 | 2 | 4.51 | | | | | | | | | | | | | | | LEDC20 026 | 6405640 | 206016 | 200 | | 270 | 0.4 | 81 | 83 | 2 | 1.27 | | | | | | | | | | | | | | | LERC20_036 | 6405648 | 386916 | 289 | -60 | 270 | 94 | 93 | 94 | 1 | 7.84 | 16 | 18 | 2 | 1.26 | | | | | | | | | | | | | | | FDC20 020 | 6405670 | 201011 | 200 | | 270
| 105 | 84 | 87 | 3 | 1.93 | | | | | | | | | | | | | | | LERC20_038 | 6405673 | 386916 | 289 | -60 | 270 | 106 | 90 | 91 | 1 | 1.94 | 99 | 103 | 4 | 1.19 | 2 | 3 | 1 | 1.01 | | | | | | | | | | | | | | | LEDG20 020 | 6405600 | 206016 | 200 | | 270 | | | 270 | 270 | | | 270 | 270 | 270 | 270 | 270 | | 27 | 28 | 1 | 1.39 | | | | LERC20_039 | 6405698 | 386916 | 289 | -60 | 270 | 94 | 34 | 55 | 21 | 2.36 | 66 | 67 | 1 | 1.31 | | | | | | | | | | | | | | | LEDG20, 022 | 6405500 | 206044 | 202 | - 60 | 270 | 0.2 | 28 | 29 | 1 | 1.56 | | | | | | | | | | | | | | | LERC20_033 | 6405599 | 386841 | 292 | -60 | 270 | 92 | 49 | 51 | 2 | 2.58 | 48 | 50 | 2 | 1.59 | | | | | | | | | | | | | | | LEDG20 03.1 | 6405604 | 206070 | 204 | | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | 270 | | 112 | 77 | 78 | 1 | 1.59 | | LERC20_034 | 6405601 | 386879 | 294 | -60 | | | | | | | | | | | | | | 112 | 97 | 98 | 1 | 2.18 | | | | | | | | | | 103 | 104 | 1 | 1.87 | | | | | | | | | | | | | | | Hole Number | Northing | Easting | RL | Dip (degrees) | Azimuth
(degrees) | End of Hole
Depth (m) | Downhole
From (m) | Downhole To
(m) | Downhole
Intersection
(m) | Au gpt
(uncut) | | | | | | | | |-------------|----------|---------|-----|---------------|----------------------|--------------------------|----------------------|--------------------|---------------------------------|-------------------|------|------|--|--|---|---|------| | | | | | | | | 6 | 8 | 2 | 1.4 | | | | | | | | | | | | | | | | 14 | 15 | 1 | 1.43 | | | | | | | | | | | | | | | | 22 | 23 | 1 | 1.54 | | | | | | | | | LERC20_037 | 6405673 | 386866 | 289 | -60 | 270 | 106 | 55 | 56 | 1 | 1.48 | | | | | | | | | | | | | | | | 68 | 69 | 1 | 2.01 | | | | | | | | | | | | | | | | 74 | 76 | 2 | 1.57 | | | | | | | | | | | | | | | | 97 | 100 | 3 | 6.09 | | | | | | | | | | | | | | | | 52 | 64 | 12 | 2.03 | | | | | | | | | | | | | | | | 68 | 69 | 1 | 1.03 | | | | | | | | | LERC20_049 | 6405750 | 386889 | 283 | -60 | 270 | 102 | 77 | 78 | 1 | 1.14 | | | | | | | | | | | | | | | | 82 | 83 | 1 | 1.72 | | | | | | | | | | | | | | | | 89 | 96 | 7.00 | 0.85 | | | | | | | | | | | | | 0 | 1 | 1.00 | 2.47 | 5 | 7 | 2.00 | | | | | | -60 | | | 15 | 17 | 2.00 | 1.52 | | | | | | | | | LERC20_050 | 6405750 | 386909 | 282 | | 270 | 120 | 26 | 37 | 11.00 | 1.52 | | | | | | | | | | | | | | | | 84 | 86 | 2.00 | 1.17 | | | | | | | | | | | | | | | | 98 | 99 | 1.00 | 1.97 | | | | | | | | | | | | | | | | 107 | 108 | 1.00 | 1.56 | | | | | | | | | | | | | | | | 5 | 6 | 1.00 | 8.31 | | | | | | | | | | | | | | | | 20 | 23 | 3.00 | 1.45 | | | | | | | | | | | | | | | | 36 | 37 | 1.00 | 1.22 | | | | | | | | | | | | | | | | 48 | 53 | 5.00 | 1.20 | | | | | | | | | LERC20_053 | 6405775 | 386896 | 279 | -60 | 270 | 108 | 67 | 70 | 3.00 | 2.09 | | | | | | | | | | | | | | | | 76 | 77 | 1.00 | 1.04 | | | | | | | | | | | | | | | | 78 | 79 | 1.00 | 1.00 | | | | | | | | | | | | | | | | | | 92 | 97 | 5.00 | 1.15 | | | | | | | | | | | | | | 100 | 107 | 7.00 | 1.16 | | | | | | | | | Hole Number | Northing | Easting | RL | Dip (degrees) | Azimuth
(degrees) | End of Hole
Depth (m) | Downhole
From (m) | Downhole To
(m) | Downhole
Intersection
(m) | Au gpt
(uncut) | |-------------|----------|---------|-----|---------------|----------------------|--------------------------|----------------------|--------------------|---------------------------------|-------------------| | | | | | | | | 2 | 3 | 1.00 | 1.30 | | | | | | | | | 11 | 14 | 3.00 | 1.85 | | LERC20_056 | 6405825 | 386886 | 273 | -60 | 270 | 108 | 21 | 22 | 1.00 | 1.10 | | | | | | | | | 82 | 83 | 1.00 | 1.35 | | | | | | | | | 88 | 92 | 4.00 | 3.22 | | | | | | | | | 31 | 34 | 3.00 | 1.43 | | | | | | | | | 39 | 40 | 1.00 | 1.09 | | LERC20_046 | 6405725 | 386911 | 285 | -60 | 270 | 140 | 51 | 54 | 3.00 | 1.47 | | | | | | | | | 72 | 77 | 5.00 | 0.92 | | | | | | | | | 81 | 82 | 1.00 | 2.87 | | LEDC20 042 | 6405700 | 386892 | 288 | -60 | 270 | 102 | 32 | 33 | 1.00 | 1.44 | | LERC20_043 | 0405700 | 380892 | 288 | -00 | 270 | 102 | 40 | 43 | 3.00 | 1.31 | | LEDC20 040 | 6405727 | 206050 | 202 | 60 | 270 | 150 | 121 | 124 | 3.00 | 1.56 | | LERC20_048 | 6405727 | 386958 | 282 | -60 | 270 | 150 | 134 | 135 | 1.00 | 1.23 | | | | | | | | | 28 | 29 | 1.00 | 1.46 | | LERC20_055 | 6405777 | 386972 | 282 | -60 | 270 | 150 | 96 | 97 | 1.00 | 1.10 | | | | | | | | | 109 | 110 | 1.00 | 1.88 | | | | | | | | | 100 | 104 | 4.00 | 1.00 | | LERC20_057 | 6405826 | 386924 | 274 | -60 | 270 | 126 | 108 | 116 | 8.00 | 1.57 | | LERC2U_U37 | 0403620 | 300924 | 2/4 | -00 | 270 | 120 | 28 | 29 | 1.00 | 3.07 | | | | | | | | | 34 | 35 | 1.00 | 5.79 | | | | | | | | | 5 | 6 | 1.00 | 5.73 | | | | | | | | | 17 | 18 | 1.00 | 1.08 | | | | | | | | | 25 | 34 | 9.00 | 1.06 | | LERC20_045 | 6405725 | 386891 | 286 | -60 | 270 12 | 120 | 49 | 50 | 1.00 | 1.53 | | | | | | | | | 55 | 67 | 12.00 | 1.12 | | | | | | | | | 87 | 88 | 1.00 | 1.58 | | | | | | | | | 110 | 111 | 1.00 | 1.31 | | Hole Number | Northing | Easting | RL | Dip (degrees) | Azimuth
(degrees) | End of Hole
Depth (m) | Downhole
From (m) | Downhole To
(m) | Downhole
Intersection
(m) | Au gpt
(uncut) | | | | | | | | |-------------|----------|---------|-----|---------------|----------------------|--------------------------|----------------------|--------------------|---------------------------------|-------------------|------|------|--|-----|-----|------|------| | | | | | | | | 66 | 67 | 1.00 | 1.38 | | | | | | | | | | | | | | | | 74 | 76 | 2.00 | 1.83 | | | | | | | | | | | | | | | | 88 | 91 | 3.00 | 1.14 | | | | | | | | | | | | | | | | 103 | 104 | 1.00 | 1.25 | | | | | | | | | 150630 053 | (405750 | 206050 | 200 | | | 1.50 | 107 | 109 | 2.00 | 2.15 | | | | | | | | | LERC20_052 | 6405750 | 386958 | 280 | -60 | 270 | 169 | 118 | 119 | 1.00 | 2.90 | 125 | 127 | 2.00 | 5.81 | | | | | | | | | | | | | | | | | | 131 | 133 | | | | | | | | | 149 | 157 | 8.00 | 1.10 | | | | | | | | | | | | | | | | 165 | 168 | 3.00 | 2.08 | | | | | | | | | | | | | | | | 64 | 66 | 2.00 | 3.73 | | | | | | | | | | | | | 278 -60 27 | | | 81 | 85 | 4.00 | 3.41 | | | | | | | | | LEDC20 054 | C405775 | 206027 | 270 | | 270 | 150 | 99 | 100 | 1.00 | 1.05 | | | | | | | | | LERC20_054 | 6405775 | 386937 | 2/8 | | | 150 | 107 | 112 | 5.00 | 1.31 | | | | | | | | | | | | | | | | 132 | 134 | 2.00 | 1.53 | | | | | | | | | | | | | | | | 141 | 147 | 6.00 | 1.74 | | | | | | | | | | | | | | | | 29 | 37 | 8.00 | 1.23 | | | | | | | | | 150630 050 | 6405025 | 206067 | 270 | | 270 | 150 | 60 | 61 | 1.00 | 1.02 | | | | | | | | | LERC20_058 | 6405825 | 386967 | 279 | -60 | 270 | 150 | 84 | 87 | 3.00 | 4.16 | | | | | | | | | | | | | | | | 130 | 138 | 8.00 | 1.22 | | | | | | | | | | | | | | | | 14 | 29 | 15.00 | 1.88 | | | | | | | | | LERC20_059 | 6405875 | 386912 | 270 | -60 2: | 270 | 270 | 270 | 96 | 34 | 36 | 2.00 | 1.08 | | | | | | | | | | | | | | 78 | 79 | 1.00 | 1.41 | | | | | | | | | LEDC20, 000 | 6405075 | 206026 | 272 | 60 | 270 | 102 | 49 | 57 | 8.00 | 2.86 | | | | | | | | | LERC20_060 | 6405875 | 386936 | 272 | -60 | 270 | 102 | 85 | 88 | 3.00 | 0.94 | | | | | | | | | Hole Number | Northing | Easting | RL | Dip (degrees) | Azimuth
(degrees) | End of Hole
Depth (m) | Downhole
From (m) | Downhole To
(m) | Downhole
Intersection
(m) | Au gpt
(uncut) | |-------------|----------|---------|-----|---------------|----------------------|--------------------------|----------------------|--------------------|---------------------------------|-------------------| | | | | | | | | 10 | 12 | 2.00 | 2.40 | | LEDC20 044 | 6405700 | 206022 | 202 | -60 | 270 | 126 | 26 | 27 | 1.00 | 1.33 | | LERC20_044 | 6405700 | 386932 | 283 | -60 | 270 | 126 | 88 | 90 | 2.00 | 1.68 | | | | | | | | 113 | 126 | 13.00 | 1.53 | | | LEDC20 047 | 6405725 | 386934 | 283 | -60 | 270 | 142 | 51 | 52 | 1.00 | 4.90 | | LERC20_047 | 0405725 | 380934 | 283 | -60 | 2/0 | 142 | 132 | 135 | 3.00 | 2.21 | | | | | | | | | 13 | 15 | 2.00 | 2.64 | | LEDC20 042 | 6405660 | 206027 | 206 | 60 | 270 | 126 | 22 | 23 | 1.00 | 1.19 | | LERC20_042 | 6405660 | 386937 | 286 | -60 | 270 | 126 | 41 | 42 | 1.00 | 1.14 | | | | | | | | | 121 | 122 | 1.00 | 4.45 | | | | | | | | | 33 | 34 | 1.00 | 1.88 | | | | | | | | | 50 | 52 | 2.00 | 1.23 | | | | | | | | 55 | 57 | 2.00 | 3.50 | | | LERC20_051 | 6405750 | 386934 | 280 | -60 | 270 | 138 | 79 | 80 | 1.00 | 1.10 | | | | | | | | | 87 | 90 | 3.00 | 2.19 | | | | | | | | | 102 | 104 | 2.00 | 1.03 | | | | | | | | | 129 | 131 | 2.00 | 1.26 | | LEDC20, 040 | (405650 | 206044 | 202 | 60 | 270 | | 20 | 25 | 5.00 | 2.57 | | LERC20_040 | 6405650 | 386844 | 292 | -60 | 270 | 66 | 34 | 38 | 4.00 | 4.05 | | | | | | | | | 26 | 31 | 5.00 | 1.88 | | | | | | | | | 45 | 46 | 1.00 | 1.13 | | | | | | | | | 77 | 78 | 1.00 | 1.04 | | LERC20_041 | 6405650 | 386894 | 291 | -60 | 270 | 126 | 88 | 89 | 1.00 | 1.09 | | | | | | | 276 126 | | 110 | 111 | 1.00 | 1.33 | | | | | | | | | 114 | 117 | 3.00 | 1.28 | | | | | | | | | 119 | 120 | 1.00 | 1.00 | | LEDC20, 062 | C405775 | 206712 | 276 | 60 | 270 | 60 | 18 | 19 | 1.00 | 1.72 | | LERC20_063 | 6405775 | 386713 | 276 | -60 | 270 | 60 | 35 | 36 | 1.00 | 2.59 | # **Table of Drill Results – Lady Eleanor** | Hole Number | Northing | Easting | RL | Dip
(degrees) | Azimuth
(degrees) | End of Hole
Depth (m) | Downhole
From (m) | Downhole
To (m) | Downhole
Intersection
(m) | Au gpt
(uncut) | Est. True
Width (m) | |-------------|----------------------|---------------------|-----|------------------|----------------------|--------------------------|----------------------|--------------------|---------------------------------
-------------------|------------------------| | LERC20_015 | 6405522 | 386838 | 295 | -60 | 270 | 48 | 7 | 12 | 5 | 1.28 | 3.90 | | | | | | | | | 35 | 36 | 1 | 1.20 | 0.78 | | LERC20_016 | 6405522 | 386859 | 295 | -60 | 270 | 102 | 82 | 84 | 2 | 3.12 | 1.56 | | | | | | | | | 92 | 93 | 1 | 2.61 | 0.78 | | LERC20_018 | 6405482 | 386852 | 300 | -60 | 270 | 118 | 16 | 17 | 1 | 2.32 | 0.78 | | LERC2U_U16 | 0405462 | 300032 | 300 | -00 | 270 | 110 | 117 | 118 | 1 | 1.63 | 0.78 | | LERC20_020 | 6405462 | 386859 | 300 | -60 | 270 | 130 | 99 | 100 | 1 | 1.14 | 0.78 | | LERC20_019 | 6405462 | 386808 | 300 | -60 | 270 | 46 | 5 | 9 | 4 | 1.05 | 3.12 | | | | | | | | | 46 | 53 | 7 | 3.31 | 5.46 | | LERC20_022 | 6405422 | 386849 | 302 | -60 | 270 | 106 | 62 | 65 | 3 | 1.36 | 2.34 | | | | | | | | | 74 | 75 | 1 | 2.92 | 0.78 | | LERC20_021 | 6405422 | 386813 | 301 | -60 | 270 | 48 | 22 | 23 | 1 | 1.90 | 0.78 | | LLINC20_021 | 0703722 | 300013 | 301 | 00 | 270 | 70 | 27 | 28 | 1 | 1.11 | 0.78 | | LERC20_023 | 6405382 | 386823 | 305 | -55 | 270 | 48 | 24 | 25 | 1 | 1.85 | 0.78 | | LERC20_025 | 6405266 | 386804 | 313 | -60 | 270 | 34 | 32 | 34 | 2 | 11.25 | 1.56 | | LERC20_026 | 6405264 | 386830 | 311 | -60 | 270 | 60 | 13 | 15 | 2 | 1.34 | 1.56 | | LLNC20_020 | 0403204 | 360630 | 311 | -00 | 270 | 00 | 48 | 49 | 1 | 2.66 | 0.78 | | | | | | | | | 54 | 56 | 2 | 1.46 | 1.56 | | LERC20_028 | 6405219 | 386839 | 307 | -60 | 270 | 88 | 68 | 69 | 1 | 1.44 | 0.78 | | | | | | | | | 78 | 79 | 1 | 1.06 | 0.78 | | LERC20_032 | 6405220 | 386801 | 313 | -60 | 270 | 58 | 18 | 28 | 10 | 2.06 | 7.80 | | LERC20_030 | 6405161 | 386805 | 310 | -60 | 270 | 106 | 33 | 35 | 2 | 1.31 | 1.56 | | LLNC20_030 | 0403101 | 300003 | 310 | -00 | 270 | 100 | 44 | 45 | 1 | 1.66 | 0.78 | | LERC20_029 | 6405203 | 386841 | 305 | -60 | 270 | 100 | 58 | 59 | 1 | 2.78 | 0.78 | | LLINC20_029 | U 1 UJZUJ | 3000 4 1 | 202 | -00 | 2/0 | 100 | 68 | 69 | 1 | 1.4 | 0.78 | | Hole Number | Northing | Easting | RL | Dip
(degrees) | Azimuth
(degrees) | End of Hole
Depth (m) | Downhole
From (m) | Downhole
To (m) | Downhole
Intersection
(m) | Au gpt
(uncut) | Est. True
Width (m) | |-------------|----------|---------|-----|------------------|----------------------|--------------------------|----------------------|--------------------|---------------------------------|-------------------|------------------------| | | | | | | | | 4 | 6 | 2 | 3.8 | 1.56 | | | | | | | | | 15 | 16 | 1 | 1.68 | 0.78 | | | | | | | | | 19 | 20 | 1 | 1.4 | 0.78 | | LERC20_031 | 6405168 | 386853 | 302 | -60 | 270 | 148 | 38 | 39 | 1 | 1.41 | 0.78 | | | | | | | | | 50 | 51 | 1 | 7.96 | 0.78 | | | | | | | | | 58 | 59 | 1 | 1.25 | 0.78 | | | | | | | | | 81 | 91 | 10 | 1.31 | 7.80 | | | | | | | | | 10.4 | 10.9 | 0.6 | 5.66 | 0.47 | | LEDD20_002 | 6405442 | 386840 | 302 | -60 | 270 | 106.2 | 50.5 | 54.9 | 4.4 | 3.14 | 3.43 | | | | | | | | | 58.5 | 59.4 | 0.9 | 1.01 | 0.70 | | | | | | | | | 62 | 63 | 1 | 6.88 | 0.78 | | LERC20_024 | 6405383 | 386855 | 304 | -60 | 270 | 124 | 75 | 78 | 3 | 3.18 | 2.34 | | | | | | | | | 90 | 91 | 1 | 1.58 | 0.78 | | | | | | | | | 17 | 18 | 1 | 1.23 | 0.78 | | LERC20_027 | 6405239 | 386838 | 308 | -60 | 270 | 148 | 29 | 33 | 4 | 1.02 | 3.12 | | | | | | | | | 38 | 43 | 5 | 2.3 | 3.90 | # **Appendix 2 – Mineral Resources** # **Norseman Gold Project Mineral Resource** | | Measured | | | Indicated | | | Inferred | | | Total | | | |----------------------|---------------|-------|-----------------|---------------|-------|-----------------|---------------|-------|-----------------|---------------|-------|-----------------| | | Tonnes
(M) | Grade | Ounces
(Moz) | | Norseman Underground | 0.3 | 13.9 | 0.13 | 1.34 | 17.9 | 0.77 | 2.53 | 14.1 | 1.15 | 4.17 | 15.3 | 2.05 | | Norseman Surface | 4.31 | 0.8 | 0.11 | 11.37 | 2.0 | 0.74 | 15.68 | 3.50 | 1.34 | 31.35 | 2.3 | 2.36 | | | Measured | | | Indicated | | | Inferred | | | Total | | | |----------------------|----------|-------|--------|-----------|-------|---------|-----------|-------|---------|-----------|-------|---------| | | Tonnes | Grade | Ounces | | Scotia | - | - | - | 1,038,000 | 5.31 | 177,000 | 851,000 | 7.47 | 204,000 | 1,889,000 | 6.28 | 382,000 | | Lady Eleanor | - | - | - | - | - | - | 282,000 | 2.14 | 19,000 | 282,000 | 2.14 | 19,000 | | Free Gift | - | - | - | - | - | - | 254,000 | 1.53 | 13,000 | 254,000 | 1.53 | 13,000 | | Scotia Mining Centre | - | - | - | 1,038,000 | 5.31 | 177,000 | 1,387,000 | 5.30 | 236,000 | 2,425,000 | 5.30 | 414,000 | Pantoro has a 50% share of the Central Norseman Gold Project Mineral Resource. # **Appendix 3 – JORC Code 2012 Edition – Table 1** # **SECTION 1: SAMPLING TECHNIQUES AND DATA** | Criteria | JORC Code explanation | Commentary | |---------------------|--|--| | Sampling techniques | Nature and quality of sampling (eg cut channels, random chips, or specific
specialised industry standard measurement tools appropriate to the minerals
under investigation, such as down hole gamma sondes, or handheld XRF | This release relates to results from Reverse Circulation (RC) of the Green Lantern and Reverse Circulation (RC and Diamond drill sam-pling Lady Eleanor prospects at the Norseman gold project. | | | instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. | • RC – Metzke fixed cone splitter used, with double chutes for field du-plicates, Infinite adjustment between 4 – 15% per sample chute sam-pled every 1m | | | Include reference to measures taken to ensure sample representivity and the
appropriate calibration of any measurement tools or systems used. | • RC samples 2-7kg samples are dispatched to an external accredited laboratory where they are crushed and pulverized to a pulp (P90 75 mi-cron) for fire assay | | | Aspects of the determination of mineralisation that are Material to the Public Report. | (40g charge). | | | In cases where 'industry standard' work has been done this would be relatively
simple (eg'reverse circulation drilling was used to obtain 1 m samples from which | • Diamond samples 2-5kg samples are dispatched to an external accred-ited laboratory (BVA Kalgoorlie and BVA Perth) where they are crushed and pulverized to a pulp (P90 75 micron) for fire assay (40g charge). | | | 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | • All core is logged and sampled according to geology, with only selected samples assayed. Core is halved, with RHS of cutting line assayed, and the other half retained in core trays on site for further analysis. Samples are a maximum of 1.2m, with shorter intervals utilised accord-ing to geology to a minimum interval of15m where clearly defined mineralisation is evident. | | | | Core is aligned, measured and marked up in metre intervals referenced back to downhole core blocks . | | | | Visible gold is encountered and where observed during logging, Screen Fire Assays are conducted | | | | • Historical holes - RC drilling was used to obtain 1 m samples from which 2-3 kg split via a splitter attached to the cyclone assembly of the drill rig. From the commencement of the mine until late 1995 the assaying was done on site until the closure of the on site laboratory the samples were sent to Silver Lake lab at Kambalda. From November 2001 the samples were sent to Analabs in Kalgoorlie, subsequently owned and operated by the SGS group. The samples have always been fire assayed with various charge weights (generally either 30 or 50g). The method was (using the SGS codes) DRY11 (sample drying, 105°C), CRU24 (crush > 3.5kg, various mesh sizes per kg), SPL26 (riffle splitting, per kg), PUL48 (pulv, Cr Steel, 75µm, 1.5 to 3kg), FAA505 (AU FAS, AAS, 50g) (two of these were performed), and WST01 (waste disposal). | | Drilling techniques | Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth | RC – Reverse circulation drilling was carried out using a face sampling hammer and a 5&5/8 inch diameter bit | | | of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | Surface DD – HQ and NQ2 diamond tail completed on RC or Rock Roller precollars,
All core has orientations completed where possible with confidence and quality
marked accordingly. | | Criteria | JORC Code explanation | Commentary | |-------------------------
---|---| | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature | All holes were logged at site by an experienced geologist or logging was
supervised by an experienced geologist. Recovery and sample quality were
visually observed and recorded. | | | of the samples.Whether a relationship exists between sample recovery and grade and whether | RC- recoveries are monitored by visual inspection of split reject and lab weight samples are recorded and reviewed. | | | sample bias may have occurred due to preferential loss/gain of fine/coarse material. | RC drilling by previous operators to industry standard at the time DD – No significant core loss noted. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. | | | | The total length and percentage of the relevant intersections logged. | • 100% of the holes are logged | | Sub-sampling techniques | If core, whether cut or sawn and whether quarter, half or all core taken. | All RC holes are sampled on 1m intervals | | and sample preparation | If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled | RC samples taken of the fixed cone splitter, generally dry. | | | wet or dry. | Sample sizes are considered appropriate for the material being sampled | | | For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise | • Core samples were sawn in half utilising an Almonte core-saw, with RHS of cutting line sent for assaying and the other half retained in core trays on site for future analysis. | | | representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material | For core samples, core was separated into sample intervals and separately bagged for analysis at the certified laboratory. | | | collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being | • Core was cut under the supervision of an experienced geologist, it is routinely cut on the orientation line. | | | sampled. | All mineralised zones are sampled as well as material considered barren either side of the mineralised interval | | | | • Field duplicates i.e. other half of core or ¼ core has not been routinely sampled | | | | Field duplicates for RC drilling are routinely collected | | | | Half core is considered appropriate for diamond drill samples. | | | | RC drilling and sampling practices by previous operators are considered to have been conducted to industry standard | | Criteria | JORC Code explanation | Commentary | |--|--|---| | Quality of assay data and laboratory tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. | assays are determined using fire assay with 40g charge. Where other elements are | | | • For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. | assayed using either AAS base metal suite or acid digest with ICP-MS finish. The methods used approach total mineral consumption and are typical of industry standard practice. | | | Nature of quality control procedures adopted (eg standards, blanks, duplicates, | No geophysical logging of drilling was performed. | | | external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | Lab standards, blanks and repeats are included as part of the QAQC system. In addition the laboratory has its own internal QAQC comprising standards, blanks and duplicates. Sample preparation checks of pulverising at the laboratory include tests to check that the standards of 90% passing 75 micron is being achieved. Follow-up re-assaying is performed by the laboratory upon company request following review of assay data. Acceptable bias and precision is noted in results given the nature of the deposit and the level of classification | | | | • RC drill samples from the commencement of the mine until late 1995 the assaying was done on site until the closure of the on site laboratory the samples were sent to Silver Lake lab at Kambalda. From November 2001 the samples were sent to Analabs in Kalgoorlie, subsequently owned and operated by the SGS group. The samples have always been fire assayed with various charge weights (generally either 30 or 50g). The method was (using the SGS codes) DRY11 (sample drying, 105°C), CRU24 (crush > 3.5kg, various mesh sizes per kg), SPL26 (riffle splitting, per kg), PUL48 (pulv, Cr Steel, 75µm, 1.5 to 3kg), FAA505 (AU FAS, AAS, 50g) (two of these were performed), and WST01 (waste disposal). | | Verification of sampling and assaying | The verification of significant intersections by either independent or alternative company personnel. | Significant intersections are noted in logging and checked with assay results by company personnel both on site and in Perth. | | | The use of twinned holes. | There are no twinned holes drilled as part of these results | | | Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. | SQL database. Data is visually checked for errors before being sent to company | | | Discuss any adjustment to assay data. | database manager for further validation and uploaded into an offsite database.
Hard copies of original drill logs are kept in onsite office. | | | | Visual checks of the data re completed in Surpac mining software | | | | No adjustments have been made to assay data unless in instances where standard tolerances are not met and re-assay is ordered. | | Criteria | JORC Code explanation | Commentary | |-------------------------------------|---|---| | Location of data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. | Diamond Drilling was downhole surveyed initially with a CHAMP GYRO north
seeking solid state survey tool sampling every 5m, for all holes drilled in October
2019 before swapping over to a Devi Gyro (Deviflex non-magnetic) survey tool
with measurements taken every 3m. | | | Quality and adequacy of topographic control. | The RC drill holes used a REFLEX GYRO with survey measurements every 5m. | | | | A Champ Discover magnetic multi-shot drill hole survey tool has also been utilised for comparison on some holes taking measurements every 30m. | | | | Surface RC/DD drilling is marked out using GPS and final pickups using DGPS collar pickups | | | | The project lies in MGA 94, zone 52. | | | | Topographic control uses DGPS collar pickups and external survey RTK data and
is considered adequate for use. | | | | Pre Pantoro survey accuracy and quality assumed to industry standard | | Data spacing and distribution | Data spacing for reporting of Exploration Results. Whether the data
spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. | This current round of drilling was nominally on 25m northing lines and spacing
was between 10-30m across section lines depending on pre-existing hole
positions. | | | | No compositing is applied to diamond drilling or RC sampling. | | | Whether sample compositing has been applied. | All RC samples are at 1m intervals. | | | | • Core samples are both sampled to geology of between 0.15 and 1.2m intervals. | | Orientation of data in | Whether the orientation of sampling achieves unbiased sampling of possible | No bias of sampling is believed to exist through the drilling orientation | | relation to geological
structure | structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | All drilling in this program is currently interpreted to be perpendicular to the
orebody. | | Sample security | The measures taken to ensure sample security. | The chain of custody is managed by Pantoro employees and contractors. Samples are stored on site and delivered in bulka bags to the lab in Kalgoorlie and when required transshipped to affiliated Perth Laboratory. | | | | Samples are tracked during shipping. | | | | Pre Pantoro operator sample security assumed to be consistent and adequate. | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | No audit or reviews of sampling techniques have been undertaken however the
data is managed by company data scientist who has internal checks/protocols in
place for all QA/QC. | ## **SECTION 2: REPORTING OF EXPLORATION RESULTS** | Criteria | JORC Code explanation | Commentary | |---|--|---| | Mineral tenement and land tenure status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The tenements where the drilling has been completed is 50% held by Pantoro
subsidiary company Pantoro South Pty Ltd in an unincorporated JV with CNGC
Pty Ltd. These are: M63/325 and M63/112. | | | | • Tenement transfers to Pantoro South are yet to occur as stamp duty assessments have not been completed by the office of state revenue. The tenements predate native title claims. | | | | The tenements are in good standing and no known impediments exist. | | Exploration done by other | Acknowledgment and appraisal of exploration by other parties. | Gold was discovered in the area 1894 and mining undertaken by small Syndicates. | | parties | | • In 1935 Western Mining established a presence in the region and operated the Mainfield and Northfield areas under the subsidiary company Central Norseman Gold Corporation Ltd. The Norseman asset was held within a company structure whereby both the listed CNGC held 49.52% and WMC held a controlling interest of 50.48%. They operated continuously until the sale to Croesus in October 2001 and operated until 2006. During the period of Croesus management the focus was on mining from the Harlequin and Bullen Declines accessing the St Pats, Bullen and Mararoa reefs. Open Pits were HV1, Daisy, Gladstone and Golden Dragon with the focus predominantly on the high grade underground mines. | | | | • From 2006-2016 the mine was operated by various companies with exploration being far more limited than that seen in the previous years. | | | | The Scotia deposit was drilled drilled by CNGC who mined the deposit by both open pit and underground methods between 1987 and 1996. | | Geology | Deposit type, geological setting and style of mineralisation. | The Norseman gold deposits are located within the southern portion of the Eastern Goldfields Province of Western Australia in the Norseman-Wiluna greenstone belt in the Norseman district. Deposits are predominantly associated with near north striking easterly dipping quartz vein within metamorphosed Archean mafic rocks of the Woolyeenyer Formation located above the Agnes Venture slates which occur at the base. | | | | The principal units of the Norseman district, are greenstones which are west dipping and interpreted to be west facing. The sequence consists of the Penneshaw Formation comprising basalts and felsic volcanics on the eastern margin bounded by the Buldania granite batholith, the Noganyer Iron Formation, the Woolyeenyer formation comprising pillow basalts intruded by gabbros and the Mount Kirk Formation a mixed assemblage. | | Criteria | JORC Code explanation | Commentary | |------------------------|---|---| | | | • The mineralisation is hosted in quartz reefs in steeper shears and flatter linking sections, more recently significant production has been sourced from NNW striking reefs known as cross structures (Bullen). Whilst a number of vein types are categorized the gold mineralisation is predominantly located in the main north trending reefs which in the Mainfield strike for over a kilometre. The quartz/sulphide veins range from 0.5 metres up to 2 metres thick, these veins are zoned with higher grades occurring in the laminated veins on the margins and central bucky quartz which is white in colour. Bonanza grades are associated with native gold and tellurides with other accessory sulphide minerals being galena, sphalerite, chalcopyrite, pyrite and arsenopyrite. | | | | • The long running operations at Norseman have provided a good understanding on the controls of mineralisation as well as the structural setting of the deposits. The overall geology of the Norseman area is well understood with 3D Fractal Graphic mapping and detailed studies, adding to a good geological understanding to the area. The geometry of the main lodes at Norseman are well known and plunge of shoots predictable in areas, however large areas remain untested by drilling with the potential for new spurs and cross links high. Whilst the general geology of lodes is used to constrain all wireframes, predicting continuity of grade has proven to be difficult at the higher grades when mining and in some instances (containing about 7% of the ounces) subjective parameters have been applied. | | Drill hole Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: | A table of drill hole data pertaining to this release is attached. | | | | All holes with results available from the last public announcement are reported. | | | » easting and northing of the drill hole collar | | | | » elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar | | | | » dip and azimuth of the hole | | | | » down hole length and interception depth | | | | » hole length. | | | | If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | | | Criteria | JORC Code explanation |
Commentary | |---|---|---| | Data aggregation methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. | Reported drill results are uncut | | | | All relevant intervals to the reported mineralised intercept are length weighted to determine the average grade for the reported intercept. | | | Where aggregate intercepts incorporate short lengths of high grade results and
longer lengths of low grade results, the procedure used for such aggregation
should be stated and some typical examples of such aggregations should be
shown in detail. | All significant intersections are reported with a lower cut off of 1 g/t Au including a maximum of 2m of internal dilution. Individual intervals below this cut off are reported where they are considered to be required in the context of the presentation of results | | | The assumptions used for any reporting of metal equivalent values should be clearly stated. | No metal equivalents are reported. | | Relationship between | These relationships are particularly important in the reporting of Exploration | Surface RC drilling of the pits is perpendicular to the orebody | | mineralisation widths and intercept lengths | Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. | Downhole lengths are reported at this stage, as due to the multiple stacked lodes in the Green Lantern Deposit, a clear geometry and orientation are not yet defined so true width cannot be accurately determined. | | | • If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | • Lady Eleanor is better understood with diamond drilling so true widths are estimated using prior oriented core measurements as a guide. | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should
be included for any significant discovery being reported These should include,
but not be limited to a plan view of drill hole collar locations and appropriate
sectional views. | Appropriate diagrams are included in the report. | | Balanced reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | All holes available are reported are included in the tables | | | | Diagrams show the location and tenor of both high and low grade samples. | | Other substantive exploration data | • Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | No other meaningful data to report. | | Further work | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). | As already noted these drilling results are part of an ongoing definition program to further define the mineralisation. | | | Diagrams clearly highlighting the areas of possible extensions, including the main
geological interpretations and future drilling areas, provided this information is
not commercially sensitive. | This program will also evaluate and test the potential for depth and Strike extensions of the ore shoots. | ### **Exploration Targets, Exploration Results** The information in this report that relates to Exploration Targets and Exploration Results is based on information compiled by Mr Scott Huffadine (B.Sc. (Hons)), a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Huffadine is a Director and full time employee of the company. Mr Huffadine is eligible to participate in short and long term incentive plans of and holds shares, options and performance rights in the Company as has been previously disclosed. Mr Huffadine has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Huffadine consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. ### **Lady Eleanor Drilling Results** The information is extracted from the report entitled 'Exceptional Drill Results Confirm Scotia as Key Mining Centre' created on 9 June 2020 and is available to view on Pantoro's website (www.pantoro.com.au) and the ASX (www.asx.com.au). The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement. ## **Norseman Gold Project Mineral Resources & Ore Reserves** The information in this report that relates to Exploration Targets, Exploration Results and Mineral Resources is based on information compiled by Mr Andrew Hawker (B.Sc. (Hons)), a Competent Person who is a Member of the Australian Institute of Geoscientists. Mr Hawker is an independent consultant to CNGP and is a director of HGS Australia Exploration Services which is the entity providing services to CNGP. HGS Australia Exploration Services is retained by CNGP under industry standard commercial consulting rates. Mr Hawker has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the' Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Hawker consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. The information is extracted from the report entitled 'Strategic Transaction and Capital Raising Presentation' created on 15 May 2019 and is available to view on Pantoro's website (www.pantoro.com.au) and the ASX (www.asx.com.au). The company confirms that it is not aware of any new information or data that materially affects the information included in the original market announcement and, in the case of estimates of Mineral Resources or Ore Reserves, that all material assumptions and technical parameters underpinning the estimates in the relevant market announcement continue to apply and have not materially changed. The company confirms that the form and context in which the Competent Person's findings are presented have not been materially modified from the original market announcement. # **Forward Looking Statements** Certain statements in this report relate to the future, including forward looking statements relating to Pantoro's financial position and strategy. These forward looking statements involve known and unknown risks, uncertainties, assumptions and other important factors that could cause the actual results, performance or achievements of Pantoro to be materially different from future results, performance or achievements expressed or implied by such statements. Actual events or results may differ materially from the events or results expressed or implied in any forward looking statement and deviations are both normal and to be expected. Other than required by law, neither Pantoro, their officers nor any other person gives any representation, assurance or guarantee that the occurrence of the events expressed or implied in any forward looking statements will actually occur. You are cautioned not to place undue reliance on those statements.