

ASX Announcement

## **Exploration Results and Mineral Resource Estimates**

Enclosed is information that is material to understanding the Exploration Results and Mineral Resource estimates following the form laid out in JORC Table 1 for both the Hematite Mineral Resource and the Itabirite Mineral Resource as disclosed in the Prospectus.

Ends-

Authorised for release by the board

Abby Macnish Niven

Company Secretary Tombador Iron Limited (ASX:TI1)





## **JORC Code, 2012 Edition – Table 1**

# **TOMBADOR IRON ORE PROJECT – COMPACT HEMATITE UPDATE**

## **Section 1 Sampling Techniques and Data**

(Criteria in this section apply to all succeeding sections.)

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | <ul> <li>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> </ul>                                                                                                        | <ul> <li>Samples were taken from diamond drillhole HQ core, all drilled material was sampled, nothing being discarded. The holes were all vertical. All drillhole collars were topographically surveyed by total station and drillhole landmarks properly identified. This drill program was undertaken by VALE. Mineralization intervals chosen for splitting of the diamond drilling core was based on geological core description during drill core logging.</li> <li>A chip sampling plan was prepared to test surficial samples to improve confidence on the hematite resource. During this stage, only the sampling of the HCO (compact hematite) was performed; sampling of the talus was left for a later date. The chips were collected from compact hematite outcroppings. The sampling was planned by the geologists and care was taken to avoid any contamination between neighbouring samples. The chip sampling points that were selected were correlated with the drillholes. Each chip sampling point was characterized according to its geodesic position and the geological description of the area where it was located. Photographs were also taken, and the area was cleared off. In cases where the mass of the samples was greater than that which was chosen to send for granulometric classification, these samples were split in the Jones splitter.</li> </ul> |
|                        | <ul> <li>Aspects of the determination of mineralization<br/>that are Material to the Public Report. In<br/>cases where 'industry standard' work has<br/>been done this would be relatively simple (e.g.<br/>'reverse circulation drilling was used to obtain<br/>1 m samples from which 3 kg was pulverised<br/>to produce a 30 g charge for fire assay'). In<br/>other cases more explanation may be<br/>required, such as where there is coarse gold<br/>that has inherent sampling problems. Unusual<br/>commodities or mineralization types (e.g.<br/>submarine nodules) may warrant disclosure of</li> </ul> | • Industry standard work has been done. All drilling was diamond core drilling, drill core was logged for lithology, structure and magnetism. Core samples (HQ) were sawn in half using a diamond saw. HCO samples were prepared for granulo-chemical analysis due to the existence of hematite with potential to form direct shipping lump ore. Ore samples from half diamond core were collected using a 10 m intervals, (with minimum >5 m and maximum <15 m) obeying lithological and weathering contacts. To ensure a clear definition of the boundaries of mineralised zones, 2m samples of core were collected of the host rock above and below the mineralised intervals (as shown in the diagram below). One half of the material was sent for granulo-chemical analysis to the assay laboratory SGS Geosol - Vespasiano and the remaining half were filed in the purpose built core shed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |





| Criteria JORC Code explanation | Commentary                                                                                                                                                                                             |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| detailed information.          | Diamond Drill Hole - Bicuda Deposit                                                                                                                                                                    |
|                                | Sterile Depth Sampl No. Analysis                                                                                                                                                                       |
|                                | Ore         110.00 m ®         Whole rock - Host           0         108.15 m ®         Whole rock - Ore           104.65 m ®         Whole rock - Host           103.00 m ®         Whole rock - Host |
|                                | Sterile                                                                                                                                                                                                |
|                                | 85.00 m ⑦ Whole rock - Host<br>82.70 m ⑧ Granoluchemistry - Ore                                                                                                                                        |
|                                | <ul> <li>70.00 m</li> <li>(5) Granoluchemistry - Ore</li> <li>60.00 m</li> <li>Ore</li> <li>(4) Granoluchemistry - Ore</li> <li>(50.00 m)</li> </ul>                                                   |
|                                | <ul> <li>Granoluchemistry - Ore</li> <li>40.00 m</li> <li>② Granoluchemistry - Ore</li> <li>32.25 m</li> <li>③ Whole rock - Host</li> </ul>                                                            |
|                                | Sterile                                                                                                                                                                                                |
|                                | Each entire 10m composite sample (20-30kg) was metallurgically tested using granulo-<br>chemical analysis which employs the following method. Coarse crushing and separation of                        |
|                                | size fractions as follows:<br>o 8mm to 31.5mm<br>o 1mm to 8mm                                                                                                                                          |
|                                | <ul> <li>0.15mm to 1 mm</li> <li>&lt; 0.15mm</li> <li>Once weighed, each interval was crushed, pulverized, mixed, split and assayed by:</li> </ul>                                                     |





| Criteria JORC Code explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria JORC Code explanation | Commentary • X-Ray fluorescence for the following elements and oxides: Fe, SiO2, P, Al2O3, Mn, TiO2, MgO, CaO, BaO, K2O, Na2O3 & Cr2O3 • Volumetric analysis using potassium dichromate for FeO • Loss on Ignition (LOI) at 1000°C The assays and weights of each size fraction were used to calculate a weighted average assay for the global sample. Cranulo-chemical assay sample preparation flow chart • If the assay of the global sample average assay for the global sample. Cranulo-chemical assay sample preparation flow chart • If the average are average assay for the global sample. • Cranulo-chemical assay sample preparation flow chart • If the average are average assay for the global sample. • Or the global sample. • |
|                                | For samples less than five meters a simple total or whole rock analysis was used.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |





| Criteria | JORC Code explanation                                                             | Commentary | Whole             | Rock sample           | e preparation for flowchart                                                |
|----------|-----------------------------------------------------------------------------------|------------|-------------------|-----------------------|----------------------------------------------------------------------------|
|          |                                                                                   |            |                   | Sample 6kg            |                                                                            |
|          |                                                                                   |            |                   | Weigh<br>(Wet Weight) |                                                                            |
|          |                                                                                   |            |                   | Drying                | 60°C or 105°C, as requested in the<br>Analysis Request Letter accompanying |
|          |                                                                                   |            |                   | Weigh                 | the samples. Letter sent                                                   |
|          |                                                                                   |            |                   | (Dry Weight)<br>Grind |                                                                            |
|          |                                                                                   |            |                   | (95% < 4,00mm)        |                                                                            |
|          |                                                                                   |            |                   | Homogenise            |                                                                            |
|          |                                                                                   |            | 3/4 of Material   | Split                 | 1/4 of Material                                                            |
|          |                                                                                   |            | RESERVE<br>Ground | I                     |                                                                            |
|          |                                                                                   |            |                   |                       | Rest of the Material                                                       |
|          |                                                                                   |            |                   |                       | Pulverise                                                                  |
|          |                                                                                   |            |                   |                       | (95% < 0,105mm)                                                            |
|          |                                                                                   |            |                   |                       | Homogenise                                                                 |
|          |                                                                                   |            |                   |                       | Split                                                                      |
|          |                                                                                   |            |                   |                       | Aliquot for<br>Chemical Analysis                                           |
|          |                                                                                   |            | RE                | SERVE                 |                                                                            |
|          |                                                                                   |            |                   | lverised              |                                                                            |
| Drilling | Drill type (e.g. core, reverse circulation                                        | , open-    | bador deposit d   | Irill holes we        | re HQ sized diamond drill holes. There were                                |
| chniques | hole hammer, rotary air blast, auger, B<br>– Update Tombador Iron - HCO Resources |            |                   |                       | e deposit and 28 holes totalling 3542.7m within t                          |





| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         | sonic, etc.) and details (e.g. core diameter,<br>triple or standard tube, depth of diamond tails,<br>face-sampling bit or other type, whether core<br>is oriented and if so, by what method, etc.).                                                          | tenement. The drilling is a subset of the much larger drill program from Colomi (previous owner<br>of the tenement). Diamond holes were undertaken in HQ size (6.35 cm) diameter triple tube.                                                                                                                                                                                                                                                                                                                                                         |
| Drill sample recovery                                   | <ul> <li>Method of recording and assessing core and<br/>chip sample recoveries and results assessed.</li> </ul>                                                                                                                                              | • The diamond drilling recovery conference (conference is the logging and sampling procedure set up by the Senior geologists) consisted of verifying advance and recoveries recorded in the core boxes and drilling bulletins. For Diamond Drilling, verification was undertaken by measuring with tapeline the core present in the boxes.                                                                                                                                                                                                            |
|                                                         | <ul> <li>Measures taken to maximise sample recovery<br/>and ensure representative nature of the<br/>samples.</li> </ul>                                                                                                                                      | • Applied recovery control procedure and the recovery values was inside acceptable limits. The hematite was in most cases massive, providing excellent sample recoveries.                                                                                                                                                                                                                                                                                                                                                                             |
|                                                         | • Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.                                                                                           | <ul> <li>Not applied because the core recoveries were inside acceptance limit and the mineralization<br/>is massive Hematite grading from 60 to 70% Fe.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                    |
| Logging                                                 | Whether core and chip samples have been<br>geologically and geotechnically logged to a<br>level of detail to support appropriate Mineral<br>Resource estimation, mining studies and<br>metallurgical studies.                                                | <ul> <li>Geotechnical description was performed on all diamond holes where they were classified by geotechnical parameters W (degree of change weathering), R (degree of resistance), spacing of fractures and RQD with degree of detail to one meter. The data was also collected directly onto PDA's using LogMate software.</li> <li>The author considers that the level of detail is sufficient for the reporting of Exploration Results and for future Mineral Resource Estimation.</li> </ul>                                                   |
|                                                         | • Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.                                                                                                                                                    | <ul> <li>Lithological logging is qualitative in nature. Post assaying the lithology was re-classified into a<br/>new category called litho assay, prominent within the MS access database. Core is<br/>photographed prior to logging when geological codes were applied. Geological Description<br/>consisted of defining weathering levels, mineralogical lithological and structural data, in all<br/>holes with detail of one meter.</li> </ul>                                                                                                    |
|                                                         | <ul> <li>The total length and percentage of the relevant intersections logged.</li> </ul>                                                                                                                                                                    | All drillholes were fully logged.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sub-sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and</li> </ul> | <ul> <li>VALE conducted the drilling and collected core samples which were sawn in half before being collected to allow half of the material to be sent for chemical analysis and the remaining half were filed in the core shed. The sampling was planned by the geologists and care was taken to avoid any contamination between neighbouring samples.</li> <li>Chip samples, from the surface sampling, were split in the Jones splitter.</li> <li>GAMIK / VALE, Physical Preparation Laboratory located in the CDM in Santa Luzia – MG</li> </ul> |





| Criteria                                               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                        | <ul> <li>appropriateness of the sample preparation technique.</li> <li>Quality control procedures adopted for all subsampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field.</li> <li>duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>was responsible for sample preparation. The procedures for sample preparations are defined above in Criteria: Sampling Techniques and the respective flowcharts.</li> <li>To ensure the accuracy of physical process duplicates were made of the crushed material DP2 on frequency of 1/30, after primary crushing (P 95% &lt; 4 mm) and pulverized material DP3 on frequency of 1/20 after pulverization.</li> <li>Drill hole sample sizes were considered as appropriate by GE21, and chip sampling procedures has recommendations to future works to review chip sample sizes.</li> <li>GE21 considers the Vale duplicate sampling to be appropriate for resource estimation JORC 2012.</li> <li>GE21 deems the sample sizes appropriate to the grain size of the material being sampled.</li> </ul>                                                                                                                                                                                                                                                                                                                    |
| Quality of<br>assay data<br>and<br>laboratory<br>tests | • The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.                                                                                                                                                                                                                                                                                                                                | <ul> <li>The assaying regime is considered to be the standard for the determination of lump Iron.<br/>Chemical analyses were conducted in the laboratory of SGS Geosol, Vespasiano-MG, while<br/>checking of 5% of the results were made in the laboratory of ALS Chemex. Sample pulps<br/>were assayed by X-Ray fluorescence for the following elements and oxides: Fe, SiO2, P,<br/>Al2O3, Mn, TiO2, CaO, MgO, BaO, K2O, Na2O and Cr2O3. FeO was also determined by<br/>Volumetric analysis using potassium dichromate, and Calcination (LOI) was at 1000 degrees<br/>C.</li> <li>The assay preparation technique used: granulo-chemical analysis, performs geochemical<br/>analysis by size fraction and the total rock chemical assay is calculated by weighted average<br/>of the size fractions. This is a standard technique within the Iron Ore industry for lump ore.</li> <li>Chemical analysis performed in total rock (samples with insufficient mass for granulo-<br/>chemical assay) were the same applied in granulo-chemical samples of Bicuda (Tombador)<br/>deposit, that is XRF, Volumetric, and LOI.</li> </ul> |
|                                                        | <ul> <li>For geophysical tools, spectrometers,<br/>handheld XRF instruments, etc., the<br/>parameters used in determining the analysis<br/>including instrument make and model, reading<br/>times, calibrations factors applied and their<br/>derivation, etc.</li> </ul>                                                                                                                                                                                                         | <ul> <li>Handheld geophysical tools were not used, sample preparation &amp; assaying was completed within external laboratories</li> <li>The Loss on Ignition Determination (LOI) at 1000°C was also completed by SGS Geosol and Chemex.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                        | <ul> <li>Nature of quality control procedures adopted<br/>(e.g. standards, blanks, duplicates, external<br/>laboratory checks) and whether acceptable<br/>levels of accuracy (i.e. lack of bias) and<br/>precision have been established.</li> </ul>                                                                                                                                                                                                                              | <ul> <li>Quality control tools (standard samples and duplicates) were applied and monitored in<br/>chemical analysis performed on SGS Geosol and ALS Chemex laboratories. The quality<br/>control was restricted to the elements Al2O3, Fe, MgO, P, Mn, SiO2 and to LOI (lost on<br/>lgnition). The monitored parameters were evaluated in each of the following QAQC tools:<br/>Field duplicates; crushing duplicates; pulverized duplicates (internal and independent</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |





| Criteria                                    | JORC Code explanation                                                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             |                                                                                                                                                                                                                 | <ul> <li>laboratory); project standard samples; stoichiometry checks; and blank samples.</li> <li>Duplicates quality control results presented by VALE are, in general terms, inside acceptable limits.</li> <li>The evaluation of the chip sample duplicates shows results within acceptance limit and did not indicate that samples were swapped.</li> </ul>                                                                                                                                                                                                               |
| Verification of<br>sampling and<br>assaying | The verification of significant intersections by<br>either independent or alternative company<br>personnel.                                                                                                     | <ul> <li>GE21 approves the methodology applied by Vale in the preparation and execution of the<br/>Tombador Project QAQC Program, including the Tombador Project. GE21 does not judge the<br/>values presented in the report for not having access to QAQC data sheet, but has<br/>accompanied the VALE QAQC programs in other projects that used the same methodology<br/>and tends to agree with the recommendations of VALE, which concludes it's necessary to<br/>improve the QAQC program and some tools, as appropriate standard sample<br/>implementation.</li> </ul> |
|                                             | • The use of twinned holes.                                                                                                                                                                                     | Not applied within the Tombador Hematite deposit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                             | • Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.                                                                                    | <ul> <li>GE21 approves the methodology applied by Vale in the preparation and execution of the Tombador Project QAQC Program. According to GE21, results are inside acceptance limits of mineral industry.</li> <li>Data collection and verification and storage protocols are fully documented.</li> </ul>                                                                                                                                                                                                                                                                  |
|                                             | Discuss any adjustment to assay data.                                                                                                                                                                           | <ul> <li>Adjustment to assay data was neither required nor applied.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Location of data points                     | <ul> <li>Accuracy and quality of surveys used to<br/>locate drill holes (collar and down-hole<br/>surveys), trenches, mine workings and other<br/>locations used in Mineral Resource<br/>estimation.</li> </ul> | <ul> <li>All drillhole collars were topographically surveyed by total station surveying campaign and<br/>drillhole landmarks have been properly identified.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                             | <ul> <li>Specification of the grid system used.</li> </ul>                                                                                                                                                      | SAD69 Datum for coordinate system.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                             | Quality and adequacy of topographic control.                                                                                                                                                                    | No issue was identified by GE21 in the field or in drilling data physical archive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Data spacing<br>and<br>distribution         | <ul> <li>Data spacing for reporting of Exploration<br/>Results.</li> </ul>                                                                                                                                      | <ul> <li>The holes were arranged in 50 x 50m grid.</li> <li>Diamond drillhole samples were produced at average length of 10 m length. Compositing was produced using these nominal lengths.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                       |





| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     | • Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.                 | <ul> <li>GE21 judges that appropriate grid spacings and applied sampling and composition lengths<br/>were provided to establish the degree of geological continuity and classification reported by<br/>GE21.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                     | <ul> <li>Whether sample compositing has been<br/>applied.</li> </ul>                                                                                                                                                                           | <ul> <li>GE21 judges appropriate applied sampling and composition lengths to establish the degree of geological continuity and classification.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Orientation of<br>data in<br>relation to<br>geological<br>structure | • Whether the orientation of sampling achieves<br>unbiased sampling of possible structures and<br>the extent to which this is known, considering<br>the deposit type.                                                                          | <ul> <li>The geological layers are dipping approximately 30° and the holes are vertical. Sampling was performed almost perpendicular to the layers, which is the best condition.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                     | <ul> <li>If the relationship between the drilling<br/>orientation and the orientation of key<br/>mineralized structures is considered to have<br/>introduced a sampling bias, this should be<br/>assessed and reported if material.</li> </ul> | <ul> <li>No bias was introduced when using vertical drillholes.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sample<br>security                                                  | <ul> <li>The measures taken to ensure sample security.</li> </ul>                                                                                                                                                                              | <ul> <li>GE21 approves the methodology applied by Vale in the preparation and execution of the Tombador Project QAQC Program. GE21 didn't have access to QAQC data sheet, but has accompanied the VALE QAQC programs in other projects that used the same technique.</li> <li>The hematite chip sampling plan was prepared by Coffey, and Colomi was responsible for collecting and preparing the samples.</li> <li>The core and chips were transported by the company's personnel from the drill site to the core storage facility in Sento Sé. Drill boxes are labelled with hole number and depth interval and the core is photographed prior to logging.</li> <li>Note: GE21's evaluation of the chip sample duplicates were within acceptable limit and did not indicate that samples were swapped.</li> </ul> |
| Audits or<br>reviews                                                | The results of any audits or reviews of<br>sampling techniques and data.                                                                                                                                                                       | <ul> <li>In 2011 Coffey prepared the "Colomi Iron Project, Brazil Independent Technical Report on Exploration and Mineral Resources Estimation" which audited the entire Tombador Project database, including the Tombador Hematite data, the results being in that report.</li> <li>There has been no specific audit on sampling techniques.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                            |





## **Section 2 Reporting of Exploration Results**

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                         | JORC Code explanation                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |        |  |  |  |  |
|--------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--------|--|--|--|--|
| Mineral<br>tenement and<br>land tenure<br>status | • Type, reference name/number,<br>location and ownership including<br>agreements or material issues with<br>third parties such as joint ventures,<br>partnerships, overriding royalties,<br>native title interests, historical sites,<br>wilderness or national park and<br>environmental settings. | <ul> <li>872.431/2003, which we final Exploration Report 2020 and the tenemerer Iron Mineração Ltda a</li> <li>Main exploration work program for the Tomber tenements shown in first the Final Exploration For the Final Exploration For the Production/National Actional Actiona</li></ul> | <ul> <li>Tombador Iron Mineracao Ltda. (TIM or the "Company") is the titleholder of exploration lease<br/>872.431/2003, which was transferred to TIM from Colomi Iron Mineracao Ltda. (CIM or "Colomi). The<br/>Final Exploration Report was approved and published at Brazilian Federal Gazette on February 17,<br/>2020 and the tenement 872.431/2003 was transferred from Colomi Iron Mineração Ltda to Tombador<br/>Iron Mineração Ltda and published at Federal Gazette on 14<sup>th</sup> April 2020.</li> <li>Main exploration works was carried on by VALE a major iron ore mining company. The exploration<br/>program for the Tombador project was completed as part of a larger program covering all of CIM's<br/>tenements shown in figure below with Concession Area Map. The Principal Source of information was<br/>the Final Exploration Report (FER) to DNPM/ANM (Brazilian National Department of Mineral<br/>Production/National Agency of Mining) with description and evaluation of results obtained in the<br/>exploration work carried out by VALE in the areas related to TIM and Colomi Exploration Permits.</li> </ul> |                       |        |  |  |  |  |
|                                                  |                                                                                                                                                                                                                                                                                                     | :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Tombador Project<br>Summary of Concession Status in the Tombador Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                       |        |  |  |  |  |
|                                                  |                                                                                                                                                                                                                                                                                                     | Process No.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Area (Hectares)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Exploration Permit N° | Status |  |  |  |  |
|                                                  | 872.431/03 2000 1315 FER approv<br>17/02/20                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       |        |  |  |  |  |





| Criteria 、 | JORC Code explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------------|-----------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                       | Concession Area Map                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|            |                       | 42'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>95'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'<br>90'00'                                                                                                                                                                                                                                                                                                                                                                                                                              |
|            |                       | Sento Sé<br>Sento Sé<br>Big20000<br>Adeia<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big20000<br>Big2000<br>Big2000<br>Big2000<br>Big200<br>Big200<br>Big200<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20<br>Big20 |
|            |                       | Tombador<br>de Cina<br>872432/03<br>872433/03<br>872433/03<br>COLOMI ★ Tombador Project<br>S km<br>LAND STATUS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |





| Criteria                                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | • The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Exploration<br>done by other<br>parties | <ul> <li>Acknowledgment and appraisal of exploration by other parties.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <ul> <li>Main exploration works were carried on by VALE a major iron ore mining company. Principal source of information was the Final Exploration Report (FER) to DNPM/ANM (Brazilian National Department of Mineral Production/National Agency of Mining) with description and evaluation of results obtained in the exploration work carried out by VALE in the areas related to TIM's and Colomi's Exploration Permits.</li> </ul>                                                                                                                                                                                                     |
| Geology                                 | Deposit type, geological setting and style of mineralization.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <ul> <li>The talus deposits are represented by layers with thickness average of 3.50 m, formed mainly by itabirite blocks and, secondary blocks of quartzites, dolomites and shales, immersed in siltose mass. Hematite talus blocks are only found in the adjacencies of hematite deposit of Bicuda.</li> <li>Hematites represent the high grade granulated iron ore resources, restricted to the Bicuda. The hematite orebody occurs in the drag fold hinge in siliceous itabirite, showing an azimuth direction of 30°. This fold has been interpreted as being generated by a transfer fault, approximately N10E direction.</li> </ul> |
| Drill hole<br>Information               | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: <ul> <li>easting and northing of the drill hole collar</li> <li>elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar</li> <li>dip and azimuth of the hole</li> <li>down hole length and interception depth.</li> <li>hole length.</li> </ul> </li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the</li> </ul> | <ul> <li>The assay program included the sampling of chips from the compact hematite outcroppings which<br/>coordinates and assays are set out below.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |





| understanding of the report, the | SAMPLE  | NEAR       | Coffey         | SAD 69 Cod | ordinates | Fe   | SiO2 | Al2O3 | Р     | Mn   | LOI  | Moisture |
|----------------------------------|---------|------------|----------------|------------|-----------|------|------|-------|-------|------|------|----------|
| Competent Person should clearly  | ID      | Drill Hole | Section Code   | N          | E         | %    | %    | %     | %     | %    | %    | %        |
| explain why this is the case.    |         |            |                |            |           |      |      |       |       |      |      |          |
|                                  | 193,411 |            |                | 8,908,808  | 823,477   | 69.7 | 0.24 | <0,1  | 0.051 | 0.02 | 0.01 | <0,03    |
|                                  | 193,412 |            |                |            |           | 69.7 | 0.26 | <0,1  | 0.020 |      | 0.05 | ,        |
|                                  | 193,413 | DH-01      | COL BICU CS 01 |            |           | 70.3 | 0.15 | <0,1  | 0.029 |      | 0.06 | ,        |
|                                  | 193,414 |            |                |            |           | 69.3 | 0.35 | 0.16  | 0.094 |      | 0.13 | -        |
|                                  | 193,415 | -          |                |            |           | 69.4 | 0.38 | 0.17  | 0.031 | 0.02 | 0.35 | -        |
|                                  | 193,416 |            |                | 8,908,810  | 823,472   | 69.5 | 0.34 | 0.13  | 0.016 | 0.02 | 0.14 | <0,0     |
|                                  | 193,417 |            |                | 8,909,873  | 823,457   | 67.7 | 1.19 | 0.51  | 0.189 | 0.02 | 0.16 | <0,0     |
|                                  | 193,418 |            |                |            | ,         | 67.9 | 1.51 | 0.53  | 0.148 |      | 0.22 | <0,0     |
|                                  | 193,419 | DH-05      | COL BICU CS 02 |            |           | 64.6 | 5.67 | 0.49  | 0.168 |      | 0.43 |          |
|                                  | 193,420 | _          |                | 8,908,870  | 823,456   | 66.5 | 1.78 | 0.93  | 0.102 |      | 0.27 | <0,0     |
|                                  |         |            |                | -//        | ,         |      |      |       |       |      |      | -,-      |
|                                  | 193,401 |            |                | 8,908,834  | 823,480   | 68.1 | 0.90 | 0.25  | 0.078 | 0.03 | 0.62 | <0,0     |
|                                  | 193,402 | FD-06      | COL BICU CS 03 |            |           | 68.1 | 1.04 | 0.41  | 0.029 | 0.14 | 0.15 | <0,0     |
|                                  | 193,403 | FD-06      |                |            |           | 68.7 | 0.79 | 0.36  | 0.017 | 0.03 | 0.13 | <0,0     |
|                                  | 193,404 |            |                | 8,908,835  | 823,476   | 68.1 | 2.13 | 0.43  | 0.020 | 0.05 | 0.10 | <0,0     |
|                                  |         |            |                |            |           |      |      |       |       |      |      |          |
|                                  | 193,405 |            |                | 8,908,790  | 823,448   | 68.6 | 0.94 | 0.52  | 0.020 |      | 0.25 | <0,0     |
|                                  | 193,406 |            |                |            |           | 68.6 | 0.94 | 0.43  | 0.050 |      | 0.04 | <0,0     |
|                                  | 193,407 | DH-17      | COL BICU CS 04 |            |           | 69.0 | 0.53 | 0.21  | 0.059 |      | 0.06 | <0,0     |
|                                  | 193,408 |            |                |            |           | 69.1 | 0.64 | 0.26  | 0.025 |      | 0.07 | <0,0     |
|                                  | 193,409 |            |                |            |           | 68.8 | 1.11 | 0.52  | 0.053 |      | 0.16 | <0,0     |
|                                  | 193,410 |            |                | 8,908,791  | 823,442   | 69.3 | 0.53 | 0.23  | 0.018 | 0.02 | 0.04 | <0,0     |
|                                  |         |            |                |            |           |      |      |       |       |      |      |          |





| Criteria JORC Code explanation | Commentary                                      |           |                 |          |                      |                 |         |       |
|--------------------------------|-------------------------------------------------|-----------|-----------------|----------|----------------------|-----------------|---------|-------|
|                                | hole_id                                         | x         | У               | z        | TENEMENTID           | max_depth       | dip     |       |
|                                | COL-BICU-DH00001                                | 823487.97 | 8908771.18      | 548.11   | 872.431/2003         | 96              | -90     |       |
|                                | COL-BICU-DH00002                                | 823484.4  | 8908818.26      | 534.73   | 872.431/2003         | 118.1           | -90     |       |
|                                | COL-BICU-DH00003                                | 823581.44 | 8908967.98      | 540.29   | 872.431/2003         | 58.5            | -90     |       |
|                                | COL-BICU-DH00004                                | 823431.26 | 8908818.2       | 527.05   | 872.431/2003         | 79.5            | -90     |       |
|                                | COL-BICU-DH00005                                | 823428.51 | 8908868.08      | 505.64   | 872.431/2003         | 72.3            | -90     |       |
|                                | COL-BICU-DH00007                                | 823631.73 | 8908867.61      | 584.81   | 872.431/2003         | 127.45          | -90     |       |
|                                | COL-BICU-DH00008                                | 823728.22 | 8908966.04      | 556.57   | 872.431/2003         | 160.2           | -90     |       |
|                                | COL-BICU-DH00009                                | 823630.55 | 8908814.88      | 602.75   | 872.431/2003         | 207.2           | -90     |       |
|                                | COL-BICU-DH00012                                | 823731.81 | 8908868.03      | 591.57   | 872.431/2003         | 132.3           | -90     |       |
|                                | COL-BICU-DH00016                                | 823478.39 | 8908668.24      | 606.2    | 872.431/2003         | 156.3           | -90     |       |
|                                | COL-BICU-DH00017                                | 823439.97 | 8908754.44      | 573.33   | 872.431/2003         | 79.6            | -90     |       |
|                                | COL-BICU-DH00021                                | 823536.16 | 8908868.62      | 557.35   | 872.431/2003         | 173.95          | -90     |       |
|                                | COL-BICU-DH00022                                | 823484.08 | 8908868.08      | 529.39   | 872.431/2003         | 145.5           | -90     |       |
|                                | COL-BICU-DH00024                                | 823581.9  | 8909060.02      | 491.12   | 872.431/2003         | 250             | -90     |       |
|                                | COL-BICU-FD0004                                 | 823481.36 | 8908687.5       | 599.35   | 872.431/2003         | 104             | -90     |       |
|                                | COL-BICU-FD0005                                 | 823507.88 | 8908781.59      | 547.56   | 872.431/2003         | 119.85          | -90     |       |
|                                | COL-BICU-FD0006                                 | 823466.74 | 8908800.91      | 536.14   |                      | 52.8            | -90     |       |
|                                | * There were a total of have been excluded from |           | oles in the ten | ement. D | rill holes not in th | e vicinity Tomb | ador de | posit |
|                                |                                                 |           |                 |          |                      |                 |         |       |
|                                |                                                 |           |                 |          |                      |                 |         |       |
|                                |                                                 |           |                 |          |                      |                 |         |       |
|                                |                                                 |           |                 |          |                      |                 |         |       |
|                                |                                                 |           |                 |          |                      |                 |         |       |

Summary of significant mineralized intercepts:



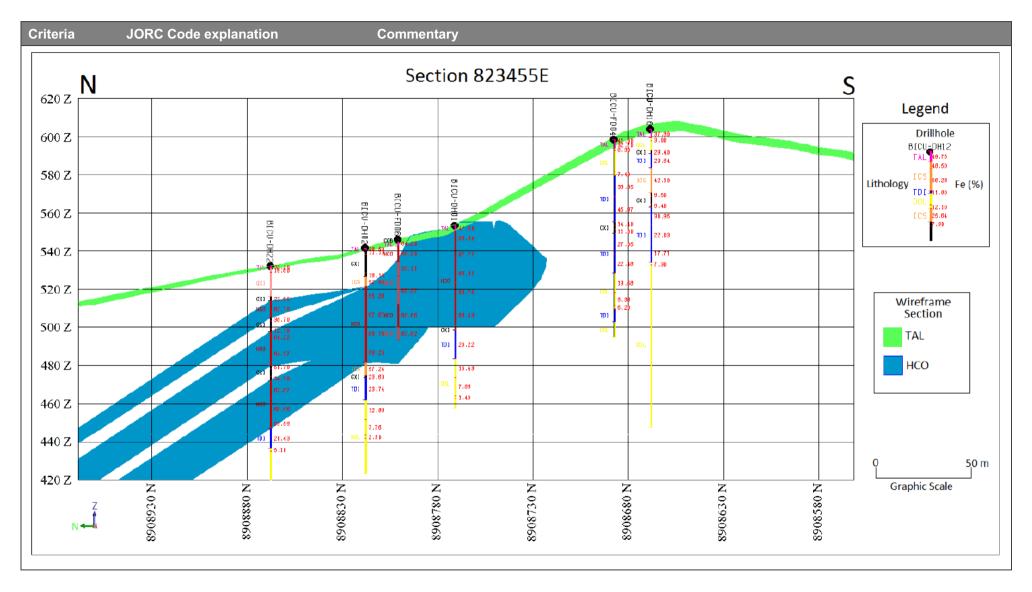


| Criteria                       | JORC Code explanation                                                                                                                                            | Commentary                                          |                           |             |                                                                    |         |       |            |       |        |       |            |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------|-------------|--------------------------------------------------------------------|---------|-------|------------|-------|--------|-------|------------|
|                                |                                                                                                                                                                  | hole_id                                             | depth_from                | depth_to    | sample_id                                                          | SIO2%   | Ρ%    | AL2O3% N   | N%    | FE%    | PF%   | LITHOASSAY |
|                                |                                                                                                                                                                  | COL-BICU-DH00001                                    | 2.95                      | 10 C        | OL-BICU-DH00001-0002                                               | 0.72    | 0.066 | 0.28 0     | 034 6 | 68.64  | 0.05  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-DH00001                                    | 10                        | 20 C        | OL-BICU-DH00001-0003                                               | 0.76    | 0.123 | 0.47 0     | 036 6 | 67.77  | 0.17  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-DH00001                                    | 20                        | 30 C        | OL-BICU-DH00001-0004                                               | 1.70    | 0.111 | 0.95 0     | 024 6 | 66.81  | 0.27  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-DH00001                                    | 30                        | 40 C        | OL-BICU-DH00001-0005                                               | 0.43    | 0.123 | 0.18 0     | 023 6 | 68.75  | 0.05  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-DH00001                                    | 40                        | 54.7 C      | OL-BICU-DH00001-0006                                               | 0.37    | 0.092 | 0.18 0     | 021 6 | 68.43  | 0.05  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-DH00002                                    | 20                        | 30 C        | OL-BICU-DH00002-0005                                               | 4.68    | 0.077 | 0.30 0     | 031 6 | 65.29  | 0.11  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-DH00002                                    | 30                        | 40 C        | OL-BICU-DH00002-0006                                               | 1.11    | 0.078 | 0.58 0     | 018 6 | 67.67  | 0.24  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-DH00002                                    | 40                        | 50 C        | OL-BICU-DH00002-0007                                               | 0.87    | 0.086 | 0.54 0     | 019 6 | 68.75  | 0.28  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-DH00002                                    | 50                        | 60 C        | OL-BICU-DH00002-0008                                               | 0.31    | 0.070 | 0.24 0     | 022 6 | 69.20  | 0.06  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-DH00005                                    | 23                        | 36.7 C      | OL-BICU-DH00005-0006                                               | 4.49    | 0.063 | 1.72 0     | 029 6 | 63.37  | 0.86  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-DH00017                                    | 3                         | 10 C        | OL-BICU-DH00017-0002                                               | 0.83    | 0.017 | 0.23 0     | 049 6 | 68.38  | 0.05  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-DH00017                                    | 10                        | 20 C        | OL-BICU-DH00017-0003                                               | 0.47    | 0.035 | 0.21 0     | 026 6 | 68.53  | 0.02  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-DH00017                                    | 20                        | 30 C        | OL-BICU-DH00017-0004                                               | 0.86    | 0.060 | 0.39 0     | 023 6 | 68.56  | 0.20  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-DH00017                                    | 30                        | 40.5 C      | OL-BICU-DH00017-0005                                               | 0.74    | 0.063 | 0.24 0     | 016 6 | 67.87  | 0.22  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-DH00021                                    | 101                       | 110 C       | OL-BICU-DH00021-0009                                               | 0.58    | 0.083 | 0.36 0     | 017 6 | 68.12  | 0.22  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-DH00021                                    | 110                       | 117.2 C     | OL-BICU-DH00021-0010                                               | 0.14    | 0.033 | 0.12 0     | 018 6 | 69.56  | 0.01  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-DH00022                                    | 18                        | 27 C        | OL-BICU-DH00022-0004                                               | 6.50    | 0.034 | 2.54 0     | 151 6 | 62.10  | 0.84  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-DH00022                                    | 34.5                      | 40 C        | OL-BICU-DH00022-0007                                               | 13.31   | 0.110 | 0.33 0     | 091 6 | 60.22  | 0.17  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-DH00022                                    | 40                        | 52 C        | OL-BICU-DH00022-0008                                               | 6.89    | 0.079 | 0.19 0     | 024 6 | 64.37  | 0.03  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-DH00022                                    | 59.9                      | 70 C        | OL-BICU-DH00022-0011                                               | 0.83    | 0.082 | 0.43 0     | 023 6 | 67.87  | 0.18  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-DH00022                                    | 70                        | 80 C        | OL-BICU-DH00022-0012                                               | 0.32    | 0.116 | 0.18 0     | 035 6 | 68.56  | 0.05  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-DH00022                                    | 80                        | 85 C        | OL-BICU-DH00022-0013                                               | 3.40    | 0.074 | 0.51 0     | 064 6 | 65.59  | 0.46  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-FD0005                                     | 15.75                     | 30 C        | OL-BICU-FD0005-0005                                                | 2.07    | 0.620 | 0.76 0     | 141 6 | 65.63  | 0.56  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-FD0005                                     | 30                        | 40 C        | OL-BICU-FD0005-0006                                                | 1.14    | 0.102 | 0.52 0     | 031 6 | 67.58  | 0.44  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-FD0005                                     | 40                        | 50.7 C      | OL-BICU-FD0005-0007                                                | 1.28    | 0.084 | 0.39 0     | 021 6 | 67.99  | 0.36  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-FD0006                                     | 3.6                       | 11.35 C     | OL-BICU-FD0006-0002                                                | 0.75    | 0.090 | 0.31 0     | 037 6 | 69.00  | 0.42  | нсо        |
|                                |                                                                                                                                                                  | COL-BICU-FD0006                                     | 33.7                      | 46.2 C      | OL-BICU-FD0006-0005                                                | 1.18    | 0.083 | 0.23 0     | 015 6 | 68.66  | 0.44  | НСО        |
| Data<br>aggregation<br>methods | <ul> <li>In reporting Exploration Results,<br/>weighting averaging techniques,<br/>maximum and/or minimum grade<br/>truncations (e.g. cutting of high</li> </ul> | fraction. There<br>mineralized in<br>Mineralization | e were 4 size<br>tervals. | e fractions | nples were aggrega<br>assayed for each gr<br>by drilling was aggre | anulo-o | chemi | cal sample | e for | all si | gnifi | cant       |



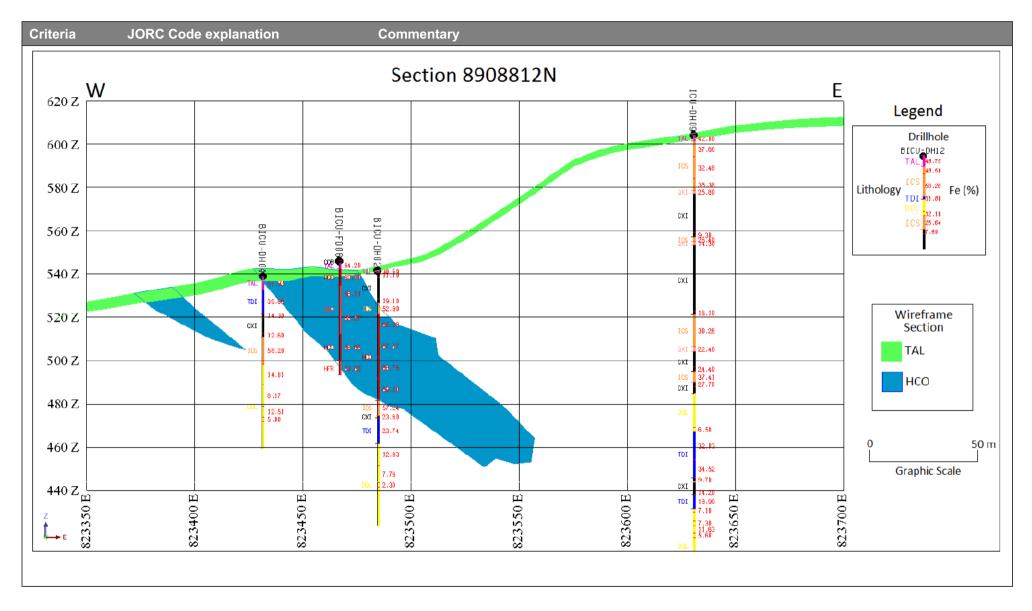


| Criteria                                                                        | J | ORC Code explanation                                                                                                                                                                                                                                                        | Сс | ommentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------------------------|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                 |   | grades) and cut-off grades are<br>usually Material and should be<br>stated.                                                                                                                                                                                                 | •  | no cuts or applied caps on grade estimate.<br>A cut-off grade of 60% Fe was applied for Compact Hematite and 20% Fe for Talus.                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                 | • | Where aggregate intercepts<br>incorporate short lengths of high<br>grade results and longer lengths of<br>low grade results, the procedure<br>used for such aggregation should be<br>stated and some typical examples of<br>such aggregations should be shown<br>in detail. | •  | Samples from diamond drillings were collected using 10 m intervals, obeying the lithologic contacts. To ensure a clear definition of the boundaries of mineral zones, 2 m samples were also collected of the host rock above and below the mineralized intervals. Drill hole samples were composited to regular downhole lengths of 10m. Compositing was applied to the mineralized intervals inside the geological model. Channel samples has been submitted on variance volume adjustment to validate this samples to be used on grade estimate together with diamond drillhole samples. |
|                                                                                 | • | The assumptions used for any<br>reporting of metal equivalent values<br>should be clearly stated.                                                                                                                                                                           | •  | No metal equivalent was reported                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Relationship<br>between<br>mineralization<br>widths and<br>intercept<br>lengths | • | These relationships are particularly important in the reporting of Exploration Results.                                                                                                                                                                                     | •  | The resource modelling was carried out in 3D software and effect of apparent widths was accounted for estimation method.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                 | • | If the geometry of the mineralization<br>with respect to the drill hole angle is<br>known, its nature should be<br>reported.                                                                                                                                                | •  | All holes were vertical and mineralization zone dipping at 30°. The Fe mineralization sits within foliation dipping at approximately 30 degrees to the east and plunging at approximately 30 degrees to the north. All diamond drillholes into the Tombador project were drilled vertically.                                                                                                                                                                                                                                                                                               |
|                                                                                 | • | If it is not known and only the down<br>hole lengths are reported, there<br>should be a clear statement to this<br>effect (e.g. 'down hole length, true<br>width not known').                                                                                               | •  | NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Diagrams                                                                        | • | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported                                                                                                                                   | •  | Further diagrams necessary to describe the Project are included in "Independent Technical Report on Exploration and Mineral Resources Estimation – Update HCO Resources"- Prepared by GE21.                                                                                                                                                                                                                                                                                                                                                                                                |






| Criteria | JORC Code explanation                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|----------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | These should include, but not be<br>limited to a plan view of drill hole<br>collar locations and appropriate<br>sectional views. |                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                                                                                                  | Sec 823455E                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | 8909300N<br>8909100N<br>8908900N                                                                                                 | Bit     Bit |
|          | 8908700N                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                                                                                                                                  | 823 300E<br>823 700E<br>823 900E                                                                                                                                                                                                                                                                                                                                                                                                            |



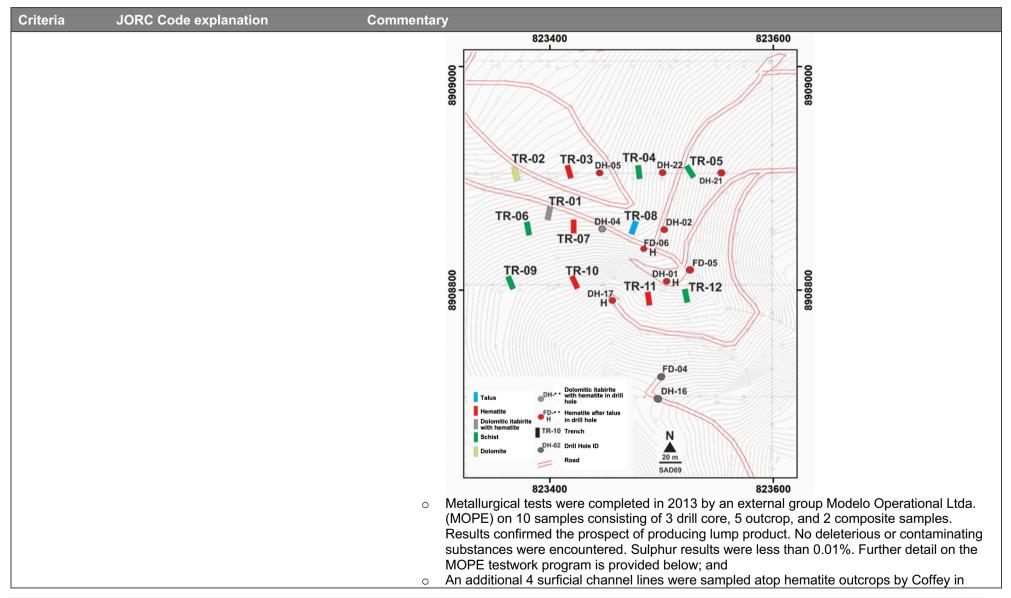










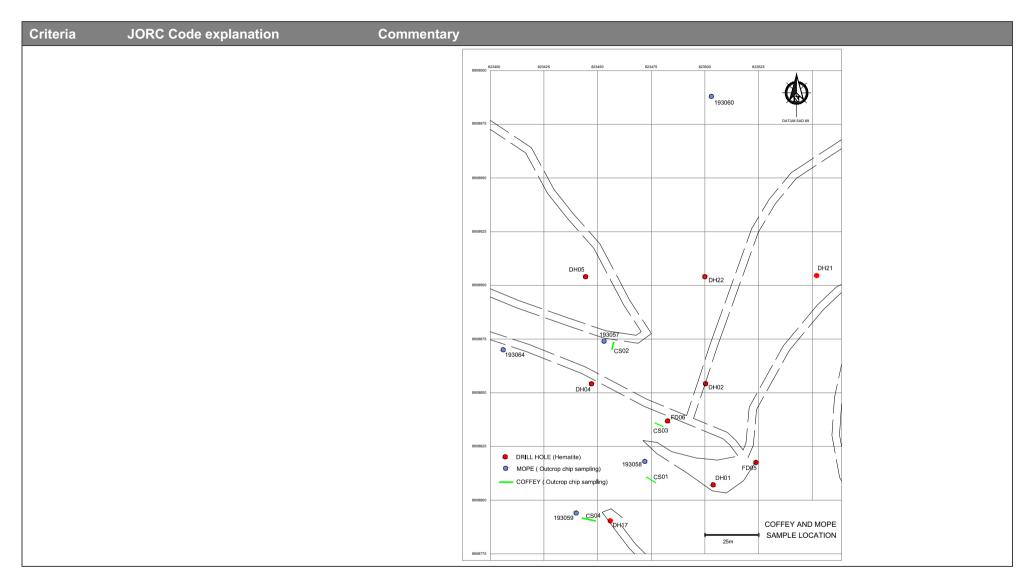



| Criteria                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Balanced<br>reporting                       | <ul> <li>Where comprehensive reporting of<br/>all Exploration Results is not<br/>practicable, representative reporting<br/>of both low and high grades and/or<br/>widths should be practiced to avoid<br/>misleading reporting of Exploration<br/>Results.</li> </ul>                                                                                                                                               | <ul> <li>The drilling databases are highly organized with drilling Intercepts and grade x length reports properly<br/>stored and readily available within the drilhole database.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                           |
| Other<br>substantive<br>exploration<br>data | Other exploration data, if meaningful<br>and material, should be reported<br>including (but not limited to):<br>geological observations; geophysical<br>survey results; geochemical survey<br>results; bulk samples – size and<br>method of treatment; metallurgical<br>test results; bulk density,<br>groundwater, geotechnical and rock<br>characteristics; potential deleterious<br>or contaminating substances. | <ul> <li>The Tombador exploration was part of a larger VALE exploration and drilling program as mentioned in the report prepared by Coffey in 2011: "Colomi Project, Brazil Independent Technical Report on Exploration and Mineral Resources Estimation".</li> <li>Other exploration data includes:         <ul> <li>Geological observations of additional Talus areas outside of Tombador;</li> <li>Geological Surface mapping by independent Professor Miguel Tupinamba;</li> <li>Trench excavation to identify bedrock by Colomi shown in the image below;</li> </ul> </li> </ul> |












| Criteria | JORC Code explanation | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria |                       | <ul> <li>2013. The 5kg samples were taken at 1 meter intervals to total 20 lineal meters assayed.<br/>These have been considered by GE21 in their estimation.</li> <li>MOPE Testwork Program - In 2012-2013 MOPE coordinated testwork, metallurgical characterization and preliminary development of a processing route for hematite at the Tombador Project. The program included the following.         <ul> <li>Sampling MOPE reported samples were collected by Colomi in 2012 and sent to MOPE for</li> </ul> </li> </ul> |
|          |                       | metallurgical testing. The samples were characterized into three types of hematite present in<br>the deposit:<br>Massive or Compact,<br>Laminated, and<br>Friable.<br>The location of sample, type hematite and type of sample (outcrop or drill core) are shown<br>the in figure and table below.                                                                                                                                                                                                                             |











| Criteria | JORC Code explanation | Commentary              |                                                                              |                                     |                         |                               |                                |                            |                                    |                    |                                                                      |
|----------|-----------------------|-------------------------|------------------------------------------------------------------------------|-------------------------------------|-------------------------|-------------------------------|--------------------------------|----------------------------|------------------------------------|--------------------|----------------------------------------------------------------------|
|          |                       | No                      | o. Sa                                                                        | mple                                | UTM<br>(SAD69)          |                               | JTM<br>AD69)                   | Sample                     | Hematite                           | Mass               | Comment                                                              |
|          |                       |                         |                                                                              | · [                                 | Easting                 | No                            | rthing                         | Туре                       | Туре                               | (kg)               |                                                                      |
|          |                       | 1                       | 19                                                                           | 3057                                | 823,453                 | 8,90                          | 08,874                         | Outcrop                    | Massive                            | 100                |                                                                      |
|          |                       | 2                       | 19                                                                           | 3058                                | 823,472                 | 8,90                          | 08,818                         | Outcrop                    | Massive                            | 100                |                                                                      |
|          |                       | 3                       | 19                                                                           | 3059                                | 823,440                 | 8,90                          | 08,794                         | Outcrop                    | Laminate                           | 100                |                                                                      |
|          |                       | 4                       | 19                                                                           | 3060                                | 823,503                 | 8,90                          | 08,988                         | Outcrop                    | Laminate                           | 100                |                                                                      |
|          |                       | 5                       | 19                                                                           | 3064                                | 823,406                 | 8,90                          | 08,870                         | Outcrop                    | Friable                            | 100                |                                                                      |
|          |                       | 6                       | 19                                                                           | 3065                                | 823,440                 | 8,90                          | 08,754                         | Drill core                 | Laminate                           | 49                 | BICU DH17                                                            |
|          |                       | 7                       | 19                                                                           | 3066                                | 823,484                 | 8,90                          | 08,868                         | Drill core                 | Laminate                           | 50                 | BICU DH22                                                            |
|          |                       | 8                       | 19                                                                           | 3067                                | 823,467                 | 8,90                          | 08,801                         | Drill core                 | Laminate                           | 31                 | BICU FD06                                                            |
|          |                       | 9                       | 19                                                                           | 3068                                |                         |                               |                                | Outcrop<br>composite       | Massive +<br>Laminate +<br>Friable | 125                | 25kg each from<br>193057; 58; 59; 60<br>64                           |
|          |                       | 10                      | ) 19                                                                         | 3069                                |                         |                               |                                | Drill core<br>composite    | Laminate                           | 53                 | 193065; 66; 67<br>Composite. i.e.<br>DH17, 22 and FD0                |
|          |                       | <br>In a                | additional mineralogical studies were completed for the samples in the table |                                     |                         |                               |                                |                            |                                    |                    | e table below.                                                       |
|          |                       | No                      |                                                                              | Sampl                               | Sa                      | ample<br>vpe                  | Hema<br>Type                   | tito                       | g) Commer                          |                    |                                                                      |
|          |                       | 1                       |                                                                              | 19305                               |                         | utcrop                        | Massi                          |                            |                                    |                    |                                                                      |
|          |                       | 2                       |                                                                              | 193059                              |                         | utcrop                        | Massi                          |                            |                                    |                    |                                                                      |
|          |                       | 3                       |                                                                              | 193064                              |                         | utcrop                        | Lamin                          |                            | DIOL DI                            | 17 00 5            | <b>D</b> 00                                                          |
|          |                       | 4                       |                                                                              | 19307                               | 0                       | utcrop                        | Lamin                          | ate 1.2                    | BICU DH                            | 17, 22, F          | D06                                                                  |
|          |                       | Sa<br>Sa<br>set<br>A la | imple r<br>t aside<br>lab sca                                                | naterial<br>, it was i<br>ile jaw c | was pre-c<br>not fed th | lassifie<br>rough t<br>h a op | ed by ha<br>he crus<br>ening o | her. The und<br>f 34mm was | 3mm screer<br>dersize was          | n. The o<br>crushe | owing tests.<br>versize (>38mm)<br>d as follows.<br>e 38mm screen to |





| Criteria | JORC Code explanation | Commentary                                               |                                        |                                                       |                                                                      |                       |                                                                |                      |                 |                |                   |               |                |
|----------|-----------------------|----------------------------------------------------------|----------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|-----------------------|----------------------------------------------------------------|----------------------|-----------------|----------------|-------------------|---------------|----------------|
|          |                       | The crush<br>granuloch<br>o <b>Granulo</b> -<br>The samp | iemical a<br><b>Chemic</b><br>bles had | erial was<br>analysis<br><b>al Anal</b> y<br>differen | < 38mm<br>Product for<br>a<br>s homog<br>(screer<br>ysis<br>t levels | granulo-chinalysis    | Open size<br>34mm<br>emical<br>, and qu<br>d chemic<br>pactnes | uartered<br>cal assa | ay)<br>produced | varying        | levels            | of coars      |                |
| l        |                       | material a                                               |                                        |                                                       |                                                                      |                       |                                                                |                      |                 |                |                   |               |                |
|          |                       | massive o<br>yield and                                   |                                        |                                                       |                                                                      |                       | the mos                                                        | st lump.             | A summ          | lary of t      | ne resu           | its of Iun    | пр             |
|          |                       | Sample                                                   | Fe grau                                |                                                       |                                                                      | 10VV.<br>0 (+6.35 -38 | (mm)                                                           | Coorce Si            | nter Feed (+1   | 6 25mm)        |                   | Fines (-1mm)  |                |
|          |                       | Number                                                   |                                        |                                                       |                                                                      | •                     |                                                                |                      | % Lump          | ,              |                   | • •           | ado % Eo       |
|          |                       | CO-HR-57                                                 | 12032.77                               | 67.48                                                 | 11320.00                                                             | 94.08                 | 67.56                                                          | 408.45               | 3.39            | 66.60          | 304.32            | 2.53          | 66.00          |
|          |                       | CO-HR-58                                                 | 10546.25                               | 66.91                                                 | 9140.00                                                              | 86.67                 | 67.06                                                          | 726.63               | 6.89            | 66.22          | 679.62            | 6.44          | 65.68          |
|          |                       | CO-HR-59                                                 | 13179.08                               | 68.92                                                 | 10305.00                                                             | 79.19                 | 69.08                                                          | 1220.03              | 9.26            | 68.64          | 1654.05           | 12.55         | 68.11          |
|          |                       | CO-HR-60                                                 | 13801.45                               | 68.90                                                 | 11495.00                                                             | 83.29                 | 69.17                                                          | 1169.92              | 8.48            | 68.86          | 1136.53           | 8.23          | 66.30          |
|          |                       | CO-HR-64                                                 | 12401.02                               | 67.28                                                 | 3760.00                                                              | 30.32                 | 68.20                                                          | 3874.58              | 31.24           | 68.58          | 4766.44           | 38.44         | 65.49          |
|          |                       | CO-HR-65<br>CO-HR-66                                     | 12131.50<br>11344.03                   | 68.46<br>64.39                                        | 10020.00<br>9580.00                                                  | 82.59<br>84.45        | 69.13<br>64.65                                                 | 853.75<br>884.91     | 7.04<br>7.80    | 67.33<br>63.99 | 1257.75<br>879.12 | 10.37<br>7.75 | 63.96<br>61.92 |
|          |                       | CO-HR-66<br>CO-HR-67                                     | 11344.03                               | 65.64                                                 | 9580.00<br>7840.00                                                   | 84.45<br>66.14        | 64.65                                                          | 1559.11              | 13.15           | 66.75          | 2455.20           | 20.71         | 61.92          |
|          |                       | CO-HR-68                                                 | 14213.96                               | 67.46                                                 | 10950.00                                                             | 77.04                 | 67.77                                                          | 1561.78              | 10.99           | 67.34          | 1702.18           | 11.98         | 65.60          |
|          |                       | CO-HR-69                                                 | 14957.34                               | 65.95                                                 | 12685.00                                                             | 84.81                 | 66.16                                                          | 1033.04              | 6.91            | 65.62          | 1239.30           | 8.29          | 64.06          |
|          |                       | Weighted Ave.                                            |                                        | 67.18                                                 | 9709.50                                                              | 76.78                 | 67.44                                                          | 1329.22              | 10.51           | 67.44          | 1607.45           | 12.71         | 65.41          |
|          |                       | Note sam                                                 | ple CO-                                | HR-57 i                                               | s the sa                                                             | me as                 | 193057                                                         | etc.                 |                 |                |                   |               |                |





|                      | of the che                                       | · · · · · · · · · · · · · · · · · · · | p quality for           | · · · · ·             |                           |                        |          |       |
|----------------------|--------------------------------------------------|---------------------------------------|-------------------------|-----------------------|---------------------------|------------------------|----------|-------|
| Sample<br>number     | Type of<br>hematite                              | %Fe                                   | %P                      | %SiO₂                 | %Al₂O₃                    | %Mn                    | %S       | %LO   |
| CO-HR-57             | М                                                | 66.88                                 | 0.07                    | 2.74                  | 0.17                      | 0.02                   | <0.01    | -0.24 |
| O-HR-58              | М                                                | 67.06                                 | 0.06                    | 1.42                  | 0.82                      | 0.01                   | <0.01    | 0.39  |
| O-HR-59              | L                                                | 69.08                                 | 0.05                    | 0.57                  | 0.27                      | 0.02                   | <0.01    | -0.22 |
| O-HR-60              | L                                                | 69.17                                 | 0.02                    | 0.47                  | 0.19                      | 0.03                   | <0.01    | -0.21 |
| CO-HR-64             | F                                                | 68.20                                 | 0.02                    | 1.24                  | 0.54                      | 0.10                   | <0.01    | 0.06  |
| CO-HR-65             | L                                                | 69.13                                 | 0.03                    | 0.55                  | 0.18                      | 0.01                   | <0.01    | 0.27  |
| CO-HR-66             | L                                                | 64.65                                 | 0.07                    | 4.46                  | 0.51                      | 0.02                   | <0.01    | 0.29  |
| CO-HR-67             | L                                                | 65.48                                 | 0.06                    | 0.91                  | 0.25                      | 0.01                   | <0.01    | 2.05  |
| CO-HR-68             | L+M+F                                            | 67.77                                 | 0.07                    | 0.83                  | 0.31                      | 0.03                   | <0.01    | 0.4   |
| CO-HR-69             | L                                                | 66.16                                 | 0.06                    | 1.32                  | 0.27                      | 0.01                   | < 0.01   | 1.83  |
|                      |                                                  |                                       |                         |                       | hematite.                 |                        | n cizos: |       |
| ie sample<br>38mm, 3 | Massive, I<br>s were sep<br>2mm, 25.4<br>2800μm, | parated int<br>mm, 19m                | o size frac<br>m, 16mm, | tions usin<br>12.7mm, | g the follov<br>9.52mm, 8 | wing scree<br>mm, 6.35 | mm, (Lum | • /   |

- As by digestion in Agua Regia and ICP OES / MS;
- S by LECO sulfur analyser;
- Ag, Al, Ba, Be, Bi, Ca, Cd, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Sc, Se, Sn, Sr, Th, Ti, Tl, U, V, W, Y, Zn, Zr by digestion in acid and ICP; and
- CI by Chlorine Ion Selective electrode.

MOPE states the granulo-chemical testwork results show the Tombador project Fe content is quite high and typical contaminatot  $SiO_2$  and  $Al_2O_3$  are low. The phosphrorus is a little high for samples 68 and 69. The alkali content (CaO + MgO) can be matintain at low levels through careful mining and a suitably blended crushing plant feed. Sample 68 sample





| Criteria     | JORC Code explanation                                                                                    | Commentary |                                                                                     |                     |                |                                            |                               |                                               |
|--------------|----------------------------------------------------------------------------------------------------------|------------|-------------------------------------------------------------------------------------|---------------------|----------------|--------------------------------------------|-------------------------------|-----------------------------------------------|
|              |                                                                                                          | lamir      | esents a composite samp<br>nated and friable). The pr<br>act that it would be prude | oduct obtained      | l with this sa | mple is of go                              | od quality                    | and confirms                                  |
|              |                                                                                                          | A su       | mmary of the mineralogy                                                             | identified by F     | undacao Go     | prceix is in the                           | e table bel                   | w                                             |
|              |                                                                                                          |            | Minerals                                                                            | Specific<br>Gravity |                | Laminated<br>Hematite<br>Outcrop<br>% Mass | Friable<br>Hematite<br>% Mass | Laminated<br>Hematite Drill<br>Core<br>% Mass |
|              |                                                                                                          | Mono       | crystalline lamellar hematite                                                       | 5.20                | 3.60           | 5.10                                       | 0.25                          | 5.57                                          |
|              |                                                                                                          |            | crystalline granular hematite                                                       | 5.20                | 93.40          | 93.56                                      | 76.86                         | 92.07                                         |
|              |                                                                                                          |            | rystalline lamellar hematite                                                        | 4.26                | 0.00           | 0.00                                       | 0.00                          | 0.00                                          |
|              |                                                                                                          |            | rystalline granular hematite                                                        | 4.26                | 0.00           | 0.05                                       | 0.08                          | 0.45                                          |
|              |                                                                                                          |            | ar martist Hematite                                                                 | 4.89                | 1.68           | 0.26                                       | 22.28                         | 1.23                                          |
|              |                                                                                                          | Martit     | e                                                                                   | 3.90                | 0.02           | 0.12                                       | 0.09                          | 0.04                                          |
|              |                                                                                                          | Magr       |                                                                                     | 5.00                | 0.07           | 0.00                                       | 0.00                          | 0.00                                          |
|              |                                                                                                          | Goeth      | nite                                                                                | 3.90                | 0.19           | 0.00                                       | 0.02                          | 0.00                                          |
|              |                                                                                                          | Aggre      | •                                                                                   | 3.00                | 0.05           | 0.00                                       | 0.00                          | 0.00                                          |
|              |                                                                                                          | Quar       |                                                                                     | 2.65                | 0.11           | 0.33                                       | 0.02                          | 0.09                                          |
|              |                                                                                                          | Ilmini     |                                                                                     | 5.02                | 0.09           | 0.12                                       | 0.00                          | 0.00                                          |
|              |                                                                                                          | Other      |                                                                                     | 3.00                | 0.79           | 0.46                                       | 0.39                          | 0.54                                          |
|              |                                                                                                          |            | Pyrometallurgical tests w<br>bles and their results sho<br>Sample No.<br>Test       |                     |                | 193064                                     | l 1930                        | 68                                            |
|              |                                                                                                          |            |                                                                                     |                     |                |                                            |                               | -                                             |
|              |                                                                                                          |            | ucibility (%Reduced)                                                                | 38.86               | 38.74          | 52.67                                      | 45.8                          |                                               |
|              |                                                                                                          |            | (%<2.80mm)                                                                          | 3.28                | 29.52          | 38.67                                      | 16.6                          |                                               |
|              |                                                                                                          |            | epitation Index (%<6.3mm)                                                           | 0.82                | 1.4            | 8.37                                       | 1.2                           |                                               |
|              |                                                                                                          |            | ble Index (%>6.3mm)                                                                 | 90.27               | 74.76          | 50.2                                       | 82.4                          |                                               |
|              |                                                                                                          | Abra       | sion Index (%<0.5mm)                                                                | 6.97                | 19.66          | 24.78                                      | 10.9                          | 3                                             |
| Further work | • The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or | •          | graphic survey.<br>dditional metallurgical an                                       | d processing to     | ests           |                                            |                               |                                               |





| Criteria | JORC Code explanation                                                                                                                                                                                                                     | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | large-scale step-out drilling).                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | <ul> <li>Diagrams clearly highlighting the<br/>areas of possible extensions,<br/>including the main geological<br/>interpretations and future drilling<br/>areas, provided this information is<br/>not commercially sensitive.</li> </ul> | <ul> <li>Extensions of HCO were not considered in the geological modelling. The geological modeling (GE21) was confined to the large central body of hematite mineralization. Additional narrow, &lt;10m hematite foot wall and hanging wall occurrences of Hematite mineralization are known from geological mapping and drill hole logging. These were not included as additional drilling data to establish continuity was not available. Follow up drilling is planned for these areas.</li> </ul> |





## **Section 3 Estimation and Reporting of Mineral Resources**

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

| Criteria                     | JORC Code explanation                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Database<br>integrity        | <ul> <li>Measures taken to ensure that data has not<br/>been corrupted by, for example, transcription or<br/>keying errors, between its initial collection and<br/>its use for Mineral Resource estimation<br/>purposes.</li> </ul> | <ul> <li>The Tombador deposit drilling data base was received excel format and GE21 produced<br/>the Access datasets.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                              | Data validation procedures used.                                                                                                                                                                                                    | <ul> <li>GE21 carried out an electronic validation of the databases with Gemcom Surpac<br/>software. No errors, as gaps or overlapping data, or other material inconsistencies were<br/>found.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                  |
| Site visits                  | Comment on any site visits undertaken by the<br>Competent Person and the outcome of those<br>visits.                                                                                                                                | • A site visit was undertaken by Mr Porfirio Rodriguez to the Tombador Project between 12th to 14th November 2013.                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                              | <ul> <li>If no site visits have been undertaken indicate<br/>why this is the case.</li> </ul>                                                                                                                                       | Not Applied                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Geological<br>interpretation | Confidence in (or conversely, the uncertainty of)<br>the geological interpretation of the mineral<br>deposit.                                                                                                                       | • There is high confidence in the geological interpretation as there is a semi-detail geological map to guide the modelling of the mineralization zone. The defined horizons are considered to be reasonably robust. The HCO model was built from as an extension of the original model presented in the previous Independent Resource Estimate, as prepared by Coffey on September 2013. The extended model was based on more detail field mapping and a new interpretation on downdip and down plunge considering a half distance between HCO mineralized and non-HCO mineralized holes. |
|                              | <ul> <li>Nature of the data used and of any assumptions made.</li> </ul>                                                                                                                                                            | <ul> <li>There are a total of 17 drill holes with 8 mineralized (with &gt;60%Fe) holes used for the<br/>HCO mineral resource estimate.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                              | • The effect, if any, of alternative interpretations on Mineral Resource estimation.                                                                                                                                                | • 8 mineralised drill holes have broad and consistent mineralized intersections (up to 50m) and are drilled at a reasonably close (irregular 50x50m grid) spacing refuting alternate mineral interpretations.                                                                                                                                                                                                                                                                                                                                                                              |
|                              | <ul> <li>The use of geology in guiding and controlling<br/>Mineral Resource estimation.</li> </ul>                                                                                                                                  | <ul> <li>Geology provided a guide to the ore shapes produced. The hematite orebody occurs in<br/>the drag fold hinge in siliceous itabirite, showing an azimuth direction of 30°. This fold<br/>has been interpreted as being generated by a transfer fault, approximately N10E<br/>direction.</li> </ul>                                                                                                                                                                                                                                                                                  |





| Criteria                                  | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | <ul> <li>The factors affecting continuity both of grade<br/>and geology.</li> </ul>                                                                                                                                                                                                                                                                                                                         | The fold hinge is the primary geological determining factor. Continuity of hematite mineralization is projected within the fold hinge.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Dimensions                                | The extent and variability of the Mineral<br>Resource expressed as length (along strike or<br>otherwise), plan width, and depth below surface<br>to the upper and lower limits of the Mineral<br>Resource.                                                                                                                                                                                                  | • The mineralization outcrops. Within the drilled portion the mineralization is 30 to 50m in thickness and occurs at a length of approximately 150m down dip and is both wide and open 200m down plunge. The down plunge projection in the non-drilled "Inferred" portion of the resource is interpreted to thin to a thickness of 20m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Estimation and<br>modelling<br>techniques | <ul> <li>The nature and appropriateness of the<br/>estimation technique(s) applied and key<br/>assumptions, including treatment of extreme<br/>grade values, domaining, interpolation<br/>parameters and maximum distance of<br/>extrapolation from data points. If a computer<br/>assisted estimation method was chosen include<br/>a description of computer software and<br/>parameters used.</li> </ul> | <ul> <li>Resource modelling was done with Geovia Surpac software.</li> <li>Three 3D block model were constructed for resource estimation purposes for the HCO orebody. The block dimensions were defined as 25m x 25m x 5m and sub-blocks of 12.5m x 12.5m x 2.5m, based on a quarter of the drilling grid dimensions. Sub-blocking was applied to assure a good adherence between the geological model and the lithological unit attitude.</li> <li>After examining the raw sample lengths of sampled intervals (Figure 3.4_1), and in consideration of the local geology, composites were generated using a nominal length of 10 meters (with 75% of range at end of intervals). Compositing was applied to the mineralized intervals inside the geological model.</li> <li>The Tombador HCO chip sampling produced 20 samples, 1m each, because of the nature of the samples, they were considered as puncntual, (i.e. with only one dimensior characterized by their X,Y and Z coordinates.</li> <li>Aiming to be able and combine chip samples and drilling data, a Variance Volume, based on NScore GSLIB tool was done in order to transform all chip sample data as the were in the same support as drilling data,</li> <li>The downhole experimental variograms were calculated to establish the structures for composite grades. The omni-directional horizontal variograms were calculated for the purpose of determination of major axis variability for target HCO Orebody</li> </ul> |





|  |                                 | Tombador Project<br>HCO Orebody Variogram Model Summary |                        |                                                               |                                                  |                                                                                      |         |                                                                    |
|--|---------------------------------|---------------------------------------------------------|------------------------|---------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------|---------|--------------------------------------------------------------------|
|  | Variable                        | Unit                                                    | C0                     | C1                                                            | A1                                               | C2                                                                                   | A2      | Horizontal/<br>Vertical Ratio                                      |
|  | Fe                              |                                                         | 0.70                   | 2.35                                                          | 30                                               | 2.35                                                                                 | 60      | 2                                                                  |
|  | SiO2                            | _                                                       | 0.43                   | 0.4                                                           | 30                                               | 1.04                                                                                 | 60      | 2                                                                  |
|  | AI2O3                           | нсо                                                     | 0.02                   | 0.134                                                         | 60                                               | 0                                                                                    | 0       | 2                                                                  |
|  | Mn                              |                                                         | 0.00                   | 1.5E-04                                                       | 30                                               | 6.18E-04                                                                             | 60      | 2                                                                  |
|  | P                               |                                                         | 0.00                   | 0.002                                                         | 60                                               | 0                                                                                    | 0       | 2                                                                  |
|  | LOI                             |                                                         | 0.02                   | 0.032                                                         | 60                                               | 0                                                                                    | 0       | 2                                                                  |
|  |                                 |                                                         |                        |                                                               |                                                  |                                                                                      |         |                                                                    |
|  | The estal<br>presented          | blished Kr<br>d in the Ta                               | iging pla<br>able belo | ow:<br>Ton                                                    | nbador I                                         | Project                                                                              | three o | estimation steps, as                                               |
|  | presented                       | d in the Ta                                             | Able belo              | ow:<br>Ton<br>Ordinar<br>um Number                            | nbador l<br>y Krigin                             | Project<br>g Strategy<br>aximum Nurr                                                 | nber    | Maximum Number of                                                  |
|  | The estal<br>presented     Step | d in the Ta                                             | Able belo              | ow:<br>Ton<br>Ordinar<br>um Number<br>Samples                 | nbador  <br>y Krigin<br>· of M                   | Project<br>g Strategy<br>aximum Num<br>of Samples                                    | nber    |                                                                    |
|  | presented<br>Step               | d in the Ta<br>Search<br>Radius                         | Minimu                 | ow:<br>Ton<br>Ordinar<br>um Number<br>Samples<br>ring=358; F  | hbador  <br>y Krigin<br>of M<br>HCO U<br>Plunge= | Project<br>g Strategy<br>aximum Num<br>of Samples<br>nit                             | nber    | Maximum Number o                                                   |
|  | presented<br>Step               | d in the Ta<br>Search<br>Radius                         | Minimu                 | ow:<br>Ton<br>Ordinar<br>um Number<br>Samples<br>ring=358; F  | hbador  <br>y Krigin<br>of M<br>HCO U<br>Plunge= | Project<br>g Strategy<br>aximum Num<br>of Samples<br>nit<br>-33; Dip=-35;            | nber    | Maximum Number o<br>samples per Drillhole                          |
|  | presented<br>Step<br>Searching  | d in the Ta<br>Search<br>Radius<br>Paramete             | Minimu                 | ow:<br>Ordinar<br>um Number<br>Samples<br>ring=358; F<br>Majo | hbador  <br>y Krigin<br>of M<br>HCO U<br>Plunge= | Project<br>g Strategy<br>aximum Num<br>of Samples<br>nit<br>-33; Dip=-35;<br>Ratio=2 | nber    | Maximum Number o<br>samples per Drillhole<br>r/Semi-Major Ratio= 1 |





| Criteria | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | whether the Mineral Resource estimate takes appropriate account of such data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <ul> <li>good correlation between the blocks estimated and the original samples.</li> <li>Validation for estimated grade was carried out with a comparative Nearest Neighbouring estimation (NN). This validation consists in a comparative statistical analysis over global results for Fe%, SiO2%, Al2O3%, Mn%, P% and LOI% variables to the mineralized intervals.</li> <li>The comparative analysis of estimation variable with the Nearest Neighbouring results showed different grade distributions. The relative smoothing in the kriging results are compatible with the kriging technique and is acceptable based on the resources classification and the data density and distribution.</li> <li>Local validation by the Swath Plot method was carried out with the verification of local bias from comparative graphs for resource estimation variable (Ordinary Kriging) and NN-Check, considering X, Y, or Z coordinates</li> <li>The comparative analysis of estimative variables with the Nearest Neighbouring results show the relative smoothing in the kriging results that are compatible with the kriging technique and is acceptable based on the relative and use the relative show the relative smoothing in the kriging results that are compatible with the kriging technique and is acceptable based on the resources classification and the data density and distribution. Considerable based on the resources classification and the data density and distribution. Considerable biases on depth end or in corners of block model are originated on the effect of small volume of blocks in boundary portions of mineralization zones and differences in estimation techniques</li> </ul> |
|          | <ul> <li>The assumptions made regarding recovery of by-products.</li> <li>Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).</li> <li>In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.</li> <li>Any assumptions behind modelling of selective mining units.</li> <li>Any assumptions about correlation between variables.</li> <li>Description of how the geological interpretation was used to control the resource estimates.</li> </ul> | <ul> <li>Recovery of by-products were not considered.</li> <li>No deleterious or contaminating substances were encountered. Sulphur results were less than 0.01%.</li> <li>The block size was smaller than the average sample spacing, less than half.</li> <li>No assumptions were made regarding SMU (selective mining units).</li> <li>No assumptions were made by GE21 regarding the correlation between variables.</li> <li>The main controls to the hematite are lithological and structural. The hematite orebody occurs in the drag fold hinge in siliceous itabirite, showing an azimuth direction of 30°. This fold has been interpreted as being generated by a transfer fault, approximately N10E direction.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |





| Criteria | JORC Code explanation                                                                                                                                                           | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | <ul> <li>Discussion of basis for using or not using grade<br/>cutting or capping.</li> </ul>                                                                                    | • The mineralization is thick and continuous hematite contained within 8 drill holes each exhibiting thick and continuous hematite mineralization from 30 to 50 m in thickness with consistent grade. Grade cutting or capping procedures are not common to be applied on this style of mineralization (iron hematite). GE21 didn't apply any of this methods on Tombador grade estimate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | <ul> <li>The process of validation, the checking process<br/>used, the comparison of model data to drill hole<br/>data, and use of reconciliation data if available.</li> </ul> | <ul> <li>GE21 used internal peer review and created grade plans and sections to review the results. No erroneous zones were found.</li> <li>Example of Block Model plan and section for visual validation.</li> <li>Image: Cu-Dh20</li> <li>Image: Cu-</li></ul> |





| Criteria                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | w Section 8908766 N Legend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 590Z       BICU-DH17       BICU-DH17       BICU-DH17       BICU-DH12       BICU-DH12 |
| Moisture                            | <ul> <li>Whether the tonnages are estimated on a dry<br/>basis or with natural moisture, and the method<br/>of determination of the moisture content.</li> </ul>                                                                                                                                                                                                                                                                                                                                            | The resource was estimated in a dry basis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Cut-off<br>parameters               | <ul> <li>The basis of the adopted cut-off grade(s) or<br/>quality parameters applied.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>A 60%Fe COG was applied representing a DSO (direct shipping ore) hematite product.<br/>This cut off grade defined a consistent and broad thick mineralized zone. Additional<br/>zones of mineralization were not included. Areas where the mineralization was pinching<br/>to widths of &gt;5m, on the periphery (down dip ) away from the bulk mineralized zone<br/>were included.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Mining factors<br>or<br>assumptions | <ul> <li>Assumptions made regarding possible mining<br/>methods, minimum mining dimensions and<br/>internal (or, if applicable, external) mining<br/>dilution. It is always necessary as part of the<br/>process of determining reasonable prospects for<br/>eventual economic extraction to consider<br/>potential mining methods, but the assumptions<br/>made regarding mining methods and<br/>parameters when estimating Mineral Resources<br/>may not always be rigorous. Where this is the</li> </ul> | <ul> <li>A conventional open pit mining operation was assumed for the Tombador project.</li> <li>The mineralization is known, from close spaced drilling, to be from 20 to 50m in thickness<br/>and the external contacts are sharp and visually distinct to the lower grade periphera<br/>transitional and waste rock. For this reason both internal and external dilution are predicted<br/>by GE21 to be modest.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |





| Criteria                                   | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | case, this should be reported with an explanation of the basis of the mining assumptions made.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Metallurgical<br>factors or<br>assumptions | <ul> <li>The basis for assumptions or predictions<br/>regarding metallurgical amenability. It is always<br/>necessary as part of the process of determining<br/>reasonable prospects for eventual economic<br/>extraction to consider potential metallurgical<br/>methods, but the assumptions regarding<br/>metallurgical treatment processes and<br/>parameters made when reporting Mineral<br/>Resources may not always be rigorous. Where<br/>this is the case, this should be reported with an<br/>explanation of the basis of the metallurgical<br/>assumptions made.</li> </ul>                                                                                                                                   | <ul> <li>No metallurgical tests were considered in the estimation of resources.</li> <li>Modest metallurgical tests were completed in 2013 by an external group "MOPE" on 10 samples consisting of 3 drill core 5 outcrop and 2 composite samples. No deleterious or contaminating substances were encountered. Sulphur results were less than 0.01%.</li> <li>This testwork, along with the 5 X 100kg surface samples collected by MOPE in 2013 do provide additional confidence in the resource estimation completed by GE21, because results evidence the ore produces a high-grade lump product.</li> </ul> |
| Environmental<br>factors or<br>assumptions | • Assumptions made regarding possible waste<br>and process residue disposal options. It is<br>always necessary as part of the process of<br>determining reasonable prospects for eventual<br>economic extraction to consider the potential<br>environmental impacts of the mining and<br>processing operation. While at this stage the<br>determination of potential environmental<br>impacts, particularly for a greenfields project,<br>may not always be well advanced, the status of<br>early consideration of these potential<br>environmental impacts should be reported.<br>Where these aspects have not been considered<br>this should be reported with an explanation of<br>the environmental assumptions made. | The Company will be required to obtain the necessary environmental permits and comply with environmental laws.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |





| Criteria       | J(                                                                                                                                                                                                                                   | DRC Code explanation                                                                                                                                                                                                                 | Commentary    |                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |   |  |  |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|---|--|--|
| Bulk density   | •                                                                                                                                                                                                                                    | Whether assumed or determined. If assumed,<br>the basis for the assumptions. If determined, the<br>method used, whether wet or dry, the frequency<br>of the measurements, the nature, size and<br>representativeness of the samples. | •             | the experime<br>determinatio<br>tests.<br>Altogether, 1<br>made every<br>Colomi proje<br>weathering z<br>The density<br>weathered ro<br>VALE applie<br>target data.                                                                                | bity applied in the block model was defined by the average of values obtained<br>imental specific gravity test with litho types by Vale. There were density<br>ations in three types of materials: drill core samples; weathered rocks; in field<br>er, 1973 density determinations tests were carried out on all rotative drill holes<br>ery 3 m depth in ore zones and every 10 m in waste zones by VALE in the<br>roject areas. The intervals were selected respecting geological contacts and<br>ng zone limits.<br>bity determination was carried out in drill cores by the Jolly method. The<br>d rock samples were oven dried and sealed with paraffin material.<br>plied to mineralized unit types an average density value individually in each<br>ta. Vale didn't perform any spatial variability study on density data. |                 |   |  |  |
|                |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                      |               |                                                                                                                                                                                                                                                    | Tombador Project<br>Density Data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                 |   |  |  |
|                |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                      |               |                                                                                                                                                                                                                                                    | Unit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Density (g/cm3) | Ī |  |  |
|                |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                      |               |                                                                                                                                                                                                                                                    | НСО                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.62            |   |  |  |
|                |                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                      |               |                                                                                                                                                                                                                                                    | TAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.80            | ] |  |  |
| Classification | <ul> <li>Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.</li> <li>The basis for the classification of the Mineral Resources into varying confidence categories.</li> </ul> | •                                                                                                                                                                                                                                    | density value | usity was determined in previous works. Current work performed review on<br>lues only in HCO lithotype.<br>rce was classified by the Competent Person as Measure, Indicated and<br>ased depending on the drilling grid spacing as explained below. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |   |  |  |



JORC TABLE 1 - UPDATE 23 SEPTEMBER 2020 TOMBADOR IRON ORE PROJECT



| eria JO | ORC Code explanation | Commentary                                                                                                                               |                                                                                                                                                                                        |                                                                                                   |                                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                              |        |       |        |
|---------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-------|--------|
|         |                      | Mineral Reso                                                                                                                             | Tombador Project Resource Table – 26th Feb 2014<br>Mineral Resources - Tombador Mineração Ltda - Tombador Project – HCO Resource<br>Block Model: 25m X 25m X 5m (12.5m X 12.5m X 2.5m) |                                                                                                   |                                                                                             |                                                                                                                 |                                                                                                                                                                                                                                                                                                                                              |        |       |        |
|         |                      | Resource Class                                                                                                                           | Cut-off<br>Grade<br>(Fe%)                                                                                                                                                              | Tonnes<br>(Mt)                                                                                    | Fe<br>(%)                                                                                   | SiO2 (%)                                                                                                        | Al2O3<br>(%)                                                                                                                                                                                                                                                                                                                                 | Mn (%) | P (%) | LOI (% |
|         |                      |                                                                                                                                          |                                                                                                                                                                                        | н                                                                                                 | ICO – Co                                                                                    | mpact Hem                                                                                                       | atite                                                                                                                                                                                                                                                                                                                                        |        | 11    |        |
|         |                      | Measured                                                                                                                                 | 60                                                                                                                                                                                     | 1.94                                                                                              | 67.04                                                                                       | 1.95                                                                                                            | 0.47                                                                                                                                                                                                                                                                                                                                         | 0.037  | 0.101 | 0.44   |
|         |                      | Indicated                                                                                                                                | 60                                                                                                                                                                                     | 3.47                                                                                              | 67.30                                                                                       | 1.65                                                                                                            | 0.56                                                                                                                                                                                                                                                                                                                                         | 0.029  | 0.092 | 0.31   |
|         |                      | Demonstrated                                                                                                                             | 60                                                                                                                                                                                     | 5.41                                                                                              | 67.21                                                                                       | 1.76                                                                                                            | 0.53                                                                                                                                                                                                                                                                                                                                         | 0.032  | 0.095 | 0.36   |
|         |                      | Inferred                                                                                                                                 | 60                                                                                                                                                                                     | 2.58                                                                                              | 67.48                                                                                       | 1.54                                                                                                            | 0.62                                                                                                                                                                                                                                                                                                                                         | 0.027  | 0.086 | 0.28   |
|         |                      | <ol> <li>Presented<br/>have bee<br/>amounts r<br/>reserves of</li> <li>Mineral re<br/>have been<br/>sizes. The<br/>Australasi</li> </ol> | I minera<br>n round<br>nay not<br>lo not h<br>sources<br>n estima<br>e miner<br>an Cod                                                                                                 | al resource<br>ded to t<br>add due<br>ave dem<br>s have be<br>ated usin<br>ral resou<br>le for Re | ces are<br>the rela-<br>to round<br>ionstrate<br>en mod<br>ng ordin<br>irce esi<br>eporting | not exclusi<br>ative accur<br>ding. Miner<br>ed econom<br>eled with c<br>ary kriging<br>imates we<br>of Explora | February 2014<br>exclusive of mineral reserves. All figure<br>g. Mineral resources which are not mine<br>economic viability.<br>d with cut-off of 60% Fe Mineral resource<br>kriging inside 25m by 25m by 5m blo<br>ates were prepared in accordance v<br>Exploration Results, Mineral Resource<br>2) incorporating drilling data acquired u |        |       |        |



JORC TABLE 1 - UPDATE 23 SEPTEMBER 2020 TOMBADOR IRON ORE PROJECT



| Criteria | JORC Code explanation                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                   |                                                                                                                                                                                        |                                                                                                                        |                                                                                                  |                                                                                                                                 |                                                                                                                            |                                                                                                         |                                                                                                 |                                                                                                               |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                                                                                                                                                                                                      | Mineral Res                                                                                                                                                                                                                  | Tombador Project Resource Table – 26th February 2014<br>Mineral Resources – Tombador Mineração Ltda - Tombador Project – TAL Resource<br>Block Model: 100m X100m X 5m (25m X 25m X 5m) |                                                                                                                        |                                                                                                  |                                                                                                                                 |                                                                                                                            |                                                                                                         |                                                                                                 |                                                                                                               |
|          |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                              |                                                                                                                                                                                        |                                                                                                                        |                                                                                                  |                                                                                                                                 |                                                                                                                            |                                                                                                         |                                                                                                 |                                                                                                               |
|          |                                                                                                                                                                                                                                                                                                      | Resource Class                                                                                                                                                                                                               | Cut-off<br>Grade<br>(Fe%)                                                                                                                                                              | Tonnes<br>(Mt)                                                                                                         | Fe<br>(%)                                                                                        | SiO2 (%)                                                                                                                        | Al2O3<br>(%)                                                                                                               | Mn (%)                                                                                                  | P (%)                                                                                           | LOI (%)                                                                                                       |
|          |                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                              | •                                                                                                                                                                                      | TAL_HC                                                                                                                 | CO – Co                                                                                          | mpact Hema                                                                                                                      | tite Talus                                                                                                                 |                                                                                                         | •                                                                                               |                                                                                                               |
|          |                                                                                                                                                                                                                                                                                                      | Inferred                                                                                                                                                                                                                     | 20                                                                                                                                                                                     | 2.06                                                                                                                   | 43.17                                                                                            | 31.88                                                                                                                           | 2.04                                                                                                                       | 0.276                                                                                                   | 0.022                                                                                           | 2.49                                                                                                          |
|          |                                                                                                                                                                                                                                                                                                      | amounts<br>reserves<br>3. Mineral<br>resource<br>5m block<br>with Aus<br>Resource<br>acquired                                                                                                                                | d minera<br>may not<br>do not h<br>resource<br>s have be<br>sizes. T<br>stralasian<br>es and C<br>until 201                                                                            | al resource<br>ded to t<br>add due<br>ave demo<br>es have<br>een estim<br>he miner<br>n Code<br>Dre Resen<br>14.       | es are<br>he rela<br>to round<br>onstrate<br>been<br>hated us<br>al reso<br>for R<br>rves (J     | not exclusi<br>ative accur<br>ding. Miner<br>ed econom<br>modeled w<br>sing ordina<br>urce estima<br>eporting c<br>ORC Code     | ve of min<br>racy of t<br>al resource<br>ic viability<br>vith cut-of<br>ry kriging<br>ates were<br>of Exploi<br>, 2012) ir | eral rese<br>he estim<br>ces which<br>/.<br>off of 20<br>inside 10<br>prepare<br>ration R<br>ncorporat  | nates.<br>n are no<br>0% Fe<br>00m by<br>d in ac<br>esults,<br>ting dri                         | Summed<br>ot mineral<br>Mineral<br>100m by<br>cordance<br>Mineral<br>lling data                               |
|          | <ul> <li>Whether appropriate account has been taken of<br/>all relevant factors (i.e. relative confidence in<br/>tonnage/grade estimations, reliability of input<br/>data, confidence in continuity of geology and<br/>metal values, quality, quantity and distribution of<br/>the data).</li> </ul> | <ul> <li>The anisotropic adopted as crite anisotropic aver Resource; block lower than 150n distance to sam Resource</li> <li>A pit scenario st that a reasonabl resource classifi parameters of p reasonable sell</li> </ul> | ria to dis<br>age dista<br>s with an<br>were cl<br>bles high<br>udy was<br>e prospe<br>cation. C<br>rojects a                                                                          | stinguish<br>ance to san<br>isotropic<br>lassified a<br>ner than 1<br>carried c<br>act for an<br>GE21 ger<br>according | Indicate<br>amples<br>a average<br>as Indic<br>50m a<br>but in o<br>eventu<br>nerated<br>to valu | ed and Infe<br>lower than<br>ge distance<br>cated Reso<br>nd lower th<br>rder to guid<br>ial econom<br>a schemat<br>es practice | rred reso<br>50m we<br>to samp<br>urce; bloc<br>an 500m<br>le the futu<br>ical extra<br>ic pit usir<br>d in the n          | urce classif<br>les highe<br>cks with a<br>were cla<br>ure minin<br>ction was<br>ng physic<br>narket, h | sses. B<br>ried as<br>er than<br>anisotro<br>ssified<br>g proje<br>s testeo<br>al and<br>owever | locks with<br>Measured<br>50m and<br>opic average<br>as Inferred<br>ect implying<br>d for mineral<br>economic |





| Criteria                                             | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      | <ul> <li>Whether the result appropriately reflects the<br/>Competent Person's view of the deposit.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                            | <ul> <li>including Itabirates of the Bicuda North deposit and the full extension of talus deposit. All the compact hematite (HCO) end the talus deposit associated with HCO outcropping (TAL_HCO) are located inside resultant pit shell, then it is able to be classified as mineral resource.</li> <li>The Competent Person believes the classification to be appropriate as mineral resource.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Audits or<br>reviews                                 | The results of any audits or reviews of Mineral Resource estimates.                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <ul> <li>In 2013 Coffey developed the "Tombador Project, Brazil Independent Technical Report<br/>on Exploration and Mineral Resources Estimation" which audited the entire Tombador<br/>Project database, including the Tombador Hematite data. Porfírio Rodriguez and<br/>Leonardo Soares who are the Competent persons for this report, were associated of<br/>Coffey (consultancy company), who provided consultancy on mineral resource estimate<br/>for Colomi during the period from 2011 to 2015, including site visits. Both are members<br/>of the Australian Institute of Geoscientists ("MAIG") and are independent of Colomi and<br/>Tombador mining companies.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Discussion of<br>relative<br>accuracy/<br>confidence | • Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. | <ul> <li>GE21 has estimated Measured, Indicated and Inferred Mineral Resources for the Tombador Project, a high-grade portion of the Tombador Project, in accordance with the guidelines as set out in the JORC Code (2012). The in-situ resources are wholly contained within the current license boundary and do not take into account any elements which may sterilize areas of the deposit for mining operations.</li> <li>The Tombador Iron Ore Project contains a representative prospective tonnage of iron mineralization. The Measured plus Indicated Mineral Resources for the project area has been estimated at 5.41 Mt at 67.21% Fe, 1.76% SiO2, 0.53% Al2O3, 0.032% Mn, 0.095% P and 0.36% LOI, (with 60%Fe lower cutoff grade applied). The cut off value applied was based on economic criteria from study of other similar deposits.</li> <li>The drilling grid spacing, (from 50m x 50m to punctual chip samples) was robust enough for Measured and Indicated Resource classification. However additional sampling is required for reclassification of Talus lithology to a higher category. GE21 concludes that additional exploration of talus is the main target to be investigated with further work.</li> <li>Based on these positive geological indications, GE21 considers the Tombador Iron Ore Project to be prospective for hosting economic high-grade iron ore deposits. It is for this reason that Coffey recommends the continuation of the current follow up exploration program and an additional exploration budget to: <ul> <li>Perform an additional exploration budget to:</li> <li>Conduct additional metallurgical and processing tests to confirm existing results on the feasibility of economically processing the Talus material existing within the</li> </ul></li></ul> |





| Criteria | JORC Code explanation                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                                                                                                                                                                                                           |
|----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                                                                                                                                                                                  | <ul> <li>deposit.</li> <li>To continue and improve the current QAQC program</li> <li>Pre-feasibility study to complete a comprehensive report for project development of small scale high grade production.</li> </ul>                                                                                                                                               |
|          | • The statement should specify whether it relates<br>to global or local estimates, and, if local, state<br>the relevant tonnages, which should be relevant<br>to technical and economic evaluation.<br>Documentation should include assumptions<br>made and the procedures used. | Tombador Iron Ore Project's grade estimate relates global estimates.                                                                                                                                                                                                                                                                                                 |
|          | These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.                                                                                                                                                   | <ul> <li>Tombador Iron Ore Project haven't any production history.</li> <li>Historically, a Brazilian company, called Ferbasa, was known to have mined Hematite from Tombador in the early 1980's when the price was significantly lower. Production records are not known however a surface pit is remnant on the hill with visible outcrop of hematite.</li> </ul> |

#### **Competent Persons Statement**

The information in this announcement that relates to Mineral Resources, Exploration Results/Exploration Targets is based on information compiled by Leonardo de Moraes Soares, a Competent Person who is a Member of The Australian Institute of Geoscientists registered with number AIG #5180. Mr. de Moraes Soares is a Geologist with fifteen years of continuous experience in the mining industry. Mr de Moraes Soares has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr de Moraes Soares consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.





## **JORC Code, 2012 Edition – Table 1**

# **TOMBADOR PROJECT – BICUDA TARGET – ITABIRITES RESOURCE UPDATE**

# ANM Tenement No.: 872.431/2003

## **Section 1 Sampling Techniques and Data**

(Criteria in this section apply to all succeeding sections.)

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | <ul> <li>Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.</li> <li>Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.</li> </ul>         | <ul> <li>Samples were taken from diamond drillhole core, all drilled material was sampled, nothing being discarded. The assay program included the sampling of chips from the compact hematite outcroppings. This drill program was undertaken by VALE. Mineralization intervals chosen for splitting of the diamond drilling core was based on geological core description during drill core logging. Reverse circulation (RC) drilling samples were also produced according to industry standard procedures.</li> <li>Measures to ensure sample representativity include occasional twinning of RC drill holes with diamond drillholes, setting up of a specific sampling procedure for and by geologist, having a dedicated on site full time survey team to pick up mapping sample sites and drilling locations, Assay QAQC at a second external laboratory</li> <li>Best practices as drillcore recovery and depth marks audits were performed during drilling campaign and sampling. The diamond drilling recovery conference consisted of verifying advance and recoveries recorded in the core boxes and drilling bulletins. For Diamond Drilling verification was undertaken by measuring with tapeline the core present in the boxes. For reverse circulation, the verification was undertaken by weighing of chip bags.</li> </ul> |
|                        | <ul> <li>Aspects of the determination of mineralization<br/>that are Material to the Public Report. In<br/>cases where 'industry standard' work has<br/>been done this would be relatively simple (e.g.<br/>'reverse circulation drilling was used to obtain<br/>1 m samples from which 3 kg was pulverised<br/>to produce a 30 g charge for fire assay'). In<br/>other cases more explanation may be<br/>required, such as where there is coarse gold<br/>that has inherent sampling problems. Unusual</li> </ul> | <ul> <li>Industry standard work has been done. All drilling was diamond core drilling. Core samples (HQ) were sawn in half before being collected to allow half of the material to be sent for chemical analysis and the remaining half were stored in the core shed. The sampling was planned by the geologists and care was taken to avoid any contamination between neighbouring samples.</li> <li>RC samples were also collected by following sampling plans specified by the geologists. The samples were prepared by splitting using a Jones splitter. Initially each one-meter interval was split into 2 samples of approximately 40kg each. One of them was temporary archived and used to make chip rulers and chip boxes. The other half was used for final archiving and</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |





| Criteria | JORC Code explanation                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------|--------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria | Commodities or mineralization types (e.g. submarine nodules) may warrant disclosure of detailed information. | <ul> <li>creation of the sample intended for the chemical analysis. The sample intended for the final archiving and chemical analyses were split, generating two samples with approximately 10 kg each. One of these was duly registered with labels inside and outside the bag and filed in the core sheds in Sento Sé– BA. The second sample of 10 Kg was used in the composition of the sample sent for chemical analysis.</li> <li>Sample collection for Granulo-chemical analysis Samples obtained from Bicuda diamond drilling were used for granulochemical analysis due to the existence of hematite in the southern area with potential to form direct shipping lump ore.</li> <li>Ore samples from diamond drilling were collected using a 10 m intervals, (with minimum &gt;5 m and maximum &lt;15 m) obeying lithological and weathering contacts. To ensure a clear definition of the boundaries of mineralised zones, 2m samples of core were collected of the host rock above and below the mineralised intervals.</li> <li>Sample Collection for Total Rock Analysis For samples from Bicuda of less than five meters a simple total or whole rock analysis was used.</li> <li>Samples from 5 diamond holes and 8 RC holes performed in North of Bicuda North were collected using a 5 m support with a minimum &gt;3 m and a maximum &lt;7 m, obeying lithological and weathering contacts. For a clear definition of the mineralized</li> </ul> |
|          |                                                                                                              | zones, 2m samples of core were collected of the host rock above and below the mineralised intervals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |











| Criteria                                                | JORC Code explanation                                                                                                                                                                                                                                                                                  | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                         |                                                                                                                                                                                                                                                                                                        | • There are 6 diamond drill holes and 8 RC drill holes in the Bicuda North deposit area and there are 50 diamond drill holes in the Bicuda deposit area. There are 27 holes within tenement 872.431 with 27 of the holes relating to the Bicuda deposit area.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Drill sample<br>recovery                                | <ul> <li>Method of recording and assessing core and<br/>chip sample recoveries and results assessed.</li> </ul>                                                                                                                                                                                        | • The diamond drilling recovery conference (conference is the logging and sampling procedure set up by the Senior geologists) consisted of verifying advance and recoveries recorded in the core boxes and drilling bulletins. For Diamond Drilling, verification was undertaken by measuring with tapeline the core present in the boxes.                                                                                                                                                                                                                                                                                                                    |
|                                                         | <ul> <li>Measures taken to maximise sample recovery<br/>and ensure representative nature of the<br/>samples.</li> </ul>                                                                                                                                                                                | • Applied recovery control procedure and the recovery values was inside acceptable limits. The hematite was in most cases massive, providing excellent sample recoveries.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                         | • Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.                                                                                                                                     | <ul> <li>Not applied because the core recovery problems were not detected.</li> <li>For reverse circulation, the verification was undertaken by weighing of chip bags.</li> <li>Twin hole analysis showed good correlation between recoveries and analysis of sample recovery to diamond core and RC sample weights showed no relationship to grade</li> </ul>                                                                                                                                                                                                                                                                                                |
| Logging                                                 | • Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.                                                                                                    | <ul> <li>Geotechnical description was performed on all diamond holes where they were classified by geotechnical parameters W (degree of change weathering), R (degree of resistance), spacing of fractures and RQD with degree of detail to one meter. The data was also collected directly onto PDA's using LogMate software.</li> <li>The author considers that the level of detail is sufficient for the reporting of Exploration Results and for future Mineral Resource Estimation.</li> </ul>                                                                                                                                                           |
|                                                         | <ul> <li>Whether logging is qualitative or quantitative<br/>in nature. Core (or costean, channel, etc.)<br/>photography.</li> </ul>                                                                                                                                                                    | • Lithological logging is qualitative in nature. Post assaying the lithology was re-classified into a new category called litho assay, prominent within the MS access database. Core is photographed prior to logging when geological codes were applied. Geological Description consisted of defining weathering levels, mineralogical lithological and structural data, in all holes with detail of one meter.                                                                                                                                                                                                                                              |
|                                                         | <ul> <li>The total length and percentage of the<br/>relevant intersections logged.</li> </ul>                                                                                                                                                                                                          | All drillholes were fully logged.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sub-sampling<br>techniques<br>and sample<br>preparation | <ul> <li>If core, whether cut or sawn and whether quarter, half or all core taken.</li> <li>If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the sample preparation</li> </ul> | <ul> <li>VALE conducted the drilling and collected core samples which were sawn in half before being collected to allow half of the material to be sent for chemical analysis and the remaining half were filed in the core shed. The sampling was planned by the geologists and care was taken to avoid any contamination between neighbouring samples.</li> <li>RC samples were also collected by following sampling plans specified by the geologists. The samples were prepared by splitting using a Jones splitter. Initially each one-meter interval was split into 2 samples of approximately 40kg each. One of them was temporary archived</li> </ul> |





| Criteria                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                   | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 | <ul> <li>technique.</li> <li>Quality control procedures adopted for all subsampling stages to maximise representivity of samples.</li> <li>Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field.</li> <li>duplicate/second-half sampling.</li> <li>Whether sample sizes are appropriate to the grain size of the material being sampled.</li> </ul> | <ul> <li>and used to make chip rulers and chip boxes.<br/>Samples from Bicuda were subjected to granulo-chemical analysis and samples from Bicuda North were subjected to Total Rock chemical analysis.</li> <li>Granulo-chemical Analysis<br/>Each entire 10m composite sample (20-30kg) was metallurgically tested using granulo-chemical analysis which employs the following method. Coarse crushing and separation of size fractions as follows: <ul> <li>8mm to 31.5mm</li> <li>1mm to 8mm</li> <li>0.15mm to 1 mm</li> <li>&lt; 0.15mm</li> </ul> </li> <li>Once weighed, each interval was crushed, pulverized, mixed, split and assayed by:</li> <li>X-Ray fluorescence for the following elements and oxides: Fe, SiO2, P, Al2O3, Mn, TiO2, MgO, CaO, BaO, K2O, Na2O3 &amp; Cr2O3</li> <li>Volumetric analysis using potassium dichromate for FeO</li> <li>Loss on Ignition (LOI) at 1000°C</li> </ul> <li>The assays and weights of each size fraction were used to calculate a weighted average assay for the global sample.</li> <li>Total Rock Analysis</li> <li>The physical preparation of the drilling samples was performed at the ALS Chemex Laboratory of Vespasiano – MG. The procedure included drying, primary crushing P95%&lt;4 mm, collection of (1/8 for diamond holes and 1/4 for RC holes) of the sample, grinding P95% &lt;&lt; 0.105mm and final division with collection of one sample for whole chemical assay.</li> <li>In RC holes, to ensure the accuracy of physical process duplicates were made of the crushed material DP2 on frequency of 1/30, after primary crushing (P 95% &lt; 4 mm) and pulverized material DP3 on frequency of 1/30, after primary crushing (P 95% &lt; 4 mm) and pulverized material DP3 on frequency of 1/20 after pulverization.</li> <li>Drill hole sample sizes were considered as appropriate by GE21, and chip sampling procedures has recommendations to future works to review chip sample sizes.</li> <li>GE21 considers the Vale duplicate sampling procedure to be appropriate for resource estimation JORC 2012.</li> |
| Quality of<br>assay data<br>and | • The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.                                                                                                                                                                                                                                                                                      | • The assaying regime is considered to be the standard for the determination of Iron. Chemical analyses were conducted in the laboratory of SGS Geosol, Vespasiano-MG, while checking of 5% of the results were made in the laboratory of ALS Chemex. Sample pulps were assayed by X-Ray fluorescence for the following elements and oxides: Fe, SiO2, P, Al2O3, Mn, TiO2, CaO, MgO, BaO, K2O, Na2O and Cr2O3. The assay technique is considered to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |





| Criteria                              | JORC Code explanation                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| laboratory<br>tests                   |                                                                                                                                                                                                                                                      | be a global sample geochemical analysis method and a standard technique within the Iron<br>Ore industry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                       | • For geophysical tools, spectrometers,<br>handheld XRF instruments, etc., the<br>parameters used in determining the analysis<br>including instrument make and model, reading<br>times, calibrations factors applied and their<br>derivation, etc.   | <ul> <li>Handheld geophysical tools were not used, sample preparation &amp; assaying was completed within external laboratories</li> <li>Chemical analysis performed in total rock samples were the same applied in granulochemical samples of Bicuda North deposits.</li> <li>The Loss on Ignition Determination (LOI) at 1000°C was also completed by SGS Geosol and Chemex.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                       | <ul> <li>Nature of quality control procedures adopted<br/>(e.g. standards, blanks, duplicates, external<br/>laboratory checks) and whether acceptable<br/>levels of accuracy (i.e. lack of bias) and<br/>precision have been established.</li> </ul> | <ul> <li>Quality control tools (standard samples and duplicates) were applied and monitored in chemical analysis performed on SGS Geosol and ALS Chemex laboratories. The quality control was restricted to the elements Al2O3, Fe, MgO, P, Mn, SiO2 and to LOI (lost on Ignition). The monitored parameters were evaluated in each of the following QAQC tools: Field duplicates; crushing duplicates; pulverized duplicates (internal and independent laboratory); project standard samples; stoichiometry checks; and blank samples.</li> <li>Duplicates quality control results presented by VALE are, in general terms, inside acceptable limits.</li> <li>The evaluation of the chip sample duplicates shows results within acceptance limit and did not indicate that samples were swapped.</li> </ul> |
| Verification of sampling and assaying | The verification of significant intersections by<br>either independent or alternative company<br>personnel.                                                                                                                                          | <ul> <li>GE21 approves the methodology applied by Vale in the preparation and execution of the<br/>Tombador Project QAQC Program. GE21 does not judge the values presented in the report<br/>for not having access to QAQC data sheet, but has accompanied the VALE QAQC programs<br/>in other projects that used the same methodology and tends to agree with the<br/>recommendations of VALE, which concludes it's necessary to improve the QAQC program<br/>and some tools, as appropriate standard sample implementation.</li> </ul>                                                                                                                                                                                                                                                                      |
|                                       | • The use of twinned holes.                                                                                                                                                                                                                          | No Twin holes were performed in Tombador Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                       | • Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.                                                                                                                         | <ul> <li>GE21 approves the methodology applied by Vale in the preparation and execution of the Colomi Project QAQC Program. According to GE21, results are inside acceptance limits of mineral industry.</li> <li>Data collection and verification and storage protocols are fully documented.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                       | Discuss any adjustment to assay data.                                                                                                                                                                                                                | Adjustment to assay data was neither required nor applied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Location of data points               | <ul> <li>Accuracy and quality of surveys used to<br/>locate drill holes (collar and down-hole<br/>surveys), trenches, mine workings and other</li> </ul>                                                                                             | • All drillhole collars were topographically surveyed by total station surveying campaign and drillhole landmarks have been properly identified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |





| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                     | <ul><li>locations used in Mineral Resource<br/>estimation.</li><li>Specification of the grid system used.</li></ul>                                                                                                                            | SAD69 Datum for coordinate system.                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                     | • Quality and adequacy of topographic control.                                                                                                                                                                                                 | No issue was identified by GE21 in the field or in drilling data physical archive.                                                                                                                                                                                                                                                                                                                                                                                            |
| Data spacing<br>and<br>distribution                                 | <ul> <li>Data spacing for reporting of Exploration<br/>Results.</li> </ul>                                                                                                                                                                     | <ul> <li>The holes were arranged in grid sizes varying from 50 x 50m to 200m x 200m in Tombador deposit.</li> <li>Diamond drillhole samples were produced at average length of 10 m length. Compositing was produced using these nominal lengths for itabirites. For talus samples, the compositing size was 5m.</li> </ul>                                                                                                                                                   |
|                                                                     | • Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.                 | <ul> <li>GE21 judges that appropriate grid spacings and applied sampling and composition lengths<br/>were provided to establish the degree of geological continuity and classification reported by<br/>GE21.</li> </ul>                                                                                                                                                                                                                                                       |
|                                                                     | <ul> <li>Whether sample compositing has been<br/>applied.</li> </ul>                                                                                                                                                                           | <ul> <li>GE21 judges appropriate applied sampling and composition lengths to establish the degree of geological continuity and classification.</li> </ul>                                                                                                                                                                                                                                                                                                                     |
| Orientation of<br>data in<br>relation to<br>geological<br>structure | • Whether the orientation of sampling achieves<br>unbiased sampling of possible structures and<br>the extent to which this is known, considering<br>the deposit type.                                                                          | • The geological layers are dipping approximately 30° and the holes are vertical. Sampling was performed almost perpendicular to the layers, which is the best condition.                                                                                                                                                                                                                                                                                                     |
|                                                                     | <ul> <li>If the relationship between the drilling<br/>orientation and the orientation of key<br/>mineralized structures is considered to have<br/>introduced a sampling bias, this should be<br/>assessed and reported if material.</li> </ul> | <ul> <li>No bias was introduced when using vertical drillholes.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sample<br>security                                                  | The measures taken to ensure sample security.                                                                                                                                                                                                  | <ul> <li>GE21 approves the methodology applied by Vale in the preparation and execution of the Colomi Project QAQC Program. GE21 didn't have access to QAQC data sheet, but has accompanied the VALE QAQC programs in other projects that used the same technique.</li> <li>The core boxes were transported by the company's personnel from the drill site to the core storage facility in Sento Sé. Drill boxes and RC sample bags were labelled with hole number</li> </ul> |

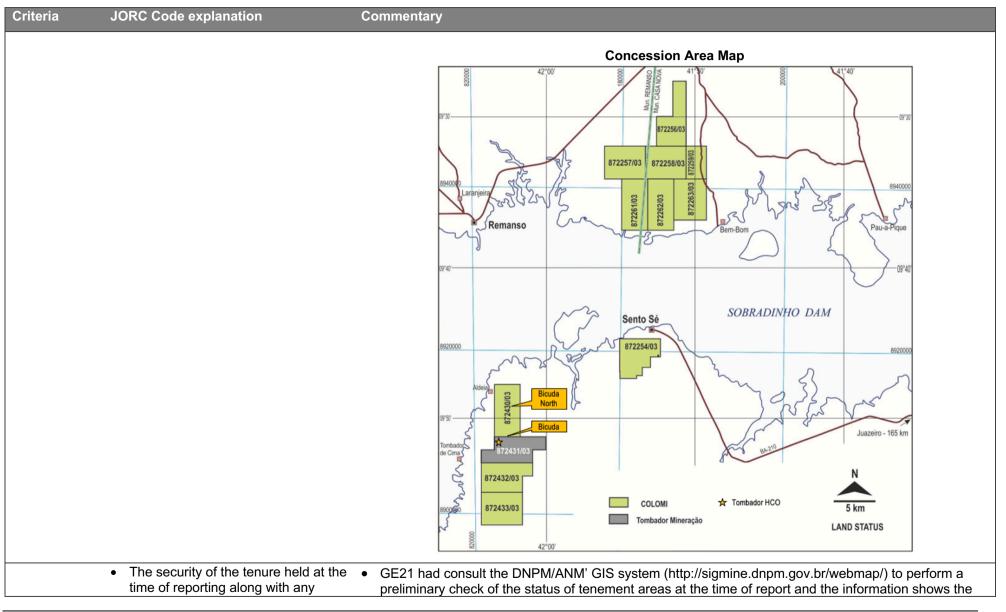




| Criteria          | JORC Code explanation                                                    | Commentary                                                                                                                                                                                                                                                                               |
|-------------------|--------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                                                                          | and depth interval and the core is photographed prior to logging.                                                                                                                                                                                                                        |
| Audits or reviews | The results of any audits or reviews of<br>sampling techniques and data. | <ul> <li>In 2011 Coffey prepared the "Colomi Project, Brazil Independent Technical Report on<br/>Exploration and Mineral Resources Estimation" which audited the entire Colomi Project<br/>database, including the Tombador itabirite data, the results being in that report.</li> </ul> |






## **Section 2 Reporting of Exploration Results**

(Criteria listed in the preceding section also apply to this section.)

| Criteria                                         | JORC Code explanation                                                                                                        | Commentary                                                                                                                                                                                      |                                                                                                                                                   |                                                                                                                                                 |                                                                                                                               |                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                                                                                                    |
|--------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and<br>land tenure<br>status | <ul> <li>Type, reference name/number,<br/>location and ownership including<br/>agreements or material issues with</li> </ul> |                                                                                                                                                                                                 | Summ                                                                                                                                              | ary of Conce                                                                                                                                    | Tombador<br>ssion Status                                                                                                      | Project<br>s in TIM's Tom                                                                                                                                            | bador Project                                                                                                                                            |                                                                                                                                                                                                                                                    |
|                                                  | third parties such as joint ventures, partnerships, overriding royalties,                                                    | Company                                                                                                                                                                                         | Municipality                                                                                                                                      | Process<br>No.                                                                                                                                  | Area<br>(Hectares)                                                                                                            | Application<br>Date                                                                                                                                                  | Exploration<br>Permit N°                                                                                                                                 | Status                                                                                                                                                                                                                                             |
|                                                  | native title interests, historical sites,<br>wilderness or national park and<br>environmental settings.                      | Tombador Iron<br>Mineração Ltda                                                                                                                                                                 | Sento Sé                                                                                                                                          | 872.431/03                                                                                                                                      | 2000                                                                                                                          | 16/12/2003                                                                                                                                                           | 1315                                                                                                                                                     | FER approved on 17/02/2020                                                                                                                                                                                                                         |
|                                                  |                                                                                                                              | <ul> <li>872.431/2003,<br/>Final Explorati<br/>2020 and the t<br/>Iron Mineração</li> <li>Main exploration<br/>program for the<br/>tenements shouthe Final Exploit<br/>Production/Na</li> </ul> | which was tr<br>on Report wa<br>enement 872<br>b Ltda and pu<br>on works was<br>e Tombador p<br>own in figure b<br>oration Repor<br>tional Agency | ansferred to<br>as approved<br>2.431/2003 with<br>blished at F<br>s carried on l<br>project was<br>below with C<br>t (FER) to D<br>y of Mining) | o TIM from o<br>and publisl<br>vas transfer<br>ederal Gaz<br>by VALE a<br>completed<br>Concession<br>DNPM/ANM<br>with descrip | Colomi Iron M<br>hed at Brazili<br>rred from Col<br>cette on 14 <sup>th</sup> A<br>major iron or<br>as part of a la<br>Area Map. T<br>(Brazilian Na<br>otion and eva | Aineracao Ltda<br>an Federal Ga<br>omi Iron Mine<br>April 2020.<br>e mining com<br>arger program<br>he Principal S<br>ational Departa<br>luation of resu | xploration lease<br>a. (CIM or "Colomi). The<br>azette on February 17,<br>ração Ltda to Tombador<br>pany. The exploration<br>covering all of CIM's<br>cource of information was<br>ment of Mineral<br>ults obtained in the<br>Exploration Permits. |











| Criteria                                | JORC Code explanation                                                             | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | known impediments to obtaining a license to operate in the area.                  | areas as regular for exploration works by Tombador Iron Mineração.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Exploration<br>done by other<br>parties | <ul> <li>Acknowledgment and appraisal of exploration by other parties.</li> </ul> | <ul> <li>Main exploration works was carried on by VALE a major iron ore mining company. Principal source of information was the Final Exploration Report (FER) to DNPM/ANM (Brazilian National Department of Mineral Production/ Mining National Agency) with description and evaluation of results obtained in the exploration work carried out by VALE in the area related to TIM's and Colomi's Exploration Permits.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Geology                                 | Deposit type, geological setting and style of mineralization.                     | <ul> <li>Mineralization: The geological, chemical, physical and technological characteristics divide the discovered iron mineralizarion into five different types: Dolomitic Itabirite, Siliceous Itabirite, Amphibolitic Itabirite, Talus Deposit and Hematitite.</li> <li>The talus deposits are represented by layers with thickness average of 3.50 m, formed mainly by itabirite blocks and, secondary blocks of quartzites, dolomites and shales, immersed in siltose mass. Hematite talus blocks are only found in the adjacencies of hematite deposit of Bicuda.</li> <li>Hematites represent the high grade granulated iron ore resources, restricted to the southern deposit Bicuda. The hematite orebody occurs in the drag fold hinge in siliceous itabirite, showing an azimuth direction of 30°. This fold has been interpreted as being generated by a transfer fault, approximately N10E direction.</li> <li>Itabirites: siliceous and dolomitic itabirites, lesser metamorphic grade, and influence of folds, faults and shear zones.</li> </ul> |



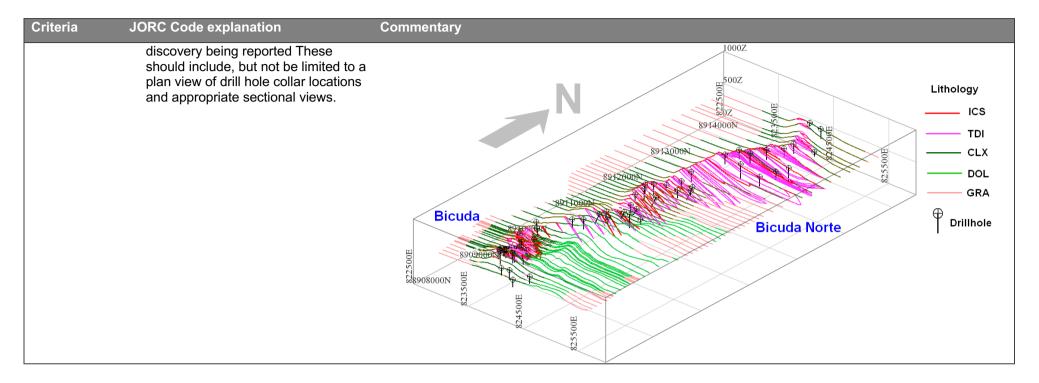


| Criteria    | JORC Code explanation                                                      | Commentary |                                           |                |                  |           |            |             |              |         |              |
|-------------|----------------------------------------------------------------------------|------------|-------------------------------------------|----------------|------------------|-----------|------------|-------------|--------------|---------|--------------|
| Drill hole  | • A summary of all information material                                    | •          | Drill hole collars for                    | all holes in T | enement 872.     | 431/2003  |            |             |              |         |              |
| Information | to the understanding of the                                                |            | Drill Hole ID Coord. UTM - Córrego Alegre |                | Alegre           | Donth (m) | Dim        | Tenement ID |              |         |              |
|             | exploration results including a                                            |            |                                           | Х              | Y                | z         | Depth (m)  | Dip         | Tenement ID  |         |              |
|             | tabulation of the following information for all Material drill holes:      |            | COL-BICU-DH00001                          | 823487.97      | 8908771.18       | 548.11    | 96.00      | -90.000     | 872.431/2003 |         |              |
|             | <ul> <li>easting and northing of the drill</li> </ul>                      |            | COL-BICU-DH00002                          | 823484.40      | 8908818.26       | 534.73    | 118.10     | -90.000     | 872.431/2003 |         |              |
|             | hole collar                                                                |            | COL-BICU-DH00003                          | 823581.44      | 8908967.98       | 540.29    | 58.50      | -90.000     | 872.431/2003 |         |              |
|             | <ul> <li>elevation or RL (Reduced Level</li> </ul>                         |            | COL-BICU-DH00004                          | 823431.26      | 8908818.20       | 527.05    | 79.50      | -90.000     | 872.431/2003 |         |              |
|             | <ul> <li>elevation above sea level in</li> </ul>                           |            | COL-BICU-DH00005                          | 823428.51      | 8908868.08       | 505.64    | 72.30      | -90.000     | 872.431/2003 |         |              |
|             | metres) of the drill hole collar                                           |            | COL-BICU-DH00006                          | 823786.64      | 8908366.99       | 531.82    | 110.90     | -90.000     | 872.431/2003 |         |              |
|             | <ul><li>dip and azimuth of the hole</li><li>down hole length and</li></ul> |            | COL-BICU-DH00007                          | 823631.73      | 8908867.61       | 584.81    | 127.45     | -90.000     | 872.431/2003 |         |              |
|             | interception depth.                                                        |            | COL-BICU-DH00008                          | 823728.22      | 8908966.04       | 556.57    | 160.20     | -90.000     | 872.431/2003 |         |              |
|             | <ul> <li>hole length.</li> </ul>                                           |            | COL-BICU-DH00009                          | 823630.55      | 8908814.88       | 602.75    | 207.20     | -90.000     | 872.431/2003 |         |              |
|             | • If the exclusion of this information is                                  |            | COL-BICU-DH00010                          | 823460.77      | 8909162.72       | 507.30    | 178.40     | -90.000     | 872.431/2003 |         |              |
|             | justified on the basis that the                                            |            | COL-BICU-DH00012                          | 823731.81      | 8908868.03       | 591.57    | 132.30     | -90.000     | 872.431/2003 |         |              |
|             | information is not Material and this                                       |            | COL-BICU-DH00013                          | 823731.53      | 8908667.99       | 632.66    | 159.20     | -90.000     | 872.431/2003 |         |              |
|             | exclusion does not detract from the<br>understanding of the report, the    |            | COL-BICU-DH00016                          | 823478.39      | 8908668.24       | 606.20    | 156.30     | -90.000     | 872.431/2003 |         |              |
|             | Competent Person should clearly                                            |            |                                           |                | COL-BICU-DH00017 | 823439.97 | 8908754.44 | 573.33      | 79.60        | -90.000 | 872.431/2003 |
|             | explain why this is the case.                                              |            | COL-BICU-DH00019                          | 823931.40      | 8908368.07       | 559.16    | 150.20     | -90.000     | 872.431/2003 |         |              |
|             |                                                                            |            | COL-BICU-DH00021                          | 823536.16      | 8908868.62       | 557.35    | 173.95     | -90.000     | 872.431/2003 |         |              |
|             |                                                                            |            |                                           |                | COL-BICU-DH00022 | 823484.08 | 8908868.08 | 529.39      | 145.50       | -90.000 | 872.431/2003 |
|             |                                                                            |            | COL-BICU-DH00023                          | 823587.85      | 8908567.53       | 651.29    | 210.10     | -90.000     | 872.431/2003 |         |              |
|             |                                                                            |            | COL-BICU-DH00024                          | 823581.90      | 8909060.02       | 491.12    | 250.00     | -90.000     | 872.431/2003 |         |              |
|             |                                                                            |            | COL-BICU-DH00038                          | 824080.14      | 8908267.09       | 497.40    | 116.50     | -90.000     | 872.431/2003 |         |              |
|             |                                                                            |            | COL-BICU-DH00041                          | 823336.12      | 8909268.14       | 536.83    | 111.30     | -90.000     | 872.431/2003 |         |              |
|             |                                                                            |            | COL-BICU-DH00043                          | 823581.43      | 8909283.48       | 547.55    | 163.60     | -90.000     | 872.431/2003 |         |              |
|             |                                                                            |            | COL-BICU-FD0001                           | 824213.02      | 8908467.25       | 507.23    | 106.80     | -90.000     | 872.431/2003 |         |              |
|             |                                                                            |            | COL-BICU-FD0003                           | 823638.77      | 8908579.10       | 646.00    | 56.65      | -90.000     | 872.431/2003 |         |              |
|             |                                                                            |            | COL-BICU-FD0004                           | 823481.36      | 8908687.50       | 599.35    | 104.00     | -90.000     | 872.431/2003 |         |              |
|             |                                                                            |            | COL-BICU-FD0005                           | 823507.88      | 8908781.59       | 547.56    | 119.85     | -90.000     | 872.431/2003 |         |              |
|             |                                                                            |            | COL-BICU-FD0006                           | 823466.74      | 8908800.91       | 536.14    | 52.80      | -90.000     | 872.431/2003 |         |              |



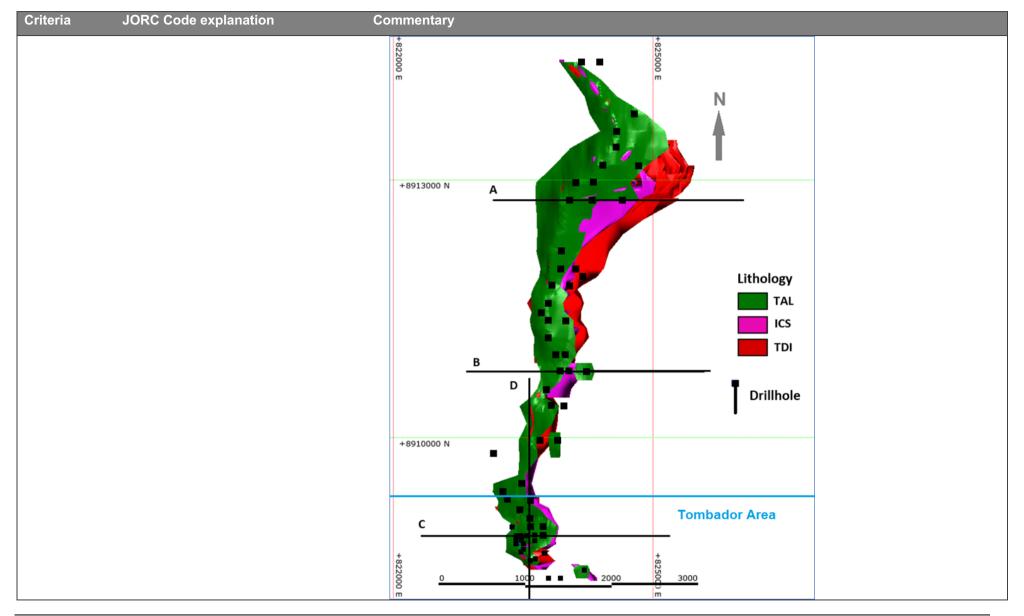


|                     |       | Depth     | Depth  | Average  | Lengt            | 11-1-10          | -      | Depth  | Depth  | Average  | Leng |
|---------------------|-------|-----------|--------|----------|------------------|------------------|--------|--------|--------|----------|------|
| Hole ID Typ         | ype   | From      | to     | Fe Grade | h (m)            | Hole ID          | Туре   | From   | to     | Fe Grade | (m)  |
| BICU-DH00002        |       | 60.36     | 67.14  | 57.24    | 7.1              | COL-BICU-DH00013 |        | 56.71  | 60.48  | 31.80    | 3    |
| BICU-DH00002        |       | 15.67     | 19.33  | 52.90    | 5.0              | COL-BICU-DH00003 |        | 36.71  | 40.26  | 27.50    | 3    |
| DL-BICU-DH00003     |       | 1.20      | 8.66   | 41.83    | 7.5              | COL-BICU-DH00002 |        | 68.55  | 80.37  | 23.74    | 11   |
| COL-BICU-DH00004    |       | 28.00     | 40.29  | 58.20    | 12.4             | COL-BICU-DH00007 |        | 74.09  | 84.69  | 23.61    | 10   |
| COL-BICU-DH00005    |       | 10.29     | 13.19  | 58.40    | 2.9              | COL-BICU-DH00008 |        | 41.97  | 50.12  | 16.67    | 8    |
| COL-BICU-DH00007    |       | 3.10      | 42.41  | 34.99    | 38.9             | COL-BICU-DH00008 |        | 60.11  | 69.85  | 25.00    | 9    |
| COL-BICU-DH00008    |       | 5.00      | 20.05  | 39.66    | 15.0             | COL-BICU-DH00003 |        | 8.70   | 14.23  | 21.46    | 5    |
| COL-BICU-DH00009    |       | 2.80      | 25.56  | 34.83    | 22.7             | COL-BICU-DH00001 |        | 54.69  | 70.00  | 20.22    | 14   |
| COL-BICU-DH00009    |       | 109.30    | 114.34 | 37.41    | 5.0              | COL-BICU-DH00004 |        | 6.28   | 17.34  | 39.86    | 1    |
| COL-BICU-DH00009    |       | 83.01     | 97.75  | 30.26    | 14.7             | COL-BICU-DH00021 |        | 117.31 | 128.68 | 36.72    | 11   |
| COL-BICU-DH00010    | ļ     | 20.50     | 33.55  | 22.15    | 13.5             | COL-BICU-FD0005  |        | 51.04  | 79.98  | 26.29    | 29   |
| COL-BICU-DH00012    | ICS   | 30.06     | 37.10  | 25.64    | 7.0              | COL-BICU-FD0004  |        | 49.24  | 70.00  | 24.85    | 20   |
| COL-BICU-DH00012    |       | 5.20      | 20.60  | 54.26    | 15.4             | COL-BICU-FD0003  |        | 30.30  | 39.81  | 34.29    |      |
| COL-BICU-DH00016    | [     | 20.16     | 33.37  | 42.10    | 13.2             | COL-BICU-DH00043 |        | 111.39 | 143.33 | 23.15    | 3    |
| COL-BICU-DH00021    |       | 34.95     | 40.34  | 59.00    | 5.3              | COL-BICU-DH00041 |        | 62.45  | 72.02  | 22.32    |      |
| COL-BICU-DH00021    |       | 4.20      | 25.14  | 43.79    | 20.8             | COL-BICU-DH00041 | TDI    | 39.59  | 45.97  | 37.64    |      |
| COL-BICU-DH00021    |       | 86.65     | 100.83 | 50.62    | 14.3             | COL-BICU-DH00024 |        | 133.32 | 140.73 | 19.11    |      |
| COL-BICU-DH00023    | [     | 1.20      | 29.97  | 39.67    | 29.0             | COL-BICU-DH00024 |        | 112.93 | 123.77 | 29.69    | 1    |
| COL-BICU-DH00024    | [     | 3.00      | 13.08  | 34.33    | 10.0             | COL-BICU-DH00024 | ]      | 33.51  | 44.93  | 21.82    | 1    |
| COL-BICU-DH00041    | [     | 2.00      | 16.14  | 41.97    | 14.1             | COL-BICU-DH00013 | ]      | 22.44  | 28.31  | 23.50    |      |
| OL-BICU-DH00043     | [     | 26.71     | 94.63  | 32.46    | 68.0             | COL-BICU-DH00022 |        | 84.89  | 95.47  | 20.43    | 1    |
| COL-BICU-FD0001     | 25.01 | 30.56     | 50.43  | 5.6      | COL-BICU-DH00008 |                  | 109.02 | 119.57 | 23.78  |          |      |
| COL-BICU-FD0003     | [     | 40.11     | 56.65  | 37.16    | 16.7             | COL-BICU-DH00017 |        | 40.68  | 60.19  | 27.17    | 1    |
| COL-BICU-FD0004     |       | 19.25     | 43.39  | 42.51    | 24.1             | COL-BICU-DH00016 | ]      | 40.60  | 69.77  | 23.49    |      |
| COL-BICU-DH00001    |       | 0.00      | 2.95   | 47.50    | 3.0              | COL-BICU-DH00016 |        | 12.64  | 19.97  | 23.64    |      |
| COL-BICU-DH00002    | [     | 0.00      | 1.00   | 38.50    | 1.0              | COL-BICU-DH00013 |        | 90.85  | 97.76  | 33.03    |      |
| COL-BICU-DH00003    | [     | 0.00      | 1.20   | 39.60    | 1.2              | COL-BICU-DH00013 |        | 44.49  | 52.94  | 25.77    |      |
| COL-BICU-DH00004    | [     | 0.66      | 3.19   | 57.93    | 6.0              | COL-BICU-DH00012 |        | 96.11  | 109.15 | 20.62    | 1    |
| COL-BICU-DH00005    | [     | 0.00      | 3.30   | 39.30    | 3.3              | COL-BICU-DH00010 |        | 107.92 | 113.65 | 18.37    |      |
| COL-BICU-DH00007    |       | 0.00      | 3.10   | 31.30    | 3.1              | COL-BICU-DH00010 | 1      | 82.39  | 104.36 | 31.85    | 2    |
| COL-BICU-DH00008 TA | AL    | 0.00      | 5.00   | 44.43    | 5.0              | COL-BICU-DH00009 | 1      | 136.86 | 158.35 | 32.98    | 2    |
| COL-BICU-DH00009    | ĺ     | 0.00      | 2.80   | 42.00    | 2.8              | COL-BICU-DH00023 | 1      | 43.43  | 49.98  | 18.78    |      |
| COL-BICU-DH00010    |       | 0.00      | 5.80   | 37.57    | 5.8              | COL-BICU-DH00022 |        | 0.00   | 1.00   | 38.20    |      |
| COL-BICU-DH00012    | ĺ     | 0.00      | 5.20   | 49.75    | 5.2              | COL-BICU-DH00023 | 1      | 0.00   | 1.20   | 35.70    |      |
| COL-BICU-DH00016    | ľ     | 0.00      | 4.60   | 37.80    | 4.6              | COL-BICU-DH00024 | 1      | 0.10   | 3.00   | 41.40    |      |
| COL-BICU-DH00017    | ľ     | 0.00      | 3.00   | 60.90    | 3.0              | COL-BICU-DH00041 | TAL    | 0.00   | 1.91   | 39.20    |      |
| COL-BICU-DH00021    | ľ     | 0.00      | 4.20   | 41.50    | 4.2              | COL-BICU-FD0004  | 1      | 0.00   | 4.60   | 34.50    |      |
|                     |       | · · · · · |        |          |                  | COL-BICU-FD0006  | 1      | 0.00   | 3.60   | 64.20    | 3    |



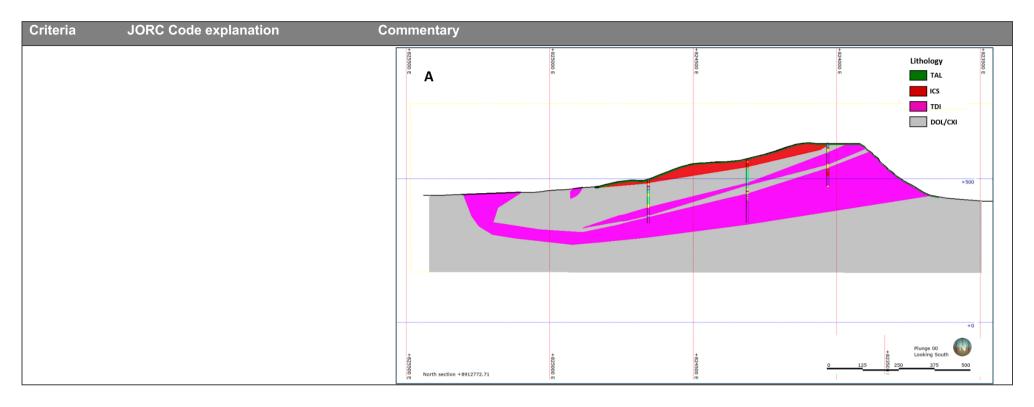



| Criteria                                                                        | JORC Code explanation                                                                                                                                                                                                                                                                                  | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Data<br>aggregation<br>methods                                                  | <ul> <li>In reporting Exploration Results,<br/>weighting averaging techniques,<br/>maximum and/or minimum grade<br/>truncations (e.g. cutting of high<br/>grades) and cut-off grades are<br/>usually Material and should be<br/>stated.</li> </ul>                                                     | <ul> <li>For samples assayed by granulo-chemical analysis Global grades of interval samples were aggregated by weighted average mass of each size fraction. There were 4 size fractions assayed for each granulo-chemical sample for all significant mineralized intervals.</li> <li>Drill hole samples and were composited to regular downhole lengths of 10m. Compositing was applied to the mineralized intervals inside the geological model. Talus samples were composited at 5m length.</li> <li>A cut-off grade of 20% Fe was applied on Itabirites and talus mineralization models.</li> </ul> |
|                                                                                 | <ul> <li>Where aggregate intercepts<br/>incorporate short lengths of high<br/>grade results and longer lengths of<br/>low grade results, the procedure<br/>used for such aggregation should be<br/>stated and some typical examples of<br/>such aggregations should be shown<br/>in detail.</li> </ul> | <ul> <li>Samples were collected in intervals obeying lithological contacts. To ensure a clear definition of the<br/>boundaries of mineral zones, 2 m samples were also collected of the host rock above and below the<br/>mineralized intervals. See Sampling Techniques.</li> </ul>                                                                                                                                                                                                                                                                                                                   |
|                                                                                 | <ul> <li>The assumptions used for any<br/>reporting of metal equivalent values<br/>should be clearly stated.</li> </ul>                                                                                                                                                                                | <ul> <li>No metal equivalent was reported. It's not a mining industry practice the report of metal equivalent for<br/>iron ore mineralization type.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Relationship<br>between<br>mineralization<br>widths and<br>intercept<br>lengths | <ul> <li>These relationships are particularly<br/>important in the reporting of<br/>Exploration Results.</li> </ul>                                                                                                                                                                                    | <ul> <li>All holes were vertical and mineralization zone dipping at 30°.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                 | <ul> <li>If the geometry of the mineralization<br/>with respect to the drill hole angle is<br/>known, its nature should be<br/>reported.</li> </ul>                                                                                                                                                    | • NA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                 | • If it is not known and only the down<br>hole lengths are reported, there<br>should be a clear statement to this<br>effect (e.g. 'down hole length, true<br>width not known').                                                                                                                        | <ul> <li>Further diagrams necessary to describe the Project are included in "Independent Technical Report on<br/>Exploration and Mineral Resources Estimation – Itabirite Resources Update"- Prepared by GE21.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                              |
| Diagrams                                                                        | <ul> <li>Appropriate maps and sections (with<br/>scales) and tabulations of intercepts<br/>should be included for any significant</li> </ul>                                                                                                                                                           | <ul> <li>Further diagrams necessary to describe the Project are included in "Technical Memorandum related to<br/>Itabirite Resources Update"- Prepared by GE21.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                             |



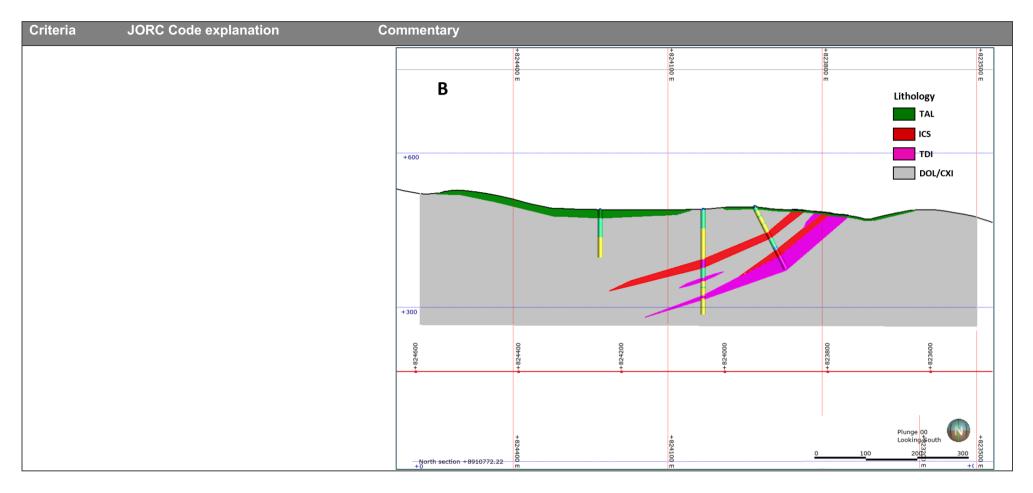




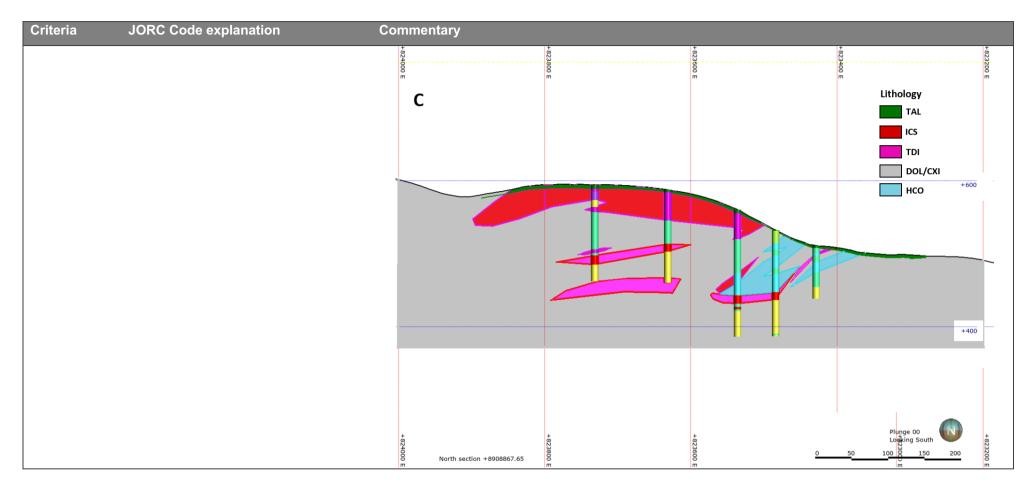




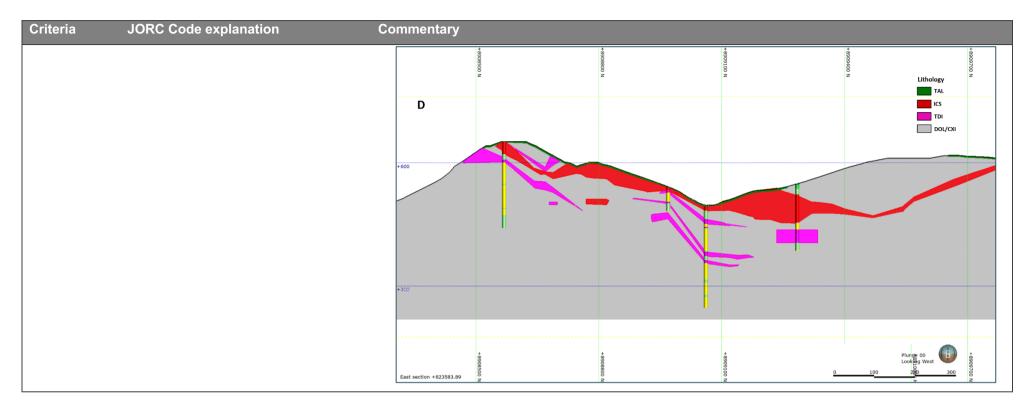























| Criteria                                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Balanced<br>reporting                       | Where comprehensive reporting of<br>all Exploration Results is not<br>practicable, representative reporting<br>of both low and high grades and/or<br>widths should be practiced to avoid<br>misleading reporting of Exploration<br>Results.                                                                                                                                                                                                       | <ul> <li>The Tombador exploration was part of a larger VALE exploration and drilling program as mentioned in<br/>the report prepared by Coffey in 2011: "Colomi Project, Brazil Independent Technical Report on<br/>Exploration and Mineral Resources Estimation". Modest metallurgical tests were completed in 2013 by<br/>an external group "Mope" on 10 samples consisting of 3 drill core 5 outcrop and 2 composite samples.<br/>No deleterious or contaminating substances were encountered. Sulphur results were less than 0.01%.</li> </ul> |
| Other<br>substantive<br>exploration<br>data | <ul> <li>Other exploration data, if meaningful<br/>and material, should be reported<br/>including (but not limited to):<br/>geological observations; geophysical<br/>survey results; geochemical survey<br/>results; bulk samples – size and<br/>method of treatment; metallurgical<br/>test results; bulk density,<br/>groundwater, geotechnical and rock<br/>characteristics; potential deleterious<br/>or contaminating substances.</li> </ul> | <ul> <li>Additional topographic survey.</li> <li>Sampling for additional metallurgical and processing tests</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Further work                                | <ul> <li>The nature and scale of planned<br/>further work (e.g. tests for lateral<br/>extensions or depth extensions or<br/>large-scale step-out drilling).</li> <li>Diagrams clearly highlighting the<br/>areas of possible extensions,<br/>including the main geological<br/>interpretations and future drilling<br/>areas, provided this information is<br/>not commercially sensitive.</li> </ul>                                             | <ul> <li>Extensions of HCO were not considered in the geological modelling. Talus deposit extends over the<br/>deposit on influence area of Itabirites mineralization.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                  |





## Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

| Criteria                     | JORC Code explanation                                                                                                                                                                                                                                                         | Со | mmentary                                                                                                                                |                                                                                      |                                                                          |                                                                           |                                                                   |
|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|-------------------------------------------------------------------|
| Database<br>integrity        | <ul> <li>Measures taken to ensure that data has not<br/>been corrupted by, for example, transcription or<br/>keying errors, between its initial collection and<br/>its use for Mineral Resource estimation<br/>purposes.</li> <li>Data validation procedures used.</li> </ul> | ł  | the Access dataset                                                                                                                      | S.                                                                                   |                                                                          |                                                                           | and GE21 produced                                                 |
|                              |                                                                                                                                                                                                                                                                               |    | No errors, as gaps                                                                                                                      |                                                                                      |                                                                          |                                                                           |                                                                   |
| Site visits                  | <ul> <li>Comment on any site visits undertaken by the<br/>Competent Person and the outcome of those<br/>visits.</li> </ul>                                                                                                                                                    |    | A site visit was und<br>to 14th November 2                                                                                              |                                                                                      | irio Rodriguez                                                           | to the Colomi P                                                           | roject between 12th                                               |
|                              | <ul> <li>If no site visits have been undertaken indicate<br/>why this is the case.</li> </ul>                                                                                                                                                                                 | •  | Not Applied                                                                                                                             |                                                                                      |                                                                          |                                                                           |                                                                   |
| Geological<br>interpretation | • Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.                                                                                                                                                                     |    | There is high confic<br>geological map to g<br>are considered to b<br>extension of the orig<br>Estimate, as prepar<br>2020 was based on | uide the modelling<br>e reasonably robus<br>ginal model presen<br>ed by Coffey on Se | of the minerali<br>st. The Itabirite<br>ted in the prev<br>eptember 2013 | ization zone. Th<br>es model was up<br>ious Independe<br>5. The updated r | e defined horizons<br>odated as an<br>nt Resource                 |
|                              | <ul> <li>Nature of the data used and of any assumptions made.</li> </ul>                                                                                                                                                                                                      |    |                                                                                                                                         | campaigns Bicuda<br>ooundaries. These<br>The update of Itabi                         | and Bicuda No<br>were combined<br>rite in Tombad                         | orth (in Colomi's<br>d to create a sin<br>or area was per                 | s tenement) which<br>gle geological model<br>formed together with |
|                              |                                                                                                                                                                                                                                                                               |    |                                                                                                                                         |                                                                                      | ador Itabirite Pro                                                       | •                                                                         |                                                                   |
|                              |                                                                                                                                                                                                                                                                               |    |                                                                                                                                         | TIM Drill H                                                                          | lole Databases S                                                         | -                                                                         |                                                                   |
|                              |                                                                                                                                                                                                                                                                               |    | Target                                                                                                                                  | Drilling Method                                                                      | Total of Drill<br>Holes                                                  | Total length<br>(m)                                                       | Samples with<br>Chemical results                                  |
|                              |                                                                                                                                                                                                                                                                               |    | Bicuda & Bicuda<br>North                                                                                                                | Diamond and RC                                                                       | 64                                                                       | 8668.2                                                                    | 778                                                               |
|                              |                                                                                                                                                                                                                                                                               |    | Bicuda (Within<br>Tenement 872.431)                                                                                                     | Diamond Drilling                                                                     | 27                                                                       | 3497.2                                                                    | 293                                                               |





| Criteria | JORC Code explanation                                                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |                                                                                                                                                                                                                                                                             | 8914000N   8912000N   8912000N   8910000N   8908000N   8906000N   8906000N   Bicuda Sul   8906000N   Bicuda Sul   8904000N   Bicuda Sul   8902000N   Bicuda Sul   Prillhole   South of the sections                                                                                                                                                                                                           |
|          | <ul> <li>The effect, if any, of alternative interpretations<br/>on Mineral Resource estimation.</li> <li>The use of geology in guiding and controlling<br/>Mineral Resource estimation.</li> <li>The factors affecting continuity both of grade<br/>and geology.</li> </ul> | <ul> <li>Consistent mineralized intersections and are drilled at a reasonably close spacing refuting alternate mineral interpretations.</li> <li>Vertical geological section provided a guide to the interpreted ore wireframes.</li> <li>The continuity of grade and geology were verified in all the extension of drilling area. Depth continuity was, also, interpreted based on drilling data.</li> </ul> |





| Criteria                                  | JORC Code explanat                                                                                                                                           | tion                                                                                         | Comment                                                                   | ary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Dimensions                                | otherwise), plan wi<br>to the upper and lo<br>Resource.                                                                                                      | ed as length (along strike or<br>idth, and depth below surface<br>ower limits of the Mineral | and oc                                                                    | neralization outcrops. The mineralization in drilling area is 30 to 50m in thickness<br>curs at a length of approximately 150m down dip. The mineralized layers were<br>eted from 10 meters a maximum thickness of 20m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Estimation and<br>modelling<br>techniques | <ul> <li>The nature and app<br/>technique(s) applie<br/>including treatment<br/>domaining, interpol<br/>maximum distance<br/>points. If a compute</li> </ul> | er assisted estimation method<br>e a description of computer                                 | contain<br>crossec<br>(See fig<br>Three 3<br>orebodi<br>12.5m x<br>was ap | ce modelling was performed with Geovia Surpac software. The drilling database<br>ed 2 drilling campaigns Bicuda and Bicuda North (in Colomi's tenement) which<br>I tenement boundaries. These were combined to create a single geological model.<br>ure in Geological Interpretation).<br>D block model were constructed for resource estimation purposes for the Itabirite<br>es. The block dimensions were defined as 50m x 50m x 5m and sub-blocks of<br>a 12.5m x 2.5m, based on a quarter of the drilling grid dimensions. Sub-blocking<br>blied to assure a good adherence between the geological model and the<br>cal unit attitude (figure below).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                           |                                                                                                                                                              |                                                                                              | ζ.                                                                        | N Construction of the second s |
|                                           |                                                                                                                                                              |                                                                                              |                                                                           | es Fe were statistically analyzed in Units ICS and TDI for samples from diamond and reverse circulation drilling method, separately, to check the validation on the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |





| Criteria | JORC Code explanation | Commen                        | tary                       | 1                                           |                                         |                   |                                             |                           |                                 |                                          |                           |                                                                                                                    |                          |
|----------|-----------------------|-------------------------------|----------------------------|---------------------------------------------|-----------------------------------------|-------------------|---------------------------------------------|---------------------------|---------------------------------|------------------------------------------|---------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------|
|          | •                     | results<br>for tota<br>and ca | for<br>I da<br>n be<br>wnh | this vali<br>tasets a<br>applie<br>nole exp | dation<br>and dat<br>d toget<br>perimer | sho<br>ase<br>her | w that to<br>ts from<br>in vario<br>variogr | the<br>ind<br>ogra<br>ams | average<br>ividual o<br>phic an | e grade<br>drilling<br>alysis<br>calcula | e an<br>typ<br>and<br>ted | . The comparative s<br>nd variability of varia<br>es are on the same<br>I grade estimate.<br>to establish the stru | able grades<br>magnitude |
|          |                       | Variable                      | Unit                       | C0                                          | C1                                      | A1                | C2                                          | A2                        | Azimuth                         | Plunge                                   | Dip                       | Major/Semi-Major Ratio                                                                                             | Major/Minor Ratio        |
|          |                       | Fe                            |                            | 1                                           | 6.4                                     | 35                | 25                                          | 250                       | 216                             | 2                                        | 12                        | 1.6                                                                                                                | 4.2                      |
|          |                       | SiO2                          | 1                          | 1                                           | 33.18                                   | 35                | 11.85                                       | 250                       | 216                             | 2                                        | 12                        | 1.4                                                                                                                | 3.7                      |
|          |                       | Al203                         | ICS                        | 0.01                                        | 0.15                                    | 35                | 0.22                                        | 250                       | 222                             | 3                                        | 12                        | 1.3                                                                                                                | 4.1                      |
|          |                       | Mn                            | 100                        | 0.001                                       | 0.011                                   | 35                |                                             | 250                       | 216                             | 2                                        | 12                        | 1.3                                                                                                                | 4.4                      |
|          |                       | Р                             |                            | 9.80E-05                                    |                                         |                   | 3.60E-04                                    |                           |                                 | 2                                        | 12                        | 1.5                                                                                                                | 7.7                      |
|          |                       | LOI                           |                            | 1.00E-01                                    | 3.10E-01                                | 35                | 7.40E-01                                    | 250                       | 216                             | 2                                        | 12                        | 1.4                                                                                                                | 6.2                      |
|          |                       | Fe                            |                            | 0.9                                         | 4                                       | 35                | 24                                          | 250                       | 139                             | -14                                      | 18                        | 1.6                                                                                                                | 4.2                      |
|          |                       | SiO2                          |                            | 1                                           | 17                                      | 35                | 49                                          | 250                       | 139                             | -14                                      | 18                        | 1.5                                                                                                                | 3                        |
|          |                       | Al203                         | TDI                        |                                             | 0.12                                    | 35                | 0.02                                        | 250                       | 139                             | -14                                      | 18                        | 1.3                                                                                                                | 6.4                      |
|          |                       | Mn                            |                            |                                             |                                         |                   | 3.70E-03                                    |                           | 139                             | -14                                      | 18                        | 1.4                                                                                                                | 5                        |
|          |                       | Р                             |                            | 1.00E-05                                    | <u> </u>                                |                   | 1.20E-04                                    |                           | 263                             | 12                                       | 0                         | 1.2                                                                                                                | 3.6                      |
|          | •                     | LOI                           |                            | 1                                           | 3                                       | 35                | 39                                          | 285                       | 139                             | -14                                      | 18                        | 1.4                                                                                                                | 6.6                      |
|          | •                     | The est<br>present            |                            |                                             |                                         |                   |                                             | attr                      | ibutes,                         | consid                                   | lere                      | d three estimation s                                                                                               | steps, as                |





| ria | JORC Code explanation | Commen       | Commentary         |                                         |                              |                                               |  |  |  |
|-----|-----------------------|--------------|--------------------|-----------------------------------------|------------------------------|-----------------------------------------------|--|--|--|
|     |                       |              |                    | Ordinary Krig                           | ing Strategy                 |                                               |  |  |  |
|     |                       | Step         | Search<br>Distance | Minimum Number<br>of Samples            | Maximum Number<br>of Samples | Maximum Number of<br>Drillholes per Drillhole |  |  |  |
|     |                       |              | IC                 | S Unit - Variables: Fe,                 | SiO2, Al2O3, Mn P, LOI       |                                               |  |  |  |
|     |                       | Searching P  | arameters: Bearin  | g=216; Plunge=2; Dip=                   | 12; Major/Semi-Major Ra      | atio= 1.4; Major/Minor Ratio=4                |  |  |  |
|     |                       | 1            | 170                | 6                                       | 30                           | 2                                             |  |  |  |
|     |                       | 2            | 380                | 6                                       | 30                           | 2                                             |  |  |  |
|     |                       | 3            | 1000               | 4                                       | 30                           | 2                                             |  |  |  |
|     |                       | 4            | >1000              | 1                                       | 30                           | 2                                             |  |  |  |
|     |                       |              |                    |                                         |                              |                                               |  |  |  |
|     |                       |              | TI                 | DI Unit - Variables: Fe,                | SiO2, Al2O3, Mn P, LOI       |                                               |  |  |  |
|     |                       | Searching Pa | rameters: Bearing  | =139; Plunge=-14; Dip                   | =18; Major/Semi-Major F      | atio= 1.5; Major/Minor Ratio=                 |  |  |  |
|     |                       | 1            | 170                | 6                                       | 30                           | 2                                             |  |  |  |
|     |                       | 2            | 380                | 6                                       | 30                           | 2                                             |  |  |  |
|     |                       | 3            | 1000               | 4                                       | 30                           | 2                                             |  |  |  |
|     |                       | 4            | >1000              | 1                                       | 30                           | 2                                             |  |  |  |
|     |                       | • Tal un     | t was estimat      | ed by Inverse dis<br>Inverse Distance M |                              |                                               |  |  |  |
|     |                       | Step         | Search<br>Distance | Minimum Number<br>of Samples            | Maximum Number<br>of Samples | Maximum Number of<br>Drillholes per Drillhole |  |  |  |
|     |                       |              | TA                 | AL Unit - Variables: Fe,                | SiO2, Al2O3, Mn P, LO        |                                               |  |  |  |
|     |                       | Searching F  | Parameters: Bearin | ng=0; Plunge=0; Dip=0;                  | Major/Semi-Major Ratio       | = 1.0; Major/Minor Ratio=1.4                  |  |  |  |
|     |                       | 1            | 170                | 6                                       | 30                           | 2                                             |  |  |  |
|     |                       | 2            | 380                | 6                                       | 30                           | 2                                             |  |  |  |
|     |                       |              |                    |                                         |                              |                                               |  |  |  |
|     |                       | 3            | 1000               | 4                                       | 30                           | 2                                             |  |  |  |





| Criteria | JORC Code explanation                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | <ul> <li>The availability of check estimates, previous<br/>estimates and/or mine production records and<br/>whether the Mineral Resource estimate takes<br/>appropriate account of such data.</li> </ul>                              | <ul> <li>Visual Validation for estimated grade was carried out with vertical sections. Visual validation by GE21 confirms the smoothing effect of the grade. Visual validation shows a good correlation between the blocks estimated and the original samples.</li> <li>Validation for estimated grade was carried out with a comparative Nearest Neighbouring estimation (NN). This validation consists in a comparative statistical analysis over global results for Fe%, SiO2%, Al2O3%, Mn%, P% and LOI% variables to the mineralized intervals.</li> <li>The comparative analysis of estimation variable with the Nearest Neighbouring results show a relative smoothing in the kriging results which are compatible with the kriging technique and is inside acceptance limits.</li> <li>Local validation by the Swath Plot method was carried out with the verification of local bias from comparative graphs for resource estimation variable (Ordinary Kriging) and NN-Check, considering X, Y, or Z coordinates</li> <li>The comparative analysis of estimative variables with the Nearest Neighbouring results show the relative smoothing in the kriging results that are compatible with the kriging technique and is inside acceptance limits.</li> </ul> |
|          | <ul> <li>The assumptions made regarding recovery of by-products.</li> <li>Estimation of deleterious elements or other non-grade variables of economic significance (e.g. sulphur for acid mine drainage characterisation).</li> </ul> | <ul> <li>GE21 recommends in future works a study about the recovery of by-products.</li> <li>Preliminary metallurgical tests were completed in 2013 by an external group "Mope" on 10 samples consisting of 3 drill core 5 outcrop and 2 composite samples. No deleterious or contaminating substances were encountered. Sulphur results were less than 0.01%.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|          | <ul> <li>In the case of block model interpolation, the<br/>block size in relation to the average sample<br/>spacing and the search employed.</li> </ul>                                                                               | <ul> <li>The block dimensions were defined as 50m x 50m x 5m and sub-blocks of 12.5m x 12.5m x 2.5m, based on a quarter of the drilling grid dimensions.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|          | <ul> <li>Any assumptions behind modelling of selective mining units.</li> </ul>                                                                                                                                                       | <ul> <li>No assumptions were made regarding SMU (selective mining units).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|          | <ul> <li>Any assumptions about correlation between variables.</li> </ul>                                                                                                                                                              | No assumptions were made by GE21 regarding the correlation between variables.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          | <ul> <li>Description of how the geological interpretation<br/>was used to control the resource estimates.</li> </ul>                                                                                                                  | <ul> <li>The main controls of Itabirites mineralization is geological layers dipping at<br/>approximately 30° to southeast.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|          | <ul> <li>Discussion of basis for using or not using grade<br/>cutting or capping.</li> </ul>                                                                                                                                          | • The style of iron ore mineralization generally doesn't uses grade cutting or capping in the estimation methodology.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|          | The process of validation, the checking process<br>used, the comparison of model data to drill hole     Itabirite Resources Update                                                                                                    | Validation for estimated grade was carried out with a comparative Nearest Neighbouring estimation (NN). This validation consists in a comparative statistical analysis over global                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |





| Criteria                                   | J | ORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Сс | ommentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            |   | data, and use of reconciliation data if available.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |    | results for Fe%, SiO2%, Al2O3%, Mn%, P% and LOI% variables to the mineralized intervals.<br>The comparative analysis of estimation variable with the Nearest Neighbouring results show a relative smoothing in the kriging results which are compatible with the kriging technique and is inside acceptance limits.<br>Local validation by the Swath Plot method was carried out with the verification of local bias from comparative graphs for resource estimation variable (Ordinary Kriging) and NN-Check, considering X, Y, or Z coordinates<br>The comparative analysis of estimative variables with the Nearest Neighbouring results show the relative smoothing in the kriging results that are compatible with the kriging technique and is inside acceptance limits. |
| Moisture                                   | • | Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.                                                                                                                                                                                                                                                                                                                                                                                                                                                   | •  | The resource was estimated in a dry basis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Cut-off<br>parameters                      | • | The basis of the adopted cut-off grade(s) or<br>quality parameters applied.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ٠  | A 20%Fe COG was applied on geological modeling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Mining factors<br>or<br>assumptions        | • | Assumptions made regarding possible mining<br>methods, minimum mining dimensions and<br>internal (or, if applicable, external) mining<br>dilution. It is always necessary as part of the<br>process of determining reasonable prospects for<br>eventual economic extraction to consider<br>potential mining methods, but the assumptions<br>made regarding mining methods and<br>parameters when estimating Mineral Resources<br>may not always be rigorous. Where this is the<br>case, this should be reported with an<br>explanation of the basis of the mining<br>assumptions made. | •  | A pit scenario study was carried out in order to guide the future mining project implying that a reasonable prospect for an eventual economical extraction was tested for mineral resource classification. GE21 generated a schematic pit using physical and economic parameters of projects according to values practiced in the market, however with a reasonable sell price. The optimization was performed using the Geovia Whittle software including Itabirites, compact hematite on the Bicuda deposit (Tombador and Colomi tenements) and Bicuda North (Colomi tenement) and the full extension of talus deposit.                                                                                                                                                      |
| Metallurgical<br>factors or<br>assumptions | • |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •  | Preliminary metallurgical tests were completed in 2013 by an external group "Mope" on 10 samples consisting of 3 drill core 5 outcrop and 2 composite samples. No deleterious or contaminating substances were encountered. Sulphur results were less than 0.01%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |





| Criteria                                   | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                            | parameters made when reporting Mineral<br>Resources may not always be rigorous. Where<br>this is the case, this should be reported with an<br>explanation of the basis of the metallurgical<br>assumptions made.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Environmental<br>factors or<br>assumptions | • Assumptions made regarding possible waste<br>and process residue disposal options. It is<br>always necessary as part of the process of<br>determining reasonable prospects for eventual<br>economic extraction to consider the potential<br>environmental impacts of the mining and<br>processing operation. While at this stage the<br>determination of potential environmental<br>impacts, particularly for a greenfields project,<br>may not always be well advanced, the status of<br>early consideration of these potential<br>environmental impacts should be reported.<br>Where these aspects have not been considered<br>this should be reported with an explanation of<br>the environmental assumptions made. | <ul> <li>The Company will be required to obtain the necessary environmental permits and<br/>comply with environmental laws. GE21 did not have information about any factors that<br/>can affect the acquisition of environmental licenses.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Bulk density                               | <ul> <li>Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.</li> <li>The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc.), moisture and differences between rock and alteration zones within the deposit.</li> </ul>                                                                                                                                                                                                                                               | <ul> <li>The density applied in the block model was defined by the average of values obtained by the experimental specific gravity test with litho types by Vale. There were density determinations in three types of materials: drill core samples; weathered rocks; in field tests.</li> <li>Altogether, 1973 density determinations tests were carried out on all rotative drill holes made every 3 m depth in ore zones and every 10 m in waste zones. The intervals were selected respecting geological contacts and weathering zone limits.</li> <li>The density determination was carried out by VALE in drillcores by the Archimedes/Jolly method. The weathered rock samples were oven dried and sealed with paraffin material.</li> <li>VALE applied to mineralized unit types an average density value individually in each target data. Vale didn't perform any spatial variability study on density data.</li> <li>The table below summarizes the density value applied on the resource block model.</li> </ul> |





| Criteria       | JORC Code explanation                                                                                                 | Commentary                                                      |                                                                                                                               |           |              |            |       |       |         |
|----------------|-----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|------------|-------|-------|---------|
|                |                                                                                                                       |                                                                 |                                                                                                                               |           | Density Data | a          |       |       |         |
|                |                                                                                                                       | -                                                               | Target                                                                                                                        | Un        | it           | Density (g | /cm3) |       |         |
|                |                                                                                                                       |                                                                 |                                                                                                                               | IC        | S            | 3.19       |       |       |         |
|                |                                                                                                                       |                                                                 |                                                                                                                               | TC        | )            | 3.32       |       |       |         |
|                |                                                                                                                       | В                                                               | Bicuda North.                                                                                                                 | НС        | 0            | 4.62       |       |       |         |
|                |                                                                                                                       |                                                                 |                                                                                                                               | TA        | L            | 1.80       |       |       |         |
|                | <ul> <li>Discuss assumptions for bulk density estimates</li> </ul>                                                    | <ul> <li>Waste density v</li> </ul>                             | vas determin                                                                                                                  | ed in pre | vious work   | S.         |       |       |         |
|                | <ul> <li>Discuss assumptions for bulk density estimates</li> </ul>                                                    | <ul> <li>Waste density v</li> </ul>                             | vas determin                                                                                                                  | ed in pre | vious work   | S.         |       |       |         |
|                | used in the evaluation process of the different materials.                                                            |                                                                 |                                                                                                                               |           |              |            |       |       | 1       |
| Classification | <ul> <li>The basis for the classification of the Mineral<br/>Resources into varying confidence categories.</li> </ul> | Tombador Itabirite Project Resource Table – 29th September 2011 |                                                                                                                               |           |              |            |       |       |         |
|                |                                                                                                                       | Block Mode                                                      | Mineral Resource – Tombador Iron Mineração Ltda<br>odel: 50m X 50m X 5m (12.5m X 12.5m X 2.5m) - Grade cut-off applied: 20%Fe |           |              |            |       |       |         |
|                |                                                                                                                       | Resource<br>Class                                               | Tonnes<br>(Mt)                                                                                                                | -         | SiO2 (%)     | AI2O3 (%)  |       | P (%) | LOI (%) |
|                |                                                                                                                       |                                                                 | Bicuda - TAL                                                                                                                  |           |              |            |       |       |         |
|                |                                                                                                                       | Inferred                                                        | 0.73                                                                                                                          | 42.39     | 33.04        | 2.02       | 0.259 | 0.019 | 2.54    |
|                |                                                                                                                       | Bicuda - ICS                                                    |                                                                                                                               |           |              |            |       |       |         |
|                |                                                                                                                       | Indicated                                                       | 27.52                                                                                                                         | 37.65     | 41.9         | 1.09       | 0.327 | 0.051 | 1.43    |
|                |                                                                                                                       | Inferred                                                        | 3.77                                                                                                                          | 39.9      | 37.59        | 0.66       | 0.311 | 0.032 | 2.25    |
|                |                                                                                                                       | Bicuda - TDI                                                    |                                                                                                                               |           |              |            |       |       |         |
|                |                                                                                                                       | Indicated                                                       | 12.03                                                                                                                         | 26.58     | 28.82        | 0.69       | 0.174 | 0.038 | 15.48   |
|                |                                                                                                                       |                                                                 |                                                                                                                               |           |              |            |       |       |         |





| Criteria | JORC Code explanation                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | <ul> <li>Whether appropriate account has been taken of<br/>all relevant factors (i.e. relative confidence in<br/>tonnage/grade estimations, reliability of input<br/>data, confidence in continuity of geology and<br/>metal values, quality, quantity and distribution of<br/>the data).</li> </ul> | <ul> <li>1.Mineral resource effective date is 29 September 2011</li> <li>2.Presented mineral resources are not exclusive of mineral reserves. All figures have been rounded to the relative accuracy of the estimates. Summed amounts may not add due to rounding. Mineral resources which are not mineral reserves do not have demonstrated economic viability.</li> <li>3.Mineral resources have been modeled with cut-off of 20% Fe Mineral resources have been estimated using ordinary kriging inside 50m by 50m by 5m block sizes. The mineral resource estimates were prepared in accordance with Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (JORC Code, 2012) incorporating drilling data acquired until 2011.</li> <li>4. Resources were estimate in conjunction with other itabirites deposits owned by Colomi, and resources reported above are resources contained in tenement 872.431/2003.</li> <li>The anisotropic average distance to samples from ordinary kriging estimation was adopted as criteria to distinguish Indicated and Inferred resource classes. Blocks with anisotropic average distance to samples lower than 150m were classified as Indicated Resource; blocks with anisotropic average distance to samples lower than 150m were classified as Indicated Resource classified as Inferred Resource</li> <li>A pit scenario study was carried out in order to guide the future mining project implying that a reasonable prospect for an eventual economical extraction was tested for mineral resource classification. GE21 generated a schematic pit using physical and economic parameters of projects according to values practiced in the market, however with a reasonable sell price. The optimization was performed using the Geovia Whittle software including Itabirites of Bicuda (Tombador and Colomi tenements, see image below) and the Bicuda North deposit (Colomi) and the full extension of talus deposit. All the mineralization zone located inside resultant pit shell was classified as mineral resource.</li> </ul> |
|          | <ul> <li>Whether the result appropriately reflects the<br/>Competent Person's view of the deposit.</li> </ul>                                                                                                                                                                                        | • The Competent Person believes the classification to be appropriate as mineral resource.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |





| Criteria               | JORC Code explanation                                                                                                                                                          | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Audits or<br>reviews   | <ul> <li>The results of any audits or reviews of Mineral<br/>Resource estimates.</li> </ul>                                                                                    | <ul> <li>In 2013 Coffey developed the "Colomi Project, Brazil Independent Technical Report on<br/>Exploration and Mineral Resources Estimation" which audited the entire Colomi Project<br/>database, including the Tombador Hematite data. Porfírio Rodriguez and Leonardo<br/>Soares who are the Competent persons for this report, were associated of Coffey<br/>(consultancy company), who provided consultancy on mineral resource estimate for<br/>Colomi during the period from 2011 to 2015, including site visits. Both are members of<br/>the Australian Institute of Geoscientists ("MAIG") and are independent of Colomi.</li> </ul> |
| Discussion of relative | Where appropriate a statement of the relative<br>accuracy and confidence level in the Mineral<br>Resource estimate using an approach or<br>procedure deemed appropriate by the | <ul> <li>GE21 has estimated Indicated and Inferred Mineral Resources for the Tombador Itabirite<br/>Project in accordance with the guidelines as set out in the JORC Code (2012). The in-<br/>situ resources are wholly contained within the current license boundary.</li> <li>The Tombador Itabirite Project contains a representative prospective tonnage of iron</li> </ul>                                                                                                                                                                                                                                                                  |





| Criteria                | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| accuracy/<br>confidence | Competent Person. For example, the application<br>of statistical or geostatistical procedures to<br>quantify the relative accuracy of the resource<br>within stated confidence limits, or, if such an<br>approach is not deemed appropriate, a<br>qualitative discussion of the factors that could<br>affect the relative accuracy and confidence of<br>the estimate. | <ul> <li>mineralization. The cut off value applied was based on economic criteria from study of other similar deposits.</li> <li>Based on these positive geological indications, GE21 considers the Tombador Itabirite Project to be prospective for hosting economic iron ore deposits. GE21 recommends the continuation of the current follow up exploration program and an additional exploration budget to: <ul> <li>Perform an additional topographic survey of the adjacent areas to improve surface information for mining studies.</li> <li>Conduct additional metallurgical and processing tests to confirm existing results on the feasibility of economically processing the Talus material existing within the deposit.</li> <li>To continue and improve the current QAQC program</li> <li>Pre-feasibility study to complete a comprehensive report for project development of small scale high grade production.</li> </ul> </li> </ul> |
|                         | • The statement should specify whether it relates<br>to global or local estimates, and, if local, state<br>the relevant tonnages, which should be relevant<br>to technical and economic evaluation.<br>Documentation should include assumptions<br>made and the procedures used.                                                                                      | Tombador Itabirite Project's grade estimate relates global estimates.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                         | • These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.                                                                                                                                                                                                                                      | Tombador Itabirite Project does not have any production history.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

#### **Competent Persons Statement**

The information in this announcement that relates to Mineral Resources, Exploration Results/Exploration Targets is based on information compiled by Leonardo de Moraes Soares, a Competent Person who is a Member of The Australian Institute of Geoscientists registered with number AIG #5180. Mr. de Moraes Soares is a Geologist with fifteen years of continuous experience in the mining industry. Mr de Moraes Soares has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr de Moraes Soares consents to the inclusion in this announcement of the matters based on his information in the form and context in which it appears.