ROX

ASX ANNOUNCEMENT

07 October 2020

ROX RESOURCES LIMITED

ASX: RXL

Rox Resources Limited (ASX: RXL) is an Australian listed company with advanced gold and nickel projects in Western Australia: the Youanmi Gold Project, Mt Fisher Gold project, and the Fisher East and Collurabbie Nickel projects.

DIRECTORS

Mr Stephen Dennis Chairman

Mr Alex Passmore Managing Director

Mr Brett Dickson Finance Director

Dr John Mair Non-Executive Director

Shares on Issue	2,041m
Share Price	\$0.057
Market Cap.	\$116m
Cash &	\$14.3m
Receivables	
(incl \$3.75m	
receivable)	

Level 1, 34 Colin Street, West Perth WA 6005

+61 8 9226 0044

admin@roxresources.com.au

www.roxresources.com.au

Youanmi Exploration Continues to Deliver

Highlights:

- Significant exploration activity continues at Youanmi
- New gold zone discovered 3km north of mine site. AC drilling of 251 holes for 11,516m completed to date. Assays received for first 25 holes with new high-grade gold zone identified within the Youanmi granite 3km north of Grace in:

RXAC022 4m @ 15.95g/t Au from 36m

RC drilling ongoing as excellent results continue:

RXRC314 2m @ 13.96g/t Au from 114m encountered at Grace (north)

RRL1716D

- Assays pending for 1¹/₂ months of drilling comprising 2,600 metres of RC drilling from 17 holes. 226 aircore holes and 9 diamond.
- Visible gold in diamond drilling at Grace. 9 diamond holes for 1192m completed at Grace with results pending for all holes.

Australian gold and nickel company, Rox Resources Limited ("Rox" or "the Company") (ASX: RXL), in conjunction with its joint venture partner Venus Metals Corporation Limited (ASX: VMC) is pleased to provide an update on exploration activities at Youanmi in the OYG JV area (Rox 70% and Manager, VMC 30%).

RC drilling at Youanmi continues to yield high grade results building on the known length of mineralised strike at Grace.

The RC drilling program is ongoing and together with diamond drilling is designed to allow for the definition of a maiden mineral resource for the Grace Prospect which will add to the existing 1.2 Moz Au resource at Youanmi (see ASX 10 April 2019).

Aircore drilling to test new targets to the north of the Youanmi mine area is also showing early success a new gold zone discovered well north of the mine.

Managing Director Alex Passmore commented: "We are pleased to report ongoing strong results from our Youanmi exploration efforts which are continuing at pace. Of particular interest is the newly discovered gold zone 3km north of the Youanmi main mine / historical plant. This may be indicative of a new mineralised structure in the Youanmi granite." The aircore program has focused on this structural corridor and parallel structures within the Youanmi granite which has already provided early success with a high-grade intercept in RXAC022 (4m @ 15.95g/t Au from 36m). Encouragingly this intercept is some 3km north of the Grace zone, but along a newly interpreted structural corridor, see Figures 2 to 4 for additional context.

The current RC drill program, which is focusing on the Grace Prospect, commenced in late May 2020 and is planned to consist of 126 holes for 16,000m of drilling. To date, including this announcement, results for 89 holes have been reported. This drilling continues to provide excellent results such as (see Table 1 for all new results).

- RXRC314 2m @ 13.96g/t Au from 114m; and
- RXRC316 4m @ 3.79g/t Au from 166m

Aircore Drilling

With the Company's new interpretation of the controls of mineralisation within the Youanmi granite, aircore drilling is ongoing to test the northern extent of the Grace mineralised corridor and parallel structures now recognised in the granite. (Figure 2).

The first phase of the program has been completed, totalling 251 holes for 11,534m. Assays have been received for the first 25 holes. Best result: RXAC022, **4m @ 15.95g/t Au** from 36m in granite 3km north of the Youanmi Mine and the Grace zone.

While the majority of assay results from aircore drilling are still pending, early interpretations are that much of the sporadic RAB drilling undertaken by previous operators failed to penetrate an almost ubiquitous silcrete layer at around 11m vertical depth, potentially leaving extensive granite-hosted mineralisation undetected.

The aircore drill holes generally drilled to blade refusal at 40m to 50m depth. Some holes, particularly in limonitic, quartz-rich structures, extend to 70m to 100m.

Follow up RC drilling will test anomalous results.

RC Drilling

The current drill program, which is mainly focused on the Grace Prospect, commenced in late May 2020 and is planned to consist of 126 holes and extension of 20 previously drilled RC holes for 16,000m of drilling. To date, including this announcement, 89 holes have been reported on.

Additionally, exploratory RC holes were drilled along the mineralised corridor within the Youanmi granite which extends for circa 1.5km to the north of historical mine infrastructure and totals around 2.5km strike length (Figure 2 and 3). Ongoing drilling continues define continuity of this recently discovered high-grade structural corridor.

Diamond Drilling

The first phase of diamond drilling has been completed. The program comprised of 9 holes for 1192m to test the following:

- Three shallow (50-70m) diamond holes at the high-grade main shoot to confirm reliability of RC drilling and obtain specific gravity data for resource estimation.
- Two 300m holes at Grace to determine structural controls on mineralisation. Interpretation is ongoing.
- Three deeper (340-380m) holes at Grace North. The holes extended RC holes that previously failed to reach target depth.

Assay results from this are pending, however logging of mineralised core intercepts from Grace indicate that gold is hosted within a west dipping zone of strong sericite altered granite, shear veins and quartz-stibnite-gold breccia-style veins within an overall NNW trending structural zone.

Fine grained visible gold is present in several of the mineralised zones encountered in diamond coring (refer Figure 1). Assays are pending for these zones.

The Company looks forward to updating the market on the further results of ongoing aircore, RC and diamond drill programs as results come to hand.

Figure 1. RXDD004 – 202.2m: Strong sericite-altered granite and quartz-stibnite-gold vein.

Sub-Audio Magnetic (SAM) and High-Resolution Aeromagnetic Over Youanmi Granite

The SAM method was trialled for the primary aim of mapping known gold mineralised structures over a 2.5km by 1.5km target area in the very weakly magnetic Youanmi granite and potential extensions to the southeast, beneath historical mine infrastructure (waste dumps and TSFs) that has been poorly drill tested by historical drilling. Additionally, the survey covered the junction of the Youanmi Fault Zone with the northwest-trending Main Lode Shear at the Youanmi granite contact, an area likely to host dilation zones associated with bifurcation of the greenstone succession around the steeply south plunging southern margin of the Youanmi granite

The SAM method maps the resistivity variations in regolith and bedrock geology. An electrical current is channelled between two widely separated electrodes located along the strike of interest and straddling the survey area. The current is channelled along lower resistivity zones (mineralised structures) in this direction as these form paths of least resistance. The survey will provide high-resolution magnetic, conductivity and off-time electromagnetic (EM) data.

A detailed aeromagnetic survey was conducted by Pegasus Geophysics target area of 2.5km by 1.3km within the Youanmi granite. The survey was flown at a line spacing of 20m and a sensor height of 20m providing exceptionally high-quality data and excellent geological detail that's absent in previous aeromagnetic surveys.

The results of the SAM survey will be interpreted in conjunction with the assay results of the aircore drilling to provide important insight into controls on gold mineralisation. Rox looks forward to updating on the outcomes and new high priority drill targets.

Figure 2 – Grace mineralised corridor in N-S structures in Granite

Figure 3 - Drill hole collars and intercepts over Aerial Photo

Figure 4 - Grace Prospect long section

Hole ID	Prospect	Drill type	From	to	Interval	Au g/t	Au g.m
RXRC238	Grace North	RC	182	183	1	0.51	0.51
RXRC314	Grace North	RC	114	116	2	13.96	27.91
RXRC315	Grace North	RC	141	151	10	1.19	11.89
RXRC315	Grace North	RC	209	212	3	0.63	1.88
RXRC316	Grace North	RC	48	52	4	1.03	4.12
RXRC316	Grace North	RC	92	100	8	1.22	9.75
RXRC316	Grace North	RC	166	170	4	3.79	15.15
RXRC316	Grace North	RC	193	194	1	1.49	1.49
RXRC317	Grace North	RC	129	131	2	1.9	3.81
RXRC242	Grace North	RC	140	155	15	0.95	14.27
RXRC242	Grace North	RC	157	166	9	0.76	6.8
RXRC123	Grace North	RC	171	173	2	0.77	1.54
RXRC188	Grace North	RC	125	134	9	0.71	6.38
RXAC011	YM Granite	AC	40	44	4	0.11	0.44
RXAC018	YM Granite	AC	32	40	8	0.18	1.45
RXAC021	YM Granite	AC	44	48	4	0.17	0.68
RXAC022	YM Granite	AC	36	40	4	15.95	63.81

Table 1 – Significant Intersections

Table 2 - Collar Locations and Drilling Details

Hole ID	Prospect	Drill Type	East	North	RL	Depth	Dip	Azi	Comments
RXRC123	Grace North	RC	680083	6833909	463	240	-60	65	Hole extended
RXRC125	Grace North	RC	680013	6833965	463	250	-63	65	Hole extended
RXRC188	Grace North	RC	680053	6833936	463	230	-60	65	Hole extended
RXRC197	Grace North	RC	680137	6834064	464	180	-60	65	Hole extended, assays pending
RXRC205	Grace North	RC	680103	6834136	466	180	-60	65	Hole extended, assays pending
RXRC238	Grace North	RC	679965	6834335	467	220	-60	65	Hole extended
RXRC242	Grace North	RC	679964	6834468	468	220	-60	65	Hole extended
RXRC244	Grace North	RC	679891	6834434	469	220	-60	65	Hole extended
RXRC312	Grace North	RC	680022	6834032	462	250	-84	245	Hole extended, assays pending
RXRC314	Grace North	RC	679919	6834378	466	200	-60	65	
RXRC315	Grace North	RC	679934	6834357	466	220	-60	65	
RXRC316	Grace North	RC	679961	6834302	468	220	-60	65	
RXRC317	Grace North	RC	679994	6834413	467	220	-60	65	
RXRC203	Grace North	RC	680029	6834102	466	230	-65	65	Hole extended, assays pending
RXRC121	Grace North	RC	680004	6834175	465	240	-65	65	Hole extended, assays pending

							_	_	
RXRC211	Grace North	RC	680072	6834210	465	200	-60	65	Hole extended, assays pending
RXRC193	Grace North	RC	680118	6834010	464	110	-60	65	Hole extended, assays pending
RXRC318	Grace North	RC	680114	6833855	458	220	-75	60	Assays pending
RXRC319	Grace North	RC	680174	6834169	462	160	-60	65	Assays pending
RXRC321	Grace North	RC	679947	6834243	465	234	-60	65	Assays pending
RXRC322	Grace North	RC	680019	6834276	466	120	-60	65	Assays pending
RXRC323	Grace North	RC	680147	6833985	460	126	-60	65	Assays pending
RXRC324	Grace North	RC	680093	6833998	460	160	-68	65	Assays pending
RXRC325	Grace North	RC	680150	6833954	459	140	-60	70	Assays pending
RXRC326	Grace North	RC	680084	6834322	463	200	-60	70	Assays pending
RXRC327	Grace North	RC	680143	6834241	463	180	-60	70	Assays pending
RXRC236	Grace North	RC	680037	6834369	466	200	-60	65	Hole extended, assays pending
RXDD001	Grace	DD	680091	7833732	461	110.93	-71	65	Abandoned
RXDD002	Grace	DD	680093	6833733	461	303.1	-71	65	Assays pending
RXDD003	Grace	DD	680044	6833774	461	300	-76	60	Assays pending
RXDD004	Grace	DD	680008	6833965	463	350	-85	65	Assays pending
RXDD005	Grace	DD	679965	6834091	462	383.6	-74	65	Assays pending
RXDD006	Grace	DD	679934	6834164	465	342.1	-69	74	Assays pending
RXDD007	Grace	DD	679902	6834286	467	332	-68	73	Assays pending
RXDD008	Grace	DD	680148	6833757	462	70.7	-60	65	Assays pending
RXDD009	Grace	DD	680142	6833713	461	40.8	-60	65	Assays pending
RXDD010	Grace	DD	680141	6833666	460	40.8	-60	65	Assays pending
RXAC001	YM Granite	AC	681113	6837610	442	55	-60	65	
RXAC002	YM Granite	AC	681030	6837562	441	51	-60	65	
RXAC003	YM Granite	AC	680937	6837506	442	63	-60	65	
RXAC004	YM Granite	AC	680851	6837473	442	52	-60	65	
RXAC005	YM Granite	AC	680755	6837429	443	56	-60	65	
RXAC006	YM Granite	AC	680660	6837383	443	60	-60	65	
RXAC007	YM Granite	AC	680578	6837336	443	54	-60	65	
RXAC008	YM Granite	AC	680495	6837295	442	48	-60	65	
RXAC009	YM Granite	AC	680410	6837247	442	31	-60	65	
RXAC010	YM Granite	AC	680321	6837190	442	41	-60	65	
RXAC011	YM Granite	AC	680224	6837155	443	48	-60	65	
RXAC012	YM Granite	AC	680139	6837109	444	45	-60	65	
RXAC013	YM Granite	AC	680053	6837065	444	39	-60	65	
RXAC014	YM Granite	AC	679972	6837024	444	31	-60	65	
RXAC015	YM Granite	AC	679903	6836984	446	39	-60	65	
RXAC016	YM Granite	AC	679833	6836953	446	39	-60	65	

RXAC017	YM Granite	AC	679743	6836910	446	49	-60	65	
RXAC018	YM Granite	AC	679650	6836862	448	52	-60	65	
RXAC019	YM Granite	AC	679563	6836816	449	44	-60	65	
RXAC020	YM Granite	AC	679475	6836771	450	48	-60	65	
RXAC021	YM Granite	AC	679384	6836728	450	48	-60	65	
RXAC022	YM Granite	AC	680205	6837041	444	49	-60	65	
RXAC023	YM Granite	AC	680132	6837015	443	44	-60	65	
RXAC024	YM Granite	AC	680068	6836971	444	39	-60	65	
RXAC025	YM Granite	AC	679996	6836937	445	41	-60	65	
RXAC026	YM Granite	AC	679921	6836901	446	37	-60	65	Assays pending
RXAC027	YM Granite	AC	679852	6836867	446	34	-60	65	Assays pending
RXAC028	YM Granite	AC	680029	6837142	444	50	-60	65	Assays pending
RXAC029	YM Granite	AC	679956	6837112	444	42	-60	65	Assays pending
RXAC030	YM Granite	AC	679883	6837070	445	38	-60	65	Assays pending
RXAC031	YM Granite	AC	679812	6837034	446	40	-60	65	Assays pending
RXAC032	YM Granite	AC	679742	6837000	445	39	-60	65	Assays pending
RXAC033	YM Granite	AC	679672	6836957	448	48	-60	65	Assays pending
RXAC034	YM Granite	AC	681492	6837320	442	50	-60	65	Assays pending
RXAC035	YM Granite	AC	681406	6837283	442	41	-60	65	Assays pending
RXAC036	YM Granite	AC	681305	6837236	441	29	-60	65	Assays pending
RXAC037	YM Granite	AC	681227	6837195	440	54	-60	65	Assays pending
RXAC038	YM Granite	AC	681138	6837147	441	60	-60	65	Assays pending
RXAC039	YM Granite	AC	681051	6837109	441	59	-60	65	Assays pending
RXAC040	YM Granite	AC	680956	6837048	442	57	-60	65	Assays pending
RXAC041	YM Granite	AC	680867	6837009	442	45	-60	65	Assays pending
RXAC042	YM Granite	AC	680781	6836970	441	47	-60	65	Assays pending
RXAC043	YM Granite	AC	680688	6836923	442	42	-60	65	Assays pending
RXAC044	YM Granite	AC	680601	6836879	442	43	-60	65	Assays pending
RXAC045	YM Granite	AC	680514	6836831	444	46	-60	65	Assays pending
RXAC046	YM Granite	AC	680422	6836784	444	39	-60	65	Assays pending
RXAC047	YM Granite	AC	680339	6836744	444	44	-60	65	Assays pending
RXAC048	YM Granite	AC	680246	6836698	443	45	-60	65	Assays pending
RXAC049	YM Granite	AC	680159	6836651	445	45	-60	65	Assays pending
RXAC050	YM Granite	AC	680071	6836604	446	47	-60	65	Assays pending
RXAC051	YM Granite	AC	681818	6837038	442	70	-60	65	Assays pending
RXAC052	YM Granite	AC	681735	6836990	441	33	-60	65	Assays pending
RXAC053	YM Granite	AC	681648	6836954	441	39	-60	65	Assays pending
RXAC054	YM Granite	AC	681554	6836917	441	44	-60	65	Assays pending
RXAC055	YM Granite	AC	681462	6836856	441	53	-60	65	Assays pending
RXAC056	YM Granite	AC	681380	6836809	441	64	-60	65	Assays pending

RXAC057	YM Granite	AC	681283	6836763	440	63	-60	65	Assavs pending
RXAC058	YM Granite	AC	681202	6836707	440	66	-60	65	Assavs pending
RXAC059	YM Granite	AC	681113	6836665	441	69	-60	65	Assays pending
RXAC060	YM Granite	AC	681021	6836636	441	55	-60	65	Assays pending
RXAC061	YM Granite	AC	680926	6836594	441	57	-60	65	Assays pending
RXAC062	YM Granite	AC	680842	6836546	441	54	-60	65	Assays pending
RXAC063	YM Granite	AC	680753	6836502	442	48	-60	65	Assays pending
RXAC064	YM Granite	AC	680665	6836453	443	50	-60	65	Assays pending
RXAC065	YM Granite	AC	680580	6836403	443	52	-60	65	Assays pending
RXAC066	YM Granite	AC	680491	6836357	444	63	-60	65	Assays pending
RXAC067	YM Granite	AC	680400	6836314	445	66	-60	65	Assays pending
RXAC068	YM Granite	AC	680309	6836263	446	42	-60	65	Assays pending
RXAC069	YM Granite	AC	680223	6836220	447	36	-60	65	Assays pending
RXAC070	YM Granite	AC	681637	6836480	440	53	-60	65	Assays pending
RXAC071	YM Granite	AC	681553	6836433	441	61	-60	65	Assays pending
RXAC072	YM Granite	AC	681458	6836389	441	63	-60	65	Assays pending
RXAC073	YM Granite	AC	681374	6836349	441	53	-60	65	Assays pending
RXAC074	YM Granite	AC	681284	6836294	442	51	-60	65	Assays pending
RXAC075	YM Granite	AC	681202	6836250	442	56	-60	65	Assays pending
RXAC076	YM Granite	AC	681104	6836215	442	46	-60	65	Assays pending
RXAC077	YM Granite	AC	681016	6836168	444	59	-60	65	Assays pending
RXAC078	YM Granite	AC	680926	6836118	444	74	-60	65	Assays pending
RXAC079	YM Granite	AC	680841	6836078	445	60	-60	65	Assays pending
RXAC080	YM Granite	AC	680752	6836028	445	51	-60	65	Assays pending
RXAC081	YM Granite	AC	680663	6835984	446	45	-60	65	Assays pending
RXAC082	YM Granite	AC	680572	6835936	447	61	-60	65	Assays pending
RXAC083	YM Granite	AC	680487	6835890	449	54	-60	65	Assays pending
RXAC084	YM Granite	AC	681588	6835982	444	55	-60	65	Assays pending
RXAC085	YM Granite	AC	680692	6835530	451	51	-60	65	Assays pending
RXAC086	YM Granite	AC	680606	6835474	452	51	-60	65	Assays pending
RXAC087	YM Granite	AC	680525	6835417	453	33	-60	65	Assays pending
RXAC088	YM Granite	AC	680436	6835371	453	25	-60	65	Assays pending
RXAC089	YM Granite	AC	680347	6835324	454	20	-60	65	Assays pending
RXAC090	YM Granite	AC	680255	6835282	454	18	-60	65	Assays pending
RXAC091	YM Granite	AC	680165	6835240	455	42	-60	65	Assays pending
RXAC092	YM Granite	AC	680867	6835620	448	107	-60	65	Assays pending
RXAC093	YM Granite	AC	680788	6835573	449	43	-60	65	Assays pending
RXAC094	YM Granite	AC	681053	6835717	446	74	-60	65	Assays pending
RXAC095	YM Granite	AC	680962	6835669	446	92	-60	65	Assays pending
RXAC096	YM Granite	AC	681222	6835805	446	49	-60	65	Assays pending

RXAC097	YM Granite	AC	681135	6835761	445	80	-60	65	Assavs pending
RXAC098	YM Granite	AC	681397	6835909	445	60	-60	65	Assavs pending
RXAC099	YM Granite	AC	681313	6835858	444	66	-60	65	Assays pending
RXAC100	YM Granite	AC	681492	6835938	443	61	-60	65	Assays pending
RXAC101	YM Granite	AC	681827	6834940	450	60	-60	65	Assays pending
RXAC102	YM Granite	AC	681754	6834903	449	72	-60	65	Assays pending
RXAC103	YM Granite	AC	681678	6834868	449	76	-60	65	Assays pending
RXAC104	YM Granite	AC	681581	6834829	449	69	-60	65	Assays pending
RXAC105	YM Granite	AC	681501	6834772	449	48	-60	65	Assays pending
RXAC106	YM Granite	AC	681388	6834737	448	25	-60	65	Assays pending
RXAC107	YM Granite	AC	681310	6834689	450	19	-60	65	Assays pending
RXAC108	YM Granite	AC	681222	6834641	451	57	-60	65	Assays pending
RXAC109	YM Granite	AC	681132	6834607	452	49	-60	65	Assays pending
RXAC110	YM Granite	AC	681047	6834549	453	97	-60	65	Assays pending
RXAC111	YM Granite	AC	680972	6834512	453	67	-60	65	Assays pending
RXAC112	YM Granite	AC	680874	6834480	452	70	-60	65	Assays pending
RXAC113	YM Granite	AC	680770	6834431	452	53	-60	65	Assays pending
RXAC114	YM Granite	AC	680689	6834394	457	52	-60	65	Assays pending
RXAC115	YM Granite	AC	681650	6835302	448	51	-60	65	Assays pending
RXAC116	YM Granite	AC	681578	6835263	448	70	-60	65	Assays pending
RXAC117	YM Granite	AC	681509	6835224	448	29	-60	65	Assays pending
RXAC118	YM Granite	AC	681415	6835183	448	41	-60	65	Assays pending
RXAC119	YM Granite	AC	681329	6835141	449	47	-60	65	Assays pending
RXAC120	YM Granite	AC	681244	6835107	448	66	-60	65	Assays pending
RXAC121	YM Granite	AC	681144	6835049	450	63	-60	65	Assays pending
RXAC122	YM Granite	AC	681062	6835001	451	52	-60	65	Assays pending
RXAC123	YM Granite	AC	680963	6834963	451	60	-60	65	Assays pending
RXAC124	YM Granite	AC	680877	6834924	452	61	-60	65	Assays pending
RXAC125	YM Granite	AC	680785	6834883	452	66	-60	65	Assays pending
RXAC126	YM Granite	AC	680693	6834829	453	27	-60	65	Assays pending
RXAC127	YM Granite	AC	680615	6834788	454	42	-60	65	Assays pending
RXAC128	YM Granite	AC	680511	6834758	456	29	-60	65	Assays pending
RXAC129	YM Granite	AC	680461	6834733	456	34	-60	65	Assays pending
RXAC130	YM Granite	AC	680410	6834708	457	37	-60	65	Assays pending
RXAC131	YM Granite	AC	680356	6834673	457	35	-60	65	Assays pending
RXAC132	YM Granite	AC	680095	6835795	452	42	-60	65	Assays pending
RXAC133	YM Granite	AC	680026	6835755	453	26	-60	65	Assays pending
RXAC134	YM Granite	AC	679957	6835721	454	48	-60	65	Assays pending
RXAC135	YM Granite	AC	679886	6835682	456	43	-60	65	Assays pending
RXAC136	YM Granite	AC	679815	6835657	457	16	-60	65	Assays pending

RXAC137	YM Granite	AC	679654	6836058	454	22	-60	65	Assays pending
RXAC138	YM Granite	AC	679579	6836022	456	24	-60	65	Assays pending
RXAC139	YM Granite	AC	679510	6835982	456	33	-60	65	Assays pending
RXAC140	YM Granite	AC	679430	6835948	456	60	-60	65	Assays pending
RXAC141	YM Granite	AC	679360	6835916	457	56	-60	65	Assays pending
RXAC142	YM Granite	AC	679285	6835875	458	52	-60	65	Assays pending
RXAC143	YM Granite	AC	679224	6835844	459	59	-60	65	Assays pending
RXAC144	YM Granite	AC	679149	6835801	462	7	-60	65	Assays pending
RXAC145	YM Granite	AC	679078	6835767	463	10	-60	65	Assavs pending
RXAC146	YM Granite	AC	679025	6835743	465	6	-60	65	Assavs pending
RXAC147	YM Granite	AC	678968	6835707	465	9	-60	65	Assays pending
RXAC148	YM Granite	AC	678917	6835686	465	6	-60	65	Assays pending
RXAC149	YM Granite	AC	678861	6835655	464	17	-60	65	Assays pending
RXAC150	YM Granite	AC	679838	6835848	454	54	-60	65	Assays pending
RXAC151	YM Granite	AC	679766	6835813	454	39	-60	65	Assays pending
RXAC152	YM Granite	AC	679691	6835775	455	35	-60	65	Assays pending
RXAC153	YM Granite	AC	679620	6835747	457	37	-60	65	Assays pending
RXAC154	YM Granite	AC	679548	6835705	458	42	-60	65	Assays pending
RXAC155	YM Granite	AC	679338	6836154	456	40	-60	65	Assays pending
RXAC156	YM Granite	AC	679271	6836119	457	35	-60	65	Assays pending
RXAC157	YM Granite	AC	679203	6836087	459	26	-60	65	Assays pending
RXAC158	YM Granite	AC	679127	6836056	460	31	-60	65	Assays pending
RXAC159	YM Granite	AC	679052	6836016	463	59	-60	65	Assays pending
RXAC160	YM Granite	AC	678986	6835978	463	57	-60	65	Assays pending
RXAC161	YM Granite	AC	678908	6835950	464	36	-60	65	Assays pending
RXAC162	YM Granite	AC	678869	6835917	464	15	-60	65	Assays pending
RXAC163	YM Granite	AC	678809	6835886	463	18	-60	65	Assays pending
RXAC164	YM Granite	AC	678749	6835866	463	32	-60	65	Assays pending
RXAC165	YM Granite	AC	678692	6835839	461	42	-60	65	Assays pending
RXAC166	YM Granite	AC	679252	6836488	454	41	-60	65	Assays pending
RXAC167	YM Granite	AC	679157	6836435	457	32	-60	65	Assays pending
RXAC168	YM Granite	AC	679076	6836387	459	27	-60	65	Assays pending
RXAC169	YM Granite	AC	678982	6836352	463	40	-60	65	Assays pending
RXAC170	YM Granite	AC	678897	6836305	463	51	-60	65	Assays pending
RXAC171	YM Granite	AC	678808	6836258	461	49	-60	65	Assays pending
RXAC172	YM Granite	AC	678720	6836215	460	50	-60	65	Assays pending
RXAC173	YM Granite	AC	678667	6836189	459	42	-60	65	Assays pending
RXAC174	YM Granite	AC	678610	6836153	459	40	-60	65	Assays pending
RXAC175	YM Granite	AC	678562	6836129	459	46	-60	65	Assays pending
RXAC176	YM Granite	AC	678496	6836097	459	63	-60	65	Assays pending

RXAC177	YM Granite	AC	678394	6836050	458	31	-60	65	Assavs pending
RXAC178	YM Granite	AC	678342	6836020	458	45	-60	65	Assavs pending
RXAC179	YM Granite	AC	678443	6836071	458	64	-60	65	Assavs pending
RXAC180	YM Granite	AC	678965	6836689	458	45	-60	65	Assavs pending
RXAC181	YM Granite	AC	678873	6836656	459	53	-60	65	Assavs pending
RXAC182	YM Granite	AC	678787	6836608	457	41	-60	65	Assavs pending
RXAC183	YM Granite	AC	678694	6836562	454	59	-60	65	Assavs pending
RXAC184	YM Granite	AC	678605	6836522	454	62	-60	65	Assavs pending
RXAC185	YM Granite	AC	678526	6836475	454	38	-60	65	Assavs pending
RXAC186	YM Granite	AC	678469	6836448	454	45	-60	65	Assavs pending
RXAC187	YM Granite	AC	678414	6836419	455	43	-60	65	Assavs pending
RXAC188	YM Granite	AC	678361	6836390	455	58	-60	65	Assavs pending
RXAC189	YM Granite	AC	678305	6836364	456	50	-60	65	Assavs pending
RXAC190	YM Granite	AC	678254	6836337	457	55	-60	65	Assavs pending
RXAC191	YM Granite	AC	678202	6836310	458	49	-60	65	Assavs pending
RXAC192	YM Granite	AC	678146	6836282	458	51	-60	65	Assavs pending
RXAC193	YM Granite	AC	680360	6835545	453	23	-60	65	Assays pending
RXAC194	YM Granite	AC	680302	6835514	455	29	-60	65	Assays pending
RXAC195	YM Granite	AC	680255	6835489	456	29	-60	65	Assays pending
RXAC196	YM Granite	AC	680198	6835464	455	40	-60	65	Assays pending
RXAC197	YM Granite	AC	680149	6835433	457	45	-60	65	Assays pending
RXAC198	YM Granite	AC	680092	6835409	458	47	-60	65	Assays pending
RXAC199	YM Granite	AC	680487	6835222	453	22	-60	65	Assays pending
RXAC200	YM Granite	AC	680434	6835195	453	20	-60	65	Assays pending
RXAC201	YM Granite	AC	680383	6835169	453	30	-60	65	Assays pending
RXAC202	YM Granite	AC	680332	6835145	454	25	-60	65	Assays pending
RXAC203	YM Granite	AC	680276	6835115	455	23	-60	65	Assays pending
RXAC204	YM Granite	AC	680222	6835085	456	33	-60	65	Assays pending
RXAC205	YM Granite	AC	680166	6835058	457	63	-60	65	Assays pending
RXAC206	YM Granite	AC	680898	6835267	451	68	-60	65	Assays pending
RXAC207	YM Granite	AC	680837	6835229	452	42	-60	65	Assays pending
RXAC208	YM Granite	AC	680765	6835196	453	31	-60	65	Assays pending
RXAC209	YM Granite	AC	680692	6835161	454	32	-60	65	Assays pending
RXAC210	YM Granite	AC	680623	6835122	453	41	-60	65	Assays pending
RXAC211	YM Granite	AC	680557	6835086	453	39	-60	65	Assays pending
RXAC212	YM Granite	AC	680484	6835052	453	18	-60	65	Assays pending
RXAC213	YM Granite	AC	680405	6835028	454	24	-60	65	Assays pending
RXAC214	YM Granite	AC	680335	6834978	456	27	-60	65	Assays pending
RXAC215	YM Granite	AC	680265	6834941	456	45	-60	65	Assays pending
RXAC216	YM Granite	AC	680167	6837584	443	66	-60	65	Assays pending

RXAC217	YM Granite	AC	680084	6837545	444	61	-60	65	Assays pending
RXAC218	YM Granite	AC	679989	6837497	444	38	-60	65	Assays pending
RXAC219	YM Granite	AC	679900	6837448	444	42	-60	65	Assays pending
RXAC220	YM Granite	AC	679808	6837402	445	32	-60	65	Assays pending
RXAC221	YM Granite	AC	679722	6837358	445	41	-60	65	Assays pending
RXAC222	YM Granite	AC	679630	6837308	445	56	-60	65	Assays pending
RXAC223	YM Granite	AC	679547	6837267	447	63	-60	65	Assays pending
RXAC224	YM Granite	AC	679458	6837216	447	39	-60	65	Assays pending
RXAC225	YM Granite	AC	679358	6837169	449	27	-60	65	Assays pending
RXAC226	YM Granite	AC	679268	6837135	450	42	-60	65	Assays pending
RXAC227	YM Granite	AC	679186	6837093	451	56	-60	65	Assays pending
RXAC228	YM Granite	AC	679094	6837040	452	35	-60	65	Assays pending
RXAC229	YM Granite	AC	678933	6836952	456	44	-60	65	Assays pending
RXAC230	YM Granite	AC	678844	6836911	457	54	-60	65	Assays pending
RXAC231	YM Granite	AC	678758	6836866	458	65	-60	65	Assays pending
RXAC232	YM Granite	AC	678666	6836817	458	44	-60	65	Assays pending
RXAC233	YM Granite	AC	678578	6836778	456	48	-60	65	Assays pending
RXAC234	YM Granite	AC	678488	6836724	455	62	-60	65	Assays pending
RXAC235	YM Granite	AC	678399	6836679	455	49	-60	65	Assays pending
RXAC236	YM Granite	AC	678308	6836630	455	50	-60	65	Assays pending
RXAC237	YM Granite	AC	678220	6836589	456	33	-60	65	Assays pending
RXAC238	YM Granite	AC	678130	6836540	457	42	-60	65	Assays pending
RXAC239	YM Granite	AC	678042	6836500	459	59	-60	65	Assays pending
RXAC240	YM Granite	AC	680225	6837055	444	49	-60	65	Assays pending
RXAC241	YM Granite	AC	680264	6837028	443	60	-60	65	Assays pending
RXAC242	YM Granite	AC	680223	6837010	443	55	-60	65	Assays pending
RXAC243	YM Granite	AC	680190	6836993	443	45	-60	65	Assays pending
RXAC244	YM Granite	AC	680229	6837098	443	44	-60	65	Assays pending
RXAC245	YM Granite	AC	680188	6837078	444	48	-60	65	Assays pending
RXAC246	YM Granite	AC	680153	6837065	443	43	-60	65	Assays pending
RXAC247	YM Granite	AC	679966	6837068	445	32	-60	65	Assays pending
RXAC248	YM Granite	AC	679932	6837049	445	34	-60	65	Assays pending
RXAC249	YM Granite	AC	679892	6837030	446	32	-60	65	Assays pending
RXAC250	YM Granite	AC	679856	6837007	446	36	-60	65	Assays pending
RXAC251	YM Granite	AC	681588	6837376	442	41	-60	65	Assays pending

Authorised for release to ASX by Alex Passmore, Managing Director

For more information:

Alex Passmore Managing Director Rox Resources Limited Tel: +61 8 9226 0044 admin@roxresources.com.au Matt Hogan Managing Director Venus Metals Corporation Limited Tel: +61 8 9321 7541

Competent Person Statements

Exploration Results

The information in this report that relates to Data and Exploration Results is based on information compiled and reviewed by Mr Gregor Bennett a Competent Person who is a Member of the Australian Institute Geoscientists (AIG) and Exploration Manager at Rox Resources. Mr Bennett has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and to the activity which he has undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Bennett consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Where reference is made to previous releases of exploration results in this announcement, the Company confirms that it is not aware of any new information or data that materially affects the information included in those announcements and all material assumptions and technical parameters underpinning the exploration results included in those announcements continue to apply and have not materially changed.

The information in this report that relates to previous Exploration Results, was either prepared and first disclosed under the JORC Code 2004 or under the JORC Code 2012 and has been properly and extensively cross-referenced in the text to the date of original announcement to ASX. In the case of the 2004 JORC Code Exploration Results and Mineral Resources, they have not been updated to comply with the JORC Code 2012

Resource Statements

The information in this report that relates to gold Mineral Resources for the Youanmi Project was reported to the ASX on 17 April 2019 (JORC 2012). Rox confirms that it is not aware of any new information or data that materially affects the information included in the announcement of 17 April 2019, and that all material assumptions and technical parameters underpinning the estimates in the announcement of 17 April 2019 continue to apply and have not materially changed.

The information in this report that relates to gold Mineral Resources for the Mt Fisher project was reported to the ASX on 11 July 2018 (JORC 2012). Rox confirms that it is not aware of any new information or data that materially affects the information included in the announcement of 11 July 2018, and that all material assumptions and technical parameters underpinning the estimates in the announcement of 11 July 2018 continue to apply and have not materially changed.

The information in this report that relates to nickel Mineral Resources for the Fisher East project was reported to the ASX on 5 February 2016 (JORC 2012). Rox confirms that it is not aware of any new information or data that materially affects the information included in the announcement of 5 February 2016, and that all material assumptions and technical parameters underpinning the estimates in the announcement of 5 February 2016 continue to apply and have not materially changed.

The information in this report that relates to nickel Mineral Resources for the Collurabbie project was reported to the ASX on 18 August 2017 (JORC 2012). Rox confirms that it is not aware of any new information or data that materially affects the information included in the announcement of 18 August 2017, and that all material assumptions and technical parameters underpinning the estimates in the announcement of 18 August 2017 continue to apply and have not materially changed.

Forward-Looking Statements

This document may include forward-looking statements. Forward-looking statements include, but are not limited to, statements concerning Rox Resources Limited planned exploration program(s) and other statements that are not historical facts. When used in this document, the words such as "could," "plan," "estimate," "expect," "intend," "may", "potential," "should," and similar expressions are forward looking statements.

About Rox Resources

Rox Resources Limited is an emerging Australian minerals exploration company. The company has a number of key assets at various levels of development with exposure to gold, nickel, copper and platinum group elements (PGE's). The 1.2Moz Youanmi Gold Project and the Fisher East Nickel Project (78kt Ni) being the most advanced projects with exploration ongoing at the Mt Fisher Gold Project and the Collurabbie Nickel-Copper-PGE Project.

Youanmi Gold Project (Youanmi Gold Mine 70%, Regional JV's 50% earn-in)

The Youanmi Gold Mine is located 480 km to the northeast of Perth, Western Australia. The Youanmi Mining Centre has produced an estimated 667,000 oz of gold (at 5.47 g/t Au) since discovery in 1901 during three main periods: 1908 to 1921, 1937 to 1942, and 1987 to 1997.

The project is situated in the Youanmi Greenstone Belt, within the Southern Cross Province of the Archaean Yilgarn Craton in Western Australia. The structure of the Youanmi Project is dominated by the north-trending Youanmi Fault Zone. Most of the gold mineralisation seen at the project is hosted within north-northwest splays off the north-northeast trending Youanmi Fault.

Fisher East Nickel Project (100%)

The Fisher East nickel project is located in the North Eastern Goldfields region of Western Australia and hosts several nickel sulphide deposits. The total project area is ~350km2.

Discovery of, and drilling at the Camelwood, Cannonball and Musket nickel prospects has defined a JORC 2012 Mineral Resource (ASX:RXL 5 February 2016) of 4.2Mt grading 1.9% Ni reported at 1.0% Ni cut-off (Indicated Mineral Resource: 3.7Mt grading 1.9% Ni, Inferred Mineral Resource: 0.5Mt grading 1.5% Ni) comprising massive and disseminated nickel sulphide mineralisation, and containing 78,000 tonnes of nickel. Higher grade mineralisation is present in all deposits (refer to ASX announcement above) and is still open at depth beneath each deposit. Additional nickel sulphide deposits continue to be discovered (e.g. Sabre) and these will add to the resource base. Exploration is continuing to define further zones of potential nickel sulphide mineralisation.

Collurabbie Gold-Nickel Project (100%)

The Collurabbie project is located in the highly prospective North Eastern Goldfields region of Western Australia and is prospective for gold and nickel. The project area of ~123km2 hosts the Olympia nickel sulphide deposit and a number of other prospects for nickel sulphide mineralisation. A JORC 2012 Inferred Mineral Resource of 573,000t grading 1.63% Ni, 1.19% Cu, 0.082% Co, 1.49g/t Pd, 0.85g/t Pt has been defined at Olympia (ASX: RXL 18 August 2017). The style of nickel sulphide mineralisation is different to that at Fisher East, with a significant copper and PGE component at Collurabbie, and has been compared to the Raglan nickel deposits in Canada (>1Mt contained nickel). In addition, there is potential for gold mineralisation, with several strong drilling intersections including 2m @ 2.4g/t Au from the Naxos prospect.

Mt Fisher Gold Project (100%)

The Mt Fisher gold project is located in the North Eastern Goldfields region of Western Australia, adjacent to the Fisher East nickel project, and hosts several gold deposits. The total project area is ~220km2.

Drilling by Rox has defined numerous high-grade gold targets and a JORC 2012 Measured, Indicated and Inferred Mineral Resource (ASX:RXL 11 July 2018) of 1.0 million tonnes grading 2.7 g/t Au reported at a 0.8 g/t Au cut-off exists for 89,000 ounces of gold (Measured: 170,000 tonnes grading 4.1 g/t Au, Indicated: 220,000 tonnes grading 2.7 g/t Au, Inferred: 630,000 tonnes grading 2.3 g/t Au) aggregated over the Damsel, Moray Reef and Mt Fisher deposits.

JORC Table 1 - Section 1 Data and Sampling Techniques

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 RC hole diameter was 5.5" (140 mm) reverse circulation percussion (RC). Sampling of RC holes was undertaken by collecting 1m cone split samples at intervals. Aircore hole diameter was 85mm. Sampling of AC holes was undertaken by collecting (scoop) a combination of composite sampling (2m to 5m) Drill holes were generally angled at -65^o towards grid northeast (but see Table for individual hole dips and azimuths) to intersect geology as close to perpendicular as possible.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used	Drillhole locations were picked up by differential GPS. Logging of drill samples included lithology, weathering, texture, moisture and contamination (as applicable). Sampling protocols and QAQC are as per industry best practice procedures.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information	 RC drillholes were sampled on 1m intervals using a cone splitter. Aircore drilling was sampled (scooped) using a combination of composite sampling (2m to 5m) Samples were sent to Intertek Genalysis in Perth, crushed to 10mm, dried and pulverised (total prep) in LM5 units (Some samples > 3kg were split) to produce a sub-sample. RC pulps were analysed by 50g Fire Assay with ICP-OES (Intertek code FA50/OE). AC pulps were analysed by 25gram aqua regia 52 element (Intertek code AR25/MS52).
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Drilling technique was Reverse Circulation (RC). The RC hole diameter was 140mm face sampling hammer. Hole depths reported range from 50m to 250m. Drilling technique was aircore (AC) with hole diameter of 85mm. Hole depths reported range from 6m to 107m.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed	RC and AC drill recoveries were high (>90%).
	Measures taken to maximise sample recovery and ensure representative nature of the samples	Samples were visually checked for recovery, moisture and contamination and notes made in the logs.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	There is no observable relationship between recovery and grade, and therefore no sample bias.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Detailed geological logs have been carried out on all drill holes, but no geotechnical data have been recorded (or is possible to be recorded due to the nature of the sample). The geological data would be suitable for inclusion in a Mineral Resource estimate.

Criteria	JORC Code explanation	Commentary
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Logging of RC and AC chips recorded lithology, mineralogy, mineralisation, weathering, colour, and other sample features. RC chips are stored in plastic RC chip trays.
	The total length and percentage of the relevant intersections logged	All holes were logged in full.
Sub-sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	N/A
	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	RC samples were collected on the drill rig using a cone splitter. If any mineralised samples were collected wet these were noted in the drill logs and database. AC samples were scooped directly from drill sample piles.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	The sample preparation followed industry best practice. Fire Assay samples were dried, coarse crushing to ~10mm, followed by pulverisation of the entire sample in an LM5 or equivalent pulverising mill to a grind size of 85% passing 75 micron.
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.	Field QC procedures involve the use of Certified Reference Materials (CRM's) as assay standards, along with duplicates and blank samples. The insertion rate of these was approximately 1:20.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second- half sampling.	For RC drilling field duplicates were taken on a routine basis at an approximate 1:20 ratio using the same sampling techniques (i.e. cone splitter) and inserted into the sample run. No field duplicates were taken for AC drilling.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	The sample sizes are considered more than adequate to ensure that there are no particle size effects relating to the grain size of the mineralisation which lies in the percentage range.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	The analytical technique involved Fire Assay 50g for RC. The analytical technique involved 25g aqua regia for AC.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical or portable analysis tools were used to determine assay values stored in the database.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	Internal laboratory control procedures involve duplicate assaying of randomly selected assay pulps as well as internal laboratory standards. All of these data are reported to the Company and analysed for consistency and any discrepancies.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Senior personnel from the Company have visually inspected mineralisation within significant intersections.

Criteria	JORC Code explanation	Commentary
	The use of twinned holes.	Two twin RC holes have been completed at the Grace Prospect and confirm reliability of previous results.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	Primary data was collected using a standard set of Excel templates on Toughbook laptop computers in the field. These data are transferred to Geobase Pty Ltd for data verification and loading into the database.
	Discuss any adjustment to assay data.	No adjustments or calibrations have been made to any assay data.
Location of data points	Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill hole locations have been established using a field GPS unit.
	Specification of the grid system used.	The grid system is MGA_GDA94, zone 50 for easting, northing and RL.
	Quality and adequacy of topographic control.	The topography of the mined open pits is well defined by historic monthly survey pickups
Data spacing and distribution	Data spacing for reporting of Exploration Results.	RC drill hole spacing is approximately 40 metres between drill sections. The drill hole spacing along section lines is variable and ranges between 40m and 100m. The section lines were spaced at between 80m and 400m intervals.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Data spacing and distribution are sufficient to establish the degree of geological and grade continuity appropriate for JORC(2012) classifications applied.
	Whether sample compositing has been applied.	1m samples through target zones were sent to the laboratory for analysis. The remainder of the hole was sampled using 4m composite samples. For 4m composite samples >0.25g/t Au, 1m samples were collected and sent to the laboratory for analysis.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The mineralisation strikes generally NNW-SSE and dips to the west at approximately -50 degrees. The drill orientation was 065 and 245 degrees and -60 to -90 dip. Drilling is believed to be generally perpendicular to strike.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No sampling bias is believed to have been introduced.
Sample security	The measures taken to ensure sample security.	Sample security is managed by the Company. After preparation in the field samples are packed into polyweave bags and despatched to the laboratory. For a large number of samples these bags were transported by the Company directly to the assay laboratory. In some cases the sample were delivered by a transport contractor the assay laboratory. The assay laboratory audits the samples on arrival and reports any discrepancies back to the Company. No such discrepancies occurred.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	No audits have yet been completed.

JORC Table 1 - Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Rox Resources Ltd is in a Joint Venture Agreement with Venus Metals Corporation Ltd under which it has a 70% interest in the Youanmi Gold Mine Joint Venture (OYG Joint Venture). Tenements in the JV consist of the following mining leases: M 57s /10, 51,76,97,109, 135, 160A, 164, 165, 166 and 167.
	The security of the tenure held at the time of reporting a along with any known impediments to obtaining a licence to operate in the area.	The tenement is in good standing and no known impediments exist.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Significant previous exploration has been carried out throughout the project by various companies, including AC/RAB, RC drilling and diamond drilling 1971-1973 WMC: RAB, RC and surface diamond drilling 1976 Newmont: 10 surface diamond drilling (predominantly targeting base metals). 1980-1986 BHP: RAB, RC and surface diamond drilling (predominantly targeting base metals). 1986-1993 Eastmet: RAB, RC and surface diamond drilling. 1993-1997 Goldmines of Australia: RAB, RC and surface diamond drilling. Underground mining and associated underground diamond drilling. 2000-2003 Aquila Resources Ltd: Shallow RAB and RC drilling 2004-2005 Goldcrest Resources Ltd: Shallow RAB and RC drilling; data validation. 2007- 2013 Apex Minerals NL: 9 diamond holes targeting extensions to the Youanmi deeps resource.

Criteria	JORC Code explanation	Commentary
Geology	Deposit type, geological setting and style of mineralisation.	The Youanmi Project straddles a 40km strike length of the Youanmi Greenstone Belt, lying within the Southern Cross Province of the Archaean Yilgarn Craton in Western Australia. The greenstone belt is approximately 80km long and 25km wide, and incorporates an arcuate, north-trending major crustal structure termed the Youanmi Fault Zone. This structure separates two discordant greenstone terrains, with the stratigraphy to the west characterised by a series of weakly deformed, layered mafic complexes (Windimurra, Black Range, Youanmi and Barrambie) enveloped by strongly deformed, north-northeast trending greenstones. Gold mineralisation is developed semi-continuously in shear zones over a strike length of 2,300m along the western margin of the Youanmi granite. The Youanmi gold lodes are invariably associated with a high pyrite and arsenopyrite content and the primary ore is partially to totally refractory. There are a series of major fault systems cutting through the Youanmi trend mineralisation that have generated some significant off-sets. The Youanmi Deeps project area is subdivided into three main areas or fault blocks by cross-cutting steep south-east trending faults; and these are named Pollard, Main, and Hill End from south to north respectively. Granite hosted gold mineralisation occurs at several sites, most notably Grace and the Plant Zone Prospects. Gold mineralization occurs as free particles within quartz-sericite altered granite shear zones. The Commonwealth-Connemarra mineralised trend is centred 4km northwest of the Youanmi plant. The geology comprises a sequence of folded mafic and felsic volcanic rocks intercalated with BIF and intruded by granite along the eastern margin. Gold mineralisation is developed over a 600m strike length, associated with a north trending and steeply west dipping shear zone that traverses the northwest trending succession.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	Refer to drill results Table/s and the Notes attached thereto.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	All reported assay intervals have been length weighted. No top cuts have been applied. A lower cut-off of 0.5g/t Au was applied.
	Where aggregate intercepts incorporate short lengths of high-grade results and longer lengths of low-grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Mineralisation over 0.5g/t Au has been included in aggregation of intervals for RC. Mineralisation over 0.1g/t Au has been included in aggregation of intervals for AC.

Criteria	JORC Code explanation	Commentary
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	No metal equivalent values have been used or reported.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	The mineralisation strikes generally NNW-SSE and dips to the west at approximately -50 degrees. The drill orientation was 065 and 245 degrees and -60 to -90 dip. Drilling is believed to be generally perpendicular to strike. Given the angle of the drill holes and the interpreted dip of the host rocks and mineralisation (see Figures in the text), reported intercepts approximate true width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to Figures and Table in the text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Representative reporting of both low and high grades and widths is practiced.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful and material information has been included in the body of the announcement.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive	Further work (AC, RC and diamond drilling) is justified to locate extensions to mineralisation both at depth and along strike.