17 December 2014 ## DRILLING PROGRAMME UNDERWAY AS ST GEORGE ADDS TO OUTSTANDING PIPELINE OF NICKEL SULPHIDE PROSPECTS #### **HIGHLIGHTS:** - Drilling programme has re-commenced at the Windsor nickel prospect with interim XRF results due soon - Multiple new electromagnetic (EM) anomalies identified on Stella Range Belt - EM anomalies are situated within favourable geological settings - Modelling of EM anomalies will generate nickel sulphide targets for 2015 drilling campaign - St George's outstanding pipeline of prospects continues to grow St George Mining Limited (ASX: **SGQ**) ('St George Mining' or 'the Company') is pleased to provide an update on nickel sulphide exploration activities at its 100% owned East Laverton Property in Western Australia. #### **DRILLING HAS RE-COMMENCED AT WINDSOR** The Phase 2 RC (reverse circulation) drilling programme has re-commenced at the Windsor nickel prospect. Drill hole WINRCOO7, initially completed to a depth of 300m, will be extended to 380m to follow up on the initial promising results there. Interim XRF results from the initial drilling indicated that the hole intersected two mineralised ultramafic units - 18m @ 0.33% Ni from 179m and 60m @ 0.31% Ni from 238m, including the highest nickel value at Windsor to date of 1m @ 0.76% Ni from 287m. These nickel values are consistent with the highly prospective central facies in a komatiite flow channel. The extended drilling of WINRCOO7 will further test the basal contact area in this channel and its potential to host massive nickel sulphides. Two further holes – WINRC008 and WINRC009 – are also planned for drilling (see Figure 1). Additional holes will be designed once results from these initial holes are reviewed. XRF analysis of drill samples will be conducted in the field where practicable, with a report on interim XRF results expected by early next week. #### **NEW STRONG EM CONDUCTORS** The Company has continued the regional moving loop electromagnetic (MLEM) survey across the priority nickel sulphide prospects at the East Laverton Property concurrently with the 2014 drilling campaign. A number of new EM anomalies have been identified by Newexco, the Company's geophysical adviser, from data generated by this MLEM survey. Two of the high priority nickel prospects where new EM conductors have been identified are the underexplored Cambridge North and Aphrodite prospects. These prospects are situated on the Stella Range belt where multiple occurrences of disseminated nickel sulphides have already been encountered in the drilling completed by St George and BHP Billiton Nickel West (under the previous Project Dragon farm-in arrangement) - see Figure 2. Several EM anomalies are modelled by Newexco as bedrock conductors with a conductivity thickness of several thousand siemen and exponential decay constants of 150 to 200ms. These are very favourable geophysical indicators for conductive bodies that may represent massive sulphide accumulations. It is also significant that some of the anomalies are on the eastern margin of the ultramafic, which is interpreted to be the basal contact of the ultramafic sequence, and that the EM anomalies are co-incident with strong TMI (total magnetic intensity) signatures. From an exploration perspective, these EM conductors are situated in settings that are favourable for massive nickel sulphide deposits. The modelling and interpretation of the EM conductors is continuing with a view to confirming new drill targets for the Company's 2015 drilling campaign. Further details of the EM conductors and drill targets will be announced early next year. #### John Prineas, Executive Chairman of St George Mining said: "The initial results from drilling at Windsor strongly support the case for massive nickel sulphide mineralisation, and we are very pleased to have started drilling there again. "We are also happy to report the identification of new EM conductors at Cambridge North and Aphrodite, which further highlights the tremendous pipeline of prospects that we are building at our nickel project. These conductors will be exciting drill targets for 2015. "We are confident that our systematic exploration of the extensive ultramafic belts at our East Laverton Property – which are already proven to be fertile for nickel sulphides – will deliver exploration success." Figure 1 – Map showing the completed and planned drill holes for the Windsor nickel sulphide prospect on a background of TMI First Vertical Derivative (1VD) aeromagnetics. Figure 2 – this map illustrates the high priority nickel prospects being covered by the MLEM survey. New strong EM conductors have been identified at Aphrodite and Cambridge North. #### For further information, please contact: #### **John Prineas** Executive Chairman St George Mining Limited (+61) 411 421 253 John.prineas@stgm.com.au #### **Colin Hay** Professional Public Relations (+61) 08 9388 0944 mob 0404 683 355 colin.hay@ppr.com.au #### **Competent Person Statement:** The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Mr Timothy Hronsky, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Hronsky is employed by Essential Risk Solutions Ltd which has been retained by St George Mining Limited to provide technical advice on mineral projects. Mr Hronsky has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Hronsky consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. The information in this announcement that relates to Exploration Results and Mineral Resources as defined in the 2004 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' is based on information compiled by Mr Hronsky. Mr Hronsky is a member of the Australasian Institute of Mining and Metallurgy has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which he is undertaking. This qualifies Mr Hronsky as a "Competent Person" as defined in the 2004 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Hronsky consents to the inclusion of information in this announcement in the form and context in which it appears. # The following section is provided for compliance with requirements for the reporting of exploration results under the JORC Code, 2012 Edition. ## **Section 1 Sampling Techniques and Data** (Criteria in this section apply to all succeeding sections) | Criteria | JORC Code explanation | Commentary | | | | | | |------------------------|---|--|--|--|--|--|--| | Sampling
techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under | This ASX Release dated 17 December 2014 reports on interim exploration results from Phase 2 of the Company's 2014 drilling campaign as well as the results of electromagnetic (EM) surveys carried out across the project area. | | | | | | | | investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. | Drilling in Phase 2 is being undertaken by VM Drilling Pty Ltd using a Schramm 685 truck mounted drill rig. This rig has capability for deep reverse circulation (RC) drilling. | | | | | | | | S S S S S S S S S S S S S S S S S S S | RC Sampling: All samples from the RC drilling are taken as 1m samples. Samples are sent to Intertek Laboratories for assaying. | | | | | | | | | Appropriate QAQC samples (standards, blanks and duplicates) are inserted into the sequences as per industry best practice. | | | | | | | | | Samples are collected using cone or riffle splitter. Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays. | | | | | | | | | Onsite XRF analysis is conducted on the fines from RC chips using a hand-held Olympus Innov-X Spectrum Analyser. These results are only used for onsite interpretation and preliminary base metal assessment subject to final geochemical analysis by laboratory assays. | | | | | | | | | Moving loop electromagnetic (MLEM) survey: The MLEM survey is designed and managed by Newexco, with field work contracted to Bushgum Pty Ltd. The MLEM survey is conducted at several prospects within the project area. | | | | | | | | | Key specifications of the MLEM survey are: | | | | | | | | | Stations Spacing: | 100m | | | | | | | | Loop: | 400m, 200m | | | | | | | | Line Spacing: | 400m | | | | | | | | Components: | хух | | | | | | | | Orientation: | X along line (local east - positive). | | | | | | | | Line direction: | 58.35, 90 degrees | | | | | | | | Frequency: | 0.5, 0.25 Hz | | | | | | | | Channels: | SMARTem Standard. | | | | | | | | Receiver: | Fluxgate | | | | | | | | Number turns: | 1 | | | | | | | | Current: | Typically 50 A. | | | | | | | | Repeats: | Minimum 3 consistent readings per station. | | | | | | | | Down-hole electromagnetic (DHEM) survey: A DHEM survey will be completed for certain drill holes. The DHEM survey is designed and managed by Newexco Services Pty Ltd, with field work contracted to Bushgum Holdings Pty Ltd. | | | | | | | | | Key specifications of the DHEM survey are: | | | | | | | | | System: Atlantis (analogue) | | | | | | | | | Components: | A, U, V | | | | | | Criteria | JORC Code explanation | Commentary | | | | | |----------|--|---|--|--|--|--| | | | Component direction: | | | | | | | | Ba – Parallel to hole axis, positive up hole. Bu – Perpendicular to hole axis: toward 12 o' clock when looking down hole. Bv – Perpendicular to hole axis: toward 9 o' clock when looking down hole. | | | | | | | Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. | cyclone on the rig. Samples are taken on a one meter basis and | | | | | | | | A large auxiliary compressor ("air-pack") is mounted on a separate truck and the airstream is connected to the rig. This provides an addition to the compressed air supplied by the in-built compressors mounted on the drill rig itself. This auxiliary compressor maximises the sample return through restricting air pressure loss, especially in deeper holes. In addition, the high and consistent levels of air pressure minimise the number of drill samples. | | | | | | | | Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays. Downhole surveys of dip and azimuth are conducted using a single shot camera every 30m to detect deviations of the hole from the planned dip and azimuth. The drill-hole collar locations were recorded using a hand held GPS, which has an accuracy of +/- 5m. At a later date the drill-hole collar will be surveyed to a greater degree of accuracy. | | | | | | | | MLEM Survey: Field calibration of the survey instruments using standards is undertaken each day. A minimum of 3 consistent readings per station are taken to ensure accuracy of data collected. | | | | | | | | DHEM Survey: For the DHEM survey, the polarity of each component is checked to ensure the system was set up using the correct component orientations. The hole position is corrected for trajectory using orientation survey data. | | | | | | | Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has | RC Sampling: A 1m composite sample is taken from the bulk sample of RC chips that may weigh in excess of 40 kg. Assay preparation is completed by Intertek. | | | | | | | been done this would be relatively simple (eg
'reverse circulation drilling was used to obtain
1 m samples from which 3 kg was pulverised to
produce a 30 g charge for fire assay'). In other | Assays are undertaken at Intertek in Kalgoorlie and Perth. Samples are sent to Intertek where they are crushed to 6 mm and then pulverised to 75 microns. A 30 g charge of the sample is fire assayed | | | | | All other metals will be analysed using an acid digest and an ICP finish. The sample is digested with nitric, hydrochloric, hydrofluoric and perchloric acids to effect as near to total solubility of the sample as possible. The solution containing samples of interest, including those that need further review, will then be presented to an ICP-OES for the further quantification of the selected elements. 2000 ppbAu, and 0.5 - 2000 ppb for platinum and palladium. This is believed to be an appropriate detection level for these elements within this specific mineral environment. However, should Au, Pt or Pd levels reported exceed these levels an additional assay method will be used to re-test samples. detailed cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of information. | Criteria | JORC Code explanation | Commentary | | | | | |---|---|---|--|--|--|--| | Drilling
techniques | Drill type (eg core, reverse circulation, openhole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc). | RC Sampling: The RC drilling uses a 140 mm diameter face hammer tool. High capacity air compressors on the drill rig are used to ensure a continuously sealed and high pressure system during drilling to maximise the recovery of the drill cuttings, and to ensure chips remain dry to the maximum extent possible. | | | | | | Drill sample
recovery | Method of recording and assessing core and chip sample recoveries and results assessed. | RC Sampling: RC samples are visually checked for recovery, moisture and contamination. Geological logging is completed at site with representative RC chips stored in chip trays. | | | | | | | Measures taken to maximise sample recovery and ensure representative nature of the samples. | RC Sampling: Samples are collected using cone or riffle splitter. Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays. | | | | | | | Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | To date, no detailed analysis to determine the relationship between sample recovery and grade has been undertaken for this drill programme. This analysis will be conducted following any economic discovery. | | | | | | | | The nature of magmatic sulphide distribution hosted by the competent and consistent rocks hosting any mineralised intervals are considered to significantly reduce any possible issue of sample bias due to material loss or gain. | | | | | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. | Geological logging is carried out on all drill holes with lithology, alteration, mineralisation, structure and veining recorded. | | | | | | | Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. | Logging of RC samples records lithology, mineralogy, mineralisation, structures (core only), weathering, colour and other noticeable features. | | | | | | | The total length and percentage of the relevant intersections logged. | All drill holes are geologically logged in full and detailed litho-
geochemical information is collected by the field XRF unit. The data
relating to the elements analysed is used to determine further
information regarding the detailed rock composition. | | | | | | Sub-sampling
techniques and
sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. | Drill holes are RC in this programme. | | | | | | p. sp | If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. | RC samples are collected in dry form. Samples are collected using cone or riffle splitter. Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays. | | | | | | | For all sample types, the nature, quality and appropriateness of the sample preparation | RC Sampling: Sample preparation for RC chips follows a standard protocol. | | | | | | | technique. | Assay preparation procedures ensure the entire sample is pulverised to 75 microns before the sub-sample is taken. This removes the potential for the significant sub-sampling bias that can be introduced at this stage. | | | | | | | Quality control procedures adopted for all sub-
sampling stages to maximise representivity of
samples. | RC Sampling: Field QC procedures maximise representivity of RC samples and involve the use of certified reference material as assay standards, along with blanks, duplicates and barren washes. | | | | | | | | | | | | | | Criteria | JORC Code explanation | Commentary | | | | | |---|--|--|--|--|--|--| | | Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. | RC Sampling: Field duplicates were taken on 1m composites for RC samples. | | | | | | | Whether sample sizes are appropriate to the grain size of the material being sampled. | The sample sizes are considered to be appropriate to correctly represent the sulphide mineralisation at the East Laverton Property based on: the style of mineralisation (massive and disseminated sulphides), the thickness and consistency of the intersections and the sampling methodology. | | | | | | Quality of
assay data and
laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. | For RC sampling, a 30 gram sample will be fire assayed for gold, platinum and palladium. The detection range for gold is 1 – 2000 ppbAu, and 0.5 – 2000 ppb for platinum and palladium. This is believed to be an appropriate detection level for the levels of these elements within this specific mineral environment. However, should Au, Pt or Pd levels reported exceed these levels; an alternative assay method will be selected. | | | | | | | | All other metals will be analysed using an acid digest and an ICP finish. The sample is digested with nitric, hydrochloric, hydrofluoric and perchloric acids to effect as near to total solubility of the sample as possible. The solution containing samples of interest, including those that need further review, will then be presented to an ICP-OES for the further quantification of the selected elements. | | | | | | | For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. | A handheld XRF instrument (Olympus Innov-X Spectrum Analyser) is used to systematically analyse the drill core and RC chips onsite. Reading time was 60 seconds. The instruments are serviced and calibrated at least once a year. Field calibration of the XRF instrument using standards is undertaken each day. | | | | | | | | For the EM surveys, specifications and quality control measures are noted above. | | | | | | | Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | Laboratory QAQC involves the use of internal lab standards using certified reference material, blanks, splits and replicates as part of in house procedures. The Company will also submit an independent suite of CRMs, blanks and field duplicates (see above). | | | | | | Verification of
sampling and
assaying | The verification of significant intersections by either independent or alternative company personnel. | Significant intersections are verified by the Company's Technical Director and Consulting Field Geologist. | | | | | | | The use of twinned holes. | No twinned holes have been completed in this drilling programme. | | | | | | | Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. | Geological data was collected using handwritten log sheets and imported in the field onto a laptop detailing geology (weathering structure, alteration, mineralisation), sampling quality and intervals sample numbers, QA/QC and survey data. This data, together with the assay data received from the laboratory and subsequent survey data was entered into the Company's database. | | | | | | | Discuss any adjustment to assay data. | No adjustments or calibrations will be made to any primary assay data collected for the purpose of reporting assay grades and mineralised intervals. For the geological analysis, standards and recognised factors may be used to calculate the oxide form assayed elements, or to calculate volatile free mineral levels in rocks. | | | | | | Location of
data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. | Drill hole collar locations are determined using a handheld GPS with an accuracy of +/- 5m. Drill hole collars will be preserved and surveyed to a greater of accuracy after the drilling programme. Down hole surveys of dip and azimuth were conducted using a single shot camera every 30m to detect deviations of the hole from the planned dip and azimuths. | | | | | | Criteria | JORC Code explanation | Commentary | | | | | |--|--|--|--|--|--|--| | | Specification of the grid system used. | The grid system used is GDA94, MGA Zone 51. | | | | | | | Quality and adequacy of topographic control. | Best estimated RLs were assigned during drilling and are to be corrected at a later stage. | | | | | | Data spacing
and
distribution | Data spacing for reporting of Exploration
Results. | The drill programme is targeting EM conductors and other high quality targets for massive nickel sulphide mineralisation. The spacing and distribution of holes is not relevant to this programme. | | | | | | | Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. | Drilling is at the exploration stage. Mineralisation at the East Laverton Property has not yet demonstrated to be sufficient in both geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications to be applied. | | | | | | | Whether sample compositing has been applied. | Samples are taken at one metre lengths and adjusted where necessary to reflect local variations in geology or where visible mineralised zones are encountered, in order to preserve the samples as representative. | | | | | | Orientation of
data in relation
to geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. | The drill holes are drilled towards 060 at an angle of -60 degrees (unless otherwise stated) to intersect the modelled mineralised zones at a near perpendicular orientation. However, the orientation of key structures may be locally variable and any relationship to mineralisation at has yet to be identified. | | | | | | | If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | No orientation based sampling bias has been identified in the data to date. | | | | | | Sample
security | The measures taken to ensure sample security. | Chain of Custody is managed by the Company until samples pass to a duly certified assay laboratory for subsampling and assaying. The RC sample bags are stored on secure sites and delivered to the assay laboratory by the Company or a competent agent. When in transit, they are kept in locked premises. Transport logs have been set up to track the progress of samples. The chain of custody passes upon delivery of the samples to the assay laboratory. | | | | | | Audits or
reviews | The results of any audits or reviews of sampling techniques and data. | Sampling techniques and procedures are regularly reviewed internally, as is data. To date, no external audits have been completed on the drilling programme. | | | | | ## Section 2 Reporting of Exploration Results (Criteria listed in section 1 will also apply to this section where relevant) | Criteria | JORC Code explanation | Commentary | | | | | | |--|--|--|--|--|--|--|--| | Mineral
Tenement and
Land Status | Type, name/reference number, location and ownership including agreements or material issues with third parties including joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. | within Exploration Licences E39/1467, E39/1229, E39/1667, | | | | | | | | The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | s tenements. | | | | | | | | to obtaining a needed to operate in the area. | The tenements are in good standing and no known impediments exist. | | | | | | | Criteria | JORC Code explanation | Commentary | | | | |---|---|--|--|--|--| | Exploration
Done by Other
Parties | Acknowledgment and appraisal of exploration by other parties. | In 2012, BHP Billiton Nickel West Pty Ltd (Nickel West) completed a reconnaissance RC (reverse circulation) drilling programme at the East Laverton Property as part of the Project Dragon farm-in arrangement between Nickel West and the Company. That farm-in arrangement has been terminated. The drilling programme comprised 35 RC holes for 8,560m drilled. The results from the Nickel West drilling programme were reported by the Company in its ASX Release dated 25 October 2012 "Drill Results at Project Dragon". Drilling intersected primary nickel sulphide mineralisation and established the presence of fertile, high MgO ultramafic sequences at the East Laverton Property. Prior to the Project Dragon drilling programme, there was no systematic exploration for nickel sulphides at the East Laverton Property. Historical exploration in the region was dominated by shallow RAB and aircore drilling, much of which had been incompletely sampled, assayed, and logged. This early work was focused on gold rather than nickel sulphide exploration. | | | | | Geology | Deposit type, geological setting and style of mineralisation | The Company's East Laverton Property located in the NE corner of the Eastern Goldfields Province of the Archean Yilgarn Craton. The project area is proximally located to the Burtville-Yarmana terrane boundary and the paleo-cratonic marginal setting is consistent with the extensive komatiites found on the property. The drilling at the East Laverton Property has confirmed extensive strike lengths of high-MgO olivine-rich rocks across three major ultramafic belts. Ultramafic rocks of this composition are known to host high grade nickel sulphides. | | | | | Drill hole
information | A summary of all information material to the understanding of the exploration results including tabulation of the following information for all Material drill holes: • Easting and northing of the drill hole collar • Elevation or RL (Reduced Level – elevation above sea level in meters) of the drill hole collar • Dip and azimuth of the hole • Down hole length and interception depth • Hole length | Refer to information in the body of this announcement. Information regarding exploration results from Project Dragon can be found in the Company's ASX Release dated 25 October 2012 "Drill Results at Project Dragon" which is available to view on www.stgm.com.au . Table 1 to this 2012 JORC Section contains drill hole information on DRAC35, DRAC38 and DDNRC002 which were the first drill holes at the East Laverton Property to identify nickel sulphides. | | | | | Data
aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. | No top-cuts have been applied. A nominal 0.15% Ni lower cut-off is applied unless otherwise indicated. | | | | | | Where aggregated intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. | sulphide mineralisation are reported as included intervals. see d | | | | | | The assumptions used for any reporting of metal equivalent values should be clearly stated. | No metal equivalent values are used for reporting exploration results. | | | | | Relationship
between
mineralisation
widths and
intercept
lengths | These relationships are particularly important in the reporting of exploration results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect. | The geometry of the mineralisation is not yet known due to insufficient deep drilling in the targeted area. | | | | | Criteria | JORC Code explanation | Commentary | | | | | |---|--|---|--|--|--|--| | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plane view of drill hole collar locations and appropriate sectional views. | Maps will be included with any announcement of any significant discovery, following review of assay results from the drilling programme. | | | | | | Balanced
Reporting | Where comprehensive reporting of all
Exploration Results is not practical,
representative reporting of both low and high | A comprehensive report on the drill holes will be provided once laboratory assays are received. A balanced report on the exploration results available to date is contained in the body of the ASX Release. | | | | | | | grades and/or widths should be practiced to
avoid misleading reporting of Exploration
Results. | The determinations made using a mobile XRF unit are geochemical in nature. This mode of sampling seeks to define anomalous sample populations against background, rather than absolute sample values as in laboratory assays. | | | | | | | | A more definitive report on any anomalous levels of any element will be provided once laboratory assays for the drill holes are received. | | | | | | Other
substantive
exploration
data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observation; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | All meaningful and material information has been included in the body of the text. No metallurgical or mineralogical assessments have been completed. | | | | | | Further Work | The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large – scale step – out drilling). | A discussion of further exploration work is contained in the body of the ASX Release. | | | | | | | Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | | | | | | | HOLE ID | NORTHIN
G | EASTIN
G | DIP
(deg) | AZM
(deg) | DEPT
H | FROM
(m) | TO
(m) | WIDTH
(m) | Ni
(%) | Cu
(ppm) | Pt+Pd
(ppb) | |----------|--------------|-------------|--------------|--------------|-----------|-------------|-----------|--------------|-----------|-------------|----------------| | | (m) | (m) | | | (m) | | | | | | | | DRAC35 | 6739401 | 527150 | -60 | 250 | 244 | 100 | 118 | 18 | 0.40 | 342 | 197 | | | | | | | | 100 | 104 | 4 | 0.57 | 366 | 294 | | | | | | | | 112 | 114 | 2 | 0.51 | 584 | 281 | | DRAC38 | 6733696 | 530786 | -60 | 250 | 298 | 108 | 138 | 30 | 0.31 | 10 | 31 | | | | | | | | 132 | 138 | 6 | 0.48 | 40 | 48 | | | | | | | | 132 | 134 | 2 | 0.62 | 92 | 53 | | DDNRC002 | 6742718 | 523717 | -60 | 59 | 246 | 53 | 60 | 7 | 0.54 | | | | | | | | | | 53 | 55 | 2 | 1.08 | | | Table 1 to 2012 JORC Section – Significant intersections in DRAC35, DRAC38 and DDNRC002. These historical holes are the first identification of nickel sulphides at the East Laverton Property. For further details on DRAC35 and DRAC38, see the ASX Release dated 25 October 2012 "Drill Results at Project Dragon". For further details on DDNRC002, see the ASX Release dated 11 April 2013 "St George Provides Exploration Update". These ASX Releases are available to view on the Company's website at www.stgm.om.au