

Norton Gold Fields Ltd ("Norton" or the "Company") provides an update on exploration activities, reflecting its exploration strategy to better exploit the potential of the Company's extensive landholdings in the Western Australian goldfields.

HIGHLIGHTS

- Accelerated Resource Development drilling programs during the December quarter have seen the completion of 24,691m in 185 drill holes, comprising reverse circulation (RC), surface and underground diamond core drill holes.
- At the Homestead Underground Mine, diamond drilling of the newly identified and named Henning Vein located in the southern footwall of the Black Flag West Vein has returned results which demonstrate high grade mineralisation continuity. Multiple zones of mineralisation have been intersected in some holes. Mineralisation remains open up and down-dip of current drilling. Significant down-hole results include :

1.0m @ 75.4g/t Au from 25m
0.9m @ 46.8g/t Au from 82.3m
2.2m @ 13.6g/t Au from 44.1m
3.7m @ 9.53g/t Au from 36m
3.6m @ 9.04g/t Au from 53.3m

Also at the Homestead Underground Mine, diamond drilling to test depth extensions of the Black Flag West Vein has intersected high grade mineralisation well below the current resource model. Significant down-hole results include :

0.5m @ 151g/t Au from 260.5m

1.4m @ 9.79g/t Au from 372m

1.7m @ 15.5g/t Au from 251m

About Norton

Norton Gold Fields Limited (ASX:NGF) is an established mid-tier gold producer. In CY2014, Norton produced 178,269 ounces of gold from its open cut and underground operations at Paddington, near Kalgoorlie in Western Australia. The Company holds extensive granted mining and exploration leases in the pre-eminent Kalgoorlie goldfields, with a land package of 1,091km². Norton's Vision is to be a leading long term gold producer and to achieve this has adopted a business model that seeks to attain sustainable and increased production within a strict cost control environment.

Evaluation of primary refractory and associated weathered ore material at the Racetrack and Racetrack West Prospects has returned high grade RC and diamond core drilling results in several defined ore lodes. Significant down-hole results include :

Racetrack West/ Woolshed South
9m @ 10.6g/t Au from 80m
15m @ 6.91g/t Au from 65m
32m @ 3.83g/t Au from 106m
9m @ 6.64g/t Au from 46m
7m @ 8.61g/t Au from 14m
9m @ 6.93g/t Au from 83m
Racetrack
11m @ 6.12g/t Au from 185m
6.76m @ 7.84g/t Au from 131.57m
7.9m @ 9.65g/t Au from 124.1m
5m @ 9.97g/t Au from 163m

Underground diamond drilling of the Bullant Main Lode has continued to extend mineralisation at depth. Significant down-hole intercepts include :

3m @ 17.6g/t Au from 153m

1.9m @ 18.6g/t Au from 133.1m

2.4m @ 8.35g/t Au from 215.5m

Shallow oxide and transitional ore material at the Mulgarrie Well Prospect has been evaluated by RC drilling. Significant down-hole results include :

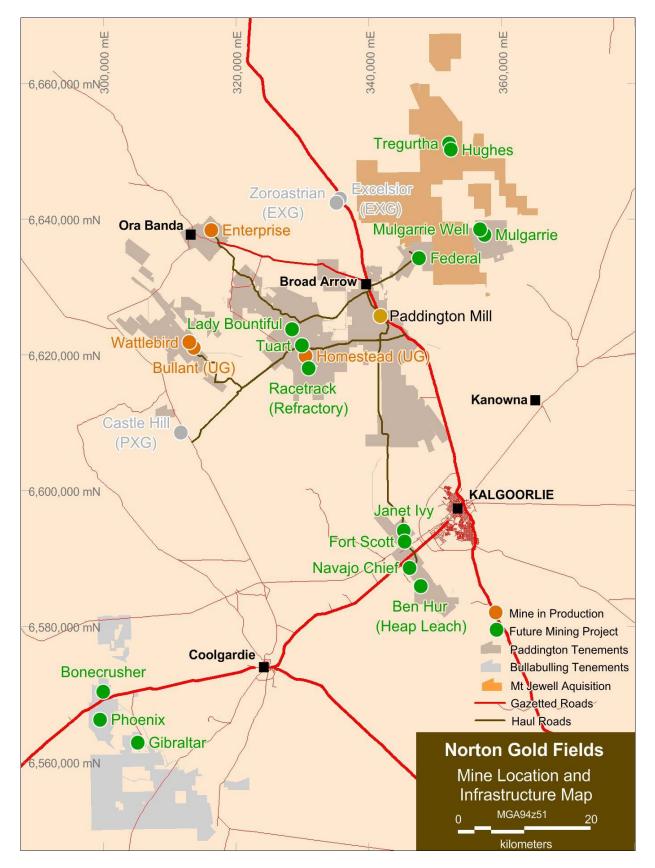
> 9m @ 3.54g/t Au from 39m 6m @ 3.36g/t Au from 27m 4m @ 6.96g/t Au from 39m

December 2014 Quarterly Exploration Report

NORTON GOLD FIELDS

Paddington Project

Norton's Paddington tenement package highly prospective covers а area of 1,091 square kilometres within the Kalgoorlie Goldfields region (Figure 1), including the recent Mt Jewell acquisition comprising 325 square kilometres. Paddington projects currently contain a Measured, Indicated and Inferred Mineral Resource inventory of 6.75Moz of gold, including a Proven and Probable Ore Reserve of 1.07Moz of gold (as at 30 December The 3.3Mt per annum Paddington 2013). processing plant is centrally located within the tenement package.


Geology of the Kalgoorlie region consists of greenschist facies mafic Archaean to ultramafic volcanics and intrusives with later intermediate to felsic volcanics, volcaniclastics and sediments. Gold mineralisation occurs in a number of different settings which typically include the interaction of structural pathways stratigraphically with and rheologically reactive host rocks. Ore bearing alteration assemblages typically comprise ankeritesericite-albite-silica-biotite-pyrite-pyrrhotite.

Open cut ore mining is in progress at the Enterprise Deposit (Ora Banda Project) where the bulk of mill feed ore is being sourced, supplemented by the small Wattlebird open cut mine, and by ore stockpiles from previously mined satellite open cut operations. Underground mining is in progress at the Homestead Underground Mine (Mount Pleasant Project), which includes the Black Flag West Vein, and at the Bullant Underground Mine (Carbine-Bullant Project).

Figure 1: Paddington Project

Bullabulling Project

The Bullabulling Gold Project is located 70km west-southwest of Kalgoorlie and consists of the Bullabulling Line and Gibraltar gold deposits. The Bullabulling tenement package covers a total area of 189 square kilometres (Figures 1 and 2). Measured, Indicated and Inferred Mineral Resource inventory is estimated at **95.4Mt at 1.05g/t Au (3.22Moz)** (30 September 2014).

Previous mining in the Bullabulling area occurred historically in the early 1900s, modern open cut mining in the mid-1980s through to the mid-1990s, and the most recent phase of laterite mining up to 2010.

Gold mineralisation within the main Bullabulling Line occurs in a series of stacked north-south trending shear zones which dip shallowly to the west and extend over a strike length of 8km. The mineralised zones can be up to several hundred metres thick and extend down-dip up to 500m.

The mineralised sequence traces folded stratigraphy to the south, with the Gibraltar deposit lying on extensions to the southeast of the main Bullabulling Line.

The deposits are hosted by an Archaean amphibolite facies greenstone package with the dominant lithologies being mafic to ultramafic meta-volcanics and volcaniclastics, and felsic schists derived from sediments and felsic to intermediate volcanics and volcaniclastics. Mineralisation is associated with calc-silicate (diopside-carbonate-quartz-pyrite-pyrrhotite) and biotite alteration assemblages.

Development options for the Bullabulling Project are currently being evaluated.

Figure 2 : Bullabulling Project

RESOURCE DEVELOPMENT & EXPLORATION

Drilling programs during the December 2014 quarter totalled 24,691.1m from 185 drill holes, and comprised 12,085m of Reverse Circulation (RC) from 127 drill holes, 4,298.6m of surface diamond core from 8 diamond only and 14 diamond tail drill holes, and 8,307.5m of underground core from 50 drill holes.

Resource development expenditure for the quarter was \$3.95M. Drilling programs are summarised in Table 1 below.

Project	Activity	Project Description		
Mount Pleasant Project : Homestead Underground – Black Flag West Deeps	4 UG diamond drill holes for 1.407.3m	Resource extension		
Mount Pleasant Project : Homestead Underground – Henning Lode	14 UG diamond drill holes for 1,424.3m	Resource definition and extension		
Mount Pleasant Project : Racetrack Prospect	4 surface diamond drill holes & 14 diamond tails for 2,804.2m of core	Resource definition & extension		
Mount Pleasant Project : Racetrack West Prospect	103 RC drill holes for 9,715m	Resource definition & extension		
Mount Pleasant Project : Tuart T060 HW Prospect	4 surface diamond drill holes for 1,494.4m	Resource definition and extension		
Mount Pleasant Project : Tuart Q040 Prospect	2 RC drill holes for 474m	Resource definition and extension		
Carbine-Bullant Project : Bullant Underground – Main Lode	32 UG diamond drill holes for 5,475.9m	Resource definition & extension		
Mulgarrie Project : Mulgarrie Well Prospect	22 RC drill holes for 1,896m	Resource definition & extension		
TOTAL	185 drill holes for 24,691.1m			

Table 1: Summary of Resource Development & Exploration Work Programs

Figure 3: Racetrack West RC Drilling

Figure 4: Racetrack Diamond Drilling

Homestead Underground Mine, Mount Pleasant Project

Underground mining at Homestead is active in two main north trending, shear hosted mineralised veins labelled VN01 and VN03, and within the adjacent oblique trending Black Flag West Vein. The Black Flag West Vein is the dominant underground ore source at Homestead.

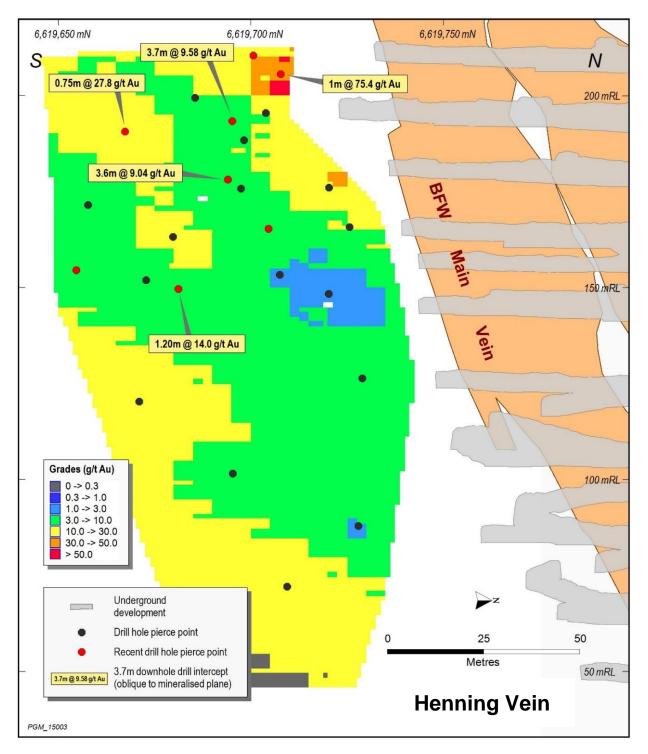
Combined resource development and grade control drilling programs have recorded an advance of 2,831.6m of diamond core from 18 underground diamond drill holes.

Two areas have been drill tested during the period, depth extensions of the Black Flag West Vein, and a newly defined mineralised vein now called the Henning Vein.

Significant down-hole intercepts from the programs include:

Henning Vein	
HUD1073	2.2m @ 13.6g/t Au from 44.1m
HUD1074	3.7m @ 9.53g/t Au from 36m
HUD1075	0.75m @ 27.8g/t Au from 65.75m
HUD1076	0.3m @ 39.5g/t Au from 37.2m 1m @ 36.0g/t Au from 42m 3.6m @ 9.04g/t Au from 53.3m 2.5m @ 3.67g/t Au from 61m
HUD1078	1m @ 21.4g/t Au from 57.9m 0.9m @ 46.8g/t Au from 75.9m 1.2m @ 14.0g/t Au from 85m
HUD1080	9m @ 10.5g/t Au from 25m Incl. 1m @ 75.4g/t Au from 25m 2m @ 10.3g/t Au from 87m

Black Flag West Deeps					
HUD1065 0.5m @ 151g/t Au from 260.5m 1.4m @ 9.79g/t Au from 372m					
HUD1066	1.7m @ 15.5g/t Au from 251m				


A full list of all drilling results for both areas is included in Table 2 (Henning Vein) and Table 3 (Black Flag West Deeps). Figures 5 and 6 show the relative positions of new drilling in long section for Henning and Black Flag West.

The Henning Vein is located in the footwall of the northwest trending, northeast dipping Black Flag West Vein. Orientation of the new vein is interpreted to be north-south trending and steep east dipping. The Henning Vein is characterised by massive to laminated vein quartz with a pyrite-pyrrhotite-galena-sphalerite sulphide assemblages, similar to other mineralised veins in the area. The vein averages approximately 1 - 2m in true width based on current data. Mineralisation has been intersected over a strike extent of 50 – 100m, and a dip extent of up to 150m.

Multiple zones of mineralisation have been intersected in some drill holes, indicating the potential for smaller sub-parallel veins.

Mineralisation in the Henning Vein currently remains open up and down-dip, and along strike to the north and south locally. Both the Black Flag West and the Black Flag mineralised veins abut the Henning Vein and are interpreted to terminate extensions of the vein.

Figure 5: Henning Vein – Schematic Long Section looking West

Recent drilling results from a limited number of drill holes in the Black Flag West Deeps drilling program have returned highly encouraging results.

Drill intercepts indicate significant high grade mineralisation at depth, up to 100m below the current resource model. Given the very broad spacing of deeper drilling, interpretation is not conclusive as to whether the new intercepts represent extensions of known mineralised veins, or development of new veins, but both interpretations offer upside resource potential.

New drilling results continue to highlight the structural complexity of the Mt Pleasant camp. Historical drilling has specifically targeted the north-south trending Black Flag Fault and Homestead Shear Zone corridors by shallow, east-west oriented drilling not optimal to identification of oblique or deeper mineralised structures.

In the last five years, identification of the 140 degree trending Black Flag West Vein, the east-west trending Phantom Vein and now the Henning Vein, all highlight the prospectivity of the Mt Pleasant camp for high grade vein style mineralisation.

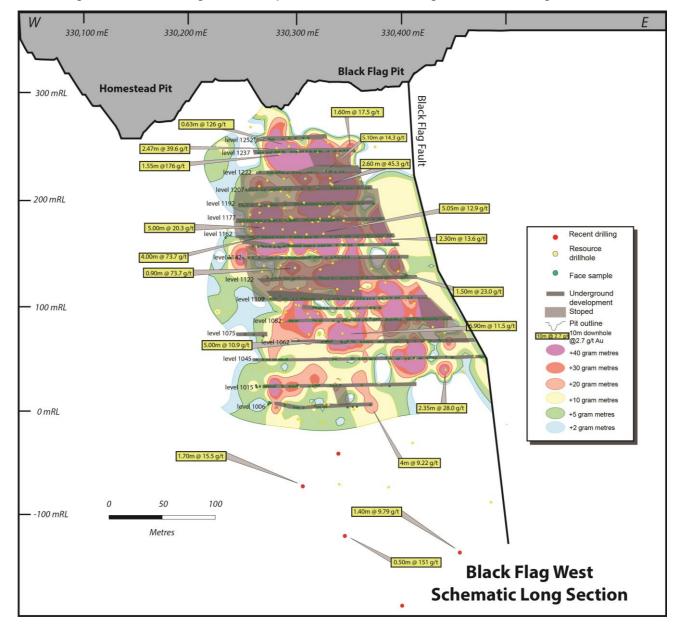


Figure 6: Black Flag West Prospect – Schematic Long Section looking North

Bullant Underground Mine, Carbine-Bullant Project

The Bullant Underground Mine is situated along the Zuleika Shear Zone, a highly prospective regional north-northwest trending structure. The Shear Zone is a broad ductile to brittle structural corridor contained within a mafic unit in the mine area. The Shear Zone dips sub-vertically to steep east dipping.

Mineralisation occurs in up to four lodes (labelled the Main, East, West and Cross lodes) and is associated with biotite-silica-pyrite altered basalt and minor local quartz veining. Both the Main and East lodes remain open at depth and in various other positions around previously mined areas.

Drilling programs commenced during the last reporting period are systematically evaluating depth extensions of the Main Lode area at a nominal 40m x 40m spacing.

Combined underground resource development and grade control programs have recorded an advance of 5,475.9m from 32 diamond core drill holes. Significant down-hole results include:

BUGD1048	2m @ 7.52g/t Au from 124m 3m @ 4.34g/t Au from 133m 0.7m @ 8.65g/t Au from 303.6m
BUGD1050	0.9m @ 19.1/t Au from 98.6m
BUGD1051	4.3m @ 3.86g/t Au from 78.8m
BUGD1053	0.8m @ 11.3g/t Au from 26m
BUGD1056	3m @ 17.6g/t Au from 153m
BUGD1058	2.4m @ 8.35g/t Au from 215.5m
BUGD1060	1.8m @ 6.67g/t Au from 97.5m
BUGD1061	0.5m @ 21.6g/t Au from 8.3m
BUGD1064	1.2m @ 6.01g/t Au from 117.1m
BUGD1073	2.8m @ 6.54g/t Au from 108.2m
BUGD1076	0.9m @ 14.5g/t Au from 13.05m

All analytical results are appended in Table 4. A long section figure showing the location of recent results in presented below in Figure 7.

Results show that mineralisation in the Main Lode is continuous to a level at least 200m below deepest previous level development (5715 level), with deepest drill holes still recording high grade intercepts.

Greatest resource and reserve potential occurs at depth in the Main Lode, however the long section figure (Figure 7) also illustrates other areas with strong potential for future resource and reserve addition. These other upside areas include north and south extensions of the Main Lode at depth, and upper southern extensions around the 6065 level.

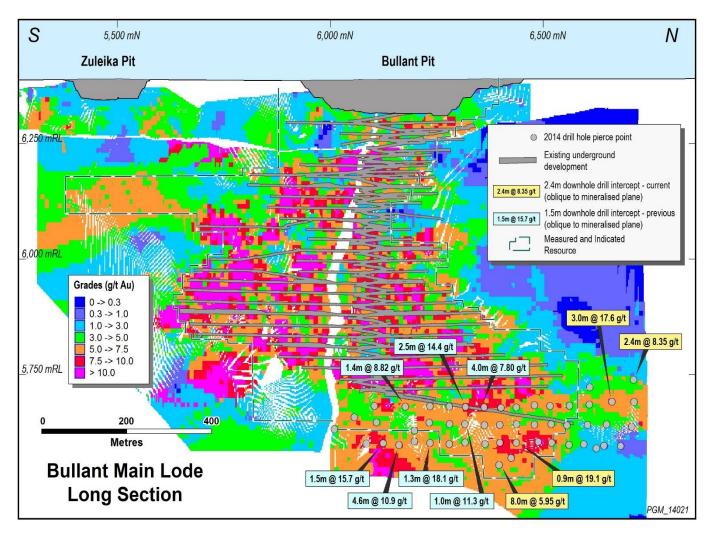


Figure 7: Bullant Main Lode – Schematic Long Section showing recent drilling results

Racetrack Prospect, Mount Pleasant Project

The Racetrack deposit is located in the Southern Mount Pleasant camp and is composed of a series of northwesterly to westerly dipping mineralised lodes over a 2km strike extent. The shallow oxide extensions of mineralisation have been previously exploited, remnant sulphide mineralisation is refractory in nature. Historic metallurgical testwork indicates a high flotation recovery of sulphide hosted gold mineralisation, and effective recovery of gold through one of the oxidation processes, namely pressure oxidation, biological oxidation or ultra-fine grind oxidative leach. If justifiable, development of a future refractory processing stream will provide Paddington with an opportunity to increase longer term production.

A program of resource definition infill and extensional drilling is continuing. Drilling advance for the December quarter was 12,519.2m comprising 2,804.2m of diamond core from 18 drill holes to test the main refractory lodes at Racetrack, and 9,715m of RC from 103 drill holes to test both oxide and refractory resource potential of the Racetrack West/ Woolshed South Extended area.

Significant RC and diamond core down-hole intercepts include those from drill holes completed in the previous period:

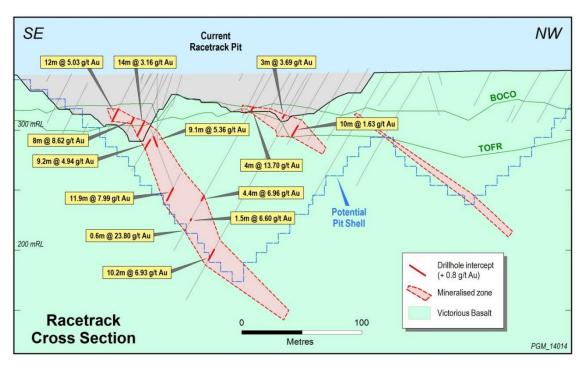
Racetrack Main Lode Area					
PMPD0085	5m @ 5.68g/t Au from 67m 0.8m @ 9.02g/t Au from 114.5m 6.2m @ 6.15g/t Au from 188m				
PMPD0087	2m @ 4.95g/t Au from 50m 1m @ 6.22g/t Au from 159m 0.3m @ 20.1g/t Au from 182.4m 11m @ 6.12g/t Au from 185m				
PMPD0091	0.44m @ 14.6g/t Au from 118m				
PMPD0092	6.76m @ 7.84g/t Au from 131.57m				
PMPD0101	1.15m @ 5.55g/t Au from 86.5m				
PMPD0102	3.85m @ 2.56g/t Au from 116m 7.9m @ 9.65g/t Au from 124.1m 0.6m @ 19.7g/t Au from 164.45m				
PMPD0103	3.55m @ 8.45g/t Au from 109.45m				
PMPD0106	2.35m @ 9.87g/t Au from 151m				
PMPD0107	2.35m @ 14.2g/t Au from 149.1m				
PMPD0109	2.7m @ 6.17g/t Au from 158.3m				
PMPD0110	5m @ 9.97g/t Au from 163m 4m @ 7.53g/t Au from 184m				
PMPD0112	0.75m @ 6.75g/t Au from 139.25m 4.5m @ 2.48g/t Au from 178.5m				

Racetrack West								
PMPC1326	2m @ 2.69g/t Au from 80m	PMPC1383	5m @ 1.23g/t Au from 7m 2m @ 3.29g/t Au from 62m					
PMPC1331	2m @ 4.34g/t Au from 20m	PMPC1384	1m @ 6.45g/t Au from 42m					
PMPC1332	3m @ 3.05g/t Au from 58m	PMPC1385	7m @ 2.96g/t Au from 47m					
PMPC1335	8m @ 1.47g/t Au from 15m	PMPC1386	20m @ 2.86g/t Au from 65m 32m @ 3.83g/t Au from 106m					
PMPC1338	1m @ 5.03g/t Au from 44m 1m @ 5.57g/t Au from 57m	PMPC1387	4m @ 2.93g/t Au from 72m 1m @ 27.6g/t Au from 86m					
PMPC1339	5m @ 2.44g/t Au from 42m	PMPC1388	2m @ 6.33g/t Au from 18m 3m @ 2.0g/t Au from 108m					
PMPC1342	4m @ 6.0g/t Au from 63m 2m @ 3.53g/t Au from 76m	PMPC1389	5m @ 1.42g/t Au from 32m					
PMPC1343	1m @ 5.0g/t Au from 38m	PMPC1391	6m @ 1.89g/t Au from 57m					
PMPC1345	8m @ 2.19g/t Au from 42m	PMPC1392	9m @ 6.64g/t Au from 46m					

NORTON GOLD FIELDS

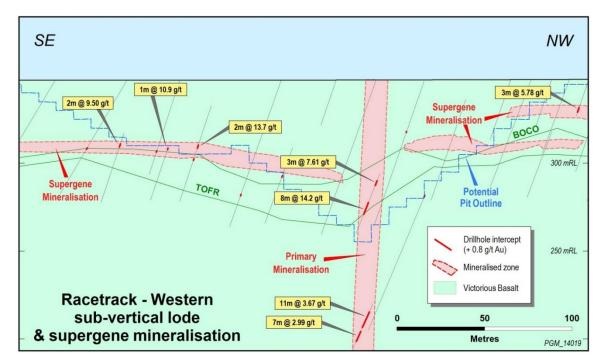
Racetrack West (continued)								
PMPC1351	2m @ 2.96g/t Au from 53m	PMPC1393	7m @ 8.61g/t Au from 14m					
PMPC1352	2m @ 2.75g/t Au from 56m	PMPC1400	11m @ 1.47g/t Au from 16m					
PMPC1359	3m @ 2.31g/t Au from 80m	PMPC1402	3m @ 2.17g/t Au from 108m					
PMPC1360	1m @ 5.52g/t Au from 76m	PMPC1403	4m @ 1.96g/t Au from 66m					
PMPC1361	6m @ 7.41g/t Au from 88m 10m @ 1.35g/t Au from 110m	PMPC1404	4m @ 11.0g/t Au from 66m					
PMPC1362	2m @ 7.08g/t Au from 114m	PMPC1409	2m @ 6.02g/t Au from 69m 9m @ 6.93g/t Au from 83m					
PMPC1364	4m @ 2.39g/t Au from 115m	PMPC1410	3m @ 1.96g/t Au from 89m					
PMPC1367	2m @ 3.31g/t Au from 91m 3m @ 2.01g/t Au from 109m	PMPC1411	2m @ 14.1g/t Au from 72m					
PMPC1368	5m @ 4.57g/t Au from 98m 4m @ 1.95g/t Au from 113m 8m @ 5.59g/t Au from 151m	PMPC1416	2m @ 27.1g/t Au from 42m					
PMPC1369	9m @ 10.6g/t Au from 80m	PMPC1417	2m @ 4.02g/t Au from 39m					
PMPC1370	15m @ 6.91g/t Au from 65m	PMPC1420	1m @ 10.5g/t Au from 41m					
PMPC1373	4m @ 2.60g/t Au from 75m	PMPC1421	5m @ 1.49g/t Au from 53m					
PMPC1374	4m @ 3.54g/t Au from 71m	PMPC1423	1m @ 6.44g/t Au from 42m 1m @ 5.77g/t Au from 52m					
PMPC1376	6m @ 2.53g/t Au from 62m	PMPC1424	1m @ 5.80g/t Au from 43m					
PMPC1378	4m @ 2.48g/t Au from 63m	PMPC1425	2m @ 6.08g/t Au from 42m					
PMPC1380	1m @ 6.59g/t Au from 67m	PMPC1427	3m @ 2.36g/t Au from 34m					
PMPC1381	2m @ 5.20g/t Au from 55m	PMPC1430	1m @ 5.39g/t Au from 41m					

A full list of drilling results for both Racetrack and Racetrack West are appended in Tables 5 and 6 respectively. Drilling locations are illustrated in Figure 8. Schematic cross sections are depicted below in Figures 9 – 11 below.


The main Racetrack primary lodes are a series of stacked, northeast (060 degree) trending mineralised structures generally 2 to 5m in true width and characterised by zones of shearing and brecciation within mafic volcanic host rocks with pervasive alteration mineral assemblages including ankerite-sericite-pyrite-arsenopyrite. The most significant primary lodes have been labelled the Main Lode, Splay Lode and Dogtrack Lode. Refractory gold mineralisation is associated with arsenopyrite.

Mineralisation in the Racetrack West area includes both supergene and primary ore zones associated with: 1) the northerly trending Black Flag West Fault Zone, 2) a recently identified northeast (060 degree) trending sub-vertical lode, and 3) adjacent flat lying supergene mineralisation.

In the Woolshed South Extended area of Racetrack West, locally broad (~10m wide) zones of primary mineralisation occur immediately adjacent to a shallow pre-existing oxide pit, with mineralisation plunging to the north. More northerly extensions of mineralisation are being evaluated between the historic Woolshed South and Woolshed South Extended pits


NORTON GOLD FIELDS

In most areas mineralisation remains open at depth, and deeper drilling continues to extend mineralisation. High grade intercepts in historic drilling at depth in the northeastern area of the Main Lode indicate potential for a higher grade resource amenable to underground mining.

Figure 9: Racetrack Prospect – Schematic cross section, Main Lode area

Figure 10: Racetrack West Prospect – Schematic cross section

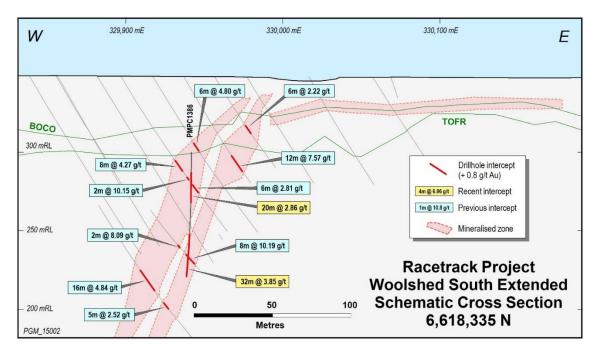


Figure 11: Racetrack West – Woolshed South Extended Prospect – Schematic Cross Section

Tuart Prospect, Mount Pleasant Project

The Tuart deposit comprises a series of high grade quartz-carbonate-sulphide brecciated or laminated veins hosted within mafic volcanics. Supergene oxide mineralisation is developed in the regolith immediately above and/or adjacent to the primary veins. Mineralisation covers a broad area located to the northwest of the Homestead underground mine, and immediately west of the historically mined Quarters open pit and underground mine.

The greater Tuart resource area captures five main primary mineralised veins on varying orientations along with overlying and adjacent supergene oxide mineralisation. The primary veins are labelled the Tuart 060, 115 and 080 Veins, the Quarters 040 Vein, and the Golden Swan 090 Vein.

Recent drilling programs have targeted mineralisation in the hangingwall of the Tuart 060 Vein (4 surface diamond drill holes for 1,494.4m), and the Quarters 040 Vein (2 RC drill holes for 474m), both aimed at identifying high grade mineralisation capable of underground exploitation.

Core from the Tuart 060 Vein is still to be logged and sampled and results will be reported in the next period. Results for the short Quarters 040 program did not return any significant mineralisation.

Mulgarrie Well Prospect, Mulgarrie Project

The Mulgarrie Well Prospect is located 1km north along strike of the larger and better defined Mulgarrie Prospect, and 30km east-northeast of the Paddington mill. A program of 22 RC drill holes has been completed to evaluate shallow mineralisation. Significant down-hole results from the program include:

PMPGC0057	2m @ 17.6g/t Au from 94m
	5m @ 3.70g/t Au from surface
PMPGC0062	7m @ 1.42g/t Au from 18m
DAADC COO/F	
PMPGC0065	9m @ 1.89g/t Au from 12m
PMPGC0066	6m @ 3.36g/t Au from 27m
	4m @ 6.96g/t Au from 39m
PMPGC0068	6m @ 1.52g/t Au from 21m
	6m @ 1.83g/t Au from 30m
PMPGC0069	9m @ 3.54g/t Au from 39m
PMPGC0070	1m @ 6.27g/t Au from 79m
PMPGC0071	1m @ 9.95g/t Au from 32m
PMPGC0074	14m @ 1.34g/t Au from 66m

All drilling results from the program are appended in Table 7. A drilling location plan is appended in Figure 12. A schematic cross section is illustrated below in Figure 13.

Drilling has intersected sheared carbonate-silica-biotite altered ultramatic rocks. Significant intercepts at shallow depth confirm that the prospect has the potential to deliver a relatively higher grade oxide-transitional resource suitable for open cut mining. Further drilling will be planned.

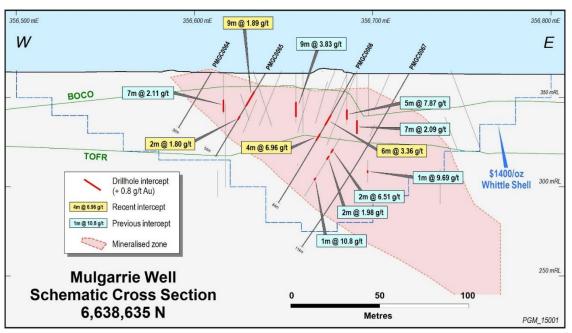


Figure 12: Mulgarrie Well Prospect – Schematic Cross Section

Table 2: Black Flag West – Henning Vein – Significant UG Diamond Drilling Results (long section view showing drill hole pierce points depicted in Figure 5)

Hole_ID	AMG_East	AMG_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au
HUD1073	330322.9	6619727.6	195.3	-2.38	128.15	86.5	44.1	46.3	2.2	13.6
HUD1074	330322.5	6619727.7	195.3	-2.37	144.49	83	36.0	39.7	3.7	9.53
							50.3	51.0	0.7	3.88
HUD1075	330323.0	6619727.7	195.4	-2.16	155.32	90	60.5	61.0	0.5	12.0
							65.75	66.5	0.75	27.8
HUD1076	330322.8	6619727.6	194.9	-17.16	128.09	91.6	27.0	27.7	0.7	3.55
							34.3	35.0	0.7	4.22
							37.2	37.5	0.3	39.5
							42.0	43.0	1.0	36.0
							53.3	56.9	3.6	9.04
							61.0	63.5	2.5	3.67
HUD1078	330322.6	6619727.8	194.6	-31	128	111	41.4	41.7	0.3	13.4
							57.9	58.9	1.0	21.4
							75.9	76.8	0.9	46.8
							82.3	82.75	0.45	4.97
							85.0	86.2	1.2	14.0
							92.3	92.7	0.4	9.56
HUD1080	330322.2	6619728.0	196.5	21	144.5	92.2	25.0	34.0	9.0	10.5
						(Incl.)	25.0	26.0	1.0	75.4
							87.0	89.0	2.0	10.3
HUD1084	330340.4	6619724.7	196.6	-38	123	138	0.8	1.25	0.45	12.2
							20.9	21.4	0.5	6.89
							47.4	47.9	0.5	5.84
HUD1086	330321.7	6619728.1	196.6	25	155	98	26.2	27.0	0.8	4.11
							34.6	35.0	0.4	4.05
							44.0	45.0	1.0	4.15
							65.8	66.5	0.7	6.70
Analysis by 30g Fire Assay Results compiled by using a 3.5 g/t cut-off grade, no top-cut grade										
Maximum of 2m internal dilution, minimum interval of 0.3 m										

Table 3: Black Flag West Deeps – Significant UG Diamond Drilling Results (long section view showing drill hole pierce points depicted in Figure 6)

Hole_ID	AMG_East	AMG_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au
HUD1065	330126.0	6619795.8	-115.3	0	51.4	383.4	260.5	261.0	0.5	151
							372.0	373.4	1.4	9.79
HUD1066	330125.5	6619796.2	-114.9	9	37.2	376.1	221.0	222.0	1.0	4.76
							251.0	252.7	1.7	15.5
							280.5	281.0	0.5	4.50
HUD1070	330126.0	6619795.8	-115.6	-10.5	51.4	459.1	335.0	336.0	1.0	5.42
							409.0	410.0	1.0	3.52
							451.5	452.3	0.8	3.73
Analysis by	Analysis by 30g Fire Assay									
Results compiled by using a 3.5 g/t cut-off grade, no top-cut grade										
Maximum	Maximum of 2m internal dilution, minimum interval of 0.3 m									

Table 4: Bullant – Main Lode – Significant UG Diamond Drilling Results
(long section view showing drill hole pierce points depicted in Figure 7)

Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au
BUGD1048	313531.6	6621280.3	-329.6	-55	309.55	386.8	124.0	126.0	2.0	7.52
							133.0	136.0	3.0	4.34
							303.6	304.3	0.7	8.65
BUGD1050	313413.1	6621403.9	-354.8	-25.5	225.3	164.5	98.6	99.5	0.9	19.1
BUGD1051	313412.2	6621404.2	-354.2	-3.5	245.3	125.5	78.8	83.1	4.3	3.86
BUGD1052	313410.8	6621404.6	-352.7	21.8	276	134.4	8.5	8.85	0.35	11.9
BUGD1053	313411.2	6621405.0	-355.1	-33.5	276	134.5	26.0	26.8	0.8	11.3
							85.87	86.4	0.53	13.3
BUGD1054	313410.4	6621405.7	-351.6	35.5	300	158.3	144.4	145	0.6	5.1
BUGD1055	313410.3	6621405.8	-354.3	-3.5	300	137.3				NSR
BUGD1056	313409.9	6621406.8	-353.0	15	315	182.3	153.0	156.0	3.0	17.6
							174.45	175.2	0.75	6.82
BUGD1057	313409.9	6621406.8	-355.1	-21.5	315	173.5				NSR
BUGD1058	313410.3	6621407.4	-352.5	25	325	263.7	215.5	217.9	2.4	8.35
BUGD1059	313410.0	6621407.4	-354.2	-2	325	216	17.0	18.65	1.65	4.18
BUGD1060	313413.3	6621403.4	-354.3	-3.1	225.2	140.5	97.5	99.3	1.8	6.67
BUGD1061	313412.3	6621404.0	-352.9	21.7	245.3	119.6	8.3	8.8	0.5	21.6
							94.0	95.0	1.0	4.77
BUGD1062	313412.4	6621404.3	-355.0	-31.3	245.2	137.6	116.15	117.15	1.0	3.77
BUGD1063	313411.3	6621404.7	-354.3	-4.1	276	107.3	79.45	80.7	1.25	4.93
BUGD1064	313410.4	6621406.0	-353.0	19.1	300	141	117.1	118.3	1.2	6.01
BUGD1065	313410.3	6621405.9	-355.1	-28.3	300	119.5				NSR
BUGD1066	313410.0	6621406.5	-355.0	-28.3	315	176.4				NSR
BUGD1067	313409.9	6621406.5	-354.2	-2.6	315	148.7				NSR
BUGD1068	313409.9	6621407.1	-353.4	12.5	325	205.5	198.8	200.8	2.0	5.52
BUGD1069	313409.7	6621407.1	-354.8	-17.1	174	185.4				NSR
BUGD1073	313412.2	6621405.5	-354.4	-53.3	276	134.5	108.2	111.0	2.8	6.54
BUGD1074	313410.5	6621407.7	-354.5	-40.5	315.0	155.4	56.65	57.2	0.55	10.6
							133.1	135.0	1.9	18.6
BUGD1076	313413.6	6621404.0	-354.2	-47.3	225.2	137.4	61.6	62.5	0.9	4.49
							113.65	114.55	0.9	14.5
BUGD1078	313412.2	6621405.5	-354.4	-53.6	245.2	155.4	112.45	113.45	1.0	4.56
Analysis by 3	Og Fire Assay									
Results comp	oiled by using	a 3.5 g/t cut-a	off grade	, no top-	cut grade	;				

Results compiled by using a 3.5 g/t cut-off grade, no top-cut grade

Maximum of 2m internal dilution, minimum interval of 0.3 m

Table 5: Racetrac	a – Significant Diamond	Drilling Results
-------------------	-------------------------	------------------

Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au
PMPD0085	330912.2	6618349.6	348.1	-55	146	254.5	52.9	53.3	0.4	2.88
							67.0	72.0	5.0	5.68
							75.5	75.9	0.4	1.38
							114.5	115.3	0.8	9.02
							188.0	194.2	6.2	6.15
							233.7	234.2	0.5	5.62
PMPD0087	330935.3	6618357.5	348.0	-55	146	240	50.0	52.0	2.0	4.95
							58.0	62.0	4.0	0.54
							68.0	70.0	2.0	1.57
							116.8	117.5	0.7	3.56
							159.0	160.0	1.0	6.22
							182.4	182.7	0.3	20.1
							185.0	196.0	11.0	6.12
PMPD0091	331202.8	6618414.4	347.1	-90	0	186.2	118.0	118.44	0.44	14.6
							138.47	140.0	1.53	2.97
							173.69	177.0	3.31	1.09
PMPD0092	331216.4	6618465.8	349.2	-70	146	168.1	81.1	82.0	0.9	1.17
			•				127.3	128.15	0.85	1.70
							131.57	138.33	6.76	7.84
PMPD0098	330914.1	6618455.0	349.7	-60	234.2	102	117.6	118.0	0.4	3.70
						-	167.5	167.8	0.3	3.23
							272.0	273.0	1.0	1.38
							285.0	285.7	0.7	2.24
PMPD0100	331386.1	6618608.8	367.1	-70	146	237.3	97.0	98.0	1.0	1.01
	00100011		00/11	, 0		20/10	114.0	115.0	1.0	0.83
							117.1	117.4	0.3	11.1
							154.7	155.3	0.6	3.81
							159.55	160.0	0.45	11.4
PMPD0101	331386.8	6618607.9	367.1	-55	146	229.5	82.85	84.0	1.15	2.25
							86.5	87.65	1.15	5.55
							104.0	104.5	0.5	6.68
							184.9	185.9	1.0	2.05
							214.0	215.0	1.0	0.91
PMPD0102	331364.0	6618605.2	367.1	-70	146	228.3	108.0	109.0	1.0	1.01
	00100110	001000012	00711	, 0		22010	116.0	119.85	3.85	2.56
							124.1	132.0	7.9	9.65
							147.0	148.0	1.0	1.24
							159.15	159.7	0.55	2.33
							161.75	162.05	0.3	5.16
							164.45	165.05	0.6	19.7
							223.9	224.2	0.3	7.80
PMPD0103	331364.7	6618604.3	367.1	-55	146	225.1	78.25	78.8	0.55	2.14
I MII DOTOO	001004.7	0010004.0	007.1	00	140	220.1	96.65	97.3	0.65	3.57
							99.75	100.2	0.45	2.92
							109.45	113.0	3.55	8.45
							161.75	162.1	0.35	0.88
							194.75	195.2	0.45	1.60
							210.0	211.0	1.0	3.61
	30g Fire Assa			I					ı	L

Results compiled by using a 0.8 g/t cut-off grade, no top-cut gra Maximum of 2m internal dilution, minimum interval of 0.3 m NSR - No Significant Result

Table 5:	Racetrack – Significar	t Diamond Drilling	a Results	(Cont.)	
	Nacchack orginitea	n Brannona Brinnig	,		

Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au
PMPD0106	331347.8	6618581.7	359.1	-70	140	278.7	111.0	111.3	0.3	3.48
							133.6	133.9	0.3	3.77
							146.45	148.0	1.55	2.76
							151.0	153.35	2.35	9.87
							203.0	204.0	1.0	2.18
							240.0	241.0	1.0	2.01
PMPD0107	331348.4	6618580.8	359.1	-55	140	285.1	54.4	55.0	0.6	0.94
							90.6	91.2	0.6	3.04
							104.0	105.0	1.0	1.17
							127.1	127.4	0.3	5.33
							136.2	136.5	0.3	6.92
							149.1	151.45	2.35	14.2
							193.2	194.75	1.55	1.81
							208.2	208.6	0.4	1.73
PMPD0108	331333.9	6618576.4	358.5	-55	146	102.4				NSR
PMPD0109	331306.6	6618585.0	358.4	-60	146	192.3	158.3	161.0	2.7	6.17
							187.0	187.45	0.45	1.88
PMPD0110	331347.3	6618630.4	367.6	-74	146	237.3	95.0	96.0	1.0	1.35
							144.5	145.0	0.5	0.95
							163.0	168.0	5.0	9.97
							171.0	172.0	1.0	1.29
							184.0	188.0	4.0	7.53
PMPD0112	330781.4	6618283.8	347.6	-54	156	318	85.3	88.6	3.3	1.10
							94.3	95.2	0.9	1.65
							134.0	135.0	1.0	1.31
							139.25	140.0	0.75	6.75
							162.0	163.0	1.0	2.09
							170.0	171.5	1.5	1.19
							174.0	174.8	0.8	0.88
							178.5	183.0	4.5	2.48
							187.0	188.0	1.0	1.13
							228.9	229.25	0.35	1.18

Maximum of 2m internal dilution, minimum interval of 0.3 m

Table 6: Racetrack West – Significant RC Drilling Results	

Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au
PMPC1326	329952.1	6617964.7	347.9	-60	150	138	80	82	2	2.69
PMPC1327	330100.7	6617829.8	347.3	-70	150	90	37	39	2	1.57
PMPC1328	330056.3	6617866.6	347.5	-70	150	78	45	46	1	3.46
PMPC1331	330106.1	6618362.5	347.8	-60	90	90	20	22	2	4.34
							31	32	1	4.65
							51	52	1	1.35
							82	83	1	3.90
PMPC1332	330119.2	6618376.8	347.7	-60	90	96	24	25	1	1.53
							32	33	1	1.73
							40	43	3	1.01
							51	52	1	1.07
							58	61	3	3.05
							71	72	1	0.97
PMPC1333	330137.1	6618396.4	347.8	-60	90	96	20	21	1	2.64
							38	39	1	1.04
							66	67	1	0.80
PMPC1334	330097.5	6618397.5	347.6	-60	90	102	23	24	1	2.23
							81	83	2	2.27
PMPC1335	330113.4	6618416.8	347.9	-60	90	90	15	23	8	1.47
							51	52	1	1.33
							83	84	1	1.73
PMPC1336	330118.5	6618436.9	347.9	-60	90	90	20	21	1	1.65
PMPC1337	330165.8	6617996.1	347.4	-70	150	72	49	50	1	1.13
PMPC1338	330083.5	6617819.6	347.4	-70	150	60	44	45	1	5.03
							57	58	1	5.57
PMPC1339	330048.3	6617880.8	347.5	-70	150	60	42	47	5	2.44
PMPC1340	330027.5	6617916.3	347.6	-70	150	60	44	46	2	1.59
PMPC1341	330007.8	6617950.8	347.7	-70	150	72	59	60	1	2.09
PMPC1342	329975.2	6618003.7	347.8	-60	150	114	59	60	1	3.59
							63	67	4	6.00
							76	78	2	3.53
PMPC1343	330101.8	6617866.5	347.4	-70	150	54	38	39	1	5.00
PMPC1344	330054.8	6617949.3	347.7	-70	150	66	42	43	1	2.12
PMPC1345	330079.3	6617946.0	347.5	-70	150	84	42	50	8	2.19
PMPC1346	330176.9	6617898.5	347.2	-70	150	60				NSR
PMPC1347	330157.0	6617932.7	347.3	-70	150	60	46	47	1	1.77
PMPC1348	330215.2	6617910.1	347.2	-70	150	66	29	32	3	1.14
PMPC1349	330196.2	6617944.5	347.4	-70	150	60				NSR
PMPC1350	330213.5	6617954.6	347.3	-70	150	60				NSR
PMPC1351	330193.3	6617989.5	347.5	-70	150	66	53	55	2	2.96
	30g Fire Assa	-								
		g a 0.8 g/t cu	it-off gra	de, no to	p-cut gr	ade				

Maximum of 2m internal dilution, minimum interval of 1.0 m

Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au
	330027.2	6617833.8	347.6	-70	150	66	56	58	2	2.75
PMPC1353	329982.9	6617914.0	347.8	-70	150	96	66	67	1	2.48
PMPC1354	329918.4	6617944.8	348.1	-60	150	84				NSR
PMPC1355	330194.9	6618146.3	347.5	-60	150	120	106	107	1	0.86
PMPC1356	330172.6	6618105.2	347.6	-60	150	84				NSR
PMPC1357	330160.2	6618127.1	347.5	-60	150	120	73	74	1	1.26
							77	79	2	2.42
PMPC1358	330155.1	6618096.3	347.6	-60	150	90	43	44	1	1.87
							73	74	1	1.33
PMPC1359	330139.5	6618122.3	347.7	-60	150	138	80	83	3	2.31
							106	110	4	1.08
							120	121	1	0.80
PMPC1360	330056.6	6618031.3	347.7	-60	150	102	44	45	1	4.27
							76	77	1	5.52
PMPC1361	330047.5	6618047.5	347.6	-60	150	120	88	94	6	7.41
							110	120	10	1.35
PMPC1362	330038.7	6618062.8	347.7	-60	150	150	114	116	2	7.08
PMPC1363	330031.0	6618030.6	347.7	-60	150	120	41	42	1	1.05
							60	61	1	1.21
							75	76	1	1.20
							94	95	1	0.90
PMPC1364	330018.9	6618051.6	347.7	-60	150	156	115	119	4	2.39
PMPC1365	330017.0	6618014.2	347.8	-60	150	108	55	56	1	1.26
							65	66	1	1.53
							91	92	1	0.93
PMPC1366	330006.5	6618033.2	347.8	-60	150	150	75	76	1	4.48
PMPC1367	329945.1	6617980.4	348.1	-60	150	126.5	91	93	2	3.31
							109	112	3	2.01
							117	118	1	0.83
PMPC1368	329931.6	6618002.8	348.2	-60	150	162	98	103	5	4.57
							113	117	4	1.95
							151	159	8	5.59
PMPC1369	329924.0	6617975.6	348.2	-60	150	120	80	89	9	10.56
PMPC1370	330124.7	6618106.8	347.6	-60	150	120	65	80	15	6.91
							83	85	2	1.19
							94	95	1	0.86
							113	115	2	0.95
PMPC1371	330090.7	6618087.0	347.7	-60	150	120	36	39	3	1.26
PMPC1372	329982.4	6618034.8	347.9	-60	150	180	178	179	1	0.80
PMPC1373	330004.1	6617996.7	347.9	-60	150	102	75	79	4	2.60
							84	85	1	1.19
Analysis by 3	80g Fire Assay	/								

Table 6: Racetrack West - Significant RC Drilling Results (Cont.)

Results compiled by using a 0.8 g/t cut-off grade, no top-cut grade

Maximum of 2m internal dilution, minimum interval of 1.0 m

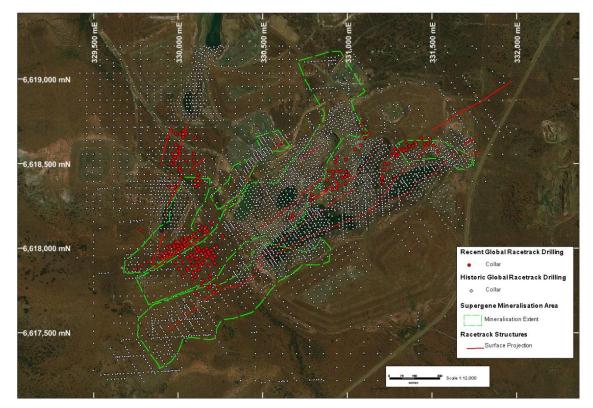
Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au
PMPC1374	329973.6	6617968.9	347.9	-60	150	90	71	75	4	3.54
PMPC1375	329901.3	6617935.3	348.4	-60	150	84				NSR
PMPC1376	329889.9	6617955.1	348.3	-60	150	120	62	68	6	2.53
							71	72	1	1.48
PMPC1377	329851.5	6617939.3	348.5	-60	150	136				NSR
PMPC1378	329817.2	6617919.4	348.8	-60	150	136	44	45	1	1.02
							63	67	4	2.48
							75	77	2	1.37
							80	81	1	0.85
PMPC1379	329783.6	6617898.8	349.0	-60	150	136	58	59	1	3.06
							121	122	1	0.86
PMPC1380	330007.3	6618477.2	348.0	-60	90	138	5	6	1	1.46
							67	68	1	6.59
							91	92	1	3.90
							104	105	1	3.16
PMPC1381	329959.0	6618501.2	348.3	-60	90	66	55	57	2	5.20
PMPC1382	329983.2	6618501.1	348.1	-60	90	60	33	34	1	0.91
PMPC1383	330007.8	6618458.7	347.8	-60	90	120	7	12	5	1.23
							25	26	1	2.27
							58	59	1	1.44
							62	64	2	3.29
							78	79	1	1.53
PMPC1384	329967.9	6618519.7	347.7	-60	90	60	42	43	1	6.45
PMPC1385	329980.2	6618362.5	348.1	-60	90	78	13	14	1	1.03
							39	42	3	1.02
							47	54	7	2.96
PMPC1386	329942.3	6618363.0	348.1	-60	90	150	65	85	20	2.86
							98	99	1	1.09
							106	138	32	3.83
PMPC1387	330089.1	6618520.2	347.7	-60	90	90	32	33	1	3.05
							52	53	1	1.53
							58	59	1	1.25
							72	76	4	2.93
							86	87	1	27.60
PMPC1388	330047.2	6618519.9	347.7	-60	90	120	18	20	2	6.33
							83	84	1	1.67
							104	105	1	0.86
							108	111	3	2.00
PMPC1389	329980.4	6618538.7	348.2	-60	90	60	32	37	5	1.42
PMPC1390	330092.0	6618558.2	348.2	-60	90	120	29	30	1	3.43
							110	111	1	0.84

Table 6: Racetrack West - Significant RC Drilling Results (Cont.)

Results compiled by using a 0.8 g/t cut-off grade, no top-cut grade

Maximum of 2m internal dilution, minimum interval of 1.0 m

Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au
PMPC1391	330008.0	6618557.7	348.2	-60	90	66	39	41	2	1.44
							57	63	6	1.89
PMPC1392	329966.9	6618558.4	348.2	-60	90	78	19	20	1	0.90
							39	40	1	2.58
							46	55	9	6.64
PMPC1393	329994.2	6618576.2	348.2	-60	90	60	14	21	7	8.61
							24	25	1	0.80
							45	46	1	0.81
PMPC1394	330008.5	6618594.6	348.3	-60	90	60	39	40	1	2.64
PMPC1395	329982.5	6618613.9	348.4	-60	90	72	41	45	4	1.23
PMPC1396	329938.0	6618657.2	348.6	-60	90	145	101	102	1	2.86
							105	108	3	1.89
							131	132	1	2.13
PMPC1397	330101.2	6618656.7	348.3	-60	90	72				NSR
PMPC1398	330047.7	6618677.1	348.3	-60	90	78	54	55	1	3.58
PMPC1399	330029.3	6618656.9	348.5	-60	90	84	68	69	1	0.85
PMPC1400	330008.4	6618676.6	348.5	-60	90	84	16	27	11	1.47
							57	58	1	0.85
							69	71	2	2.21
PMPC1401	329983.3	6618677.2	348.5	-75	90	138	23	25	2	1.42
							108	109	1	2.02
PMPC1402	329957.8	6618696.7	348.5	-60	90	138	33	34	1	1.48
							49	51	2	1.24
							91	92	1	0.93
							108	111	3	2.17
							121	122	1	1.07
PMPC1403	330029.0	6618696.4	348.5	-60	90	78	36	40	4	0.81
							66	70	4	1.96
PMPC1404	330102.4	6618065.2	347.6	-60	150	96	66	70	4	10.98
PMPC1405	330080.1	6618065.8	347.5	-60	150	102				NSR
PMPC1406	330064.8	6618056.7	347.6	-60	150	114				NSR
PMPC1407	329995.5	6618016.3	347.8	-60	150	120				NSR
PMPC1408	329973.0	6618017.0	347.8	-60	150	150	51	53	2	2.20
PMPC1409	329951.2	6618008.8	348.0	-60	150	156	60	62	2	2.45
							69	71	2	6.02
							83	92	9	6.93
PMPC1410	329935.8	6617955.0	348.1	-60	150	102	89	92	3	1.96
PMPC1411	329906.9	6617965.5	348.1	-60	150	120	72	74	2	14.13
PMPC1412	329749.0	6617879.0	349.1	-60	150	138	66	67	1	1.05
PMPC1413	330228.5	6618008.3	347.5	-70	150	66				NSR
	30g Fire Assay	ļ								
	-	, g a 0.8 g/t cu	t-off gra	de, no to	p-cut gr	ade				
		dilution, minir	-							


Table 6: Racetrack West – Significant RC Drilling Results (Cont.)

Hole_ID	MGA Fast	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au
PMPC1414	330169.5	6617950.4	347.3	-70	150	72	35	36	1	4.11
PMPC1415	330159.3	6617968.6	347.3	-70	150	72	44	45	1	3.90
PMPC1416	330148.9	6617986.0	347.4	-70	150	70	26	27	1	1.35
	000140.7	0017700.0	-, ,+0	70	100	12	42	44	2	27.07
PMPC1417	330133.9	6617971.8	347.4	-70	150	72	39	41	2	4.02
PMPC1418	330114.2	6618006.7	347.5	-70	150	72	31	32	1	1.69
	0001112		0 1/ 10			· =	45	46	1	0.82
PMPC1419	330144.5	6617912.5	347.2	-70	150	60	46	47	1	3.72
							59	60	1	2.84
PMPC1420	330125.2	6617947.6	347.3	-70	150	66	41	42	1	10.50
PMPC1421	330106.9	6617979.2	347.4	-70	150	72	53	58	5	1.49
PMPC1422	330097.9	6617994.5	347.6	-70	150	84	37	38	1	1.30
PMPC1423	330127.3	6617902.5	347.3	-70	150	60	42	43	1	6.44
							52	53	1	5.77
PMPC1424	330118.1	6617918.3	347.3	-70	150	78	43	44	1	5.80
PMPC1425	330107.6	6617937.3	347.4	-70	150	78	42	44	2	6.08
PMPC1426	330071.3	6617960.6	347.4	-70	150	78				NSR
PMPC1427	330120.4	6617873.9	347.3	-70	150	60	34	37	3	2.36
PMPC1428	330106.5	6617898.3	347.4	-70	150	66	40	41	1	0.81
PMPC1429	330083.4	6617898.3	347.5	-70	150	54	40	41	1	0.84
PMPC1430	330084.4	6617858.0	347.4	-70	150	60	41	42	1	5.39
Analysis by 3	Og Fire Assay	ý			•	•				
Results comp	biled by using	g a 0.8 g/t cu	t-off gra	de, no to	p-cut gr	ade				
Maximum of	2m internal	dilution, minir	num inte	rval of 1.	0 m					
NSR - No Sigr	nificant Resu	Its								

Table 6: Racetrack West - Significant RC Drilling Results (Cont.)

Figure 8: Racetrack & racetrack West – Drill hole location plan

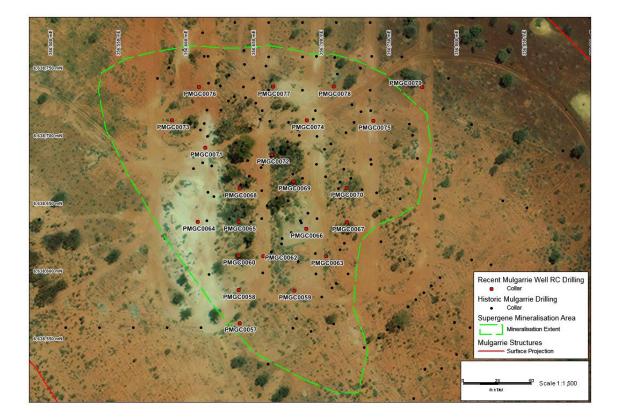

Hole_ID	MGA_East	MGA North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au
PMPGC0057	356640.6	6638560.5	363.6	-60	270	96	28	29	1	2.54
							94	96	2	17.6
PMPGC0058	356639.6	6638584.9	363.6	-60	270	78	13	14	1	3.13
PMPGC0059	356681.0	6638584.6	363.4	-60	270	84				NSR
PMPGC0060	356639.6	6638610.4	363.6	-60	270	60	1	2	1	0.95
PMPGC0062	356657.9	6638610.0	363.4	-55	270	60	0	5	5	3.70
							18	25	7	1.42
							37	38	1	3.02
PMPGC0063	356704.5	6638609.9	363.4	-60	270	90	58	59	1	1.09
							71	72	1	0.85
PMPGC0064	356609.5	6638635.4	364.1	-60	270	36	16	17	1	0.80
							29	30	1	1.67
PMPGC0065	356639.7	6638635.2	363.5	-60	270	54	12	21	9	1.89
							28	30	2	1.80
							35	36	1	0.89
PMPGC0066	356689.6	6638630.3	363.5	-60	270	84	27	33	6	3.36
							39	43	4	6.96
							52	53	1	1.00
PMPGC0067	356720.1	6638634.9	363.2	-60	270	114	93	94	1	1.04
PMPGC0068	356640.5	6638660.0	363.7	-60	270	84	21	27	6	1.52
							30	36	6	1.83
							46	47	1	3.04
							56	57	1	1.10
PMPGC0069	356680.2	6638665.2	363.6	-60	270	90	39	48	9	3.54
							55	56	1	1.00
PMPGC0070	356719.5	6638660.3	363.6	-60	270	120	62	63	1	1.62
							69	70	1	4.35
							79	80	1	6.27
							87	88	1	4.29
PMPGC0071	356615.1	6638690.2	363.9	-60	270	102	32	33	1	9.95
PMPGC0072	356664.5	6638685.2	363.7	-60	270	78	45	50	5	0.96
PMPGC0073	356590.7	6638710.3	364.0	-60	270	66	9	10	1	1.16
							41	42	1	0.93
PMPGC0074	356690.2	6638710.4	364.1	-60	270	150	66	80	14	1.34
							84	87	3	0.95
							95	96	1	0.91
PMPGC0075	356739.5	6638710.1	364.2	-60	270	78				NSR
PMPGC0076	356610.3	6638735.1	364.1	-60	270	78	34	35		0.84
	0544455	((0.0 - 0 - 0			070		43	45	2	1.48
PMPGC0077	356665.1	6638735.2	364.3	-60	270	114	32	33	1	0.87
D. (D. C. C. T. T.)	05/515.5						79	82	3	0.96
PMPGC0078		6638735.2	364.6	-60	270	78				NSR
PMPGC0079		6638735.0	364.6	-60	270	102		l		NSR
Analysis by 30	• ·									
		a 0.8 g/t cut-o	-		-					
Maximum of 2	2m internal di	ution, minimun	n interva	ot 1.0 m						

Table 7: Mulgarrie Well – Significant RC Drilling Results

Maximum of 2m internal dilution, minimum interval of 1.0 m

Figure 12: Mulgarrie Well – Drill hole location plan

Tenement	Status	Holders	Locality	Anniversary	Term	Expiry	Area (HA)
E24/146	Live	KALNORTH GOLD MINES LIMITED	Ringlock Dam	15-May-15	5 Years (Extended)	14-May-17	9823.24
E24/149	Live	KALNORTH GOLD MINES LIMITED	GIMLET DAM	25-Jul-15	5 Years (Extended)	24-Jul-17	9411.27
E24/157	Live	KALNORTH GOLD MINES LIMITED	Kanow na	30-Dec-14	5 Years (Extended)	29-Dec-18	1894.7
E24/171	Live	KALNORTH GOLD MINES LIMITED	MULGARRIE	05-Sep-15	5 Years	04-Sep-16	5938.74
E27/300	Live	KALNORTH GOLD MINES LIMITED	MT JEWELL	24-Mar-15	5 Years (Extended)	23-Mar-15	195.39
E27/333	Live	KALNORTH GOLD MINES LIMITED	Silver Sw an North	13-Nov-15	5 Years (Extended)	12-Nov-16	1895.84
E27/404	Live	KALNORTH GOLD MINES LIMITED	Mt Jew ell	25-Sep-15	5 Years	24-Sep-14	1681.28
E27/422	Live	KALNORTH GOLD MINES LIMITED	Mulgarrie	05-Oct-15	5 Years	04-Oct-15	1243.29
G24/11	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	02-Sep-15	21 Years (Renew ed)	01-Sep-30	9.295
G24/12	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	02-Sep-15	21 Years (Renew ed)	01-Sep-30	3.7815
G24/19	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	17-Oct-15	21 Years (Renew ed)	16-Oct-31	4.803
G24/20	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	17-Oct-15	21 Years (Renew ed)	16-Oct-31	6.115
G24/3	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	17-Mar-15	21 Years (Extended)	16-Mar-28	4.8005
G24/38	Live	PADDINGTON GOLD PTY LIMITED	Mt Ellis	23-Aug-15	21 Years	22-Aug-15	8.814
G24/8	Live	PADDINGTON GOLD PTY LIMITED	ORA BANDA	25-Nov-15	21 Years (Renew ed)	24-Nov-30	4.503
G24/9	Live	PADDINGTON GOLD PTY LIMITED	ORA BANDA	25-Nov-15	21 Years (Renew ed)	24-Nov-30	6.1985
L16/48	Live	PADDINGTON GOLD PTY LIMITED	Breakaw ay Dam	07-Apr-15	5 Years (Renew ed)	06-Apr-17	15
L16/74	Live	PADDINGTON GOLD PTY LIMITED	ROCKY DAM N.E	07-Mar-15	21 Years	06-Mar-24	30
L16/87	Live	KALGOORLIE MINING COMPANY (BULLANT) PTY LTD	Broads Dam - Rocky Dam	20-Aug-15	21 Years	19-Aug-33	14
L16/89	Live	KALGOORLIE MINING COMPANY (BULLANT) PTY LTD	Carbine - Haw kins Find 2	03-Sep-15	21 Years	02-Sep-33	5
L16/90	Live	KALGOORLIE MINING COMPANY (BULLANT) PTY LTD	Haw kins Find	03-Sep-15	21 Years	02-Sep-33	18
L24/109	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	20-Sep-15	5 Years (Renew ed)	19-Sep-18	0.04
L24/110	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	20-Sep-15	5 Years (Renew ed)	19-Sep-18	1.4
L24/111	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	25-Oct-15	5 Years (Renew ed)	24-Oct-18	0.04
L24/112	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	22-Dec-14	5 Years (Renew ed)	21-Dec-18	0.35
L24/119	Live	PADDINGTON GOLD PTY LIMITED	BROAD ARROW	10-Apr-15	5 Years (Renew ed)	09-Apr-19	17
L24/125	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	14-Jun-15	5 Years (Renew ed)	13-Jun-19	5.5
L24/135	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL	28-Mar-15	5 Years (Renew ed)	27-Mar-16	7.8
L24/136	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL	28-Mar-15	5 Years (Renew ed)	27-Mar-16	8.25
L24/144	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON WEST	01-May-15	5 Years (Renew ed)	30-Apr-16	8.34
L24/145	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON WEST	01-May-15	5 Years (Renew ed)	30-Apr-16	15.2
L24/155	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	01-Oct-15	5 Years (Renew ed)	30-Sep-18	1.148
L24/163	Live	PADDINGTON GOLD PTY LIMITED	Rose Dam	15-Oct-15	5 Years (Renew ed)	14-Oct-16	45.123
L24/164	Live	PADDINGTON GOLD PTY LIMITED	lake arrow	05-Dec-14	5 Years (Renew ed)	04-Dec-16	17.82
L24/171	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH NORTH	20-Aug-15	21 Years	19-Aug-33	3.28
L24/173	Live	PADDINGTON GOLD PTY LIMITED	WENDY GULLY	20-Jan-15	5 Years (Renew ed)	19-Jan-18	1
L24/177	Live	PADDINGTON GOLD PTY LIMITED	Broad Arrow (SW of)	17-Aug-15	21 Years	16-Aug-33	22
L24/178	Live	PADDINGTON GOLD PTY LIMITED	Broad Arrow : Caw se to Woodcutters	10-Sep-15	5 Years (Renew ed)	09-Sep-19	51
L24/179	Live	PADDINGTON GOLD PTY LIMITED	Broad Arrow	17-Aug-15	21 Years	16-Aug-33	24.7
L24/180	Live	PADDINGTON GOLD PTY LIMITED	Broad Arrow	17-Aug-15	21 Years	16-Aug-33	10.6

Tenement	Status	Holders	Locality	Anniversary	Term	Expiry	Area (HA)
L24/19	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	23-Oct-15	Linked - Refer to Relationship Ta	19-Oct-25	43.09
L24/196	Live	PADDINGTON GOLD PTY LIMITED	Paddington Mill 4km South	04-May-15	21 Years	03-May-30	2.4172
L24/198	Live	PADDINGTON GOLD PTY LIMITED	Paddington	11-Jan-15	21 Years	10-Jan-32	44.16
L24/199	Live	PADDINGTON GOLD PTY LIMITED	Paddington	17-Aug-15	21 Years	16-Aug-33	2.689
L24/20	Live	PADDINGTON GOLD PTY LIMITED	NORTH WEST OF KALGOORLIE		Linked - Refer to Relationship Ta		1
L24/200	Live	PADDINGTON GOLD PTY LIMITED	Bent Tree, South East of Ora Banda	13-Sep-15	21 Years	12-Sep-33	2.6084
L24/201	Live	PADDINGTON GOLD PTY LIMITED	lady Bountiful	13-Sep-15	21 Years	12-Sep-33	6.2027
L24/207	Live	PADDINGTON GOLD PTY LIMITED	West of Paddington	26-Jun-15	21 Years	25-Jun-34	14.4037
L24/208	Live	PADDINGTON GOLD PTY LIMITED	Bent Tree	26-Jun-15	21 Years	25-Jun-34	10.2685
L24/214	Live	NORTON GOLD FIELDS LIMITED	Lady Bountiful	18-Dec-14	21 Years	17-Dec-35	18.05
L24/29	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	22-Jan-15	Linked - Refer to Relationship Ta	19-Oct-25	9.6
L24/34	Live	PADDINGTON GOLD PTY LIMITED	BROAD ARROW: 3KM SOUTH OF:	04-Jun-15	Linked - Refer to Relationship Ta	19-Oct-25	14
L24/54	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	27-Oct-15	5 Years (Renew ed)	26-Oct-17	11.54
L24/63	Live	PADDINGTON GOLD PTY LIMITED	BROAD ARROW	23-Sep-15	5 Years (Renew ed)	22-Sep-16	27.4
L24/64	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	09-Jun-15	5 Years (Renew ed)	08-Jun-17	0.01
L24/65	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	09-Jun-15	5 Years (Renew ed)	08-Jun-17	4
L24/69	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	23-Jun-15	5 Years (Renew ed)	22-Jun-17	0.01
L24/88	Live	PADDINGTON GOLD PTY LIMITED	BALGARRI	05-May-15	5 Years (Renew ed)	04-May-18	3.36
L26/197	Live	BELLAMEL MINING PTY LTD	GIBSON - HONMAN ROCK	03-Dec-15	5 Years (Renew ed)	02-Dec-18	1.951
L26/201	Live	NORTON GOLD FIELDS LIMITED	Binduli	07-Jun-15	5 Years (Renew ed)	06-Jun-16	23
L26/202	Live	BELLAMEL MINING PTY LTD	Binduli	10-Apr-15	5 Years (Renew ed)	09-Apr-17	0.859
L26/203	Live	BELLAMEL MINING PTY LTD	BINDULI	23-Jan-15	5 Years (Renew ed)	22-Jan-18	5.3476
L26/204	Live	BELLAMEL MINING PTY LTD	BINDULI	13-Aug-15	5 Years (Renew ed)	12-Aug-17	20.0634
L26/247	Live	PADDINGTON GOLD PTY LIMITED	Paddington Mill 20km South	04-May-15	21 Years	03-May-30	8.2888
L26/253	Live	PADDINGTON GOLD PTY LIMITED	North Binduli	17-Aug-15	21 Years	16-Aug-33	20.3
L26/269	Live	NORTON GOLD FIELDS LIMITED	Binduli - 10km north of	05-Dec-14	21 Years	04-Dec-35	42
M15/1745	Live	BELLAMEL MINING PTY LTD	WHITE LAKE	11-Dec-14	21 Years	10-Dec-33	5
M16/106	Live	PADDINGTON GOLD PTY LIMITED	CARBINE	15-Feb-15	21 Years (Renew ed)	14-Feb-31	542.2
M16/150	Live	PADDINGTON GOLD PTY LIMITED	MATT DAM	03-Aug-15	21 Years (Renew ed)	02-Aug-32	878.55
M16/156	Live	PADDINGTON GOLD PTY LIMITED	HAWKINS FIND	21-Sep-15	21 Years (Renew ed)	20-Sep-32	97.72
M16/222	Live	NORTON GOLD FIELDS LIMITED	Red Dam	12-Aug-15	21 Years	11-Aug-29	330
M16/23	Live	PADDINGTON GOLD PTY LIMITED	HAWKINS AREA	24-Jul-15	21 Years (Renew ed)	23-Jul-28	196.05
M16/243	Live	PADDINGTON GOLD PTY LIMITED	Leo Dam	11-Sep-15	21 Years	10-Sep-30	200
M16/244	Live	PADDINGTON GOLD PTY LIMITED	Zuleika	07-Dec-14	21 Years	06-Dec-19	178.95
M16/374	Live	PADDINGTON GOLD PTY LIMITED	Ora Banda (13km SW of)	14-May-15	21 Years	13-May-31	182
M16/396	Live	PADDINGTON GOLD PTY LIMITED	WHITE ELEPHANT DAM	20-Apr-15	21 Years	19-Apr-31	144
M16/397	Live	PADDINGTON GOLD PTY LIMITED	WHITE ELEPHANT DAM	20-Apr-15	21 Years	19-Apr-31	122
M16/398	Live	PADDINGTON GOLD PTY LIMITED	WHITE ELEPHANT DAM	20-Apr-15	21 Years	19-Apr-31	567
M16/399	Live	PADDINGTON GOLD PTY LIMITED	WHITE ELEPHANT DAM	20-Apr-15	21 Years	19-Apr-31	445
M16/44	Live	KALGOORLIE MINING COMPANY (BULLANT) PTY LTD	ORA BANDA	03-Nov-15	21 Years (Renew ed)	02-Nov-29	593.35

Table 8: Paddington Tenement Listing (Cont.)

Tenement	Status	Holders	Locality	Anniversary	Term	Expiry	Area (HA)
M16/45	Live	KALGOORLIE MINING COMPANY (BULLANT) PTY LTD	ORA BANDA	03-Nov-15	21 Years (Renew ed)	02-Nov-29	614.85
M16/48	Live	PADDINGTON GOLD PTY LIMITED	ORA BANDA	03-Nov-15	21 Years (Renew ed)	02-Nov-29	524.65
M16/58	Live	PADDINGTON GOLD PTY LIMITED	4KM EAST - CARBINE	09-Mar-15	21 Years (Renew ed)	08-Mar-30	292.65
M16/86	Live	PADDINGTON GOLD PTY LIMITED	HAWKIN	18-May-15	21 Years (Renew ed)	17-May-30	437.95
M24/101	Live	NORTON GOLD FIELDS LIMITED	GIDJI	17-Sep-15	21 Years (Renew ed)	16-Sep-29	864.55
M24/102	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	16-Dec-14	21 Years (Renew ed)	15-Dec-28	643.1
M24/113	Live	PADDINGTON GOLD PTY LIMITED	3KM EAST OF GRANTS PATCH	27-May-15	21 Years (Renew ed)	26-May-29	667.35
M24/138	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL	18-Sep-15	21 Years (Renew ed)	17-Sep-29	59.135
M24/148	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	02-Dec-15	21 Years (Renew ed)	01-Dec-29	448.4
M24/155	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	06-Aug-15	21 Years (Renew ed)	05-Aug-29	375.05
M24/16	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	20-Apr-15	21 Years (Renew ed)	19-Apr-25	18.5
M24/165	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG LAKE	24-Dec-14	21 Years (Renew ed)	23-Dec-29	892.85
M24/166	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	09-Feb-15	21 Years (Renew ed)	08-Feb-30	433.3
M24/170	Live	PADDINGTON GOLD PTY LIMITED	ORA BANDA	03-Nov-15	21 Years (Renew ed)	02-Nov-29	819.75
M24/172	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	09-Feb-15	21 Years (Renew ed)	08-Feb-30	144.55
M24/180	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	29-Dec-14	21 Years (Renew ed)	28-Dec-29	45.755
M24/181	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	29-Dec-14	21 Years (Renew ed)	28-Dec-29	41.405
M24/182	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	14-Mar-15	21 Years (Renew ed)	13-Mar-30	141.15
M24/183	Live	NORTON GOLD FIELDS LIMITED	PADDINGTON	10-May-15	21 Years (Renew ed)	09-May-30	846.5
M24/187	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL	19-Jan-15	21 Years (Renew ed)	18-Jan-30	221.7
M24/188	Live	PADDINGTON GOLD PTY LIMITED	BROAD ARROW	29-Mar-15	21 Years (Renew ed)	28-Mar-30	79.305
M24/193	Live	PADDINGTON GOLD PTY LIMITED	ORA BANDA AREA	05-May-15	21 Years (Renew ed)	04-May-30	874.35
M24/194	Live	PADDINGTON GOLD PTY LIMITED	ORA BANDA AREA	05-May-15	21 Years (Renew ed)	04-May-30	966.85
M24/20	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	20-Oct-15	21 Years (Renew ed)	19-Oct-25	533.85
M24/205	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL	19-Jan-15	21 Years (Renew ed)	18-Jan-30	561.2
M24/211	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	30-May-15	21 Years (Renew ed)	29-May-30	171.9
M24/220	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL	30-May-15	21 Years (Renew ed)	29-May-30	13.035
M24/223	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	14-Mar-15	21 Years (Renew ed)	13-Mar-30	136.05
M24/227	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	27-Jul-15	21 Years (Renew ed)	26-Jul-30	77.89
M24/229	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	30-May-15	21 Years (Renew ed)	29-May-30	99.245
M24/231	Live	PADDINGTON GOLD PTY LIMITED	BELLEVUE	31-May-15	21 Years (Renew ed)	30-May-30	14.575
M24/234	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	13-Jun-15	21 Years (Renew ed)	12-Jun-30	370.55
M24/236	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	13-Jun-15	21 Years (Renew ed)	12-Jun-30	121.85
M24/239	Live	NORTON GOLD FIELDS LIMITED	SMITHFIELD	21-Sep-15	21 Years (Renew ed)	20-Sep-30	889.6
M24/240	Live	NORTON GOLD FIELDS LIMITED	SMITHFIELD	21-Sep-15	21 Years (Renew ed)	20-Sep-30	641
M24/251	Live	NORTON GOLD FIELDS LIMITED	BROAD ARROW	25-Nov-15	21 Years (Renew ed)	24-Nov-30	878.25
M24/255	Live	PADDINGTON GOLD PTY LIMITED	BELLEVUE	25-Nov-15	21 Years (Renew ed)	24-Nov-30	105.1
M24/256	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	04-Nov-15	21 Years (Renew ed)	03-Nov-30	110.55
M24/265	Live	PADDINGTON GOLD PTY LIMITED	MT PLEA SANT	02-Sep-15	21 Years (Renew ed)	01-Sep-30	264.3
M24/266	Live	PADDINGTON GOLD PTY LIMITED	MT PLEA SANT	29-Sep-15	21 Years (Renew ed)	28-Sep-30	122.75

Table 8: Paddington Tenement Listing (Cont.)

Tenement	Status	Holders	Locality	Anniversary	Term	Expiry	Area (HA)
M24/267	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	02-Sep-15	21 Years (Renew ed)	01-Sep-30	1.775
M24/270	Live	PADDINGTON GOLD PTY LIMITED	1KM EAST OF ARTHUR DAM	24-Oct-15	21 Years (Renew ed)	23-Oct-30	220.65
M24/271	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL	15-Feb-15	21 Years (Renew ed)	14-Feb-31	104.3
M24/272	Live	PADDINGTON GOLD PTY LIMITED	LIBERTY	15-Feb-15	21 Years (Renew ed)	14-Feb-31	167.75
M24/29	Live	PADDINGTON GOLD PTY LIMITED	ORA BANDA	04-Jan-15	21 Years (Renew ed)	03-Jan-26	845.15
M24/291	Live	PADDINGTON GOLD PTY LIMITED	DIXIE	29-Mar-15	21 Years (Renew ed)	28-Mar-31	375.1
M24/295	Live	PADDINGTON GOLD PTY LIMITED	DARK HORSE	11-Jul-15	21 Years (Renew ed)	10-Jul-31	115.95
M24/300	Live	PADDINGTON GOLD PTY LIMITED	DARK HORSE	29-Mar-15	21 Years (Renew ed)	28-Mar-31	68.53
M24/302	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	08-Dec-14	21 Years (Renew ed)	07-Dec-31	985.9
M24/303	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	08-Dec-14	21 Years (Renew ed)	07-Dec-31	938.6
M24/304	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	28-Mar-15	21 Years (Renew ed)	27-Mar-32	694.65
M24/321	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	31-Jul-15	21 Years (Renew ed)	30-Jul-31	9.885
M24/333	Live	PADDINGTON GOLD PTY LIMITED	ORA BANDA	30-Nov-15	21 Years (Renew ed)	29-Nov-31	323
M24/357	Live	PADDINGTON GOLD PTY LIMITED	BELLVUE	19-Apr-15	21 Years (Renew ed)	18-Apr-32	117.3
M24/363	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL	17-Sep-15	21 Years (Renew ed)	16-Sep-32	7.8405
M24/387	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	15-Oct-15	21 Years (Renew ed)	14-Oct-33	58.525
M24/390	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	31-Jan-15	21 Years (Renew ed)	30-Jan-34	842.9
M24/393	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	24-Nov-15	21 Years (Renew ed)	23-Nov-34	849.95
M24/397	Live	PADDINGTON GOLD PTY LIMITED	MT ELLIS	28-Jan-15	21 Years (Renew ed)	27-Jan-35	813.75
M24/398	Live	PADDINGTON GOLD PTY LIMITED	MT ELLIS	28-Jan-15	21 Years (Renew ed)	27-Jan-35	824.65
M24/401	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	15-Jan-15	21 Years (Renew ed)	14-Jan-35	239.45
M24/402	Live	PADDINGTON GOLD PTY LIMITED	DIXIE	15-Jan-15	21 Years (Renew ed)	14-Jan-35	276
M24/403	Live	PADDINGTON GOLD PTY LIMITED	BELLVUE	15-Jan-15	21 Years (Renew ed)	14-Jan-35	571.8
M24/411	Live	PADDINGTON GOLD PTY LIMITED	OXFORD	18-Mar-15	21 Years (Renew ed)	17-Mar-35	45
M24/416	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	27-Aug-15	21 Years (Renew ed)	26-Aug-35	201
M24/417	Live	PADDINGTON GOLD PTY LIMITED	OXFORD	07-Sep-15	21 Years (Renew ed)	06-Sep-35	158
M24/422	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON	15-Jun-15	21 Years	14-Jun-15	189.65
M24/423	Live	PADDINGTON GOLD PTY LIMITED	PADDINGTON WEST	18-Mar-15	21 Years	17-Mar-15	135
M24/425	Live	PADDINGTON GOLD PTY LIMITED	BROAD ARROW	22-Dec-14	21 Years	21-Dec-15	68.07
M24/426	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	30-Mar-15	21 Years	29-Mar-15	526.65
M24/428	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	25-Mar-15	21 Years	24-Mar-15	183
M24/430	Live	PADDINGTON GOLD PTY LIMITED	BALGARRI	02-Jun-15	21 Years	01-Jun-15	355.05
M24/432	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	29-Apr-15	21 Years	28-Apr-15	6.7215
M24/433	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	18-Mar-15	21 Years	17-Mar-15	8.3985
M24/437	Live	NORTON GOLD FIELDS LIMITED	Smithfield	14-Feb-15	21 Years	13-Feb-16	8.4385
M24/444	Live	BORDER RESOURCES NLPADDINGTON GOLD PTY LIMITED	GIDJI	04-Oct-15	21 Years	03-Oct-15	996
M24/445	Live	BORDER RESOURCES NLPADDINGTON GOLD PTY LIMITED	GIDJI	04-Oct-15	21 Years	03-Oct-15	934
M24/446	Live	BORDER RESOURCES NLPADDINGTON GOLD PTY LIMITED	GIDGI	04-Oct-15	21 Years	03-Oct-15	730.85
M24/447	Live	BORDER RESOURCES NLPADDINGTON GOLD PTY LIMITED	GIDGI	04-Oct-15	21 Years	03-Oct-15	917.7
M24/455	Live	PADDINGTON GOLD PTY LIMITED	Black Flag	21-Dec-14	21 Years	20-Dec-15	119

Tenement	Status	Holders	Locality	Anniversary	Term	Expiry	Area (HA)
M24/473	Live	PADDINGTON GOLD PTY LIMITED	Ora Banda	21-May-15	21 Years	20-May-20	18.8
M24/494	Live	PADDINGTON GOLD PTY LIMITED	Grants Patch/Laurie Dam	17-Jun-15	21 Years	16-Jun-19	326.7
M24/497	Live	NORTON GOLD FIELDS LIMITED	Leeks	21-May-15	21 Years	20-May-20	46.85
M24/557	Live	PADDINGTON GOLD PTY LIMITED	Broad Arrow	24-Oct-15	21 Years	23-Oct-18	601.5
M24/564	Live	PADDINGTON GOLD PTY LIMITED	Broad Arrow - 6km NE of	04-Nov-15	21 Years	03-Nov-18	541.6
M24/565	Live	PADDINGTON GOLD PTY LIMITED	Broad Arrow - 6km NE of	04-Nov-15	21 Years	03-Nov-18	580.55
M24/60	Live	PADDINGTON GOLD PTY LIMITED	MT PLEA SANT	26-Aug-15	21 Years (Renew ed)	25-Aug-27	9.7125
M24/616	Live	PADDINGTON GOLD PTY LIMITED	BROAD ARROW (EAST OF)	19-Feb-15	21 Years	18-Feb-19	984.1
M24/617	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL (NORTH WEST OF)	13-Nov-15	21 Years	12-Nov-23	8
M24/618	Live	PADDINGTON GOLD PTY LIMITED	MT PLEA SANT	07-Jun-15	21 Years	06-Jun-28	692
M24/620	Live	PADDINGTON GOLD PTY LIMITED	MT PLEA SANT	13-Sep-15	21 Years	12-Sep-23	99
M24/645	Live	PADDINGTON GOLD PTY LIMITED	BLAKC FLAG: 5km West of:	22-Aug-15	21 Years	21-Aug-29	589
M24/677	Live	PADDINGTON GOLD PTY LIMITED	FENBARK	22-Aug-15	21 Years	21-Aug-29	16.968
M24/687	Live	PADDINGTON GOLD PTY LIMITED	1250 metres east of WENDY GULLY	23-Apr-15	21 Years	22-Apr-31	4.4
M24/703	Live	PADDINGTON GOLD PTY LIMITED	Broad Arrow North	23-Apr-15	21 Years	22-Apr-31	8
M24/705	Live	PADDINGTON GOLD PTY LIMITED XSTATE RESOURCES LIMITED	King Brow n	09-Jul-15	21 Years	08-Jul-20	4.7225
M24/708	Live	PADDINGTON GOLD PTY LIMITED	Black Flag (3km SW of)	30-Dec-14	21 Years	29-Dec-20	9.3475
M24/709	Live	PADDINGTON GOLD PTY LIMITED	King Brow n	30-Jun-15	21 Years	29-Jun-20	3.2585
M24/710	Live	PADDINGTON GOLD PTY LIMITED	Golden Kilometre	21-Jun-15	21 Years	20-Jun-20	7.416
M24/711	Live	PADDINGTON GOLD PTY LIMITED	Ora Banda (1km East of)	11-Aug-15	21 Years	10-Aug-20	6.011
M24/712	Live	PADDINGTON GOLD PTY LIMITED	Ora Banda	14-Mar-15	21 Years	13-Mar-21	9.709
M24/716	Live	PADDINGTON GOLD PTY LIMITED	Paddington	11-Aug-15	21 Years	10-Aug-20	2.428
M24/721	Live	BORDER RESOURCES NLPADDINGTON GOLD PTY LIMITED	Lake Gidji (5kms SW of)	02-Aug-15	21 Years	01-Aug-32	931
M24/730	Live	BORDER RESOURCES NLPADDINGTON GOLD PTY LIMITED	Lake Gidji (5km SW of)	02-Aug-15	21 Years	01-Aug-32	200
M24/746	Live	BORDER RESOURCES NLPADDINGTON GOLD PTY LIMITED	MOUNT PLEASANT (EAST OF)	03-Aug-15	21 Years	02-Aug-32	4
M24/753	Live	PADDINGTON GOLD PTY LIMITED	BROAD ARROW - 5KM EAST OF	23-Apr-15	21 Years	22-Apr-31	61
M24/78	Live	VISIOMED GROUP LIMITED	BROAD ARROW	16-Dec-14	21 Years (Renew ed)	15-Dec-27	165.45
M24/79	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	28-Jan-15	21 Years (Renew ed)	27-Jan-29	9.602
M24/790	Live	PADDINGTON GOLD PTY LIMITED	MT ELLIS	23-Apr-15	21 Years	22-Apr-31	8.8
M24/791	Live	PADDINGTON GOLD PTY LIMITED	BROAD ARROW	23-Apr-15	21 Years	22-Apr-31	1
M24/793	Live	PADDINGTON GOLD PTY LIMITED	BROAD ARROW	23-Apr-15	21 Years	22-Apr-31	36
M24/794	Live	PADDINGTON GOLD PTY LIMITED	BROAD ARROW	23-Apr-15	21 Years	22-Apr-31	51
M24/796	Live	NORTON GOLD FIELDS LIMITED	BLACK FLAG-CROWN DAM	11-Apr-15	21 Years	10-Apr-24	113.35
M24/80	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	12-Feb-15	21 Years (Renew ed)	11-Feb-28	4.498
M24/809	Live	PADDINGTON GOLD PTY LIMITED	ORA BANDA	20-Mar-15	21 Years	19-Mar-22	9.7135
M24/81	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	12-Feb-15	21 Years (Renewed)	11-Feb-28	37.895
M24/810	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	20-Mar-15	21 Years	19-Mar-22	3.9475
M24/811	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	20-Mar-15	21 Years	19-Mar-22	5.641
M24/82	Live	PADDINGTON GOLD PTY LIMITED	BLACK FLAG	12-Feb-15	21 Years (Renewed)	11-Feb-28	82.735
M24/829	Live	PADDINGTON GOLD PTY LIMITED	BROAD ARROW	23-Apr-15	21 Years	22-Apr-31	327

Table 18: Paddington Tenement Listing (Cont.)

Table 8: Paddington Tenement Listing (Cont.)

Tenement	Status	Holders	Locality	Anniversary	Term	Expiry	Area (HA)
M24/838	Live	PADDINGTON GOLD PTY LIMITED	MT PLEASANT	23-Apr-15	21 Years	22-Apr-31	5
M24/861	Live	NORTON GOLD FIELDS LIMITED	WENDY GULLY	30-Nov-15	21 Years	29-Nov-22	7.534
M24/862	Live	PADDINGTON GOLD PTY LIMITED	LADY BOUNTIFUL	03-Sep-15	21 Years	02-Sep-28	113.1
M24/876	Live	VISIOMED GROUP LIMITED	BROAD ARROW	22-Oct-15	21 Years	21-Oct-24	5
M24/881	Live	BORDER RESOURCES NLPADDINGTON GOLD PTY LIMITED	GIDJI WEST	02-Aug-15	21 Years	01-Aug-32	899
M24/882	Live	BORDER RESOURCES NLPADDINGTON GOLD PTY LIMITED	GIDJI WEST	02-Aug-15	21 Years	01-Aug-32	838
M26/115	Live	BELLAMEL MINING PTY LTD	SEVEN MILE HILL	17-Mar-15	21 Years (Renew ed)	16-Mar-29	66.39
M26/235	Live	SANDHURST MINING NLNORTON GOLD FIELDS LIMITED	LAKE GIDJI	19-Apr-15	21 Years (Renew ed)	18-Apr-32	681.55
M26/243	Live	BELLAMEL MINING PTY LTD	BINDULI	12-Jun-15	21 Years (Renew ed)	11-Jun-32	228.8
M26/387	Live	BELLAMEL MINING PTY LTD	SEVEN MILE HILE	11-Dec-14	21 Years (Renew ed)	10-Dec-34	111.2
M26/420	Live	BELLAMEL MINING PTY LTD	SEVEN MILE HILL	17-Sep-15	21 Years (Renew ed)	16-Sep-35	121.2
M26/430	Live	BELLAMEL MINING PTY LTD	SEVEN MILE HILL	25-Oct-15	21 Years (Renew ed)	24-Oct-35	130.55
M26/445	Live	BELLAMEL MINING PTY LTD	Seven Mile Hill	20-Jan-15	21 Years	19-Jan-16	207.2
M26/446	Live	NORTON GOLD FIELDS LIMITED	Binduli	30-Nov-15	21 Years	29-Nov-15	510.35
M26/447	Live	BELLAMEL MINING PTY LTD	White Dam	25-Jan-15	21 Years	24-Jan-16	876.4
M26/468	Live	BELLAMEL MINING PTY LTD	Binduli	04-Nov-15	21 Years	03-Nov-18	881.6
M26/474	Live	BELLAMEL MINING PTY LTD	Binduli	04-Nov-15	21 Years	03-Nov-18	893.55
M26/566	Live	NORTON GOLD FIELDS LIMITED	GIDGI SOUTH	13-Aug-15	21 Years	12-Aug-28	26.3
		MOTO GOLDMINES AUSTRALIA LIMITED					
M26/587		PADDINGTON GOLD PTY LIMITED	5 MILE HILL	03-Aug-15		02-Aug-32	
M26/629		BELLAMEL MINING PTY LTD	Binduli	20-Nov-15		19-Nov-21	295.25
M26/679			Lake Gidji (5kms SW of)	02-Aug-15		01-Aug-32	
M26/816		NORTON GOLD FIELDS LIMITED	WEST NICKEL SMELTER	15-Jul-15		14-Jul-31	561
M27/149	Live	NORTON GOLD FIELDS LIMITED	MULGARRIE		21 Years (Renew ed)	28-May-32	44.2
	Live	NORTON GOLD FIELDS LIMITED	MULGARRIE	07-Nov-15		06-Nov-15	
M27/178	Live	NORTON GOLD FIELDS LIMITED	MULGARRIE		21 Years (Renew ed)	28-Dec-35	6.8205
M27/185	Live	NORTON GOLD FIELDS LIMITED	Mulgarrie	18-Jan-15	21 Years	17-Jan-16	824.75
M27/38	Live	NORTON GOLD FIELDS LIMITED	MULGARRIE	16-Dec-14	21 Years (Renew ed)	15-Dec-28	109.75
M27/435		NORTON GOLD FIELDS LIMITED	Mulgarrie	06-Dec-14		05-Dec-33	297
		NORTON GOLD FIELDS LIMITED	Mulgarrie	06-Dec-14		05-Dec-33	
M27/437	Live	NORTON GOLD FIELDS LIMITED	Mulgarrie	06-Dec-14	21 Years	05-Dec-33	746
P16/2000	Live	PADDINGTON GOLD PTY LIMITED	Kintore	02-Jul-15	4 Years	01-Jul-14	121
P16/2001	Live	PADDINGTON GOLD PTY LIMITED	Kintore	02-Jul-15	4 Years	01-Jul-14	121
P16/2002	Live	PADDINGTON GOLD PTY LIMITED	Kintore	02-Jul-15	4 Years	01-Jul-14	121
P16/2003	Live	PADDINGTON GOLD PTY LIMITED	Kintore	02-Jul-15	4 Years	01-Jul-14	70
P16/2477	Live	PADDINGTON GOLD PTY LIMITED	CARBINE	07-Apr-15	4 Years (Extended)	06-Apr-17	161.02
P16/2478	Live	PADDINGTON GOLD PTY LIMITED	CARBINE	30-Sep-15	4 Years (Extended)	29-Sep-16	200
P16/2700	Live	KALGOORLIE MINING COMPANY (BULLANT) PTY LTD	Balgarrie	01-Jul-15	4 Years	30-Jun-15	181
P16/2701	Live	KALGOORLIE MINING COMPANY (BULLANT) PTY LTD	Balgarrie	01-Jul-15	4 Years	30-Jun-15	172
P24/4128	Live	PADDINGTON GOLD PTY LIMITED	GRANTS PATCH	25-Feb-15	4 Years (Extended)	24-Feb-17	50
P24/4233	Live	KALNORTH GOLD MINES LIMITED	Scotia East	07-Feb-15	4 Years (Extended)	06-Feb-16	149

Table 8: Paddington Tenement Listing (Cont.)
--

Tenement	Status	Holders	Locality	Anniversary	Term	Expiry	Area (HA)
P24/4234	Live	KALNORTH GOLD MINES LIMITED	Scotia East	07-Feb-15	4 Years (Extended)	06-Feb-16	122
P24/4253	Live	PADDINGTON GOLD PTY LIMITED	Smithfield - Kanow na	14-Aug-15	4 Years (Extended)	13-Aug-16	1.9815
P24/4255	Live	PADDINGTON GOLD PTY LIMITED	Mount Pleasant	21-Aug-15	4 Years (Extended)	20-Aug-16	135
P24/4256	Live	PADDINGTON GOLD PTY LIMITED	Salt Lake Dam	28-May-15	4 Years (Extended)	27-May-16	160
P24/4257	Live	PADDINGTON GOLD PTY LIMITED	Salt Lake Dam	28-May-15	4 Years (Extended)	27-May-16	115
P24/4258	Live	PADDINGTON GOLD PTY LIMITED	2km West of Gudarra	28-May-15	4 Years (Extended)	27-May-16	22
P24/4260	Live	PADDINGTON GOLD PTY LIMITED	Black Flag	21-Aug-15	4 Years (Extended)	20-Aug-16	63
P24/4588	Live	KALGOORLIE MINING COMPANY (BULLANT) PTY LTD	CARNAGE - 5KM SE of	13-Mar-15	4 Years	12-Mar-16	162
P24/4589	Live	KALGOORLIE MINING COMPANY (BULLANT) PTY LTD	CARNAGE - 5KM SE of	13-Mar-15	4 Years	12-Mar-16	187
P24/4590	Live	KALGOORLIE MINING COMPANY (BULLANT) PTY LTD	CARNAGE - 5KM SE of	13-Mar-15	4 Years	12-Mar-16	200
P24/4591	Live	KALGOORLIE MINING COMPANY (BULLANT) PTY LTD	CARNAGE - 5KM SE of	13-Mar-15	4 Years	12-Mar-16	200
P24/4592	Live	KALGOORLIE MINING COMPANY (BULLANT) PTY LTD	CARNAGE - 5KM SE of	13-Mar-15	4 Years	12-Mar-16	196
P24/4593	Live	KALGOORLIE MINING COMPANY (BULLANT) PTY LTD	CARNAGE - 5KM SE of	13-Mar-15	4 Years	12-Mar-16	48
P24/4594	Live	KALGOORLIE MINING COMPANY (BULLANT) PTY LTD	CARNAGE - 5KM SE of	13-Mar-15	4 Years	12-Mar-16	138
P26/3564	Live	BELLAMEL MINING PTY LTD	Gibson-Honman Rock	21-Apr-15	4 Years (Extended)	20-Apr-17	74
P26/3566	Live	BELLAMEL MINING PTY LTD	Gibson-Honman Rock	21-Apr-15	4 Years (Extended)	20-Apr-17	100
P26/3567	Live	BELLAMEL MINING PTY LTD	White Lake	16-Mar-15	4 Years	15-Mar-15	109
P26/3609	Live	NORTON GOLD FIELDS LIMITED	Binduli	14-Aug-15	4 Years (Extended)	13-Aug-16	38
P26/3611	Live	NORTON GOLD FIELDS LIMITED	Gidji	14-Aug-15	4 Years (Extended)	13-Aug-16	193
P26/3612	Live	NORTON GOLD FIELDS LIMITED	Gidji	14-Aug-15	4 Years (Extended)	13-Aug-16	195
P26/3613	Live	NORTON GOLD FIELDS LIMITED	Kalgoorlie	14-Aug-15	4 Years (Extended)	13-Aug-16	118
P26/3631	Live	BELLAMEL MINING PTY LTD	Gibson Honman Rock	17-Nov-15	4 Years (Extended)	16-Nov-16	145
P27/1873	Live	NORTON GOLD FIELDS LIMITED	6km of Gordon	22-Jan-15	4 Years (Extended)	21-Jan-18	200
P27/2019	Live	KALNORTH GOLD MINES LIMITED	Mulgarrie	30-Dec-14	4 Years	29-Dec-14	159.98

Table 9: Bullabulling Tenement Listing

Tenement	Status	Holders	Project	Grant Date	Expiry Date	Area (Ha)
M 15/1414	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Bullabulling Mine	22/10/2002	24/10/2023	9.7
M 15/282	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Bullabulling Mine	22/03/1988	28/03/2030	218.3
M 15/503	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Bullabulling Mine	4/02/1993	7/02/2035	798.3
M 15/552	Live	RESOLUTE PTY LTD	Bullabulling Mine	15/03/1991	20/03/2033	332.8
M 15/554	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Bullabulling Mine	15/03/1991	20/03/2033	601.7
P 15/5673	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Bullabulling Mine	13/08/2012	12/08/2016	113.7
P 15/5674	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Bullabulling Mine	13/08/2012	12/08/2016	191.8
M 15/483	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Gibraltar	21/11/1989	27/11/2031	133.4
M 15/529	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Gibraltar	31/07/1990	2/08/2032	251.0
P 15/5354	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Gibraltar	12/04/2010	11/04/2018	9.6
P 15/5355	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Gibraltar	12/04/2010	11/04/2018	9.4
P 15/5356	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Gibraltar	29/09/2010	28/09/2014	188.5
P 15/5357	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Gibraltar	29/09/2010	28/09/2014	102.6
P 15/5358	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Gibraltar	29/09/2010	28/09/2014	102.3
P 15/5758	Live	BULLABULLING GOLD LIMITED	Hawks Tenement	13/05/2013	12/05/2017	36.0
P 15/5381	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	8/04/2010	7/04/2018	145.7
P 15/5382	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	14/04/2010	13/04/2018	93.1
P 15/5383	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	14/04/2010	13/04/2018	197.3
P 15/5384	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	13/04/2010	12/04/2018	158.7
P 15/5385	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	13/04/2010	12/04/2018	117.0
P 15/5386	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	13/04/2010	12/04/2018	180.0
P 15/5387	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	13/04/2010	12/04/2018	141.0
P 15/5388	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	13/04/2010	12/04/2018	38.9
P 15/5512	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	16/11/2010	15/11/2014	199.9
P 15/5513	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	16/11/2010	15/11/2014	186.7
P 15/5514	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	16/11/2010	15/11/2014	198.9
P 15/5515	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	16/11/2010	15/11/2014	196.4
P 15/5516	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	16/11/2010	15/11/2014	198.0
P 15/5533	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	30/08/2011	29/08/2015	150.1
P 15/5535	Live	BULLABULLING GOLD (UK) LIMITED ET AL	North Bullabulling	30/08/2011	29/08/2015	7.3
P 15/5567	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Sand Lease	21/10/2011	20/10/2015	47.8
E 15/1263	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	19/10/2011	18/10/2016	5174.9
E 15/1264	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	11/08/2011	10/08/2016	287.1
E 15/1320	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	19/10/2012	18/10/2017	4024.7
P 15/4798	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	20/07/2007	19/07/2015	194.3
P 15/4799	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	20/07/2007	19/07/2015	197.5
P 15/4887	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	12/03/2008	11/03/2016	190.8
P 15/5186	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	1/04/2010	31/03/2018	165.0
P 15/5187	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	1/04/2010	31/03/2018	190.4
P 15/5188	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	16/06/2010	15/06/2018	178.8

Tenement	Status	Holders	Project	Grant Date	Expiry Date	Area (Ha)
P 15/5661	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	17/07/2012	16/07/2016	198.8
P 15/5662	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	17/07/2012	16/07/2016	109.1
P 15/5663	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	17/07/2012	16/07/2016	125.5
P 15/5664	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	17/07/2012	16/07/2016	172.9
P 15/5669	Live	BULLABULLING GOLD (UK) LIMITED ET AL	South Bullabulling	17/07/2012	16/07/2016	192.0
P 15/5538	Live	BULLABULLING GOLD (UK) LIMITED ET AL	West Bullabulling	4/03/2011	3/03/2015	162.4
P 15/5539	Live	BULLABULLING GOLD (UK) LIMITED ET AL	West Bullabulling	4/03/2011	3/03/2015	188.2
P 15/5540	Live	BULLABULLING GOLD (UK) LIMITED ET AL	West Bullabulling	4/03/2011	3/03/2015	91.4
P 15/5541	Live	BULLABULLING GOLD (UK) LIMITED ET AL	West Bullabulling	4/03/2011	3/03/2015	123.5
P 15/5799	Live	BULLABULLING OPERATIONS PTY LTD	North Bullabulling	27/12/2013	26/12/2017	33.0
P 15/5800	Live	BULLABULLING OPERATIONS PTY LTD	North Bullabulling	27/12/2013	26/12/2017	108.0
P 15/5802	Live	BULLABULLING OPERATIONS PTY LTD	South Bullabulling	27/12/2013	26/12/2017	118.0
P 15/5848	Live	BULLABULLING OPERATIONS PTY LTD	South Bullabulling	16/06/2014	15/06/2018	129.9
P 15/5849	Live	BULLABULLING OPERATIONS PTY LTD	South Bullabulling	16/06/2014	15/06/2018	45.5
P 15/5850	Live	BULLABULLING OPERATIONS PTY LTD	South Bullabulling	2/07/2014	1/07/2018	83.3
P 15/5851	Live	BULLABULLING OPERATIONS PTY LTD	South Bullabulling	2/07/2014	1/07/2018	150.3
L 15/156	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	17/07/1991	16/07/2016	0.0
L 15/157	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	17/07/1991	16/07/2016	0.0
L 15/158	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	17/07/1991	16/07/2016	16.0
L 15/196	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	9/05/1995	8/05/2015	32.2
L 15/206	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	19/11/1996	18/11/2016	50.5
L 15/218	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	13/08/2008	12/08/2013	257.2
L 15/222	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	25/09/2009	24/09/2030	1.6
L 15/328	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	11/07/2013	10/07/2034	17.9
L 15/330	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	17/04/2013	16/04/2034	1.5
L 15/331	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	17/04/2013	16/04/2034	2.5
L 15/332	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	17/04/2013	16/04/2034	2.0
L 15/333	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	15/02/2013	14/02/2034	10.6
L 15/334	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	5/04/2013	4/04/2034	9.6
L 15/335	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	14/06/2012	13/06/2033	9.5
L 15/336	Live	BULLABULLING GOLD (UK) LIMITED ET AL	Miscellaneous License	14/06/2012	13/06/2033	28.1
L 15/339	Live	BULLABULLING OPERATIONS PTY LTD	Miscellaneous License	22/03/2013	21/03/2034	506.2

Appendices: JORC 2012 'Table 1' Documentation

JORC Code, 2012 Edition – Table 1 Homestead Underground

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	Commentary
Sampling techniques – Homestead	Sampling completed utilising a combination of Diamond Core holes (DC), Face Sampling (FS) and Reverse Circulation (RC) holes. The drill hole locations were designed and holes oriented to allow for spatial spread of samples across mineralised zones and different rock types. Face sampling was performed on each face from development drives that showed possibility of mineralisation. Diamond core samples were placed into core trays at the rig and transferred to NGF's core processing facility for logging and sampling. Prior to drilling the drill hole locations were marked by survey department using a Leica Total Station, Model TS15. After drilling, drill hole collar positions were re-surveyed. All drill holes are down hole surveyed. Historic holes by Maxibor or by Down Hole Electronic Multishot (DEMS) camera, recent (post 2001) by combination of Electronic Single and Multi Shot cameras.
Drilling techniques – Homestead	 The dataset used for the Homestead resource estimate is a combination of historic data dating back to the 1980's which includes RC and surface DC holes; and new data consisting mostly of underground collared DC holes and FC samples from the development levels. Historic holes are being progressively excluded from a dataset used for resource estimation. As new data are acquired, some of the old intercepts which do not agree with the more accurately located samples from the shorter holes or with the face data are removed. Review of the database has also identified a number of drill holes which are of doubtful reliability due to their orientation (along strike or down dip of the ore zones) and these were also excluded from the dataset. In the latest estimates 8 RC holes were used (less than 0.5%), 584 DC holes (23%) and 1,959 face sampling strings (77%). In the DC dataset 33 holes (6% of all DC) are legacy data drilled by Centaur Mining and Exploration Ltd The RC diameter used is un-known. The DC is in 98% NQ (47.6mm diameter core sizes) or LTK60 (44.0mm diameter core sizes) with some BQ (36.4mm diameter core sizes). Selected DC were oriented using electronic orientation tool BQTK ACT 11.
Drill sample recovery – Homestead	DC contractors use a core barrel and wire line unit to recover the DC core, adjusting drilling methods and rates to minimize core loss (e.g. changing rock type, broken ground conditions etc.) as advised by supervising geologist Core recovery was recorded and was on average 99.4%.
Logging – Homestead	All DC data was geologically logged using codes set up for direct computer input. Hole ID, interval, rock type, stratigraphy, grainsize, weathering, colour, alteration style type and intensity, structure, mineralisation style type and percentage were recorded. Geological logging was qualitative and quantitative in nature. All DC was photographed after logging (and before cutting) using a digital camera. Every attempt was made to ensure consistency of logging despite the number of geologists involved. Validation was applied at the database level to ensure only logging codes matching reference tables can be entered to database.

Criteria	Commentary
	Geotechnical information was collected from underground DC over the whole length of the drill hole. From the underground grade control DC only RQD measurements were recorded. From the resource definition DC data relating to Modified Rock Tunnelling Quality Index, Q' was recorded. Q' data (and its precursor, Q) is an important tool in the stability analysis of underground excavations. It is used to determine factors of safety in stope and pillar design. Information collected from these holes includes RQD, number of joints (Jn), number of fractures, joint roughness and infill type and thickness. Dedicated DC undergo specific geotechnical investigation to aid in structural interpretation and to determine rock mass characterization.
Sub-sampling techniques and sample preparation – Homestead	In both surface and underground DC, sampling intervals were determined by geological logging. All sampling was performed at nominal 1m intervals with a minimum sample length of 0.3 metres for diamond core and 0.1 metre for face sampling. Sample intervals always conform to the logged lithological boundaries. Resource definition DC was halved for sampling using a diamond saw, half was sampled and assayed, the remaining half resides in the core tray and is archived. The underground grade control DC was sampled as a whole over the determined sampling interval. All RC recovered samples were passed through a splitting device (cone or riffle splitter) at 1m intervals to obtain sample for assay, which was collected in an appropriately sized calico bag. Target RC calico sample weights range from 2.5 to 4kg across all RC drilling campaigns. Bulk reject sample was also collected into a plastic bag for each metre. Spear samples, composited to 4m or less, were collected from the bulk samples as a first-pass sampling technique. Single metre samples were collected and submitted for assay from areas of expected mineralisation or composite anomalism. RC and DC samples submitted to the laboratory were sorted and reconciled against the submission documents. The sample preparation was conducted by accredited commercial laboratories. The technique and practices are deemed appropriate for the type and style of mineralisation. Geochemical samples were dried at 85°C. Prior to mid-2012 dried samples were crushed in a Jaw Crusher then split in riffle splitter if they were above 4kg and pulverized to minimum 95% passing 75µm in LM5 pulveriser. A 200g sample was scooped form LM2 out of which the catch weight sample of 30g was scooped for the Fire Assay. The sample has been crushed to 2mm in Boyd Crusher and then rotary split to obtain 1kg sample which was pulverized in LM2 pulveriser to 85% passing 75µm. A 200g pulp sample was scooped form LM2 out of which the catch weight sample of 30g was scooped for the Fire Assay. The sample size is a
Quality of assay data and laboratory tests – Homestead	The sample size is also appropriate for the sampling methodology employed and the gold grade ranges returned. The assay method was designed to measure total gold in the sample. The laboratory procedures are appropriate for the testing of gold at this project given its mineralisation style. The Fire Assay charge of 30g (previously 50g) was fused with a lead flux then decomposed in a furnace with the prill being totally digested by 2 acids (HCI and HN03) before measurement of the gold content by an Atomic Absorption Spectrometer. Samples were submitted in 78 sample batches including QC samples. Routine Certified Reference Material (CRM) - standards and blanks were inserted into the sampling sequence at a rate of 1:25 for standards and 1:75 for blanks and also submitted around expected zones of mineralisation. The commercial laboratories completed their own QC check. Since 2012 barren flushes have been utilized between expected mineralised sample intervals when pulverizing DC samples. Historic RC drilling Quality Control procedures are not well documented, but not considered material for the resource estimation of this deposit. However the existing Centaur Mining and Exploration Ltd report states that Assay QC was performed for Duplicate and Replicate pulp assays; Re-split and composite assays; Standard assay checks; Fire Screen assays and Umpire assays.

Criteria	Commentary
	Any erroneous QC results were examined and validated if required; establishing acceptable levels of accuracy and precision for all stages of the sampling and analytical process. If there were any issues with any given CRM, the samples associated with the CRM were immediately re-assayed. Therefore all CRM data and their associated samples satisfy a gross tolerance before being accepted in the database.
Verification of sampling and assaying – Homestead	No holes were twinned. Primary logging and sampling data was sent digitally every 2-3 days from the field to NGF's Database Administrator (DBA). The DBA imports the data into an industry accepted relational DataShed database. When assay results were received electronically from the laboratory they were imported into database. At the same time results of companies and laboratory QAQC testing were also imported into database after further validation checks. The responsible geologist reviewed the data in the database to ensure that it was correct and has merged properly and that all data has been received and entered. Any variations that were required are recorded permanently in the database. No adjustments or calibrations were made to any assay data used in this report
Location of data points Collars – Homestead	 Drill holes collars were surveyed by site-based surveyors using a Leica Total Station, Model TS15. This instrument measures distances to an accuracy of ± 0.005m. The surface data was collected in Map Grid of Australia 1994, zone 51 (MGA 94) and AHD. Historic data pre 2012 and underground data was collected in the Australian Map Grid of 1984, zone 51 (AMG84) and AHD. All DC collar locations were checked against planned coordinates for gross errors. Topographic control was generated from comprehensive survey pick-ups of the area over the last 15 years, which have been used to generate a Digital Terrain Model (DTM). Historical data collar co-ordinates within the dataset are estimated to have been transformed between Map Grid of Australia 1994, zone 51 (MGA94) and AMG84 (possibly several times). The current resource estimate was calculated using AMG84 grid coordinates. The magnetic declination for Kalgoorlie has a five year moving average of +0.108 degrees.
Location of data points Down Hole Surveys - Homestead	Most historic drill holes used in the project were surveyed using a Down Hole Electronic Multishot (DEMS) camera. There also are 20 x long (300m) surface diamond holes which were surveyed using Maxibore instrument. The affected holes are in the CTRFIHCD series, which define the upper portion of the orebody. This could be an issue as the Maxibor methods proved to be unreliable. For the 2007 surface drilling campaign (HED040 to HED052), a chrome barrel was used to minimise drill hole deviation. Eastman single shot surveys were also taken at an average of 30 metres down the drill hole to ensure that the drill holes continued on the design path. All these diamond drill holes were also surveyed with a north-seeking gyro instrument. All underground collared DC holes in HUD series are surveyed by DEMS. Short underground holes (HUB) are not surveyed.
Data spacing and distribution – Homestead	The nominal drill spacing is 20m x 15m expanding to 40m x 30m and to 60m x 60m below -150mRL. Data spacing and distribution is considered acceptable for establishing geological continuity and grade variability appropriate for classifying a Mineral Resource. Samples were composited creating a single composite across each mineralised domain. This strategy has a benefit of reducing the

Criteria	Commentary
	support bias, reducing data variability, reducing effect of a nugget and therefore contributes to a better quality of the resulting estimate.
Orientation of data in relation to geological structure – Homestead	Most of the surface DC was drilled from the hanging wall to the footwall to achieve the best possible angle of intersection. Some of the surface holes intersect the orebody at acute angles. After the underground drilling platforms became available in the late 2009 DC were also drilled from footwall to hanging wall. All FS sampling was performed across the mineralised veins. No drilling orientation and sampling bias has been recognized at this time.
Sample security	Historical samples are assumed to have been under the security of the respective tenement holders until delivered to the laboratory where samples would be expected to have been under restricted access. Recent samples were all under the security of Paddington until delivered to an analytical laboratory in Kalgoorlie where they were in a secured fenced compound security with restricted entry. Since 2012 all samples from Homestead DC are submitted for analysis to ALS laboratory in Kalgoorlie. Internally, ALS operates an audit trail that has access to the samples at all times whilst in their custody.
Audits or reviews	Internal reviews are completed on sampling techniques and data as part of the Norton Gold Fields continuous improvement practice No external or third party audits or reviews have been completed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	Commentary
Mineral tenement and land tenure status – Homestead	Homestead is located on tenement M24/155 and M24/79 which are 100% owned by Paddington Gold P/L a wholly owned subsidiary of Norton Gold Fields P/L. The M24/155 and M24/79 licences are part of the Mount Pleasant Project area that has a combined reporting group reference of C36/2009. Mining lease status was granted for all tenements in the early to mid-1990's and has an annual expenditure commitment of \$36,600 Tenements are in good standing and there are not known impediments.
Exploration done by other parties	A significant proportion of exploration, resource development and open pit mining was completed by companies which held tenure over the Homestead and Tuart deposits since the mid 1990's. Companies included: Centaur Mining and Exploration PL (1995-2001), Aurion Gold (2001-2002), Placer Dome (2002-2005) Asia Pacific and Barrick Kanowna (2005-2007). Results of exploration and mining activities by the afore-mentioned companies aid in Norton Gold Field's more recent exploration, resource development and mining in the area.
	In the current Homestead resource only less than 3% of all data is legacy data. Reporting of results herein only relates to results obtained by Norton Gold Fields.
Geology – Homestead	The Homestead deposits are located within the Norseman-Wiluna greenstone sequence, at or below the lithological contact between the Bent Tree (BTB) and Victorious Basalt (VB) units. The metamorphic grade is defined as lower green-schist facies. A significant deformation zone is observed at Homestead, the Homestead Shear Structure (HSS). The HSS is a splay off the Black Flag Fault. Homestead deposits are classified as a narrow vein, orogenic gold deposits. Gold mineralisation is hosted within the laminated quartz veins and typically associated with scheelite, sphalerite and galena mineralisation. One or two laminated quartz veins are

Criteria	Commentary
	observed in the underground development oriented parallel to the structural corridor (VN01). At the northern limit the veins are cut by a northeast trending fault, which offsets the HSS by 40 metres to the west. The offset northern extension is named VN03. Cross cutting veins (Black Flag West and Phantom) are generally brittle-ductile accommodation structures.
Drill hole Information	See Appendix 1 and in the relevant sections elsewhere in this report
Data aggregation methods – Homestead	 All reported assay results have been length-weighted, no top cuts have been applied. Assay results are reported above a 3.5/t Au lower cut. A maximum of 2m of internal dilution is included for reporting intercepts. Minimum reported interval is 1.0m for RC and 0.3m for DC intercepts. No metal equivalent values are used for reporting exploration results
Relationship between mineralisation widths and intercept lengths – Homestead	Most of the DC holes were drilled to achieve the best possible angle of intersection. Some of the surface holes intersect the orebody at acute angles.
Diagrams	See Appendix 2 and in the relevant sections elsewhere in this report
Balanced reporting	All results have been reported relative to the intersection criteria.
Other substantive exploration data	No other exploration data collected is considered material to this announcement.
Further work – Homestead	Further work at Homestead will include additional resource development drilling and updating geological models.

Appendix 1: Table of exploration results – Homestead Diamond Core – Henning Vein

		~		*					v /	
Hole_ID	AMG_East	AMG_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au
HUD1073	330322.9	6619727.6	195.3	-2.38	128.15	86.5	44.1	46.3	2.2	13.6
HUD1074	330322.5	6619727.7	195.3	-2.37	144.49	83	36.0	39.7	3.7	9.53
							50.3	51.0	0.7	3.88
HUD1075	330323.0	6619727.7	195.4	-2.16	155.32	90	60.5	61.0	0.5	12.0
							65.75	66.5	0.75	27.8
HUD1076	330322.8	6619727.6	194.9	-17.16	128.09	91.6	27.0	27.7	0.7	3.55
							34.3	35.0	0.7	4.22
							37.2	37.5	0.3	39.5
							42.0	43.0	1.0	36.0
							53.3	56.9	3.6	9.04
							61.0	63.5	2.5	3.67
HUD1078	330322.6	6619727.8	194.6	-31	128	111	41.4	41.7	0.3	13.4
							57.9	58.9	1.0	21.4
							75.9	76.8	0.9	46.8
							82.3	82.75	0.45	4.97
							85.0	86.2	1.2	14.0
							92.3	92.7	0.4	9.56
HUD1080	330322.2	6619728.0	196.5	21	144.5	92.2	25.0	34.0	9.0	10.5
						(Incl.)	25.0	26.0	1.0	75.4
							87.0	89.0	2.0	10.3
HUD1084	330340.4	6619724.7	196.6	-38	123	138	0.8	1.25	0.45	12.2
							20.9	21.4	0.5	6.89
							47.4	47.9	0.5	5.84
HUD1086	330321.7	6619728.1	196.6	25	155	98	26.2	27.0	0.8	4.11
							34.6	35.0	0.4	4.05
							44.0	45.0	1.0	4.15
							65.8	66.5	0.7	6.70
	y 30g Fire As mpiled by u	say sing a 3.5 g/1	cut-off gro	ade, no	top-cut	grade				

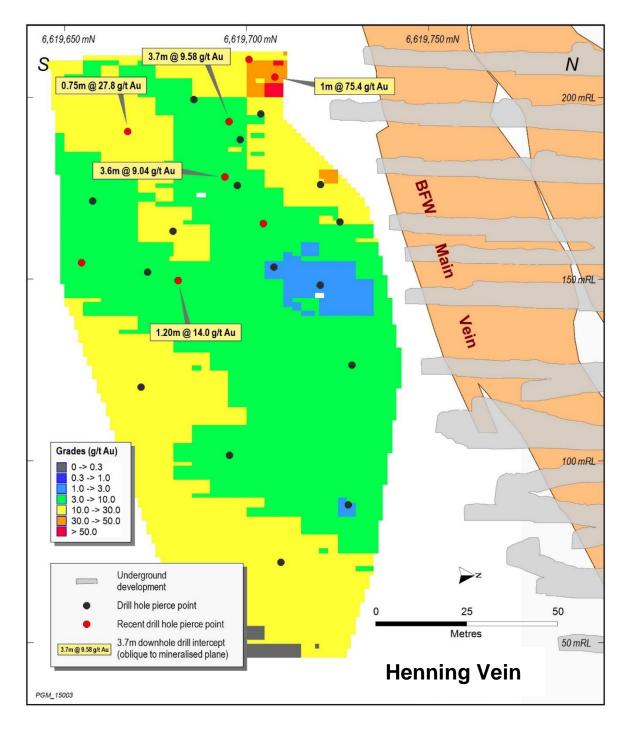
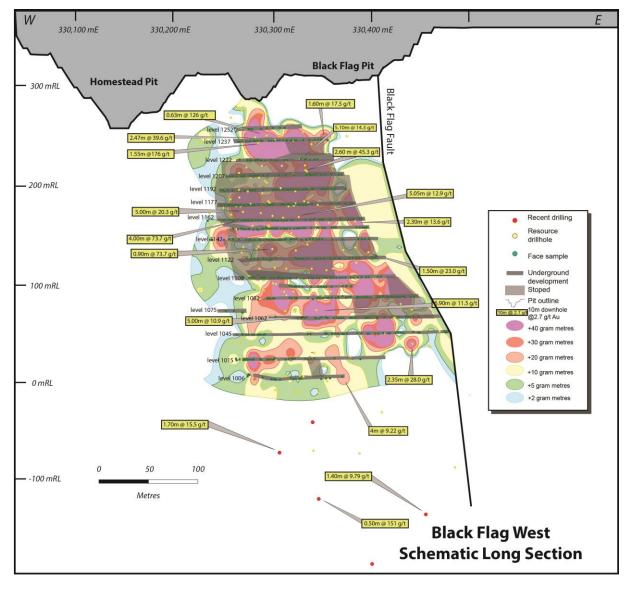

Maximum of 2m internal dilution, minimum interval of 0.3 m

Table of exploration results - Homestead Diamond Core - Black FlagWest Deeps


Hole_ID	AMG_East	AMG_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t Au
HUD1065	330126.0	6619795.8	-115.3	0	51.4	383.4	260.5	261.0	0.5	151
							372.0	373.4	1.4	9.79
HUD1066	330125.5	6619796.2	-114.9	9	37.2	376.1	221.0	222.0	1.0	4.76
							251.0	252.7	1.7	15.5
							280.5	281.0	0.5	4.50
HUD1070	330126.0	6619795.8	-115.6	-10.5	51.4	459.1	335.0	336.0	1.0	5.42
							409.0	410.0	1.0	3.52
							451.5	452.3	0.8	3.73
Analysis by 30g Fire Assay										

Results compiled by using a 3.5 g/t cut-off grade, no top-cut grade Maximum of 2m internal dilution, minimum interval of 0.3 m

Appendix 2: Maps showing the drill hole pierce point locations at Henning Vein

Black Flag West

JORC Code, 2012 Edition – Table 1 Bullant Underground

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

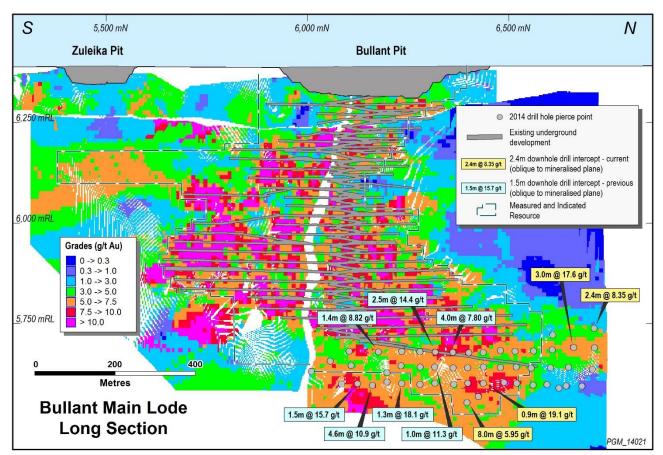
Criteria	Commentary
Sampling techniques	Sampling completed utilising a combination of Diamond Core holes (DC), Face Sampling (FS) and Reverse Circulation (RC) holes. The drill hole locations were designed to allow for spatial spread of samples across mineralised zones and different rock types. Face sampling was performed on most of the faces from development drives.
	Drilling and sampling has been conducted by various companies since 1980 including BHP Gold Mines; Newcrest Mining; Centaur; Goldfields Group; Aurion Gold; Placer Dome; Barrick; and Kalgoorlie Mining Company (KMC) and recently by Norton Gold Fields (Norton).
	Drilling includes exploration, resource development and grade control sampling (DC for underground and RC for open pit). All RC recovered samples were passed through a splitting device (cone or riffle splitter) at 1m intervals to obtain sample for assay, which was collected in an appropriately sized calico bag. Target RC calico sample weights range from 2.5 to 4kg across all RC drilling campaigns. Bulk reject sample was also collected into a plastic bag for each metre. Spear samples, composited to 4m or less, were collected from the bulk samples as a first-pass sampling technique. Single metre samples were collected and submitted for assay from areas of expected mineralisation or composite anomalism.
	DC samples were placed into core trays at the rig before being bought to the core yard for processing.
Drilling techniques	The dataset used for the Bullant resource estimate is a combination of historic data dating back to the 1980's which includes reverse circulation and surface diamond drill holes; and the new data consisting mostly of underground collared diamond drill holes and face samples from the development levels.
	In the latest estimates 609 RC holes were used (20%), 613 DC holes (20%) and 1813 face sampling strings (60%).
	The RC diameter used is un-known. The DC is in 11% NQ2 (47.6mm diameter core sizes), 89% of unknown diameter.
	The RC drilling predominantly confined to the upper limits of the deposit including open pit grade control.
	All the historic holes used in the estimation were assumed to have been processed and sampled in a similar fashion to the added KMC and Norton holes.
	Recent DC holes were oriented.
	The recent drilling campaigns accounts for 11% of the total DC drilling dataset.
	The recent face sampling accounts for 20% of total face sampling dataset.
Drill sample recovery	RC Drillers are advised by geologists on the ground conditions expected for each hole and instructed to adopt an RC drilling strategy to maximize sample recovery, minimize contamination and maintain required spatial position
	All RC 1m samples are collected into a UV resistant bag. Samples are visually logged for moisture content, estimated sample recovery and contamination.

Criteria	Commentary
	Sample loss or gain is reviewed at the time of drilling and feedback is provided to the drilling contractor to ensure the samples are representative. All samples sent to the laboratory are weighed and monitored to ensure that they are representative. DC contractors use a core barrel and wire line unit to recover the DC, adjusting drilling methods and rates to minimize core loss. The DC samples are orientated, length measured and compared to core blocks denoting drilling depths by the drilling contractor. Any recovery issues are recorded. All recoveries are recorded in the geology Geotech Logging sheet. Core recovery where recorded was on average 96%.
Logging	 All drill hole data was geologically logged using codes set up for direct computer input. Hole ID, interval, rock type, changes in shear intensity and changes in alteration type or the occurrence of quartz veining were recorded. All development faces were logged before sampling. Geological logging was qualitative and quantitative in nature. All core was photographed after logging (and before cutting) using a digital camera. Geotechnical information was collected from selected DC holes. Information collected includes RQD and fracture frequency. Historical RC samples were also geologically logged. The following parameters were recorded: weathering, rock type, alteration, mineralization and structure.
Sub-sampling techniques and sample preparation	Diamond core samples were collected at intervals nominated by a geologist from half core or whole core with a minimum interval of 0.1m and a maximum of 1.1m. Face samples were collected by channel sampling with minimum sampling interval of 0.1m and maximum of 1.3m. Sample intervals always conform to the logged lithological boundaries. Core which was halved for sampling was split using diamond saw, half was sampled and assayed, the remaining half resides in the core tray and archived. Samples collected from DC are placed into pre-numbered bags and sent to the lab. The remainder of the core is stored in the core yard on Bullant mine site or in Panglo core storage facility. Samples were taken to a commercial laboratory for assay. Historically Amdel, Analab and Genalysis laboratories were used. All recent samples (since 2010) were sent to SGS laboratory in Kalgoorlie. All RC samples were split by a splitting device to collect sample. Recent RC samples undergone splitting in three-stage riffle splitter to achieve app. 3kg sample for each down-hole metre. Historically the first pass composite (<4m) sampling was used which utilised a spear sample collected from the bulk sample. Recently all 1m reduced samples were placed in pre-numbered calico bag and send for assay. Samples submitted to the laboratory were sorted and reconciled against the submission documents. The sample preparation technique for all samples followed industry best practice, by accredited commercial laboratories. The technique and practices are deemed appropriate for the type and style of mineralization. Between 2010 and 2012 the geochemical samples were dried at 100°C. Dried samples were crushed in Jaw Crusher then split in riffle splitter if they were above 4kg and pulverized to minimum 90% passing 75µm in LM5 pulveriser. 200g sample was scooped out and reduced to 50g sub sample, which entered the Fire Assay process. Since mid-2012 entire dried sample is crushed to 2mm in Boyd Crusher and then rotary split to obtain 1kg sample which was

Criteria	Commentary				
	pulverized in LM2 pulveriser to 85% passing 75µm. A 200g pulp sample was scooped from LM2 out of which the catch weight sample of 30g was scooped for the Fire Assay. Laboratory Quality Control (QC) includes duplicate samples collected after the jaw crushing stage, and repeat samples collected after the pulverising stage to provide data confirming the appropriateness of the sample preparation technique. All sub-subsampling & lab preparations are consistent with other laboratories in Australia & are satisfactory for the intended purpose.				
Quality of assay data and laboratory tests	The assay method was designed to measure total gold in the sample. The laboratory procedures are appropriate for the testing of gold at this project given its mineralization style. The Fire Assay charge of 30g was fused with a lead flux then decomposed in a furnace with the prill being totally digested by 2 acids (HCI and HN03) before measurement of the gold content by an Atomic Absorption Spectrometer. Samples were submitted in 78 sample batches including QC samples. Routine Certified Reference Material (CRM) - standards and blanks were inserted into the sampling sequence at a rate of 1:25 for standards and 1:75 for blanks and also submitted around expected zones of mineralization. The commercial laboratories completed their own QC check. Since 2012 barren flushes have been utilized between expected mineralised sample intervals when pulverizing DDH samples. Historic RC drilling Quality Control procedures are not well documented. However the existing Centaur Mining and Exploration Ltd report states that Assay QC was performed for Duplicate and Replicate pulp assays; Re-split and composite assays; Standard assay checks; Fire Screen assays and Empire assays. Any erroneous QC results were examined and validated if required; establishing acceptable levels of accuracy and precision for all stages of the sampling and analytical process. If there were any issues with any given CRM, the samples associated with the SRM were immediately re-assayed. Therefore all CRM data and their associated samples satisfy a gross tolerance before being accepted in the				
Verification of sampling and assaying	No holes were twinned. Duplicate face sampling was performed on 10 faces during 2010-2012 data collection campaign. There was close correlation of two sample sets. Primary data was sent digitally every 2-3 days from the field to NGF's Database Administrator (DBA). The DBA imports the data into the commercially available and industry accepted Data Shed database software. Assay results were merged when received electronically from the laboratory. The responsible geologist reviewed the data in the database to ensure that it was correct and has merged properly and that all data has been received and entered. Any variations that were required are recorded permanently in the database. No adjustments or calibrations were made to any assay data used in this report				
Location of data points Collars	 Drill holes collars were surveyed by surveyors using a Leica Total Station, Model TS15. This instrument measures distances to an accuracy of ± 0.005m. Collar position was validated in Surpac software against planned co-ordinates and underground development pick-ups. All recent surface and underground data was collected in mine grid based on local Zuleika grid. It is not specified in database what grid was used for collection of historic data (pre 2010). It seems like various grids were used over the wide spread of companies involved, 				

Criteria	Commentary
	therefore it is likely that data undergone some level of transformation between grids (possibly few times). Topographic control was generated from comprehensive survey pick-ups of the area over the last 30 years. The magnetic declination for Kalgoorlie has a five year moving average of +0.108 degrees.
Location of data points Down Hole Surveys	Most of historic drill holes used in the project were surveyed using various magnetic based methods (Multi-shot or Single-shot cameras). 81 holes were surveyed with a north-seeking gyro instrument. There also are 4 short (40 metres) DC holes and 4 short (23 metres) RC holes which were surveyed using Maxibore instrument. Unfortunately for 4 DC holes and 2,238 RC holes the survey method was not recorded. All recent holes were surveyed by magnetic methods.
Data spacing and distribution	 The drill spacing for the Main Lode Indicated resource varies between 50 metres in the close to surface portion of underground deposit to between 16 metres and 40 metres at deeps, on average 25m in the northern deeps, 40 metres in the deeps south. The drill spacing for the Indicated resource in East Lode varies between 20 metres to 40 metres. The average distance to the samples used is generally below 50 metres. Data spacing and distribution is considered acceptable for establishing geological continuity and grade variability appropriate for classifying a Mineral Resource. The length of samples used for resource estimation was generally 1m with some samples shorter due to sampling to geological boundaries. A few samples were 2 metres and greater due to original 4 metres compositing when collecting sample for assay. The samples were therefore composited to 1m down-hole interval. For estimating marginal halo mineralisation, samples were composited to 0.5m down-hole length.
Orientation of data in relation to geological structure	All care was taken to achieve the best possible angle of intersection. Availability of drill sites however and presence of pits course many of drill holes intercepting ore body at acute angles. All FS sampling was performed across the mineralised veins. No drilling orientation and sampling bias has been recognized at this time.
Sample security	Historical samples are assumed to have been under the security if the respective tenement holders until delivered to the laboratory where samples to be expected to have been under restricted access. Samples were all under the security of Norton until delivered to analytical laboratory in Kalgoorlie where they were in a secured fenced compound security with restricted entry.
Audits or reviews	Internal reviews were completed on sampling techniques and data as part of the Norton continuous improvement practice No external or third party audits or reviews have been completed.

Section 2 Reporting of Exploration Results


(Criteria listed in the preceding section also apply to this section.)

Criteria	Commentary
<i>Mineral tenement and land tenure status</i>	The Bullant mine is located on tenement M16/44 and M16/45 which are held by Kalgoorlie Mining Company (Bullant) Pty Ltd. On the 7 August 2013, Norton Gold Fields Limited (Norton) completed a 90% off-market takeover offer for all fully paid ordinary shares in Kalgoorlie Mining Company Limited (KMC) and moved to compulsory acquisition of the remaining shares under the provisions of the Corporation Act. Norton acquired Paddington Gold Pty Limited (Paddington) from Barrick Australia Ltd in August 2007. Paddington is the Operating Manager of the KMC tenements. The mine is located 20 kilometres south-west of Ora Banda and 65 kilometres north-west of Kalgoorlie. Access from Kalgoorlie is north via the sealed Menzies Highway, then west along the Broad Arrow to Ora Banda Road, then south via the unsealed Bullant access road. The tenements M16/44 and M16/45 are located in the Coolgardie Mineral Field within the Kunanalling District and are found on the Ora Banda 1:50,000 Map Sheet. Tenements are in good standing and there are no known impediments.
Exploration done by other parties	A significant proportion of exploration, resource development and mining was completed by companies which held tenure over the Bullant deposit since 1980. Companies included: BHP Gold Mines; Newcrest Mining; Centaur; Goldfields Group; Aurion Gold; Placer Dome; Barrick; and Kalgoorlie Mining Company (KMC). Results of exploration and mining activities by the fore mentioned companies' aid in current resource development. In the current Bullant resource over 80% of all data is legacy data.
Geology	The Bullant project is located in the western margin of the regionally extensive Norseman-Wiluna Belt, lying within the Coolgardie Domain of the Kalgoorlie Terrane. The geology of the Bullant area is dominated by the Bolshevic syncline which comprises a sequence of folded mafic and ultramafic rocks and interflow sediments constrained by the Zulieka Shear Zone in the east and by the Kunanalling Shear Zone in the west. The gold mineralisation at the Bullant project is hosted in four main reefs which include Main Lode, East Lode, West Lode and Cross Lode. The Main and East lodes to date have hosted the majority of the gold mineralisation mined at the project, and are hosted in biotite altered Bent Tree basalt.
Drill hole Information	See appendix 1
Data aggregation methods	 All reported assay results have been length-weighted, no top cuts have been applied. Assay results are reported above a 3.5g/t Au lower cut. A maximum of 2m of internal dilution is included for reporting intercepts. Minimum reported interval is 1.0m for RC and 0.3m for DC intercepts. No metal equivalent values are used for reporting exploration results
Relationship between mineralization widths and intercept lengths	The DC holes were drilled to achieve the best possible angle of intersection. Drill hole intersections vary due to infrastructure issues and drill rig access. Many of the drill holes intersect the ore body at acute angles. All FS sampling was performed across the mineralised veins and are representing approximate true width.

Criteria	Commentary
Diagrams	See appendix 2
Balanced reporting	All results have been reported relative to the intersection criteria.
Other substantive exploration data	No other exploration data collected is considered material to this announcement.
Further work	Further work at Bullant deposit will include additional resource development drilling and updating geological models.

Hole_ID		MGA_North	RL	Dip	Azi					Grade g/t Au
BUGD1048	313531.6	6621280.3	-329.6	-55	309.55	386.8	124.0	126.0	2.0	7.52
							133.0	136.0	3.0	4.34
							303.6	304.3	0.7	8.65
BUGD1050	313413.1	6621403.9	-354.8	-25.5	225.3	164.5	98.6	99.5	0.9	19.1
BUGD1051	313412.2	6621404.2	-354.2	-3.5	245.3	125.5	78.8	83.1	4.3	3.86
BUGD1052	313410.8	6621404.6	-352.7	21.8	276	134.4	8.5	8.85	0.35	11.9
BUGD1053	313411.2	6621405.0	-355.1	-33.5	276	134.5	26.0	26.8	0.8	11.3
							85.87	86.4	0.53	13.3
BUGD1054	313410.4	6621405.7	-351.6	35.5	300	158.3	144.4	145	0.6	5.1
BUGD1055	313410.3	6621405.8	-354.3	-3.5	300	137.3				NSR
BUGD1056	313409.9	6621406.8	-353.0	15	315	182.3	153.0	156.0	3.0	17.6
							174.45	175.2	0.75	6.82
BUGD1057	313409.9	6621406.8	-355.1	-21.5	315	173.5				NSR
BUGD1058	313410.3	6621407.4	-352.5	25	325	263.7	215.5	217.9	2.4	8.35
BUGD1059	313410.0	6621407.4	-354.2	-2	325	216	17.0	18.65	1.65	4.18
BUGD1060	313413.3	6621403.4	-354.3	-3.1	225.2	140.5	97.5	99.3	1.8	6.67
BUGD1061	313412.3	6621404.0	-352.9	21.7	245.3	119.6	8.3	8.8	0.5	21.6
							94.0	95.0	1.0	4.77
BUGD1062	313412.4	6621404.3	-355.0	-31.3	245.2	137.6	116.15	117.15	1.0	3.77
BUGD1063	313411.3	6621404.7	-354.3	-4.1	276	107.3	79.45	80.7	1.25	4.93
BUGD1064	313410.4	6621406.0	-353.0	19.1	300	141	117.1	118.3	1.2	6.01
BUGD1065	313410.3	6621405.9	-355.1	-28.3	300	119.5				NSR
BUGD1066	313410.0	6621406.5	-355.0	-28.3	315	176.4				NSR
BUGD1067	313409.9	6621406.5	-354.2	-2.6	315	148.7				NSR
BUGD1068	313409.9	6621407.1	-353.4	12.5	325	205.5	198.8	200.8	2.0	5.52
BUGD1069	313409.7	6621407.1	-354.8	-17.1	174	185.4				NSR
BUGD1073	313412.2	6621405.5	-354.4	-53.3	276	134.5	108.2	111.0	2.8	6.54
BUGD1074	313410.5	6621407.7	-354.5	-40.5	315.0	155.4	56.65	57.2	0.55	10.6
							133.1	135.0	1.9	18.6
BUGD1076	313413.6	6621404.0	-354.2	-47.3	225.2	137.4	61.6	62.5	0.9	4.49
							113.65	114.55	0.9	14.5
BUGD1078	313412.2	6621405.5	-354.4	-53.6	245.2	155.4	112.45	113.45	1.0	4.56
Analysis by 30g Fire Assay										
Results compiled by using a 3.5 g/t cut-off grade, no top-cut grade										

Maximum of 2m internal dilution, minimum interval of 0.3 m NSR - No Significant result

Appendix 2: Figure showing diamond drill hole pierce points

JORC Code, 2012 Edition

Table 1 Report for the Greater Mt Pleasant area - December 2014

Section 1 Sampling Techniques & Data

Criteria	Commentary
Sampling techniques	 Sampling completed utilising a combination of Reverse Circulation (RC) & Diamond Core (DC) holes on 20m x 20m to 80m x 80m grid spacing. Drilling & sampling has been conducted by various companies over several campaigns since 1995 & includes exploration, resource development & grade control (GC) sampling (UG & open pit RC GC). Sampling techniques are summarised from drilling & sampling manuals/reports from Centaur Mining & Exploration, AurionGold, Placer Dome Asia Pacific, Barrick & Norton Gold Fields. The drill hole locations were designed & oriented to allow for spatial spread of samples across mineralised zones & different rock types. Field-based observations from geological supervision & geological records referring to sample quality, moisture content & recovery were used as a guide to sample representative. All RC-recovered samples were passed through a splitting device (cone or riffle splitter) at 1m intervals to obtain a sample for assay, collected in an appropriately-sized calico bag. RC calico sample weights range from 2.5 to 4kg across all RC drilling campaigns (1995-2014). Bulk reject sample was also collected into a plastic bag for each metre. For legacy data, spear samples composited to 4m or less were collected from the bulk samples as a first-pass sampling technique. Single metre samples were collected & submitted for assay from areas of expected mineralisation or composite anomalism. DC samples were placed into core trays at the rig & transferred to core processing facilities for logging, sawing/splitting & sampling. The DC samples are collected at nominated intervals by a Geologist from resultant half core with a minimum interval of 0.3m & a maximum of 1m.
Drilling techniques	 All assays referred to for resource estimation (1995-2014) were collected from either RC or DC drilling using various contractors. Early legacy RC drilling may have been performed by RC hammer with a cross-over sub, drag bit or skirted tricone bit; the details are generally not specified. The most recent drilling campaigns account for around 5% of the total drilling dataset. Norton RC sampling is completed under contract by Drilling Australia using a Schramm T68SW equipped using Sullair combocompressor (1150cfm/350psi or 900cfm/500psi) using a 5.25" or 5.5" diameter drill bit with a 5" Sandvik RE054 bottom face sampling hammer equipped with a rig mounted Metzke cone splitter. DC sampling is a combination of HQ (63.5mm diameter) and/or NQ (47.6mm diameter) or NQ2 (50.5mm diameter) core sizes. DC is orientated by either a bottom of hole spear; EZI-Mark or ACE digital orientation systems.
Drill sample recovery	 RC Drillers are advised by geologists on the ground conditions expected for each hole & instructed to adopt an RC drilling strategy to maximize sample recovery, minimize contamination & maintain required spatial position. All RC 1m sample rejects are collected into a UV resistant bag. Samples are visually logged for moisture content, qualitative estimated sample recovery & contamination. The DC samples are orientated, length measured & compared to core blocks denoting drilling depths

Criteria	Commentary
	 by the drilling contractor. Any recovery issues are recorded. Sample loss or gain is reviewed at the time of drilling & feedback is provided to the drilling contractor to ensure the samples are representative. DC contractors use a core barrel & wire line unit to recover the DC, adjusting drilling methods & rates to minimize core loss (e.g. changing rock type, broken ground conditions etc.). A study of the weights of the 1m RC sample splits & gold grades (2012-2013 drilling) shows no correlation. The drilling contractors utilised drilling techniques to ensure minimal loss of any size fraction.
Logging	 All current RC samples are geologically logged at 1m interval which is an appropriate level of detail to support a Mineral Resource estimation. Some historic RC drilling intervals were selectively logged. Currently, each interval is inspected & the following parameters are recorded: weathering, regolith, rock type, alteration, mineralisation & structure. All DC is logged for core loss, photographed, marked into 1m intervals, orientated, structurally logged, geotechnically logged & geologically logged for the following parameters: weathering, regolith, rock type, alteration, & mineralisation. Geological logging is qualitative & quantitative in nature. All recent RC holes are logged in their entirety on a 1m interval basis. Where no sample is returned due to voids or lost sample, it is logged & recorded as such. DC is also logged over its entire length & any core loss or voids are recorded.
Sub-sampling techniques & sample preparation	 Assays from DC are all half core samples. The remaining DC resides in the core tray & is archived. All RC samples were split by a cone or a riffle splitter & collected into a sequenced calico bag. For historical drilling, any wet samples that could not be riffle split initially were dried then riffle split. The sample preparation conducted by commercial laboratories involves jaw crushing to nominal <10mm (DC), a riffle split to 3.5kg as required, & pulverizing in a one stage process to >85% passing 75um. The bulk pulverized sample is then collected & approximately 200g extracted by spatula to a numbered paper bag that is used for the 30g or 50g fire assay charge. Laboratory Quality Control (QC) includes duplicate samples collected after the jaw crushing stage, & repeat samples collected after the pulverising stage to provide data confirming the appropriateness of the sample preparation technique. All sub-sampling & lab preparations are consistent with other laboratories in Australia. RC & DC samples submitted to the laboratory are sorted & reconciled against the submission documents. Routine CRM (standards & blanks) are inserted into the sampling sequence at a rate of 1:20 for standards or in specific zones at the Geologist's discretion. The commercial laboratories complete their own QC check. Both RC and diamond drilling campaigns utilised barren quartz flushes between expected mineralized sample interval(s) when pulversing. Selected barren quartz materials flushed within expected mineralised interval are assayed to identify potential smearing. RC field duplicate data was collected routinely & for selected intervals suspected to contain mineralisation. Field duplicate samples were taken at the time of cone/riffle splitting the bulk sample at the drill rig to maintain sample support. The field duplicates are submitted for assay using the same process mentioned above, with the laboratory unaware of the duplicate nature. Some historic DC duplicates were taken at the re

Criteria	Commentary
	 Sample sizes are considered appropriate to the grain size of the material being sampled on the basis of satisfactory duplicate correlations at all stages of the sample comminution process.
Quality of assay data & laboratory tests	 The assay method is designed to measure total gold in the sample. The laboratory procedures are considered appropriate for the testing of gold at this project given its mineralisation style. The technique involved using a 30g or 50g sample charge with a lead flux, which is decomposed in a furnace, with the prill being totally digested by 2 acids (HCI & HNO3) before determination of gold by an AAS machine. No geophysical tools or other remote sensing instruments were utilised for reporting or interpretation of gold mineralisation. RC & DC samples submitted to the laboratory are sorted & reconciled against the submission documents. Certified Reference Material (CRM) (standards & blanks) are inserted into the sampling sequence at a rate of 1:25 for standards or in specific zones at the Geologist's discretion. The commercial laboratories undertake their own QC checks. Specific diamond drilling campaigns utilised barren quartz flushes between expected mineralised sample interval(s) when pulverizing. In the absence of Certified Blank Material, selected barren quartz materials flushed within expected mineralised interval are assayed to identify potential smearing. Standard procedures are to examine any erroneous QC result (a result outside of expected statistically derived tolerance limits) & validate if required; establishing acceptable levels of accuracy & precision for all stages of the sampling & analytical process.
Verification of sampling & assaying	 Independent verification of significant intersections not considered material. No holes were twinned. Primary logging & sampling data is sent digitally every 2-3 days from the field to the company's Database Administrator (DBA). The DBA imports the data into a relational DataShed database, observing a number a validation checks. When assay results are received electronically from the laboratory, results & laboratory QAQC are also imported into the database after further validation checks. The responsible Geologist reviews the data in the database to ensure that it is correct & has merged properly & that all data has been received & entered. Any variations that are required are recorded permanently in the database. No adjustments or calibrations were made to any assay data used in this report.
Location of data points	 After drilling, drill hole collar positions are surveyed by the site-based survey department (utilising either a theodolite or differential GPS) with a precision of less than 0.2m. Down hole surveys consist of regular-spaced Eastman single shot, & electronic multi-shot surveys (generally <30m apart down hole). A minor amount of historic drill holes only have collar surveys. Ground magnetics can affect the result of the measured azimuth reading for these survey instruments. Most relatively recent survey data consists of surveys taken with north-seeking gyro instruments, representing more recent drilling. Gyro survey measurements are obtained every 5m down hole. Recent data is collected in MGA 94 Zone 51 & AHD. Data pre-2012 was collected in AMG 84 Zone 51 & AHD. Topographic control was generated from survey pick-ups of the area over the last 15 years, which have been used to generate an asbuilt and current Digital Terrain Model (DTM).

Criteria	Commentary
Data spacing & distribution	 The nominal drill spacing is 20m x 20m; with some areas at 40m x 40m & increasing to 80m x 80m past 0mRL. This description of data spacing refers to both the classified & unclassified portion of the deposits. Grade Control (GC) data (where applicable) is on 5m x 5m to 10m x 10m spacing. This spacing includes data that has been verified from previous exploration activities on the project. Data spacing & distribution is considered acceptable for establishing geological continuity & grade variability appropriate for classifying a Mineral Resource. This inference is based on historical mining & reconciliation data. Samples were composited to either 1m or 2m down hole prior to modelling.
Orientation of data in relation to geological structure	 Where practicable, drilling is orientated at a high angle to the dip or plunge of the mineralisation (depending on the direction of highest gold grade continuity). This technique enables sampling to be representative of true width of the mineralisation. No drilling orientation & sampling bias has been recognized at this time.
Sample security	 Samples were under the custodial chain of the company until delivered to a commercial laboratory some 30km south of the operations; upon which they were secured in a fenced compound with restricted entry. Internally, the commercial laboratories operate an audit trail tracking the samples at all times whilst in their custody. Historic samples are assumed to have been under the security of the respective tenement holders until delivered to the laboratory where they are assumed to have been under restricted access.
Audits or reviews	 Internal reviews are completed on sampling techniques & data as part of the Norton Gold Fields continuous improvement practice. No external or third party audits or reviews have been completed.

Section 2 Reporting of Exploration Results

Criteria	Commentary
Mineral tenement & land tenure status	 The Mt Pleasant resource is located within Mining Licenses M 24/16, 79, 82, 155, 166, 227, 234, 265-266, 302, 304, 393, 433 & 710. General Purpose lease G 24/11 & Miscellaneous leases L 24/54 & 205-206 are also located within the resource area. All tenements are 100% held by Paddington Gold P/L, a wholly owned subsidiary of Norton Gold Fields P/L. Several heritage sites exist within the tenure. All leases are granted pre-Native Title. Third party royalties are applicable to these tenements & are based on production (\$/t) or proportion of net profit. All production is subject to a WA state government NSR royalty of 2.5%. The tenements are in good standing & no known impediments exist.
Exploration done by other parties	 A significant proportion of exploration, resource development & mining was completed by companies which held tenure over Mt Pleasant since the mid 1990's. Companies included: Centaur Mining & Exploration PL (1995-2001), Auriongold (2001-2002), Placer Dome Asia Pacific (2002-2005) & Barrick Kanowna (2005-2007). Results of exploration & mining activities by the afore-mentioned companies has assisted in Norton Gold Field's more recent exploration, resource development & mining in the area. Reporting of results within this release only relates to results obtained since the September 2014 Quarterly Exploration Report.

Criteria	Commentary
Geology	 The Mount Pleasant Resource comprises 13 individual deposits that are characterised in a geological setting. Deposits from north to south are: Golden Kilometre, Marlock, Salmon Gum, Blue Gum, Blue Gum South, Green Gum, Golden Flag, Rose, Rose Dam South, Golden Road, Woolshed, Woolshed South, Woolshed South Extended, Racetrack & Natal. The deposit types are classified as narrow vein, orogenic gold deposits within the Norseman-Wiluna greenstone sequence. The accepted interpretation for gold mineralisation is related to (regional D2-D3) deformation of the stratigraphic sequence during an Archaean orogeny event. The mineralisation is hosted within the upper-mafic rock units of the Kalgoorlie stratigraphy. The metamorphic grade is defined as lower green-schist facies. The mineralisation is located in brittle-ductile shear zones typically associated with carbonate-sericite alteration +/- sulphides. A second type of deposit is classified as supergene-enriched gold formed by geochemical processes, where mineralised structures intersect the regolith profile. A third type of deposit is classified as Palaeo-channel related gold mineralisation associated with the mechanical transport & geochemical enrichment of gold within the Tertiary material.
Drill hole Information	See Appendices 1-5.
Data aggregation methods	 All reported assay results have been length-weighted; no top cuts have been applied. Assay results are reported to a 0.8g/t Au lower cut over a minimum intersection of 1m for RC & 0.3m for DC. A maximum of 2m of internal dilution (i.e. <2m @ <0.8g/t Au) is included for reporting RC intercepts targeting the supergene mineralisation & for DDH intercepts targeting the fresh rock mineralisation. No metal equivalent values are used for reporting exploration results.
Relationship between mineralisation widths & intercept lengths	 Drill hole intersections are generally at a high angle to each mineralised zone. Reported down hole intersections are noted as approximately true width, or otherwise are denoted as 'true width not known'.
Diagrams	See Appendices 3-5.
Balanced reporting	All results have been reported relative to the intersection criteria.
Other substantive exploration data	• No other exploration data collected is considered material to this announcement. Material known to be refractory is denoted as such in the respective resource.
Further work	• Further work will include mining studies to determine if the project is economic to mine. Interpreted mineralised plunge directions require drill testing if mining studies indicate that the project is economic.

Appendix 1: Table of exploration results – RC & RC_DD Recent Drilling for Racetrack Deposit

Hole_ID	MGA_ East	MGA_ North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t
PMPD0085	330912.2	6618349.6	348.1	-55	146	254.5	52.9	53.3	0.4	2.88
			ľ			-	67.0	72.0	5.0	5.68
			ľ			-	75.5	75.9	0.4	1.38
						-	114.5	115.3	0.8	9.02
						-	188.0	194.2	6.2	6.15
						-	233.7	234.2	0.5	5.62
PMPD0087	330935.3	6618357.5	348.0	-55	146	240	50.0	52.0	2.0	4.95
					-	-	58.0	62.0	4.0	0.54
						-	68.0	70.0	2.0	1.57
						-	116.8	117.5	0.7	3.56
						-	159.0	160.0	1.0	6.22
					-	182.4	182.7	0.3	20.1	
							185.0	196.0	11.0	6.12
PMPD0091	331202.8	6618414.4	347.1	-90	0	186.2	118.0	118.44	0.44	14.6
	551202.0	0010414.4	547.1	-50	Ū	100.2	138.47	140.0	1.53	2.97
						-	173.69	140.0	3.31	1.09
PMPD0092 331216.4	6618465.8	349.2	-70	146	168.1	81.1	82.0	0.9	1.03	
PMPD0092 33	551210.4	0010405.0	349.Z	-70	140	100.1	127.3	128.15	0.9	
								120.15		1.70
							131.57	138.33	6.76	7.84
PMPD0096	331005.4	6618431.5	349.2	-55	146	279.5				assays pendin
										assays
PMPD0097	330986.1	6618421.1	349.4	-60	146	309.4				pendin
PMPD0098	330914.1	6618455.0	349.7	-60	234.2	102	117.6	118.0	0.4	3.70
					207.2	. –	167.5	167.8	0.3	3.23
						-	272.0	273.0	1.0	1.38
						-	285.0	285.7	0.7	2.24
							200.0	200.1	0.7	assays
PMPD0099	331400.4	6618626.4	367.6	-55	146	206.8				pendin
PMPD0100	331386.1	6618608.8	367.1	-70	146	237.3	97.0	98.0	1.0	1.01
						-	114.0	115.0	1.0	0.83
							117.1	117.4	0.3	11.1
						-	154.7	155.3	0.6	3.81
						-	159.55	160.0	0.45	11.4
PMPD0101	331386.8	6618607.9	367.1	-55	146	229.5	82.85	84.0	1.15	2.25
I IIII DOTOT	001000.0	, 0010007.9	507.1		140	220.0	86.5	87.65	1.16	5.55
						-	104.0	104.5	0.5	6.68
							184.9	185.9	1.0	2.05
						-	214.0	215.0	1.0	0.91
PMPD0102	331364.0	6618605.2	367.1	-70	146	228.3	108.0	109.0	1.0	1.01
	551504.0	0010003.2	507.1	-70	140	220.5	116.0	119.85	3.85	2.56
							124.1	132.0	7.9	9.65
	·					-				
							147.0	148.0	1.0	1.24
							159.15	159.7	0.55	2.33
							161.75	162.05	0.3	5.16
			ļ			ŀ	164.45	165.05	0.6	19.7
	004004 -	0040004.0	007.4		4.40	005 1	223.9	224.2	0.3	7.80
PMPD0103	331364.7	6618604.3	367.1	-55	146	225.1	78.25	78.8	0.55	2.14
			ļ			ļ	96.65	97.3	0.65	3.57
							99.75	100.2	0.45	2.92
	ļ		ļ				109.45	113.0	3.55	8.45
	ļ		ļ				161.75	162.1	0.35	0.88
	ļ		ļ				194.75	195.2	0.45	1.60
							210.0	211.0	1.0	3.61
PMPD0106	331347.8	6618581.7	359.1	-70	140	278.7	111.0	111.3	0.3	3.48
	ĺ		ĺ				133.6	133.9	0.3	3.77
						-	146.45	148.0	1.55	2.76

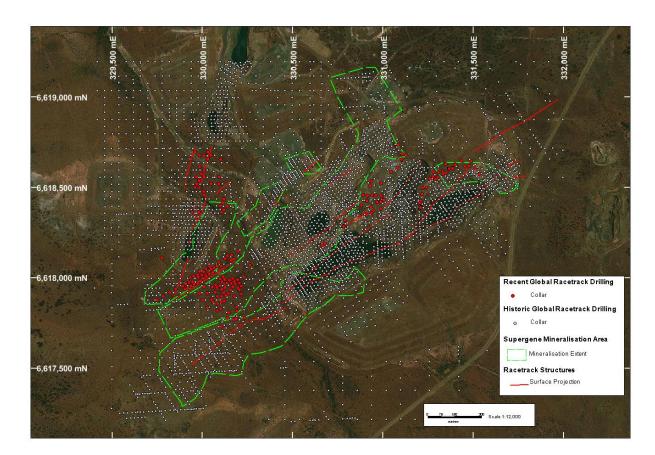
Hole_ID	MGA_ East	MGA_ North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t A
							151.0	153.35	2.35	9.87
			Í				203.0	204.0	1.0	2.18
	ĺ		Í				240.0	241.0	1.0	2.01
PMPD0107	331348.4	6618580.8	359.1	-55	140	285.1	54.4	55.0	0.6	0.94
			ĺ				90.6	91.2	0.6	3.04
	ĺ		Í				104.0	105.0	1.0	1.17
			Í				127.1	127.4	0.3	5.33
			ĺ				136.2	136.5	0.3	6.92
			Í				149.1	151.45	2.35	14.2
			Í				193.2	194.75	1.55	1.81
	ĺ		Í				208.2	208.6	0.4	1.73
PMPD0108	331333.9	6618576.4	358.5	-55	146	102.4				NSR
PMPD0109 331306.6	6618585.0	358.4	-60	146	192.3	158.3	161.0	2.7	6.17	
			Í				187.0	187.45	0.45	1.88
PMPD0110 331347.3	6618630.4	367.6	-74	146	237.3	95.0	96.0	1.0	1.35	
			Í				144.5	145.0	0.5	0.95
							163.0	168.0	5.0	9.97
			ĺ				171.0	172.0	1.0	1.29
			Í	ĺ			184.0	188.0	4.0	7.53
PMPD0111	330783.2	6618284.6	347.6	220	155	-46	59.0	60.0	1.0	1.16
			Í				73.0	74.0	1.0	1.03
			ĺ				87.0	89.0	2.0	3.07
PMPD0111A	330783.0	6618285.9	347.7	-55	146	353.4				assays
										pending
PMPD0112	330781.4	6618283.8	347.6	-54	156	318	85.3	88.6	3.3	1.10
							94.3	95.2	0.9	1.65
							134.0	135.0	1.0	1.31
						_	139.25	140.0	0.75	6.75
						_	162.0	163.0	1.0	2.09
						_	170.0	171.5	1.5	1.19
						_	174.0	174.8	0.8	0.88
						-	178.5	183.0	4.5	2.48
						-	187.0	188.0	1.0	1.13
							228.9	229.25	0.35	1.18
PMPD0113	331476.8	6618620.1	356.1	-60	146	225.3				assays
										pending
PMPD0114	331533.7	6618573.2	349.3	-90	146	189.3				assays pending
										assays
PMPD0115	331205.9	6618387.5	346.1	-63.5	183	146.8				pending
	004000.4	0040000 4	242.4	40 5	470	475 7				assays
PMPD0116	331208.4	6618389.4	346.1	-46.5	170	175.7				pending

Maximum of 2m internal dilution , minimum interval of 0.3 m

Appendix 2: Table of exploration results – Recent RC Drilling for Racetrack West Deposit

Hole_ID	MGA_ East	MGA_ North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width (m)	Grade g/t Au
PMPC1326	329952.1	6617964.7	347.9	-60	150	138	80	82	2	2.69
PMPC1327	330100.7	6617829.8	347.3	-70	150	90	37	39	2	1.57
PMPC1328	330056.3	6617866.6	347.5	-70	150	78	45	46	1	3.46
PMPC1331	330106.1	6618362.5	347.8	-60	90	90	20	22	2	4.34
					ľ	-	31	32	1	4.65
						-	51	52	1	1.35
							82	83	1	3.90
PMPC1332	330119.2	6618376.8	347.7	-60	90	96	24	25	1	1.53
						_	32	33	1	1.73
							40	43	3	1.01
					Í	_	51	52	1	1.07
						-	58	61	3	3.05
					·	-	71	72	1	0.97
PMPC1333	330137.1	6618396.4	347.8	-60	90	96	20	21	1	2.64
							38	39	1	1.04
						-	66	67	1	0.80
PMPC1334	330097.5	6618397.5	347.6	-60	90	102	23	24	1	2.23
1 101 01004	000007.0	0010001.0	047.0	00	00	102	81	83	2	2.23
PMPC1335	330113.4	6618416.8	347.9	-60	90	90	15	23	8	1.47
1 101 01000	000110.4	0010410.0	547.5	-00	50	50	51	52	1	1.33
						-	83	32 84	1	1.73
PMPC1336	330118.5	6618436.9	347.9	-60	90	90	20	21	1	1.75
PMPC1330 PMPC1337	330165.8	6617996.1	347.9	-00	150	90 72	49	50	1	1.03
				-70		60				
PMPC1338	330083.5	6617819.6	347.4	-70	150	60	44	45	1	5.03
DMDO4000	220040.2	0047000.0	047.5	70	450	<u> </u>	57	58	1	5.57
PMPC1339 PMPC1340	330048.3	6617880.8	347.5	-70	150	60 60	42	47	5	2.44
	330027.5	6617916.3	347.6	-70	150		44	46	2	1.59
PMPC1341	330007.8	6617950.8	347.7	-70	150	72	59	60	1	2.09
PMPC1342	329975.2	6618003.7	347.8	-60	150	114	59	60	1	3.59
						_	63	67	4	6.00
DMD01010	000404.0	0047000 5	0.47.4	70	450	54	76	78	2	3.53
PMPC1343	330101.8	6617866.5	347.4	-70	150	54	38	39	1	5.00
PMPC1344	330054.8	6617949.3	347.7	-70	150	66	42	43	1	2.12
PMPC1345	330079.3	6617946.0	347.5	-70	150	84	42	50	8	2.19
PMPC1346	330176.9	6617898.5	347.2	-70	150	60				NSR
PMPC1347	330157.0	6617932.7	347.3	-70	150	60	46	47	1	1.77
PMPC1348	330215.2	6617910.1	347.2	-70	150	66	29	32	3	1.14
PMPC1349	330196.2	6617944.5	347.4	-70	150	60				NSR
PMPC1350	330213.5	6617954.6	347.3	-70	150	60				NSR
PMPC1351	330193.3	6617989.5	347.5	-70	150	66	53	55	2	2.96
PMPC1352	330027.2	6617833.8	347.6	-70	150	66	56	58	2	2.75
PMPC1353	329982.9	6617914.0	347.8	-70	150	96	66	67	1	2.48
PMPC1354	329918.4	6617944.8	348.1	-60	150	84				NSR
PMPC1355	330194.9	6618146.3	347.5	-60	150	120	106	107	1	0.86
PMPC1356	330172.6	6618105.2	347.6	-60	150	84				NSR
PMPC1357	330160.2	6618127.1	347.5	-60	150	120	73	74	1	1.26
							77	79	2	2.42
PMPC1358	330155.1	6618096.3	347.6	-60	150	90	43	44	1	1.87
						F	73	74	1	1.33
PMPC1359	330139.5	6618122.3	347.7	-60	150	138	80	83	3	2.31
						-	106	110	4	1.08
						F	120	121	1	0.80
PMPC1360	330056.6	6618031.3	347.7	-60	150	102	44	45	1	4.27
						F	76	77	1	5.52
PMPC1361	330047.5	6618047.5	347.6	-60	150	120	88	94	6	7.41

Hole_ID	MGA_ East	MGA_ North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width (m)	Grade g/t Au
							110	120	10	1.35
PMPC1362	330038.7	6618062.8	347.7	-60	150	150	114	116	2	7.08
PMPC1363	330031.0	6618030.6	347.7	-60	150	120	41	42	1	1.05
							60	61	1	1.21
					Ĩ		75	76	1	1.20
							94	95	1	0.90
PMPC1364	330018.9	6618051.6	347.7	-60	150	156	115	119	4	2.39
PMPC1365	330017.0	6618014.2	347.8	-60	150	108	55	56	1	1.26
							65	66	1	1.53
					,	F	91	92	1	0.93
PMPC1366	330006.5	6618033.2	347.8	-60	150	150	75	76	1	4.48
PMPC1367	329945.1	6617980.4	348.1	-60	150	126.5	91	93	2	3.31
							109	112	3	2.01
					·	F	117	118	1	0.83
PMPC1368 329931.6	6618002.8	348.2	-60	150	162	98	103	5	4.57	
					-	113	117	4	1.95	
						151	159	8	5.59	
PMPC1369	329924.0	6617975.6	348.2	-60	150	120	80	89	9	10.56
PMPC1370	330124.7	6618106.8	347.6	-60	150	120	65	80	15	6.91
1 101 01370	WIF C1370 330124.7	0010100.0	547.0	-00	100	120	83	85	2	1.19
						-	94	95	1	0.86
					r		94 113	95 115	2	0.80
DMDC1271	220000 7	6619097.0	2477	60	150	100				
PMPC1371	330090.7	6618087.0	347.7	-60	150	120	36	39	3	1.26
PMPC1372	329982.4	6618034.8	347.9	-60	150	180	178	179	1	0.80
PMPC1373	330004.1	6617996.7	347.9	-60	150	102	75	79	4	2.60
51/50/07/		0017000.0	0.17.0		150		84	85	1	1.19
PMPC1374	329973.6	6617968.9	347.9	-60	150	90	71	75	4	3.54
PMPC1375	329901.3	6617935.3	348.4	-60	150	84				NSR
PMPC1376	329889.9	6617955.1	348.3	-60	150	120	62	68	6	2.53
							71	72	1	1.48
PMPC1377	329851.5	6617939.3	348.5	-60	150	136				NSR
PMPC1378	329817.2	6617919.4	348.8	-60	150	136	44	45	1	1.02
							63	67	4	2.48
							75	77	2	1.37
							80	81	1	0.85
PMPC1379	329783.6	6617898.8	349.0	-60	150	136	58	59	1	3.06
							121	122	1	0.86
PMPC1380	330007.3	6618477.2	348.0	-60	90	138	5	6	1	1.46
							67	68	1	6.59
							91	92	1	3.90
							104	105	1	3.16
PMPC1381	329959.0	6618501.2	348.3	-60	90	66	55	57	2	5.20
PMPC1382	329983.2	6618501.1	348.1	-60	90	60	33	34	1	0.91
PMPC1383	330007.8	6618458.7	347.8	-60	90	120	7	12	5	1.23
							25	26	1	2.27
					ĺ	F	58	59	1	1.44
					ĺ	F	62	64	2	3.29
					Ì	F	78	79	1	1.53
PMPC1384	329967.9	6618519.7	347.7	-60	90	60	42	43	1	6.45
PMPC1385	329980.2	6618362.5	348.1	-60	90	78	13	14	1	1.03
					ľ	F	39	42	3	1.02
					ľ	F	47	54	7	2.96
PMPC1386	329942.3	6618363.0	348.1	-60	90	150	65	85	20	2.86
						F	98	99	1	1.09
					ľ	F	106	138	32	3.83
PMPC1387	330089.1	6618520.2	347.7	-60	90	90	32	33	1	3.05
					-	-	52	53	1	1.53
					l	F	58	59	1	1.25
		·				-	72	76	4	2.93


Hole_ID	MGA_ East	MGA_ North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width (m)	Grade g/t Au
							86	87	1	27.60
PMPC1388	330047.2	6618519.9	347.7	-60	90	120	18	20	2	6.33
							83	84	1	1.67
						_	104	105	1	0.86
							108	111	3	2.00
PMPC1389	329980.4	6618538.7	348.2	-60	90	60	32	37	5	1.42
PMPC1390	330092.0	6618558.2	348.2	-60	90	120	29	30	1	3.43
							110	111	1	0.84
PMPC1391	330008.0	6618557.7	348.2	-60	90	66	39	41	2	1.44
							57	63	6	1.89
PMPC1392	329966.9	6618558.4	348.2	-60	90	78	19	20	1	0.90
						_	39	40	1	2.58
							46	55	9	6.64
PMPC1393	329994.2	6618576.2	348.2	-60	90	60	14	21	7	8.61
						_	24	25	1	0.80
DMD04004	000000 5	0040504.0	0.40.0	00	00	00	45	46	1	0.81
PMPC1394	330008.5	6618594.6	348.3	-60	90	60	39	40	1	2.64
PMPC1395	329982.5	6618613.9	348.4	-60	90	72	41	45	4	1.23
PMPC1396	329938.0	6618657.2	348.6	-60	90	145	101	102	1	2.86
						-	105	108	3	1.89
DMD04007	220404.0	0040050 7	240.2	<u></u>	00	70	131	132	1	2.13
PMPC1397	330101.2	6618656.7	348.3	-60	90	72				NSR
PMPC1398	330047.7	6618677.1	348.3	-60	90	78	54	55	1	3.58
PMPC1399	330029.3	6618656.9	348.5	-60	90	84	68	69 07	1	0.85
PMPC1400	330008.4	6618676.6	348.5	-60	90	84	16	27	11	1.47
						-	57	58 71	1 2	0.85
PMPC1401	329983.3	6618677.2	348.5	-75	90	138	69	25		1.42
FIVIEC 1401	329903.3	0010077.2	340.3	-75	90	130	23 108	25 109	2	2.02
PMPC1402	329957.8	6618696.7	348.5	-60	90	138	33	109 34	1	1.48
FINFC1402	525557.0	0010090.7	540.5	-00	90	130	49	54 51	2	1.46
						-	49 91	92	1	0.93
						-	108	111	3	2.17
						-	121	122	1	1.07
PMPC1403	330029.0	6618696.4	348.5	-60	90	78	36	40	4	0.81
	000020.0	0010000.1	010.0				66	70	4	1.96
PMPC1404	330102.4	6618065.2	347.6	-60	150	96	66	70	4	10.98
PMPC1405	330080.1	6618065.8	347.5	-60	150	102				NSR
PMPC1406	330064.8	6618056.7	347.6	-60	150	114				NSR
PMPC1407	329995.5	6618016.3	347.8	-60	150	120				NSR
PMPC1408	329973.0	6618017.0	347.8	-60	150	150	51	53	2	2.20
PMPC1409	329951.2	6618008.8	348.0	-60	150	156	60	62	2	2.45
							69	71	2	6.02
						F	83	92	9	6.93
PMPC1410	329935.8	6617955.0	348.1	-60	150	102	89	92	3	1.96
PMPC1411	329906.9	6617965.5	348.1	-60	150	120	72	74	2	14.13
PMPC1412	329749.0	6617879.0	349.1	-60	150	138	66	67	1	1.05
PMPC1413	330228.5	6618008.3	347.5	-70	150	66				NSR
PMPC1414	330169.5	6617950.4	347.3	-70	150	72	35	36	1	4.11
PMPC1415	330159.3	6617968.6	347.3	-70	150	78	44	45	1	3.90
PMPC1416	330148.9	6617986.0	347.4	-70	150	72	26	27	1	1.35
						F	42	44	2	27.07
PMPC1417	330133.9	6617971.8	347.4	-70	150	72	39	41	2	4.02
PMPC1418	330114.2	6618006.7	347.5	-70	150	72	31	32	1	1.69
						F	45	46	1	0.82
PMPC1419	330144.5	6617912.5	347.2	-70	150	60	46	47	1	3.72
						F	59	60	1	2.84
PMPC1420	330125.2	6617947.6	347.3	-70	150	66	41	42	1	10.50
PMPC1421	330106.9	6617979.2	347.4	-70	150	72	53	58	5	1.49

Hole_ID	MGA_ East	MGA_ North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width (m)	Grade g/t Au
PMPC1422	330097.9	6617994.5	347.6	-70	150	84	37	38	1	1.30
PMPC1423	330127.3	6617902.5	347.3	-70	150	60	42	43	1	6.44
							52	53	1	5.77
PMPC1424	330118.1	6617918.3	347.3	-70	150	78	43	44	1	5.80
PMPC1425	330107.6	6617937.3	347.4	-70	150	78	42	44	2	6.08
PMPC1426	330071.3	6617960.6	347.4	-70	150	78				NSR
PMPC1427	330120.4	6617873.9	347.3	-70	150	60	34	37	3	2.36
PMPC1428	330106.5	6617898.3	347.4	-70	150	66	40	41	1	0.81
PMPC1429	330083.4	6617898.3	347.5	-70	150	54	40	41	1	0.84
PMPC1430	330084.4	6617858.0	347.4	-70	150	60	41	42	1	5.39

Results compiled by using a 0.8 g/t cut-off grade, no top-cut grade

Maximum of 2m internal dilution , minimum interval of 1.0 m

Appendix 3: A map showing the collar locations of the recent RC & RC_DD drilling at Global Racetrack

JORC Code, 2012 Edition – Table 1 Report for Mulgarrie Well - December 2014

Section 1 Sampling Techniques & Data

Criteria	Commentary
Sampling techniques	 Sampling completed utilising a combination of Reverse Circulation (RC) & Diamond Core (DC) holes on 25m x 25m to 50m x 50m grid spacing. Drilling & sampling has been conducted by various companies since late 1986 & includes exploration & resource development. Sampling techniques are summarised from drilling & sampling manuals/reports by BHP Minerals International (1986-1990), Newcrest Mining Limited (1990-1995), Delta Gold NL (1995-2002), Placer Dome Asia Pacific (2002-2005), Barrick (2005-2007) & Norton Gold Fields Ltd (2007 to present). Drilling & sampling conducted by BHP & Newcrest between 1986 & 1995 is considered as legacy data due to the missing detail of the dataset. This drilling accounts for 7.5% of the dataset. The legacy data was used to generate resource estimates forming the basis of reserve estimates & subsequent mining between 1986 & 1990. Reconciliation data from this mining period & further drilling was used to assist with determining the integrity of the legacy data.
	• The drill hole locations were designed & oriented to allow for spatial spread of samples across mineralised zones & different rock types.
	• Field based observations from geological supervision & geological records referring to sample quality, moisture content & recovery were used as a guide to sample representivity.
	• All RC-recovered samples were passed through a splitting device (cone or riffle splitter) at 1m intervals to obtain a sample for assay. Target RC sample weights range from 2.5 to 4kg across all RC drilling campaigns (1986-2013). Bulk reject sample was also collected into a plastic bag for each metre. Spear samples, composited up to 5m, were collected from the bulk samples as a first-pass sampling technique. Single metre samples were collected & submitted for assay from areas of expected mineralisation or composite anomalism.
	 DC samples were placed into core trays at the rig & transferred to core processing facilities for logging, sawing/splitting & sampling. The DC samples are collected at nominated intervals by a Geologist from resultant half core with a minimum interval of 0.2m & a maximum of 1m.
	 Samples were submitted to commercial laboratories for assay. Sample preparation, summarised for all drilling campaigns (1986-2013), included all or part of: oven dry between 85°C & 105°C, jaw-crushing (nominal 10mm) & splitting to 3.5kg as required, pulverize sample to >85% passing 75um. Samples were either assayed by Aqua Regia digest or from a 30g or 50g fire assay charge. Analysis was completed via Atomic Absorption Spectrometry (AAS).
Drilling techniques	• All assays referred to for resource estimation (1986-2013) were collected from either: RC (39% of the dataset), RC grade control (55% of the dataset) or DC (6% of the dataset) drilling using a drilling contractor. The most recent drilling campaign accounts for around 2.4% of the total drilling dataset.
	 RC sampling completed using a 4.5" to 5.5" diameter drill bit with a face sampling hammer (1992 to 2013). RC drilling rigs were equipped with a booster compressor. DC sampling is a combination of HQ (63.5mm diameter) and/or NQ2 (50.5mm diameter) or NQ3 (45mm) core sizes. DC is orientated by either a bottom of hole spear, EZI-Mark or ACE system.

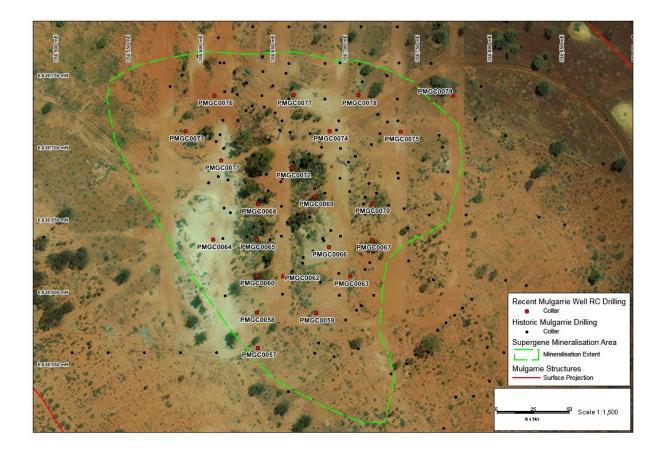
Criteria	Commentary						
	• In the case of utilising diamond tails, RC pre-collars are up to 250m deep. This technique was employed to effectively drill down to the mineralisation & collect DC through this zone.						
Drill sample recovery	RC Drillers are advised by geologists on the ground conditions expected for each hole & instructed to adopt an RC drilling strategy to maximize sample recovery, minimize contamination & maintain required spatial position.						
	 All RC 1m samples are collected into a UV resistant bag. Samples are visually logged for moisture content, estimated sample recovery & contamination. The DC samples are orientated, length measured & compared to core blocks denoting drilling depths by the drilling contractor. Any recovery issues are recorded. Sample loss or gain is reviewed at the time of drilling & feedback is provided to the drilling contractor to ensure the samples are representative. All samples sent to the laboratory are weighed & monitored to ensure that they are representative. 						
	• DC contractors use a core barrel & wire line unit to recover the DC, adjusting drilling methods & rates to minimize core loss (e.g. changing rock type, broken ground conditions etc.).						
	• A study of the weights of the 1m RC sample splits & gold grades (2013 drilling) show no correlation between the two. The drilling contractors utilized drilling techniques to ensure minimal loss of any size fraction.						
Logging	 All current RC samples are geologically logged at the detail of 1m intervals to support Mineral Resource estimation; in some histor RC drilling, samples were selectively logged. Geological features that are logged included: weathering, regolith, rock type, alteration mineralisation & structure. All DC is logged for core loss, marked into 1m intervals, orientated, structurally logged, geotechnical logged & geologically logged for the following parameters: weathering, regolith, rock type, alteration, & mineralisation. 						
	Geological logging is qualitative & quantitative in nature.						
	• RC holes are logged on a 1m interval basis. Where no sample is returned due to voids or lost sample, it is logged & recorded as such. DC is also logged over its entire length & any core loss or voids are recorded.						
Sub-sampling	Assays from DC are all half core samples, the remaining DC resides in the core tray & archived.						
techniques & sample preparation	• All RC samples were split by a cone or a riffle splitter & collected into a sequenced calico bag. For historical drilling, any wet samples that could not be riffle split initially were dried then usually riffle split.						
	• The sample preparation conducted by commercial laboratories involves jaw crushing to nominal <10mm (where required), a riffle split to 3.5kg as required, & pulverising in a one stage process to >85% passing 75um. The bulk pulverized sample is then collected & approximately 200g extracted by spatula to a numbered paper bag that is used for the 30g or 50g fire assay charge or aqua regia digest. Laboratory Quality Control (QC) includes duplicate samples collected after the jaw crushing stage, & repeat samples collected after the pulverising stage to provide data confirming the accuracy & precision of the preparation technique. All sub-subsampling & lab preparations are consistent with other laboratories in Australia are certified by the laboratory.						
	• RC & DC samples submitted to the laboratory are sorted & reconciled against the submission documents. The commercial laboratories complete their own QC check.						

Criteria	Commentary
	 RC field duplicate data was collected routinely & for selected intervals suspected to contain mineralisation. Field duplicate samples were taken at the time of cone/riffle splitting the bulk sample at the drill rig to maintain sample support. The field duplicates are submitted for assay using the same process mentioned above, with the laboratory unaware of the duplicate nature. No DC duplicates have been collected.
	• Sample sizes are considered appropriate to the grain size of the material being sampled on the basis of satisfactory duplicate correlations at all stages of the sample comminution process.
Quality of assay data & laboratory tests	• The assaying & laboratory procedures are designed to measure total gold in the sample. The laboratory procedures are considered appropriate for the testing of gold at this deposit, given the reconciliation data.
	• The fire assay technique involved using a 30g, 40g or 50g sample charge with a lead flux, which is decomposed in a furnace, with the prill being totally digested by 2 acids (HCI & HN03) before measurement of the gold content by an AAS machine. Aqua regia is a process of dissolving pulverised mineral sample into solution by a series of acids (HCI & HNO3); heat is added as a catalyst. An organic solvent is added before analysis is completed by an AAS machine. This analysis was completed for samples within the regolith profile where the technique is considered as total gold analysis technique.
	No geophysical tools or other remote sensing instruments were utilised for reporting or interpretation of gold mineralisation.
	• RC & DC samples submitted to the laboratory are sorted & reconciled against the submission documents. Certified Reference Material (CRM) (standards & blanks) are inserted into the sampling sequence at a rate of 1:115 for standards or in specific zones at the Geologist's discretion. The commercial laboratories undertake their own QC checks. Both RC and diamond drilling campaigns utilised barren quartz flushes between expected mineralised sample interval(s) when pulverizing.
	• Standard procedures are to examine any erroneous QC result (a result outside of expected statistically derived tolerance limits) & validate if required; establishing acceptable levels of accuracy & precision for all stages of the sampling & analytical process.
Verification of	Independent verification of significant intersections not considered material.
sampling & assaying	• No twinned holes were completed. An analysis of grade control drilling in close proximity to the resource drilling was completed, comparing assay grades. Overall, economic assay values in the resource drilling compare to the grade control sample values. The mean grade of assays from the grade control dataset, for within the current open pit, are 0.3 g/t Au higher than for the resource assays for the same volume.
	• Primary logging & sampling data is sent digitally every 2-3 days from the field to the company's Database Administrator (DBA). The DBA imports the data into a relational database. When assay results are received electronically from the laboratory, results & laboratory QAQC are also imported into the database after further validation checks. The responsible Geologist reviews the data in the database to ensure that it is correct & has merged properly & that all data has been received & entered. Any variations that are required are recorded permanently in the database.
	 No adjustments or calibrations were made to any assay data used in this report.

Criteria	Commentary
Location of data points	 All drill holes used in the resource estimation have been surveyed for easting, northing & reduced level. Recent data is collected in MGA 94 Zone 51 & AHD. Data pre-2012 is collected in local grid or AMG 84 Zone 51 & AHD.
	• Drill hole collar positions are surveyed by the site-based survey department (utilsing a differential GPS or conventional surveying techniques, with reference to a known base station) with a precision of less than 0.2m.
	• Down hole survey methodologies are missing from the dataset pre 2002. Historic reports document surveys were conducted utilising down hole tools but lack adequate description. Down hole surveys for drilling conducted post 2002 were completed utilising a north-seeking down hole gyro tool.
	• Topographic control was generated from survey pick-ups of the area over the last 20 years, which have been used to generate a Digital Terrain Model (DTM).
Data spacing & distribution	• The nominal drill spacing is 25m x 25m with some areas from 12m x 12m up to 50m x 50m for the distil parts of the resource (and past 150mRL). This spacing includes data that has been verified from previous exploration activities on the project.
	• Data spacing & distribution is considered sufficient for establishing geological continuity & grade variability, appropriate for classifying a Mineral Resource.
	• Samples were composited to 2m down hole prior to modelling to assist with the effects of volume variance & decrease grade variability.
Orientation of data in relation to geological structure	• The drilling is orientated at a high angle to the gross ore zone geometry (NW-strike, moderate NE dip). This orientation is sub-parallel to the known orientation of the smaller scale gold-bearing structures. The sampling, for the most part, is sub-parallel to the mineralisation. In this instance, assay results appear to be highly variable, but assist with delineating the gross ore-zone morphology (along with identifying other geological features of the ore zone).
	• A geostatistical study of the assay results for the grade control (drilled & sampled at a high angle to the mineralised structures) data & the resource assay results (drilled sub-parallel to the mineralised structures) shows that the resources assays report 20% lower than the grade control assays (for the same volume).
Sample security	• Historic samples are assumed to have been under the security of the respective tenement holders/operators until delivered to the commercial laboratory where samples would be expected to have been under restricted access.
	• Samples collected between 2012 & 2013 were all under the security & custodial chain of NGF employees until delivered to ALS Kalgoorlie laboratory some 30km south, where they were received in a secured fenced compound security with restricted entry. Internally, ALS operates an audit trail, tracking the samples at all times whilst in their custody.
Audits or reviews	 Internal reviews are completed on sampling techniques & data as part of the Norton Gold Fields continuous improvement practice. No external or third party audits or reviews have been completed.

Section 2 Reporting of Exploration Results

Criteria	Commentary
Mineral tenement & land tenure status	• The Mulgarrie Well deposit is located within Mining License M27/38. The ML is 100% held by Norton Gold Fields Ltd. No heritage or historical sites exist within the tenure. M27/38 was granted pre-Native Title. Third party royalties are applicable to these tenements & are based on production (\$/t) or proportion of net profit. All production is subject to a WA state government NSR royalty of 2.5%.
	The tenements are in good standing & no known impediments exist.
Exploration done by other parties	 A significant proportion of exploration, resource development & mining was completed by companies which held tenure over the Mulgarrie Well deposit since the mid 1980's. Companies included: Broken Hill Proprietary Limited (pre 1990), Newcrest Mining PL (1990-1995), Delta Gold (1996-2002), Placer Dome Asia Pacific (2002-2005) & Barrick Kanowna (2005-2007). Results of exploration & mining activities by the afore-mentioned companies has assisted in Norton Gold Field's more recent exploration, resource development & mining in the area. Reporting of results here within only relates to results previously not required to have been reported to the ASX by Placer Dome Asia Pacific and Barrick.
Geology	• The deposit type is classified as an orogenic gold deposit within the Norseman-Wiluna greenstone sequence. The accepted interpretation for gold mineralisation is related to (regional D2-D3) deformation of the stratigraphic sequence during an Archaean orogeny event. The mineralisation is hosted within a komatiite unit in fault contact with a high-magnesium basalt unit. The metamorphic grade is defined as lower green-schist facies.
	• The mineralisation is located in brittle deformation zones within carbonate alteration pods, associated with thrust-faulting along the komatiite/high-magnesium basalt contact.
Drill hole Information	See Appendix 1.
Data aggregation methods	 All reported assay results have been length weighted; no top cuts have been applied. Assay results are reported to a 0.8g/t Au lower cut over a minimum intersection of 1m. A maximum of 2m of internal dilution (i.e. <2m @ <0.8g/t Au) is included for reporting RC intercepts.
	 No metal equivalent values are used for reporting exploration results.
Relationship between mineralisation widths & intercept lengths	• Drill hole intersections are generally at a high angle to each mineralised zone. Reported down hole intersections are noted as approximate true width, or otherwise are denoted as 'true width not known'.
Diagrams	See Appendix 2
Balanced reporting	All results have been reported relative to the intersection criteria.
Other substantive exploration data	No other exploration data collected is considered material to this announcement.
Further work	• Further work will include mining studies to determine if the project economics can support larger scale open pit mining of the deposit.


Appendix 1: Table of Exploration Results – Mulgarrie Well 2014

Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width(m)	Grade g/t A
PMPGC0057	356640.6	6638560.5	363.6	-60	270	96	28	29	1	2.54
							94	96	2	17.6
PMPGC0058	356639.6	6638584.9	363.6	-60	270	78	13	14	1	3.13
PMPGC0059	356681.0	6638584.6	363.4	-60	270	84				NSR
PMPGC0060	356639.6	6638610.4	363.6	-60	270	60	1	2	1	0.95
PMPGC0062	356657.9	6638610.0	363.4	-55	270	60	0	5	5	3.70
							18	25	7	1.42
							37	38	1	3.02
PMPGC0063	356704.5	6638609.9	363.4	-60	270	90	58	59	1	1.09
							71	72	1	0.85
PMPGC0064	356609.5	6638635.4	364.1	-60	270	36	16	17	1	0.80
							29	30	1	1.67
PMPGC0065	356639.7	6638635.2	363.5	-60	270	54	12	21	9	1.89
							28	30	2	1.80
							35	36	1	0.89
PMPGC0066	356689.6	6638630.3	363.5	-60	270	84	27	33	6	3.36
							39	43	4	6.96
							52	53	1	1.00
PMPGC0067	356720.1	6638634.9	363.2	-60	270	114	93	94	1	1.04
PMPGC0068	356640.5	6638660.0	363.7	-60	270	84	21	27	6	1.52
							30	36	6	1.83
							46	47	1	3.04
51/500000	050000.0				070		56	57	1	1.10
PMPGC0069	356680.2	6638665.2	363.6	-60	270	90	39	48	9	3.54
DUD000070	050740 5	00000000	000.0		070	400	55	56	1	1.00
PMPGC0070	356719.5	6638660.3	363.6	-60	270	120	62	63	1	1.62
							69 70	70	1	4.35
							79	80	1	6.27
PMPGC0071	356615.1	6638690.2	363.9	-60	270	102	87 32	88	1	4.29
PMPGC0071 PMPGC0072	356664.5	6638685.2	363.7	-60 -60		78	32 45	33 50	1 5	9.95 0.96
PMPGC0072 PMPGC0073	356590.7	6638710.3	363.7	-60 -60	270 270	66	45 9	50 10	5	1.16
FINF GC0075	550550.7	0050710.5	304.0	-00	270	00	9 41	42	1	0.93
PMPGC0074	356690.2	6638710.4	364.1	-60	270	150	66	42 80	14	1.34
1 1011 000074	000000.2	0000710.4	004.1	-00	210	100	84	87	3	0.95
							95	96	1	0.91
PMPGC0075	356739.5	6638710.1	364.2	-60	270	78	55	50	•	NSR
PMPGC0076	356610.3	6638735.1	364.1	-60	270	78	34	35	1	0.84
000070	000010.0	0000100.1	007.1	00	210	10	43	45	2	1.48
PMPGC0077	356665.1	6638735.2	364.3	-60	270	114	32	33	1	0.87
000011		0000100.L					79	82	3	0.96
PMPGC0078	356710.0	6638735.2	364.6	-60	270	78				NSR
PMPGC0079	356775.5	6638735.0	364.6	-60	270	102				NSR

Results compiled by using a 0.8 g/t cut-off grade, no top-cut grade

Maximum of 2m internal dilution , minimum interval of 1.0 m

Appendix 2: Collar Locations of Recent RC Drilling

Corporate Directory

Board & Senior Management Jinghe Chen

Non-Executive Chairman

Dianmin Chen Managing Director & Chief Executive Officer

Anne Bi Non-executive Director

Xuelin Cai Non-executive Director

Noel White Non-executive Director

Mark Braghieri

General Manager Bullabulling Project

Terry Moylan

General Manager Projects & Business Development

Steven Phan Chief Financial Officer

Peter Ruzicka General Manager Exploration

Guy Simpson

General Manager Technical Services

Cullum Winn General Manager Paddington Operations

Company Secretary

Richard Jones General Counsel / Company Secretary

Media Relations

Warrick Hazeldine / Annette Ellis Purple Communications Tel: +61 (8) 6314 6300

ASX Listed Share Capital

931,850,665 million ordinary shares

Presentation and Rounding

Unless stated otherwise, all dollars shown are Australian dollars.

YTD

YTD means 2014 calendar year to date

Competent Persons Statement

The information in this report that relates to Mineral Resources is based on information compiled by Peter Ruzicka and Brad Daddow for Paddington, and Richard Sulway for Bullabulling. The information in this report that relates to Mineral Reserves is compiled by Guy Simpson and Elizabeth Jones. Exploration drilling results have been compiled by Peter Ruzicka.

Peter Ruzicka, Guy Simpson and Elizabeth Jones are all members of the Australasian Institute of Mining and Metallurgy and fulltime employees of Norton Gold Fields Limited. Brad Daddow is a member of the Australian Institute of Geoscientists and a fulltime employee of BM Geological Services PL, a consulting group to Norton Gold Fields Limited. Richard Sulway is a member of the Australasian Institute of Mining and Metallurgy, and a full-time employee of Snowden, a consulting group to Norton Gold Fields Limited.

Guy Simpson, Elizabeth Jones, Peter Ruzicka, Brad Daddow and Richard Sulway all have sufficient experience relevant to the styles of mineralisation and types of deposits which are covered in this report, and to the activity which they are undertaking to qualify as Competent Persons as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Guy Simpson, Elizabeth Jones, Peter Ruzicka, Brad Daddow and Richard Sulway all consent to the inclusion in this report of matters based on their information in the form and context in which it appears.

Mount Morgan Project

The information in this report that relates to Mineral Resources of the Mount Morgan Mine project was prepared in accordance with the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' ("JORC Code") and is based on, and fairly represents, information and supporting documents prepared by Troy Lowien, Resource Geologist, of consultants Coffey Mining Pty Ltd, who is a Member of The Australian Institute of Mining and Metallurgy ("AUSIMM") and has a minimum of five years of experience in the estimation, assessment and evaluation of Mineral Resources of this style and is the Competent Person as defined in the JORC Code. Troy Lowien conducted the geological modelling, statistical analysis, variography, grade estimation and report preparation. This report accurately summarises and fairly reports his estimations and he has approved and consented to the resource report in the form and context in which it appears. This information was prepared and first disclosed under the JORC Code 2004. It has not been updated since to comply with the JORC Code 2012 on the basis that the information has not materially changed since it was last reported.

Paddington Ore Reserve and Mineral Resource statement (gold) as at 30 September 2014

Reserve	Mt	g/t	Moz
Proven	1.32	1.49	0.06
Probable	17.69	1.77	1.01
Total	19.01	1.75	1.07
_			
Resource	Mt	g/t	Moz
Resource Measured	Mt 2.91	g/t 1.80	Moz 1.69
		<u> </u>	
Measured	2.91	1.80	1.69

Bullabulling Mineral Resource statement (gold) as at 30 September 2014

Resource	Mt	g/t	Moz
Measured	-	-	-
Indicated	68.53	0.99	2.18
Inferred	26.82	1.20	1.03
Total	95.35	1.05	3.22

Norton Gold Fields Consolidated Mineral Resource statement (gold) as at 30 September 2014

Resource	Mt	g/t	Moz
Measured	2.91	1.80	1.69
Indicated	143.27	1.19	5.50
Inferred	83.23	1.60	4.29
Total	229.40	1.35	9.96

Mount Morgan Mineral Resource statement (gold) as at 31 December 2012

	Mt	g/t	Moz
Indicated	2.487	1.59	0.127
Inferred	5.861	1.07	0.199
Total	8.348	1.23	0.326

Principal Office

Level 36, Exchange Plaza 2 The Esplanade, Perth WA 6000 Australia Tel +61 (0) 8 9263 9700 Fax +61 (0) 8 9263 9777

Postal Address

PO Box 5762 St Georges Terrace PERTH WA 6831 Australia www.nortongoldfields.com.au

Share Registry

Link Market Services Level 15, 324 Queen Street Brisbane QLD 4000 Tel 1300 554 474 (within Australia) Tel +61 1300 554 474 (overseas) Please direct shareholding enquiries to the share registry