

23 March 2015

# ST GEORGE IDENTIFIES OUTSTANDING MASSIVE NICKEL SULPHIDE TARGETS AT DESERT DRAGON CENTRAL

#### HIGHLIGHTS:

- Two very strong, late-time EM conductors identified at Desert Dragon Central for drilling
- The EM conductors are modelled on the margins of the ultramafic and within a prominent fold on the Stella Range belt, a highly favourable setting for the concentration of massive nickel sulphides
- Target 4 EM conductor is co-incident with a strong gravity anomaly which typically reflects sulphide-rich rocks
- Target 5 EM conductor has exceptionally high time constant of 443 milliseconds and high conductance of 4900 Siemens indicating a thick conductive body
- Drilling to commence in early April 2015

## EM CONDUCTORS WITH FAVOURABLE GEOLOGICAL AND STRUCTURAL FEATURES SIGNIFICANTLY SUPPORTING THEIR POTENTIAL TO REPRESENT MASSIVE NICKEL SULPHIDES

St George Mining Ltd ("St George" or "the Company") is pleased to announce the identification of additional high quality nickel sulphide targets at its 100% owned East Laverton Nickel Sulphide Project in Western Australia ("St George's Project" or "the Project").

The moving loop electromagnetic (MLEM) survey recently completed by Newexco at the Desert Dragon prospect has identified several EM anomalies, two of which have been recommended by global nickel expert Dr Jon Hronsky for immediate drilling.

The two targets – named Target 4 and Target 5 – are each powerful EM conductors with time decay and conductance that are consistent with massive sulphides. At Target 4, the EM conductor has a time constant of 190ms and a conductance of 3500 Siemens.

At Target 5, the EM conductor has an exceptional time constant of 443ms and a very strong conductance of 4900 Siemens. This EM response is indicative of a very thick conductive body.

Importantly, each of these EM conductors is modelled on the ultramafic contact of the high-MgO channel that hosts the nickel sulphide mineralisation intersected at drill hole DRAC35 (see Figure 1). The presence of known nickel sulphides in this channel significantly increases the potential of the ultramafic contact to host massive nickel sulphide mineralisation.

Also of importance is the location of the targets within the most prominent fold feature of the Stella Range belt. Fold closures or 'noses' are favourable sites for the accumulation of massive sulphides and are a priority search area in nickel sulphide exploration.

#### Mr John Prineas, Executive Chairman of St George Mining said:

"These EM conductors are outstanding targets for massive nickel sulphide mineralisation.

"Target 5, in particular, is a very strong EM conductor with remarkable conductivity and time decay that are an excellent fit for a nickel sulphide deposit.



"The combination of geophysical, geological and structural features makes these targets very special, and we are keenly anticipating the start of drilling very soon."

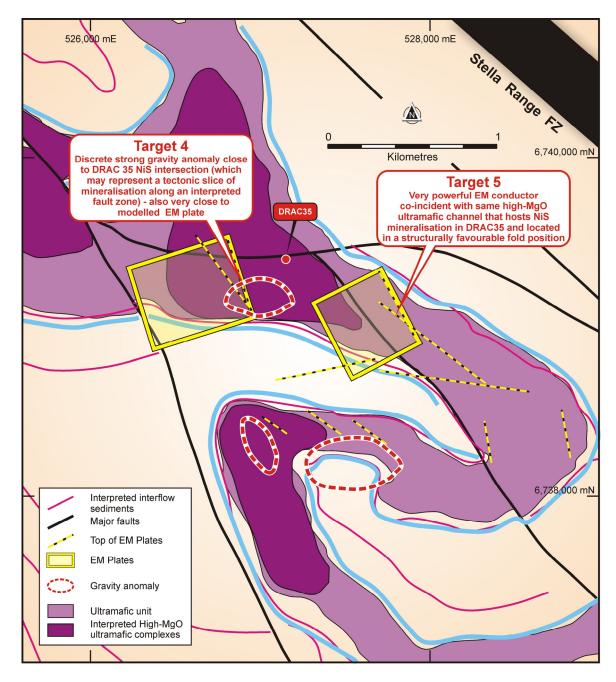



Figure 1 – a map of Desert Dragon Central showing the interpreted geology and the prominent fold in the Stella Range belt. The two immediate targets are strong EM conductors located on the ultramafic contact of a high-MgO ultramafic complex - a high priority target zone for massive nickel sulphides. The location of the targets in the limb of a very prominent fold 'nose' in the Stella Range belt is also favourable for the structural concentration of massive nickel sulphides.



#### TARGET 4 - IS DRAC35 ON THE MARGIN OF A MAJOR NICKEL SULPHIDE SYSTEM ?

Drilling at Target 4 will focus on the easterly margin of a strong late-time EM conductor which is in contact with the western margin of a positive gravity feature. The gravity anomaly is interpreted to reflect dense sulphide-rich rocks, which may include nickel sulphides.

Significantly, there is a strong correlation between where the EM response peaks, and where the conductor intersects the margin of the gravity anomaly (see Figure 3). This area is favourably situated near the ultramafic contact, a site where massive nickel sulphides typically accumulate.

The conductor was identified by Newexco and labelled 'Anomaly 9'. It has been modelled as a single plate that has a shallow westerly dipping orientation away from the intersection with the gravity anomaly. It is a short-strike conductor modelled as 500m x 700m, with a high conductance and time decay that is consistent with massive sulphides.

Drill hole DRAC35 was completed at Desert Dragon Central by BHP Billiton Nickel West in 2012 and intersected 18m @ 0.40%Ni from 100m (including 4m @ 0.57%Ni from 100m). A downhole analysis of DRAC35 is illustrated in Figure 2.

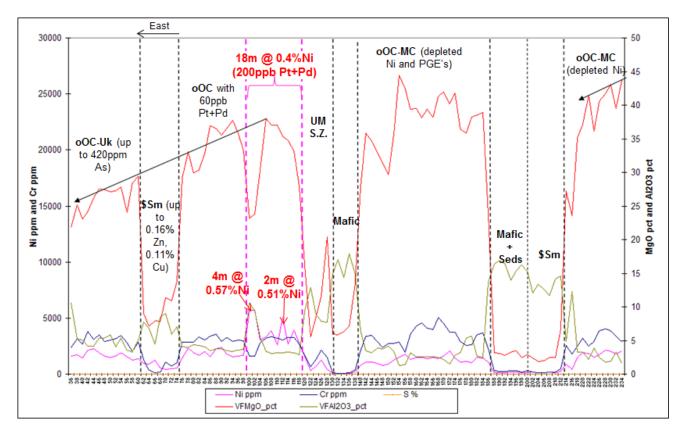



Figure 2 – Downhole profile of drill hole DRAC35. The hole intersected 18m @ 0.40%Ni in orthocumulate ultramafics in contact with a sheared margin of an ultramafic channel complex. Geochemical interpretation suggests these are remobilised sulphides from a proximal source.



The thick interval of disseminated nickel sulphides in DRAC35 is interpreted to be within the sheared margin of a major komatiite channel flow to the south of the drill hole. The nickel sulphides in DRAC35 are interpreted as being remobilised from a nearby body of nickel sulphides, during an alteration event.

Target 4 is located to the southwest of drill hole DRAC35 and is interpreted as the closest potential source for the remobilised sulphides encountered in DRAC35.

Lithogeochemical analysis of DRAC35 and other drilling at Desert Dragon indicates a southerly vector from DRAC35 towards where a local komatiite hosted nickel sulphide system may be situated. A ground gravity survey was completed over this area to the south of DRAC35 and confirmed the presence of a large komatiite channel complex.

Target 4 has favourable geological, geochemical and structural features which corroborate the potential for the intersection of the EM conductor and the margin of the gravity anomaly to represent a massive nickel sulphide body. This is a priority drill target to test for massive nickel sulphide mineralisation.

#### TARGET 5 – VERY STRONG EM CONDUCTOR IN FOLD OF THE ULTRAMAFIC BELT

Target 5 is comprised of a very powerful EM conductor identified by Newexco and labelled 'Anomaly 10'.

It is situated near the ultramafic contact of the same large high-MgO komatiite channel complex as Target 4. This is a classic setting for massive nickel sulphide mineralisation.

The EM conductor has a relatively short strike length of approximately 500m and is modelled as a 500m x 550m plate having a shallow (35 degree) westerly dip.

The conductive plate for Anomaly 10 has a very powerful response at 4900 Siemens. The decay has an extremely impressive time constant of 443ms calculated over a number of late time channels which show a clear exponential decay profile.

The combination of very high conductivity and exceptional time decay suggests a very thick conductive body that could potentially represent a massive nickel sulphide deposit.

Also of significance is that the conductance and time constant for Anomaly 10 are markedly higher than the other surrounding EM plates, which suggests that this conductor may be related to an isolated and unique source.

The very strong EM conductor at Target 5 is situated in an ideal setting within the fold of the Stella Range belt and near the contact of a high-MgO komatiite channel at which disseminated nickel sulphides have already been discovered.

This makes Target 5 a compelling drill target for massive nickel sulphides.



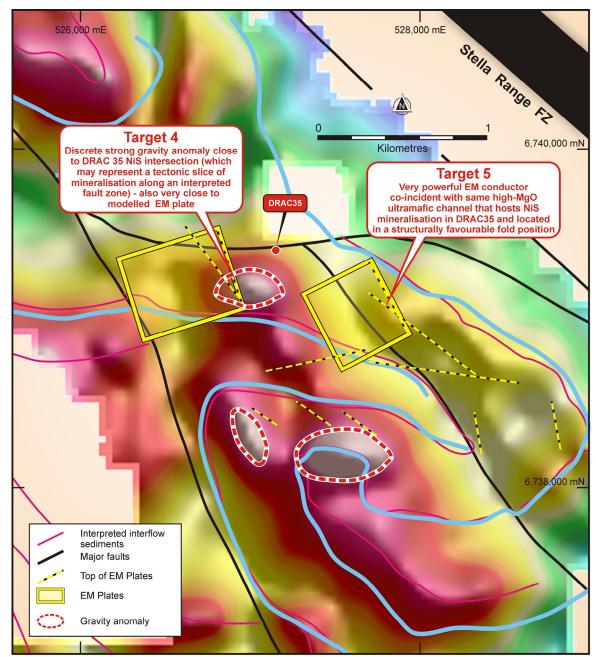



Figure 3 – a map of Desert Dragon Central against gravity data. The immediate targets are very strong EM conductors in favourable structural locations.

#### For further information, please contact:

John Prineas Executive Chairman St George Mining Limited (+61) 411 421 253 John.prineas@stgm.com.au Colin Hay Professional Public Relations (+61) 08 9388 0944 mob 0404 683 355 colin.hay@ppr.com.au



#### **Competent Person Statement:**

The information in this report that relates to Exploration Targets, Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Mr Timothy Hronsky, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Hronsky is employed by Essential Risk Solutions Ltd which has been retained by St George Mining Limited to provide technical advice on mineral projects.

Mr Hronsky has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Hronsky consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this announcement that relates to Exploration Results and Mineral Resources as defined in the 2004 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' is based on information compiled by Mr Hronsky. Mr Hronsky is a member of the Australasian Institute of Mining and Metallurgy has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration and to the activity, which he is undertaking. This qualifies Mr Hronsky as a "Competent Person" as defined in the 2004 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Hronsky consents to the inclusion of information in this announcement in the form and context in which it appears.

## The following section is provided for compliance with requirements for the reporting of exploration results under the JORC Code, 2012 Edition.

### Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections)

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Sampling<br>techniques | Nature and quality of sampling (eg cut<br>channels, random chips, or specific specialised<br>industry standard measurement tools<br>appropriate to the minerals under<br>investigation, such as down hole gamma<br>sondes, or handheld XRF instruments, etc). | This ASX Release dated 23 March 2015 reports on new targets generated at the Company's East Laverton Nickel Sulphide Project. The ASX Release does not report any new exploration results, and the targets are generated by a review of past exploration results particularly drilling programs and electromagnetic surveys completed recently at the Project.                                                                                   |  |  |  |  |  |
|                        | These examples should not be taken as limiting the broad meaning of sampling.                                                                                                                                                                                 | Drilling programs have included diamond core drilling completed by DDH1 Drilling Pty Ltd and reverse circulation (RC) drilling completed by VM Drilling Pty Ltd.                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
|                        |                                                                                                                                                                                                                                                               | Diamond drilling was undertaken by DDH1 in 2014 using a Sandvik<br>1200 Multipurpose truck mounted drill rig. RC drilling was<br>undertaken by VM Drilling in 2014 using a Schramm 685 truck<br>mounted drill rig.                                                                                                                                                                                                                               |  |  |  |  |  |
|                        |                                                                                                                                                                                                                                                               | Diamond Core Sampling: The core is removed from the drill rig and<br>laid out for initial analysis in the field. The core is measured and<br>marked up at 1m intervals against the drillers blocks, which are<br>themselves checked against the drillers log books where required.<br>The visible structural features on the core are measured against the<br>core-orientation lines.                                                            |  |  |  |  |  |
|                        |                                                                                                                                                                                                                                                               | Onsite XRF analysis is conducted using a hand-held Olympus Innov-X<br>Spectrum Analyser. The XRF analysis is used to systematically review<br>diamond drill core, with a single reading taken every metre, except<br>in the case of core loss. These results are only used for onsite<br>interpretation and preliminary base metal assessment subject to<br>final geochemical analysis by laboratory assays.                                     |  |  |  |  |  |
|                        |                                                                                                                                                                                                                                                               | The sections of the core that are selected for assaying are marked<br>up and recorded on a "cut-sheet" which provides a control on the<br>intervals that will be cut and sampled at a duly certified assay<br>laboratory, SGS Laboratories. Core is prepared for analysis at 1m<br>intervals or at lesser intervals of geological significance. Core is cut<br>in half lengthways and then numbered samples are taken as per the<br>"cut-sheet". |  |  |  |  |  |
|                        |                                                                                                                                                                                                                                                               | Diamond core provides high quality samples that are logged for<br>lithological, structural, geotechnical, density and other attributes.<br>Sampling is carried out under QAQC procedures as per industry best<br>practice.                                                                                                                                                                                                                       |  |  |  |  |  |
|                        |                                                                                                                                                                                                                                                               | <i>RC Sampling:</i> All samples from the RC drilling are taken as 1m samples. Samples are sent to Intertek Laboratories for assaying.                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|                        |                                                                                                                                                                                                                                                               | Appropriate QAQC samples (standards, blanks and duplicates) are inserted into the sequences as per industry best practice.                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                        |                                                                                                                                                                                                                                                               | Samples are collected using cone or riffle splitter. Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays.                                                                                                                                                                                                                                                                             |  |  |  |  |  |
|                        |                                                                                                                                                                                                                                                               | Onsite XRF analysis is conducted on the fines from RC chips using a hand-held Olympus Innov-X Spectrum Analyser. These results are only used for onsite interpretation and preliminary assessment subject to final geochemical analysis by laboratory assays.                                                                                                                                                                                    |  |  |  |  |  |
|                        |                                                                                                                                                                                                                                                               | Moving loop electromagnetic (MLEM) survey: The MLEM survey is designed and managed by Newexco, with field work contracted to Bushgum Pty Ltd. The MLEM survey is conducted at several                                                                                                                                                                                                                                                            |  |  |  |  |  |

| Criteria | JORC Code explanation                                                                                                                                  | Commentary                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|          |                                                                                                                                                        | prospects within the project area.                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|          |                                                                                                                                                        | Key specifications                                                                                                                                                                                              | of the MLEM survey are:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|          |                                                                                                                                                        | Stations Spacing:                                                                                                                                                                                               | 100m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|          |                                                                                                                                                        | Loop:                                                                                                                                                                                                           | 400m, 200m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|          |                                                                                                                                                        | Line Spacing:                                                                                                                                                                                                   | 400m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |
|          |                                                                                                                                                        | Components:                                                                                                                                                                                                     | хуг                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|          |                                                                                                                                                        | Orientation:                                                                                                                                                                                                    | X along line (local east - positive).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|          |                                                                                                                                                        | Line direction:                                                                                                                                                                                                 | 58.35, 90 degrees                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|          |                                                                                                                                                        | Frequency:                                                                                                                                                                                                      | 0.5, 0.25 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |
|          |                                                                                                                                                        | Channels:                                                                                                                                                                                                       | SMARTem Standard.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|          |                                                                                                                                                        | Receiver:                                                                                                                                                                                                       | Fluxgate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |
|          |                                                                                                                                                        | Number turns:                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |
|          |                                                                                                                                                        | Current:                                                                                                                                                                                                        | Typically 50 A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |
|          |                                                                                                                                                        | Repeats:                                                                                                                                                                                                        | Minimum 3 consistent readings per station.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|          |                                                                                                                                                        | completed for cer                                                                                                                                                                                               | omagnetic (DHEM) survey: A DHEM survey will be<br>rtain drill holes. The DHEM survey is designed and<br>exco Services Pty Ltd, with field work contracted to<br>s Pty Ltd.                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |
|          |                                                                                                                                                        | Key specifications                                                                                                                                                                                              | of the DHEM survey are:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|          |                                                                                                                                                        | System:                                                                                                                                                                                                         | Atlantis (analogue)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |
|          |                                                                                                                                                        | Components:                                                                                                                                                                                                     | A, U, V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
|          |                                                                                                                                                        | Component direct                                                                                                                                                                                                | tion:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
|          |                                                                                                                                                        | <ul> <li>Bu – Pe</li> <li>looking</li> <li>Bv – Pe</li> </ul>                                                                                                                                                   | rallel to hole axis, positive up hole.<br>rpendicular to hole axis: toward 12 o' clock when<br>down hole.<br>rpendicular to hole axis: toward 9 o' clock when<br>down hole.                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |  |
|          | Include reference to measures taken to ensure<br>sample representivity and the appropriate<br>calibration of any measurement tools or<br>systems used. | sample standards<br>calculations are r<br>and the driller's<br>were conducted<br>deviations of the<br>hole collar location<br>has an accuracy o<br>surveyed to a great                                          | <i>Sampling:</i> For diamond core samples, certified were added as every $25^{th}$ sample. Core recovery made through a reconciliation of the actual core records. Downhole surveys of dip and azimuth using a single shot camera every 30m to detect hole from the planned dip and azimuth. The drillons were recorded using a hand held GPS, which f +/- 5m. At a later date the drill-hole collar will be ater degree of accuracy.                                                                                                                                                                               |  |  |  |
|          |                                                                                                                                                        | cyclone on the ri<br>collected directly<br>bags. The calico b<br>return for that m<br>taken from drill<br>majority of the sa<br>in a green plastic<br>cyclone is blown t<br>calico sample b<br>encountered ther | e RC drilling rig has a cone splitter built into the<br>ig. Samples are taken on a one meter basis and<br>from the splitter into uniquely numbered calico<br>ag contains a representative sample from the drill<br>etre. This results in a representative sample being<br>return, for that metre of drilling. The remaining<br>imple return for that metre is collected and stored<br>bag marked with that specific metre interval. The<br>through with compressed air after each plastic and<br>ag is removed. If wet sample or clays are<br>the cyclone is opened and cleaned manually and<br>compressed air gun. |  |  |  |
|          |                                                                                                                                                        | truck and the air                                                                                                                                                                                               | compressor ("air-pack") is mounted on a separate<br>stream is connected to the rig. This provides an<br>ompressed air supplied by the in-built compressors                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |

| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                     | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                                                                                                                                                                                                                                                                                                                                                                           | mounted on the drill rig itself. This auxiliary compressor maximises<br>the sample return through restricting air pressure loss, especially in<br>deeper holes. In addition, the high and consistent levels of air<br>pressure minimise the number of drill samples.                                                                                                                                                                                                                                                                                                                                        |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                           | Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays. Downhole surveys of dip and azimuth are conducted using a single shot camera every 30m to detect deviations of the hole from the planned dip and azimuth. The drill-hole collar locations were recorded using a hand held GPS, which has an accuracy of +/- 5m. At a later date the drill-hole collar will be surveyed to a greater degree of accuracy.                                                                                                                                     |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                           | <i>MLEM Survey:</i> Field calibration of the survey instruments using standards is undertaken each day. A minimum of 3 consistent readings per station are taken to ensure accuracy of data collected.                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                           | <i>DHEM Survey:</i> For the DHEM survey, the polarity of each component<br>is checked to ensure the system was set up using the correct<br>component orientations. The hole position is corrected for<br>trajectory using orientation survey data.                                                                                                                                                                                                                                                                                                                                                          |
|                        | Aspects of the determination of mineralisation<br>that are Material to the Public Report.<br>In cases where 'industry standard' work has<br>been done this would be relatively simple (eg                                                                                                                                                                                                                 | Diamond Core Sampling: Core is drilled with HQ and NQ2 size and sampled as half core to produce a bulk sample for analysis. Intervals vary from 0.3 – 1m maximum and are selected with an emphasis on geological control.                                                                                                                                                                                                                                                                                                                                                                                   |
|                        | reverse circulation drilling was used to obtain<br>1 m samples from which 3 kg was pulverised to<br>produce a 30 g charge for fire assay'). In other<br>cases more explanation may be required, such<br>as where there is coarse gold that has inherent<br>sampling problems. Unusual commodities or<br>mineralisation types (eg submarine nodules)<br>may warrant disclosure of detailed<br>information. | Assays are completed at SGS Laboratories in Perth. Samples are sent to SGS where they are crushed to 6 mm and then pulverised to 75 microns. A 30 g charge of the sample is fire assayed for gold, platinum and palladium. The detection range for gold is $1 - 2000$ ppbAu, and $0.5 - 2000$ ppb for platinum and palladium. This is believed to be an appropriate detection level for these elements within this specific mineral environment. However, should Au, Pt or Pd levels reported exceed these levels an additional assay method will be used to re-test samples.                               |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                           | All other metals will be analysed using an acid digest and an ICP finish. The sample is digested with nitric, hydrochloric, hydrofluoric and perchloric acids to effect as near to total solubility of the sample as possible. The solution containing samples of interest, including those that need further review, will then be presented to an ICP-OES for the further quantification of the selected elements.                                                                                                                                                                                         |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                           | <i>RC Sampling:</i> A 1m composite sample is taken from the bulk sample of RC chips that may weigh in excess of 40 kg. Assay preparation is completed by Intertek.                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                           | Assays are undertaken at Intertek in Kalgoorlie and Perth. Samples are sent to Intertek where they are crushed to 6 mm and then pulverised to 75 microns. A 30 g charge of the sample is fire assayed for gold, platinum and palladium. The detection range for gold is $1 - 2000 \text{ ppbAu}$ , and $0.5 - 2000 \text{ ppb}$ for platinum and palladium. This is believed to be an appropriate detection level for these elements within this specific mineral environment. However, should Au, Pt or Pd levels reported exceed these levels an additional assay method will be used to re-test samples. |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                           | All other metals will be analysed using an acid digest and an ICP finish. The sample is digested with nitric, hydrochloric, hydrofluoric and perchloric acids to effect as near to total solubility of the sample as possible. The solution containing samples of interest, including those that need further review, will then be presented to an ICP-OES for the further quantification of the selected elements.                                                                                                                                                                                         |
| Drilling<br>techniques | Drill type (eg core, reverse circulation, open-<br>hole hammer, rotary air blast, auger, Bangka,<br>sonic, etc) and details (eg core diameter, triple                                                                                                                                                                                                                                                     | Diamond Core Sampling: The collars of the diamond holes were<br>drilled using RC drilling down through the regolith to the point of<br>refusal or to a level considered geologically significant to change to                                                                                                                                                                                                                                                                                                                                                                                               |

| Criteria                                                | JORC Code explanation                                                                                                                                                                                         | Commentary                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
|---------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                         | or standard tube, depth of diamond tails, face-<br>sampling bit or other type, whether core is                                                                                                                | core. The hole was then continued using HQ diamond core until the drillers determined that a change to NQ2 coring was required.                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                         | oriented and if so, by what method, etc).                                                                                                                                                                     | The core is oriented and marked by the drillers. The core is oriented using ACT Mk II electric core orientation.                                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                         |                                                                                                                                                                                                               | <i>RC Sampling:</i> The RC drilling uses a 140 mm diameter face hammer tool. High capacity air compressors on the drill rig are used to ensure a continuously sealed and high pressure system during drilling to maximise the recovery of the drill cuttings, and to ensure chips remain dry to the maximum extent possible.                                          |  |  |  |  |  |
| Drill sample<br>recovery                                | Method of recording and assessing core and chip sample recoveries and results assessed.                                                                                                                       | Diamond Core Sampling: Diamond core recoveries/core loss are<br>recorded during drilling and reconciled during the core processing<br>and geological logging. No significant sample recovery problems are<br>thought to have occurred in any holes drilled to date. There has<br>been a notable and consistent competency encountered in the rock<br>during drilling. |  |  |  |  |  |
|                                                         |                                                                                                                                                                                                               | <i>RC Sampling:</i> RC samples are visually checked for recovery, moisture and contamination. Geological logging is completed at site with representative RC chips stored in chip trays.                                                                                                                                                                              |  |  |  |  |  |
|                                                         | Measures taken to maximise sample recovery and ensure representative nature of the samples.                                                                                                                   | Diamond Core Sampling: Depths are checked against the depth on<br>the core blocks and rod counts are routinely carried out by the<br>drillers. Core loss was recorded by St George geologists and<br>sampling intervals were not carried through core loss.                                                                                                           |  |  |  |  |  |
|                                                         |                                                                                                                                                                                                               | <i>RC Sampling:</i> Samples are collected using cone or riffle splitter. Geological logging of RC chips is completed at site with representative chips being stored in drill chip trays.                                                                                                                                                                              |  |  |  |  |  |
|                                                         | Whether a relationship exists between sample<br>recovery and grade and whether sample bias<br>may have occurred due to preferential<br>loss/gain of fine/coarse material.                                     | To date, no detailed analysis to determine the relationship between<br>sample recovery and grade has been undertaken for any drill<br>program. This analysis will be conducted following any economic<br>discovery.                                                                                                                                                   |  |  |  |  |  |
|                                                         |                                                                                                                                                                                                               | The nature of magmatic sulphide distribution hosted by the competent and consistent rocks hosting any mineralised intervals are considered to significantly reduce any possible issue of sample bias due to material loss or gain.                                                                                                                                    |  |  |  |  |  |
| Logging                                                 | Whether core and chip samples have been<br>geologically and geotechnically logged to a<br>level of detail to support appropriate Mineral<br>Resource estimation, mining studies and<br>metallurgical studies. | Geological logging is carried out on all drill holes with lithology, alteration, mineralisation, structure and veining recorded.                                                                                                                                                                                                                                      |  |  |  |  |  |
|                                                         | Whether logging is qualitative or quantitative<br>in nature. Core (or costean, channel, etc)<br>photography.                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                         | The total length and percentage of the relevant intersections logged.                                                                                                                                         | All drill holes are geologically logged in full and detailed litho-<br>geochemical information is collected by the field XRF unit. The data<br>relating to the elements analysed is used to determine further<br>information regarding the detailed rock composition.                                                                                                 |  |  |  |  |  |
| Sub-sampling<br>techniques and<br>sample<br>preparation | If core, whether cut or sawn and whether quarter, half or all core taken.                                                                                                                                     | The HQ and NQ2 core is cut in half length ways in Kalgoorlie using an automatic core saw. All samples are collected from the same side of the core. The half-core samples are submitted to SGS for analysis.                                                                                                                                                          |  |  |  |  |  |
|                                                         | If non-core, whether riffled, tube sampled,<br>rotary split, etc and whether sampled wet or<br>dry.                                                                                                           | RC samples are collected in dry form. Samples are collected using<br>cone or riffle splitter when available. Geological logging of RC chips<br>is completed at site with representative chips being stored in drill<br>chip trays.                                                                                                                                    |  |  |  |  |  |

| Criteria                                            | JORC Code explanation                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                     | For all sample types, the nature, quality and appropriateness of the sample preparation technique.                                                                                                                                           | Diamond Core Sampling: Diamond core was drilled with HQ and NQ2 size and sampled as complete half core to produce a bulk sample for analysis. Intervals selected varied from 0.3 – 1m (maximum) with a strong geological control (as is possible in diamond core) to ensure grades are representative, i.e. remove any bias through projecting assay grades beyond appropriate geological boundaries.                                                                           |  |  |  |  |  |
|                                                     |                                                                                                                                                                                                                                              | Assay preparation procedures ensure the entire sample is pulverised<br>to 75 microns before the sub-sample is taken. This removes the<br>potential for the significant sub-sampling bias that can be<br>introduced at this stage.                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                     |                                                                                                                                                                                                                                              | <i>RC Sampling</i> : Sample preparation for RC chips follows a standard protocol.                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                     |                                                                                                                                                                                                                                              | Assay preparation procedures ensure the entire sample is pulverised<br>to 75 microns before the sub-sample is taken. This removes the<br>potential for the significant sub-sampling bias that can be<br>introduced at this stage.                                                                                                                                                                                                                                               |  |  |  |  |  |
|                                                     | Quality control procedures adopted for all sub-<br>sampling stages to maximise representivity of<br>samples.                                                                                                                                 | <i>Diamond Core Sampling:</i> Drill core is cut in half lengthways and the total half-core submitted as the sample. This meets industry standards where 50% of the total sample taken from the diamond core is submitted.                                                                                                                                                                                                                                                       |  |  |  |  |  |
|                                                     |                                                                                                                                                                                                                                              | <i>RC Sampling:</i> Field QC procedures maximise representivity of RC samples and involve the use of certified reference material as assay standards, along with blanks, duplicates and barren washes.                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|                                                     | Measures taken to ensure that the sampling is<br>representative of the in situ material collected,<br>including for instance results for field<br>duplicate/second-half sampling.                                                            | Diamond Core Sampling: The retention of the remaining half-core is<br>an important control as it allows assay values to be determined<br>against the actual geology; and where required a quarter core<br>sample may be submitted for assurance. No resampling of quarter<br>core or duplicates has been done at this stage of the project.                                                                                                                                     |  |  |  |  |  |
|                                                     |                                                                                                                                                                                                                                              | <i>RC Sampling:</i> Field duplicates were taken on 1m composites for RC samples.                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
|                                                     | Whether sample sizes are appropriate to the grain size of the material being sampled.                                                                                                                                                        | The sample sizes are considered to be appropriate to correctly<br>represent the sulphide mineralisation at the East Laverton Property<br>based on: the style of mineralisation (massive and disseminated<br>sulphides), the thickness and consistency of the intersections and<br>the sampling methodology.                                                                                                                                                                     |  |  |  |  |  |
| Quality of<br>assay data and<br>laboratory<br>tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.                                                                                             | For diamond core and RC sampling, a 30 gram sample will be fire<br>assayed for gold, platinum and palladium. The detection range for<br>gold is $1 - 2000$ ppbAu, and $0.5 - 2000$ ppb for platinum and<br>palladium. This is believed to be an appropriate detection level for<br>the levels of these elements within this specific mineral<br>environment. However, should Au, Pt or Pd levels reported exceed<br>these levels; an alternative assay method will be selected. |  |  |  |  |  |
|                                                     |                                                                                                                                                                                                                                              | All other metals will be analysed using an acid digest and an ICP finish. The sample is digested with nitric, hydrochloric, hydrofluoric and perchloric acids to effect as near to total solubility of the sample as possible. The solution containing samples of interest, including those that need further review, will then be presented to an ICP-OES for the further quantification of the selected elements.                                                             |  |  |  |  |  |
|                                                     | For geophysical tools, spectrometers, handheld<br>XRF instruments, etc, the parameters used in<br>determining the analysis including instrument<br>make and model, reading times, calibrations<br>factors applied and their derivation, etc. | A handheld XRF instrument (Olympus Innov-X Spectrum Analyser) is<br>used to systematically analyse the drill core and RC chips onsite.<br>Reading time was 60 seconds. The instruments are serviced and<br>calibrated at least once a year. Field calibration of the XRF<br>instrument using standards is undertaken each day.                                                                                                                                                  |  |  |  |  |  |
|                                                     |                                                                                                                                                                                                                                              | For the EM surveys, specifications and quality control measures are noted above.                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |

| Criteria                                                         | JORC Code explanation                                                                                                                                                                                                                    | Commentary                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                  | Nature of quality control procedures adopted<br>(eg standards, blanks, duplicates, external<br>laboratory checks) and whether acceptable<br>levels of accuracy (ie lack of bias) and precision<br>have been established.                 | Laboratory QAQC involves the use of internal lab standards using certified reference material, blanks, splits and replicates as part of in house procedures. The Company will also submit an independent suite of CRMs, blanks and field duplicates (see above).                                                                                                                                         |  |  |  |  |
| Verification of<br>sampling and<br>assaying                      | The verification of significant intersections by either independent or alternative company personnel.                                                                                                                                    | Significant intersections are verified by the Company's Technical Director and Consulting Field Geologist.                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                  | The use of twinned holes.                                                                                                                                                                                                                | No twinned holes have been completed.                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|                                                                  | Documentation of primary data, data entry<br>procedures, data verification, data storage<br>(physical and electronic) protocols.                                                                                                         | Geological data was collected using handwritten log sheets and<br>imported in the field onto a laptop detailing geology (weathering,<br>structure, alteration, mineralisation), sampling quality and intervals,<br>sample numbers, QA/QC and survey data. This data, together with<br>the assay data received from the laboratory and subsequent survey<br>data was entered into the Company's database. |  |  |  |  |
|                                                                  | Discuss any adjustment to assay data.                                                                                                                                                                                                    | No adjustments or calibrations will be made to any primary assay<br>data collected for the purpose of reporting assay grades and<br>mineralised intervals. For the geological analysis, standards and<br>recognised factors may be used to calculate the oxide form assayed<br>elements, or to calculate volatile free mineral levels in rocks.                                                          |  |  |  |  |
| Location of<br>data points                                       | Accuracy and quality of surveys used to locate<br>drill holes (collar and down-hole surveys),                                                                                                                                            | Drill hole collar locations are determined using a handheld GPS with an accuracy of +/- 5m.                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                                                                  | trenches, mine workings and other locations used in Mineral Resource estimation.                                                                                                                                                         | Down hole surveys of dip and azimuth were conducted using a single shot camera every 30m to detect deviations of the hole from the planned dip and azimuths.                                                                                                                                                                                                                                             |  |  |  |  |
|                                                                  | Specification of the grid system used.                                                                                                                                                                                                   | The grid system used is GDA94, MGA Zone 51.                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
|                                                                  | Quality and adequacy of topographic control.                                                                                                                                                                                             | Best estimated RLs were assigned during drilling and are to be corrected at a later stage.                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| Data spacing<br>and<br>distribution                              | Data spacing for reporting of Exploration<br>Results.                                                                                                                                                                                    | The drill programs target EM conductors and other high quality targets for massive nickel sulphide mineralisation. The spacing and distribution of holes is not relevant to these programs.                                                                                                                                                                                                              |  |  |  |  |
|                                                                  | Whether the data spacing and distribution is<br>sufficient to establish the degree of geological<br>and grade continuity appropriate for the<br>Mineral Resource and Ore Reserve estimation<br>procedure(s) and classifications applied. | Drilling is at the exploration stage. Mineralisation at the East<br>Laverton Property has not yet demonstrated to be sufficient in both<br>geological and grade continuity appropriate for the Mineral<br>Resource and Ore Reserve estimation procedure(s) and<br>classifications to be applied.                                                                                                         |  |  |  |  |
|                                                                  | Whether sample compositing has been applied.                                                                                                                                                                                             | Samples are taken at one metre lengths and adjusted where<br>necessary to reflect local variations in geology or where visible<br>mineralised zones are encountered, in order to preserve the<br>samples as representative.                                                                                                                                                                              |  |  |  |  |
| Orientation of<br>data in relation<br>to geological<br>structure | Whether the orientation of sampling achieves<br>unbiased sampling of possible structures and<br>the extent to which this is known, considering<br>the deposit type.                                                                      | The drill holes are drilled towards 060 at an angle of -60 degrees<br>(unless otherwise stated) to intersect the modelled mineralised<br>zones at a near perpendicular orientation. However, the orientation<br>of key structures may be locally variable and any relationship to<br>mineralisation has yet to be identified.                                                                            |  |  |  |  |
|                                                                  | If the relationship between the drilling<br>orientation and the orientation of key<br>mineralised structures is considered to have<br>introduced a sampling bias, this should be<br>assessed and reported if material.                   | No orientation based sampling bias has been identified in the data to date.                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| Sample<br>security                                               | The measures taken to ensure sample security.                                                                                                                                                                                            | Chain of Custody is managed by the Company until samples pass to<br>a duly certified assay laboratory for subsampling and assaying. The<br>cut-core trays and RC sample bags are stored on secure sites and<br>delivered to the assay laboratory by the Company or a competent                                                                                                                           |  |  |  |  |

| Criteria             | JORC Code explanation                                                 | Commentary                                                                                                                                                                                                    |  |  |  |  |
|----------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                      |                                                                       | agent. When in transit, they are kept in locked premises. Transport logs have been set up to track the progress of samples. The chain of custody passes upon delivery of the samples to the assay laboratory. |  |  |  |  |
| Audits or<br>reviews | The results of any audits or reviews of sampling techniques and data. | Sampling techniques and procedures are regularly reviewed internally, as is data. To date, no external audits have been completed on the drilling programme.                                                  |  |  |  |  |

### Section 2 Reporting of Exploration Results (Criteria listed in section 1 will also apply to this section where relevant)

| Criteria .               | IORC Code explanation                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                          |                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
| Tenement and Land Status | Type, name/reference number, location and<br>ownership including agreements or material<br>issues with third parties including joint                                                 | The East Laverton Property comprises 27 exploration licences, and details are available in the Company's Quarterly Activities Report which can be found on our website at <u>www.stgm.com.au</u> .                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 1                        | ventures, partnerships, overriding royalties,<br>native title interests, historical sites, wilderness<br>or national park and environmental settings.                                | Each tenement is 100% owned by Desert Fox Resources Pty Ltd, a wholly owned subsidiary of St George Mining. Certain tenements are subject to a 2% Net Smelter Royalty in favour of a third party.                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| I                        | The security of the tenure held at the time of<br>reporting along with any known impediments<br>to obtaining a licence to operate in the area.                                       | None of the tenements are the subject of a native title claim. No<br>environmentally sensitive sites have been identified at any of the<br>tenements. The tenements are in good standing; no known<br>impediments exist.                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| -                        | Acknowledgment and appraisal of exploration<br>by other parties.                                                                                                                     | In 2012, BHP Billiton Nickel West Pty Ltd (Nickel West) completed a reconnaissance RC (reverse circulation) drilling programme at the East Laverton Property as part of the Project Dragon farm-in arrangement between Nickel West and the Company. That farm-in arrangement has been terminated. The drilling programme comprised 35 RC holes for 8,560m drilled.                                                                                                                                                                                                                            |  |  |  |  |  |
|                          |                                                                                                                                                                                      | The results from the Nickel West drilling programme were reported<br>by the Company in its ASX Release dated 25 October 2012 "Drill<br>Results at Project Dragon". Drilling intersected primary nickel<br>sulphide mineralisation and established the presence of fertile, high<br>MgO ultramafic sequences at the East Laverton Property.                                                                                                                                                                                                                                                    |  |  |  |  |  |
|                          |                                                                                                                                                                                      | Prior to the Project Dragon drilling programme, there was no<br>systematic exploration for nickel sulphides at the East Laverton<br>Property. Historical exploration in the region was dominated by<br>shallow RAB and aircore drilling, much of which had been<br>incompletely sampled, assayed, and logged. This early work was<br>focused on gold rather than nickel sulphide exploration.                                                                                                                                                                                                 |  |  |  |  |  |
|                          | Deposit type, geological setting and style of mineralisation                                                                                                                         | The Company's East Laverton Property located in the NE corner of<br>the Eastern Goldfields Province of the Archean Yilgarn Craton. The<br>project area is proximally located to the Burtville-Yarmana terrane<br>boundary and the paleo-cratonic marginal setting is consistent with<br>the extensive komatiites found on the property.<br>The drilling at the East Laverton Property has confirmed extensive<br>strike lengths of high-MgO olivine-rich rocks across three major<br>ultramafic belts. Ultramafic rocks of this composition are known to<br>host high grade nickel sulphides. |  |  |  |  |  |
|                          | A summary of all information material to the                                                                                                                                         | Defense to fearration in the hadrafith                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                          | understanding of the exploration results                                                                                                                                             | Refer to information in the body of this announcement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|                          | including tabulation of the following<br>information for all Material drill holes:<br>• Easting and northing of the drill hole collar<br>•Elevation or RL (Reduced Level – elevation | Information regarding exploration results from Project Dragon can<br>be found in the Company's ASX Release dated 25 October 2012<br>"Drill Results at Project Dragon" which is available to view on<br><u>www.stgm.com.au</u> .                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |
|                          | above sea level in meters) of the drill hole collar                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |

| Criteria                                                                        | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                 | <ul> <li>Down hole length and interception depth</li> <li>Hole length</li> </ul>                                                                                                                                                                                                                                                                                                                             | DRAC35, DRAC38 and DDNRC002 which were the first drill holes at the East Laverton Property to identify nickel sulphides.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| Data<br>aggregation<br>methods                                                  | In reporting Exploration Results, weighting<br>averaging techniques, maximum and/or<br>minimum grade truncations (e.g. cutting of<br>high grades) and cut-off grades are usually<br>Material and should be stated.                                                                                                                                                                                           | No top-cuts have been applied. A nominal 0.15% Ni lower cut-off is applied unless otherwise indicated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
|                                                                                 | Where aggregated intercepts incorporate short<br>lengths of high grade results and longer<br>lengths of low grade results, the procedure<br>used for such aggregation should be stated and<br>some typical examples of such aggregations<br>should be shown in detail.                                                                                                                                       | High grade massive sulphide intervals internal to broader zones of sulphide mineralisation are reported as included intervals.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
|                                                                                 | The assumptions used for any reporting of metal equivalent values should be clearly stated.                                                                                                                                                                                                                                                                                                                  | No metal equivalent values are used for reporting exploration results.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept<br>lengths | These relationships are particularly important<br>in the reporting of exploration results. If the<br>geometry of the mineralisation with respect to<br>the drill hole angle is known, its nature should<br>be reported. If it is not known and only the<br>down hole lengths are reported, there should<br>be a clear statement to this effect.                                                              | The geometry of the mineralisation is not yet known due to insufficient deep drilling in the targeted area.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Diagrams                                                                        | Appropriate maps and sections (with scales)<br>and tabulations of intercepts should be<br>included for any significant discovery being<br>reported. These should include, but not be<br>limited to a plane view of drill hole collar<br>locations and appropriate sectional views.                                                                                                                           | Maps will be included with any announcement of any significant<br>discovery, following review of assay results from the drilling<br>programme.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |
| Balanced<br>Reporting                                                           | Where comprehensive reporting of all<br>Exploration Results is not practical,<br>representative reporting of both low and high<br>grades and/or widths should be practiced to<br>avoid misleading reporting of Exploration<br>Results.                                                                                                                                                                       | A comprehensive report on recent drilling at the East Laverton<br>Property can be found in the following ASX Releases that are<br>available on our website at <u>www.stgm.com.au</u> :<br>3 September 2014 ' <i>Nickel Sulphide Drilling – Update on Phase 1</i> '<br>11 February 2015 ' <i>St George Extends Nickel Sulphide Zone</i> '.                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| Other<br>substantive<br>exploration<br>data                                     | Other exploration data, if meaningful and<br>material, should be reported including (but not<br>limited to): geological observation; geophysical<br>survey results; geochemical survey results; bulk<br>samples – size and method of treatment;<br>metallurgical test results; bulk density,<br>groundwater, geotechnical and rock<br>characteristics; potential deleterious or<br>contaminating substances. | The EM conductors referred to in this ASX Release dated 23 March 2015 were identified following a MLEM survey completed between 23 September 2014 and 27 November 2014. The MLEM survey identified 13 EM anomalies. The technical review by the Company of these anomalies is ongoing taking into account the geological, geophysical, geochemical and structural features associated with these anomalies. The EM conductors referred to in this ASX Release have been assessed by the Company as having the required attributes to potentially represent massive nickel sulphides bodies. However, these EM anomalies may be related to a different source. |  |  |  |  |
| Further Work                                                                    | The nature and scale of planned further work<br>(e.g. tests for lateral extensions or depth                                                                                                                                                                                                                                                                                                                  | the body of the text. No metallurgical or mineralogical assessments<br>have been completed.<br>A discussion of further exploration work is contained in the body of<br>the ASX Release.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
|                                                                                 | extensions or large – scale step – out drilling).<br>Diagrams clearly highlighting the areas of<br>possible extensions, including the main<br>geological interpretations and future drilling<br>areas, provided this information is not<br>commercially sensitive.                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |

| HOLE ID  | NORTHIN<br>G<br>(m) | EASTIN<br>G<br>(m) | DIP<br>(deg) | AZM<br>(deg) | DEPT<br>H<br>(m) | FROM<br>(m) | TO<br>(m) | WIDTH<br>(m) | Ni<br>(%) | Cu<br>(ppm) | Pt+Pd<br>(ppb) |
|----------|---------------------|--------------------|--------------|--------------|------------------|-------------|-----------|--------------|-----------|-------------|----------------|
| DRAC35   | 6739401             | 527150             | -60          | 250          | 244              | 100         | 118       | 18           | 0.40      | 342         | 197            |
|          |                     |                    |              |              |                  | 100         | 104       | 4            | 0.57      | 366         | 294            |
|          |                     |                    |              |              |                  | 112         | 114       | 2            | 0.51      | 584         | 281            |
| DRAC38   | 6733696             | 530786             | -60          | 250          | 298              | 108         | 138       | 30           | 0.31      | 10          | 31             |
|          |                     |                    |              |              |                  | 132         | 138       | 6            | 0.48      | 40          | 48             |
|          |                     |                    |              |              |                  | 132         | 134       | 2            | 0.62      | 92          | 53             |
| DDNRC002 | 6742718             | 523717             | -60          | 59           | 246              | 53          | 60        | 7            | 0.54      |             |                |
|          |                     |                    |              |              |                  | 53          | 55        | 2            | 1.08      |             |                |

Table 1 to 2012 JORC Section – Significant intersections in DRAC35, DRAC38 and DDNRC002.

These historical holes are the first identification of nickel sulphides at the East Laverton Property. For further details on DRAC35 and DRAC38, see the ASX Release dated 25 October 2012 "Drill Results at Project Dragon". For further details on DDNRC002, see the ASX Release dated 11 April 2013 "St George Provides Exploration Update". These ASX Releases are available to view on the Company's website at www.stgm.om.au