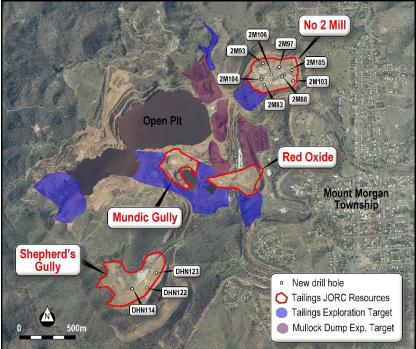


ASX / MEDIA ANNOUNCEMENT

20 April 2015

FURTHER THICK GOLD INTERCEPTS FROM MOUNT MORGAN DRILLING

Highlights

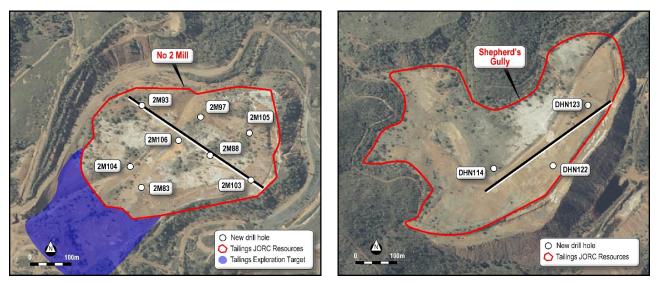

- Continued excellent gold grades and widths from initial Mount Morgan drilling
- Highlights include 32m at 1.38g/t Au & 18m at 1.40g/t Au in historical surface tailings
- All drilling results either at or above historical JORC resource grades

Carbine Resources Limited (ASX: CRB) is pleased to announce assay results of another eleven holes from the recently completed thirty five hole drilling program at the Mount Morgan Gold & Copper Project.

The results refer to drilling within the two tailings dams known as 'No. 2 Mill' and 'Shepherd's Gully'.

The tailings were found to have excellent continuity, with gold grades carried over the full width of intersection without barren zones. The cross sections in Figures 4 and 5 (overleaf) detail the consistency of the seams of mineralised resources.

In addition, the average grade of tailings intersected was either at or above the historical JORC resources for the site.


A comparison of historical JORC versus average drilling grade is depicted in the table below:

Tailings Dam	Carbine Drilling Av. Grade	Historical JORC Grade
Mundic Gully (results announced 16/03/15)	2.12 g/t Au	1.90 g/t Au
No 2 Mill	1.34 g/t Au	1.16 g/t Au
Shepherd's Gully	0.90 g/t Au	0.88 g/t Au

ABN 81 122 976 818 Suite 23, 513 Hay Street Subiaco WA 6008 PO Box 1311 Subiaco WA 6904 phone +61 8 6142 0986 fax +61 8 9388 8824

carbine@carbineresources.com.au www.carbineresources.com.au

Figures 2 & 3: Location of cross sections of drilling at No 2 Mill and Shepherd's Gully tailings dams

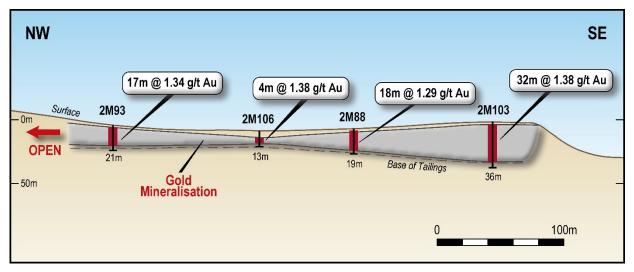


Figure 4: No 2 Mill tailings dam drilling cross section

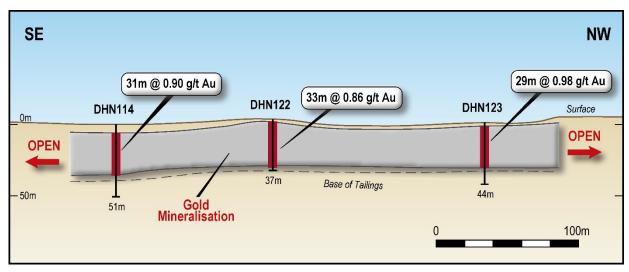


Figure 5: Shepherd's Gully tailings dam drilling cross section

The table below provides details of all results from drilling in No 2 Mill and Shepherd's Gully tailings dams, including the widths and grades intercepted:

Drill Hole ID	Tailings Intersection	Gold Grade
2M97	18m	1.40 g/t
2M103	32m	1.38 g/t
2M106	4m	1.38 g/t
2M105	25m	1.37 g/t
2M93	17m	1.34 g/t
2M88	18m	1.29 g/t
2M83	5m	1.24 g/t
2M104	8m	1.02 g/t
DHN123	29m	0.98 g/t
DHN114	31m	0.90 g/t
DHN122	33m	0.86 g/t

These results follow on from the excellent results of drilling in the Mundic Gully tailings area (see ASX announcement dated 16/03/2015):

Drill Hole ID	Tailings Intersection	Gold Grade
Mun18	17m	3.63 g/t
Mun14	7m	2.20 g/t
Mun24	10m	2.14 g/t
Mun24B	14m	2.04 g/t
Mun13	12m	2.03 g/t
Mun9	15m	1.86 g/t
Mun12	16m	1.59 g/t
Mun3	17m	1.41 g/t

While the primary purpose of the drilling campaign was to collect sample for the Phase 3 metallurgical testwork campaign and pre-feasibility study, the grade, location and widths of tailings intersected has provided encouragement of a potential increase in both the size and grade of current JORC resources.

At present the site contains overall JORC resources of 8.35Mt @ 1.23g/t Au and 0.15% Cu. A substantial Exploration Target also exists at the mine site, stated at 32 - 40Mt grading 0.67 - 0.79g/t Au and 0.11 - 0.19% Cu. This Exploration Target is not a mineral resource and is conceptual in nature. There has been insufficient exploration to define a mineral resource and it is uncertain if further exploration will result in the determination of a mineral resource.

For further information, please contact:

Patrick Walta – Executive Director (08) 6142 0986

Competent Person Statement

The information in this report that relates to the recently completed exploration results is based on and fairly represents information compiled by Dr Marat Abzalov, who is a geological consultant to Carbine Resources Limited. Dr Abzalov is a Fellow of The Australasian Institute of Mining and Metallurgy (FAusIMM) and he has sufficient experience relevant to the style of mineralisation and type of deposit under consideration and the activity he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Dr Abzalov consents to the inclusion in the report of the matters based on information in the form and context in which it appears. Previous results were released to the ASX on 16 March 2015 and have not materially changed since last reported.

The information in this report that relates to the Exploration Target is based on information compiled by Lance Govey, a Competent Person who is a Member of The Australasian Institute of Mining and Metallurgy. Lance Govey is an independent geological consultant and has no association with Carbine Resources Limited other than being engaged for services in relation to the preparation of parts of this report. Lance Govey has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Lance Govey consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. This was initially released to the ASX on 13 November 2014 and has not materially changed since it was last reported.

The information in this report that relates to the Mineral Resources of the Mount Morgan Mine project was prepared in accordance with the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' ("JORC Code") by Troy Lowien, Resource Geologist, of consultants Coffey Mining Pty Ltd, who is a Member of The Australasian Institute of Mining and Metallurgy ("AusIMM") and has a minimum of five years of experience in the estimation, assessment and evaluation of Mineral Resources of this style and is the Competent Person as defined in the JORC Code. Troy Lowien conducted the geological modelling, statistical analysis, variography, grade estimation, and report preparation. This report accurately summarises and fairly reports his estimations and he has consented to the resource report in the form and context in which it appears. This information was prepared and first disclosed under the JORC Code 2004. It has not been updated since to comply with the JORC Code 2012 on the basis that the information has not materially changed since it was last reported.

APPENDIX 1: JORC (2012) COMPLIANCE CHECK LIST

Reporting criteria presented in the Section 1 of the JORC Table 1

(Sampling techniques and data)

Criteria of JORC Code 2012	Explanation given in the JORC Code 2012	Comments / Findings
(1.1.) Sampling techniques	□Nature and quality of sampling (eg cut channels, random chips, or specific specialized industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Conventional Air Core drill rig (T450) equipped with riffle splitter for collecting the samples. Samples are collected regularly, at 1m intervals. Hole diameter 5.5 inches.
	☐Include reference to measures taken to ensure sample representivity and the appropriate calibration of any	Drilling was vertically down which is optimal for flat laying mineralisation intersecting the gold lenses at a right angle.
	measurement tools or systems used.	1m long samples are well suited for estimation resources of the mineralised tailings.
		Sample quality was assured by adjusting the drilling parameters for drilling weakly lithified fine grained sediments.
		Obtained samples were weighted in the lab which was used as non-direct control of possible sample losses.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been	Drilling and sampling procedures were performed using the industry standard techniques and equipment.
	done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which	1m samples were split during drilling using the riffle splitter built in to the drilling rig.
	3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems.	

	Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	
Drilling techniques (1.2.)	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	Conventional RC (Air Core) dill rig. T450 model mounted on 6X6 MAN. Hole diameter 5.5 inch.
Drill sample recovery (1.3.)	☐ Method of recording and assessing core and chip sample recoveries and results assessed.	Obtained samples were weighted in the lab which was used as non-direct control of possible sample losses.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	This was based on adjusting the drilling parameters to obtain the best recovery.
	□ Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Not applicable.
Logging (1.4.)	☐ Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Because drilling target was the old tailings the logging of the drill holes was concentrated onto diagnostic of tailing materials. It had to be separated from the surficial material, which was classified as 'mixed', and from the base rocks. All drill holes and drilled interval were logged.
	☐ Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	Qualitative logging, primarily focused on the diagnostic of tailing materials.
	The total length and percentage of the relevant intersections logged.	100% of intersections were logged.
Sub- sampling	\Box If core, whether cut or sawn and whether quarter, half or all core taken	Not applicable (air core drilling was used).
techniques and sample	☐ If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	Riffle splitter was used for subsampling the recovered drill cuttings. Samples were dry and

preparation (1.5.)		amenable for subsampling using the standard riffle splitter.
	☐ For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sample preparation was done at the ALS Laboratory following the standard preparation technique.
		 Samples (1 – 5kg) are crushed, grinded and pulverised using either fully automated Herzog pulveriser or by using LM2 pulveriser requiring the manual feeding,
		• Aliquots are dissolved using 4 acid digest (near complete dissolution) and peroxide fusion (complete dissolution). Results are compared one digest against the other.
		The preparation approach is standard and commonly used for medium grade gold mineralisation.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Duplicate samples will be used at the resource estimation stage.
	☐ Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Field duplicates and twin holes are planned for the resource estimation stage.
	□ Whether sample sizes are appropriate to the grain size of the material being sampled.	Samples are 2 – 4 kg which is appropriate for assaying the tailings, which is uniform and homogeneous material, approximately 150 microns.
Quality of assay data and laboratory tests (1.6.)	☐ The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Samples were assayed at the ALS Laboratory. Gold was assayed using conventional fire-assay method with ICP-OES finish. Reported detection limit is 0.02 g/t Au.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading	Not applicable.

	times, calibrations factors applied and their derivation, etc.	
	□ Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Internal standards were used by ALS Laboratory. Pulp duplicates have been assayed, showing the excellent repeatability of the assay results.
Verification of sampling and assaying	☐ The verification of significant intersections by either independent or alternative company personnel.	It will be performed at the later phases of drilling.
(1.7.)	☐ The use of twinned holes. ☐ Documentation of primary data, data entry procedures, data warification data storage (physical	Will be used at the resource definition stage. Assays are obtained from the ALS Laboratory in electronic form and stored in the special folder areated at the Carbine Resources server.
	verification, data storage (physical and electronic) protocols.	created at the Carbine Resources server. No adjustments were needed. Assay results reported as they obtained from the lab.
Location of data points (1.8.)	☐ Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Drill holes have been located using hand held GPS.
	☐ Specification of the grid system used.	Conventional AMG grid, based on Geocentric Datum of Australia (GDA94).

	Quality and adequacy of topographic control.	Drill hole collars have been draped onto topographic surface (Figs 1 and 2).
Data spacing and distribution (1.9.)	Data spacing for reporting of <i>Exploration Results</i> .	Distance between drill holes 50 – 100m (Figs 1 and 2) which is sufficient for accurately reporting the Exploration Results and also sufficient for estimation Inferred resources.
	□ Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Distance of 50 m is likely to be sufficient for estimation resources.
	☐ Whether sample compositing has been applied.	No, samples assayed by 1m intervals. Compositing is used only for reporting the drill hole intersections, which are estimated for every drill hole. Because all drill hole samples were 1m long the intersection is estimated as arithmetic mean of the samples.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	All drill holes were drilled vertically down which provides the best possible intersection of the mineralised tailings allowing accurately estimated endowment.
(1.10.)	☐ If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Not applicable. Drill hole intersect the tailings at right angle.
Sample security (1.11.)	☐ The measures taken to ensure sample security	Sample bags were collected by the Carbine Resources representative and delivered to the lab. The samples was not left unattended on site.
Audits or reviews (1.12.)	☐ <i>The results of any audits or reviews</i> of sampling techniques and data.	Not applicable.

Reporting criteria presented in the Section 2 of the JORC Table 1

(Reporting of Exploration Results)

Criteria of JORC Code 2012	Explanation given in the JORC Code 2012	Comment	s / Findin	gs		
Mineral tenement and land tenure status (2.1)	☐ Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Mining Le ML 5069, 5635, ML ML 6692 is Carbine Re with Norto	ases: ML ML 5612 5648, ML ssued to th esources ha on Gold Fig on active ti	5589, MI – ML 569, MI 5649, Mi e Norton (as entered elds Limit tle related	2 5602, 28, ML L 5658 - Gold Fiel into a JV ed. restrict	secured by ML 5608 – 5633 – ML - ML 5660, ds Limited. 7 agreement
	☐ The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All MLs e	xpire on th	ne 31/08/2	025	
Exploration done by other parties (2.2)	Acknowledgment and appraisal of exploration by other parties.	known how explored. I preliminar	vever the t Norton Go y due dilig	ailings hav Id Fields gence how	ve not be Limited ever rese	posit is well en properly have made purces were nce was not
Geology (2.3)	Deposit type, geological setting and style of mineralisation.	The tailing	s of the M	ount Mor	gan min	2
Drill hole Information	□ A summary of all information material to the understanding of the	Hole Id	Easting	Northing	RL (DTM)	Hole depth,m
		MUN12	231900	7383024	(DTM) 273.15	
Information	material to the understanding of the	MUN12 MUN13	231900 231968	7383024 7382997	(DTM) 273.15 274.35	depth,m 23 14
Information	material to the understanding of the exploration results including a tabulation of the following	MUN12 MUN13 MUN14	231900 231968 231923	7383024 7382997 7382972	(DTM) 273.15 274.35 268.52	depth,m 23 14 13
Information	material to the understanding of the exploration results including a tabulation of the following information for all Material drill	MUN12 MUN13 MUN14 MUN18	231900 231968 231923 232076	7383024 7382997 7382972 7382925	(DTM) 273.15 274.35 268.52 270.4	depth,m 23 14 13 24
Information	material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	MUN12 MUN13 MUN14 MUN18 MUN24	231900 231968 231923 232076 232012	7383024 7382997 7382972 7382925 7382979	(DTM) 273.15 274.35 268.52 270.4 272.7	depth,m 23 14 13 24 10
Information	material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and Northing of the drill	MUN12 MUN13 MUN14 MUN18 MUN24 MUN24B	231900 231968 231923 232076 232012 232031	7383024 7382997 7382972 7382972 7382975 7382979 7382972	(DTM) 273.15 274.35 268.52 270.4 272.7 272.44	depth,m 23 14 13 24 10 19
Information	material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	MUN12 MUN13 MUN14 MUN18 MUN24 MUN24B MUN3	231900 231968 231923 232076 232012 232031 231832	7383024 7382997 7382972 7382925 7382979 7382972 7382972 7382889	(DTM) 273.15 274.35 268.52 270.4 272.7 272.44 278.23	depth,m 23 14 13 24 10 19 45
Information	material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and Northing of the drill	MUN12 MUN13 MUN14 MUN18 MUN24 MUN24B MUN24B MUN3 MUN9	231900 231968 231923 232076 232012 232031 231832 231836	7383024 7382997 7382972 7382925 7382979 7382979 7382972 7382889 7382984	(DTM) 273.15 274.35 268.52 270.4 272.7 272.44 278.23 269.69	depth,m 23 14 13 24 10 19 45 29
Information	material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and Northing of the drill	MUN12 MUN13 MUN14 MUN18 MUN24 MUN24B MUN24B MUN3 MUN9 2M103	231900 231968 231923 232076 232012 232031 231832 231836 232914	7383024 7382997 7382972 7382972 7382979 7382979 7382972 7382889 7382984 7382984 7383690	(DTM) 273.15 274.35 268.52 270.4 272.7 272.44 278.23 269.69 258.2	depth,m 23 14 13 24 10 19 45 29 36
Information	material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and Northing of the drill	MUN12 MUN13 MUN14 MUN18 MUN24 MUN24B MUN24B MUN3 MUN9	231900 231968 231923 232076 232012 232031 231832 231836	7383024 7382997 7382972 7382925 7382979 7382979 7382972 7382889 7382984	(DTM) 273.15 274.35 268.52 270.4 272.7 272.44 278.23 269.69	depth,m 23 14 13 24 10 19 45 29

	1					
		2M83	232659	7383671	252.1	9
		2M88	232819	7383753	252.5	19
		2M93	232658	7383867	256.3	21
		2M97	232787	7383839	254.2	23
		DHN114	231479	7381861	291.6	51
		DHN122	231619	7381862	295.4	37
		DHN123	231696	7382002	292.5	44
	Elevation or RL (Reduced Level	RLs were de	erived fro	om DTM	surface	by draping
	– elevation above sea level in	the drill hole				5 1 0
	metres) of the drill hole collar.	The RLs var				250 to 292m.
	$\Box dip and azimuth of the hole.$	Holes were	drilled ve	ertically d	own (90)º DIP).
	\Box down hole length and	DrIII hole	Dr III Hole Lengt	th (m) Tali	ls Metres	AU (g/t) average
	interception depth	MUNDIC DHN 18 MUNDIC DHN 14	24 13		17 7	3.63 2.20
		MUNDIC DHN 24	10		10	2.14
		MUNDIC DHN 24 B MUNDIC DHN 13	19 14		14 12	2.04 2.03
		MUNDIC DHN 9 MUNDIC DHN 12	29 23		15 16	1.86 1.59
		MUNDIC DHN 3	45		17	1.41
		EAST	cordinates NORTH RL	Depth (m) from (n No 2 Mill		eralisation nickness (m) Au (g/t)
		2M103 232,914.0 2M104 232,633.0 2M105 232,913.0	7,383,690.0 258.2 7,383,717.0 250.4 7,383,804.0 262.8	36.00 0.0 16.00 5.0 34.00 5.0	00 13.00	32.00 1.36 8.00 1.01 25.00 1.36
		2M106 232,749.0 2M83 232,659.0 2M88 232,819.0	7,383,786.0 251.2 7,383,671.0 252.1	13.00 6.0 9.00 2.0 19.00 0.0	00 10.00 00 7.00	4.00 1.38 5.00 1.20 18.00 1.29
		2M93 232,658.0 2 2M97 232,787.0 2	7,383,867.0 256.3	21.00 1.0 23.00 3.0	00 18.00	17.00 1.34 18.00 1.40
		DHN122 231,619.0	S 7,381,861.0 291.6 7,381,862.0 295.4 7,382,002.0 292.5	hepherd's Gully 51.00 5.0 37.00 1.0 44.00 1.0	34.00	31.00 0.90 33.00 0.86 29.00 0.98
	hole length.	The drill hol	les are sh	allow, 10	to 50m	long.
	☐ If the exclusion of this	No exclusion	ns made.			
	information is justified on the basis					
	that the information is not Material					
	and this exclusion does not detract					
	from the understanding of the					
	report, the Competent Person					
	should clearly explain why this is					
	the case.					
Data	☐In reporting Exploration Results,	Intersection	grade is o	estimated	as arith	metic mean.
aggregation	weighting averaging techniques,	no weighting	-			
methods (2.5)	maximum and/or minimum grade	1m long and				-
memous (2.5)	truncations (eg cutting of high	tailings).	a compos			1.0.
		tannigs).				
	grades) and cut-off grades are	High grade	cut off	f was no	ot need	led because
	usually Material and should be	distribution	of the gol	ld grade is	s relativ	ely uniform,
	stated.	grade change	-	-		•
		8B			8- 1151	

	Where approacts interests	Not applicable
	□ Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	Not applicable.
	☐ The assumptions used for any reporting of metal equivalent values should be clearly stated.	Not applicable.
Relationship between mineralisation widths and intercept lengths (2.6)	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	Tailings occur as a flat bed filling the topographic depression therefore geometry of mineralisation is well understood. Drill holes drilled vertically down which provides the optimal intersection at right angle to the mineralisation plane.
	☐ If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').	Orientation of the drill hole and geometry of the tailings are well known. Reported intersections represents a true width of mineralised tailings.
Diagrams (2.7)	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	The maps and cross-sections showing spatial distribution of the drill holes intersecting the gold mineralisation hosted by the old Mount Morgan tailings are shown in the ASX announcement.
		No 2 Mill

		Shepherd's Gully
Balanced reporting (2.8)	□ Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Balanced reporting approach is used. The report includes summary of all 19 new drill holes drilled at the Mundic, No 2 and Shepherds domain providing an accurate non –biased presentation of the Exploration Results obtained.
Other substantive exploration data (2.9)	□ Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	Not applicable.
Further work (2.10)	☐ The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	Drill programme includes approximately 150 drill holes which will allow to accurately estimate tonnage and grade of the gold mineralised tailings.
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	Map showing tailings and completed and reported here drill holes is shown in the ASX announcement.

Appendix 2: Drill Hole Information

The following information is provided in accordance with Listing Rule 5.7.2

Hole Id	Easting	Northing	RL (DTM)	Dip	Azimuth	End of Hole (m)
MUN12	231900	7383024	273.15	-90°	0	23
MUN13	231968	7382997	274.35	-90°	0	14
MUN14	231923	7382972	268.52	-90°	0	13
MUN18	232076	7382925	270.4	-90°	0	24
MUN24	232012	7382979	272.7	-90°	0	10
MUN24B	232031	7382972	272.44	-90°	0	19
MUN3	231832	7382889	278.23	-90°	0	45
MUN9	231836	7382984	269.69	-90°	0	29
2M103	232914	7383690	258.2	-90°	0	36
2M104	232633	7383717	250.4	-90°	0	16
2M105	232913	7383804	262.8	-90°	0	34
2M106	232749	7383786	251.2	-90°	0	13
2M83	232659	7383671	252.1	-90°	0	9
2M88	232819	7383753	252.5	-90°	0	19
2M93	232658	7383867	256.3	-90°	0	21
2M97	232787	7383839	254.2	-90°	0	23
DHN114	231479	7381861	291.6	-90°	0	51
DHN122	231619	7381862	295.4	-90°	0	37
DHN123	231696	7382002	292.5	-90°	0	44