

Keysbrook Project

Investor Roadshow - April 2015

Trevor Matthews – Managing Director

The MZI Investment Case

- ✓ Keysbrook is fully funded through to production.
 - Construction 44% complete tracking on budget and ahead of schedule
 - Commissioning and production in Q4 2015
 - Shipments and sales revenue commence Q1 2016
- ✓ High margin project
 - Low risk construction and low capex
 - High grade mineral assemblage and final products
 - Simple and low cost mining and processing
 - \$38.5m first financial year EBITDA based on current spot prices and FX
 - Updated JORC Resource mid-2015
- ✓ Offtake secured
 - Five year binding sales contracts for 85% of annual production
 - Blue chip counterparties in DuPont (titanium dioxide L88 and L70) and Tricoastal/Wensheng (zircon)

MZI Corporate Overview

ASX	MZI
Issued Capital	79m FPO Shares
Current Price	\$0.42
Market Capitalisation ¹	\$31.9m
Enterprise Value ¹	\$63.1m

Board & Executive Management

Mal Randall	Chairman
Trevor Matthews	Managing Director
Nathan Wong	Non-Executive Director
Stephen Ward	Non-Executive Director
Mike Ferraro	Chief Operating Officer
Peter Gazzard	Technical Director
John Traicos	Legal Manager / Company Secretary
Jamie Wright	Chief Development Officer

Major Shareholders

RCF	25.9%
Technical Investing	5.2%
Board and Management	5.0%
Slade Technologies	4.7%
Xiang Lin	4.4%
Tricoastal	3.6%

Funding Structure

RCF	
Convertible Loan (fully drawn)	US\$21.0m
Bridge Facilities (US\$25.5m drawn)	US\$33.5m
RMB	
Project Facility (US\$12.2m drawn)	US\$37.5m
Working Capital	US\$3.0m
Bank Guarantee Facility	A\$11.5m
FX Hedge and Interest Rate Swap Fa	acility

¹As at 20 April 2015

Keysbrook Financials

Annual EBITDA

Spot price \$38.5m¹

• Base case \$48.5m²

Operating Costs

Unit Cash Cost \$352 per product tonne⁴

NPV

• \$219m

Capital Expenditure + Pre-operations Cost

• \$75.8m

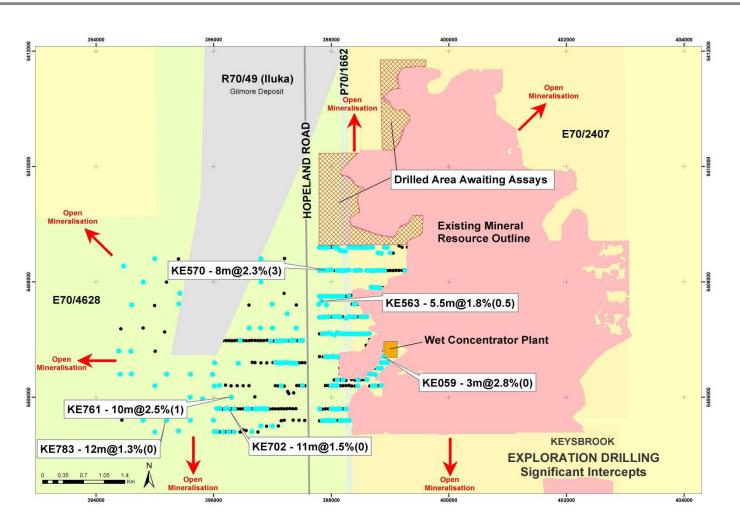
Annual Average Sustaining Capital

• \$1.1m

Notes:

- 1. Based on current spot price for rutile and zircon. Exchange rate assumption is the average USD:AUD exchange rate for the week ending 17 April 2015 (USD:AUD 0.7663).
- 2. Revenue assumptions have been based on indexing to the Q1 2015 TZMI pricing outlook for comparable pricing benchmarks to Keysbrook's product suite (note the TZMI Base and High cases converge to the same long term pricing). FX based on Bloomberg forward curve..
- 3. EBITDA and unit cash costs for first full financial year of production.
- 4. Keysbrook expenditure only and includes all administration costs, royalties, landowner payments.
- All values in AUD.
- 6. Capital cost includes power connection, contingency and growth.
- Current as at 20 April 2015.

Keysbrook Resource


- 78.9Mt Mineral Resource at surface including Ore Reserve of 26Mt
- Low slimes
- High value product mix of leucoxene (L88 and L70) and zircon concentrate
 - 38 ktpa 88% TiO₂
 - 29 ktpa 70% TiO₂
 - 29 ktpa zircon concentrate (56% ZrO₂ and 11% rutile grade TiO₂)
- Offtake agreements for 85% of production under five year sale agreements with DuPont and Tricoastal/ Wensheng
- Resource life of +15 years with exploration program in progress to expand¹
- Updated JORC Resource scheduled for mid-2015

^{1.} Refer to ASX announcement dated 16 April 2015 included in the appendix to this presentation.

Keysbrook Resource Extension

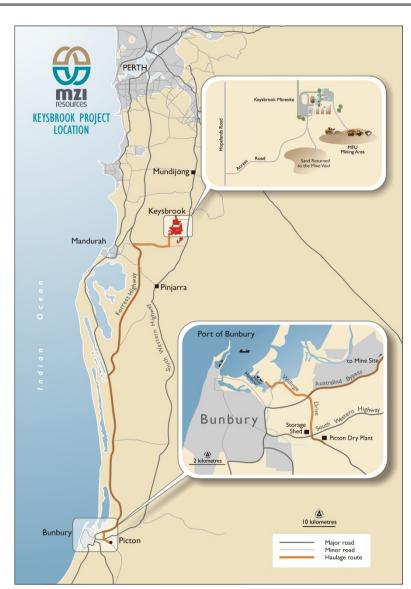
- Results received for drilling completed to 13 March 2015 confirm the Keysbrook orebody is significantly larger than the current Project area.
- Drilling to date is extending the mineralisation to the west and north of the existing Mineral Resources.
- The majority of intercepts are from near surface (i.e. minimal overburden), show low clay fines and minimal oversize – all features consistent with the existing Keysbrook Mineral Resource.

Note:

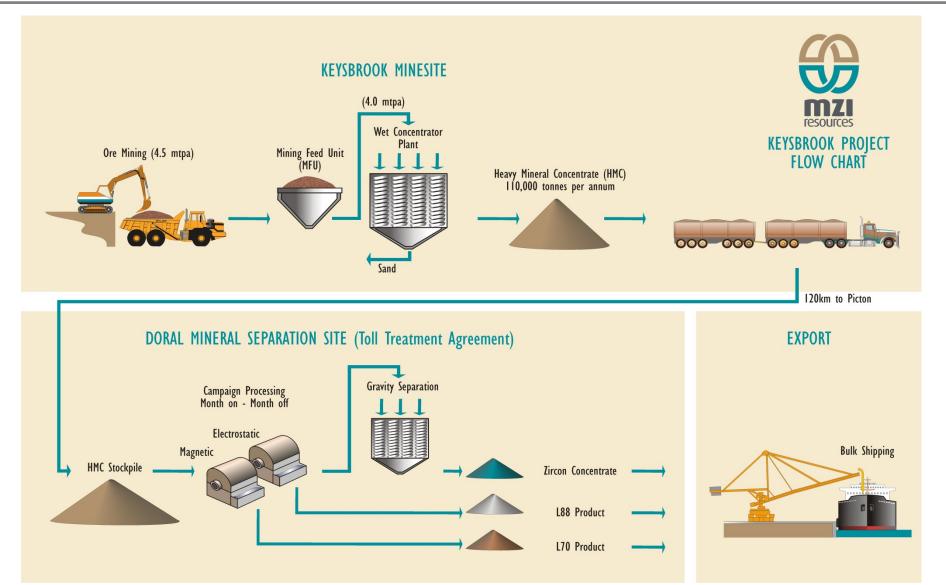
Drill collars located outside the resource are black
Drill collars containing significant intercepts are highlighted in blue
Drill intercept nomenclature:

Hole ID – intercept thickness @THM grade (from depth)
East of Hopeland Road: >0.5% THM x thickness, <20% clay fines & <15% +2mm oversize
West of Hopeland Road:>2% THM x thickness, <20% clay fines & <15% +2mm oversize

Keysbrook Metrics


Item	Result
Ore Mining Rate	4.5Mtpa
Average mining depth	2.2 metres
Strip Ratio	Nil
Mining Inventory	24.5 million dry tonnes (Reserve)
Mine Life	5.5 years (Reserve) +15 years (Resource)
Concentrator throughput	4.0Mtpa (dry)
Concentrator Recovery	L70 – 90% L88 – 71% Zircon – 98%
HMC Produced	111,000tpa (dry)
MSP contract	Toll treating – month on / month off
MSP throughput	111,000tpa (dry)
MSP Recovery	L70 – 99% L88 – 90% Zircon – 98%
Final Product	L70 – 28,800tpa (dry) L88 – 38,400tpa (dry) Zircon con – 29,000tpa (dry)
Zircon concentrate composition	56% Zr, 11% L88

The Keysbrook location advantage



- Mine located 70km south of Perth
- Near large population, mining and industrial centres
- No need for employee transport, accommodation or catering
- Power from SWIS, high standard road transport, product storage and port facilities
- Basic wet processing at mine site
- Dry processing de-risked via toll treatment agreement with Doral 120km from site

Keysbrook – A Simple Flowchart

Environmental credentials

- Chemical free processing
- Post processing sand and clay material is returned to the mined area
- Stockpiled topsoil is replaced and mine rehabilitation is complete within 2 to 3 growing seasons and returned to previous land use
- No residual waste from processing
- Recycle >85% of annual water requirements
- Site revegetated to 150% of pre-mining state

Rehabilitation works on the Tiwi Islands

Construction Activities

Coronastats ready for delivery

Steel erection at Doral's MSP

Trial assembly of the thickener

Steel fabrication for the wet concentrator plant

Short Term Project Upside

Costs

- Low oil price leading to reductions in diesel prices
- Surplus energy supply in WA resulting in more competitive energy pricing
- No pressure on labour costs. Local workforce so no flights, accommodation or meal costs incurred
- Limited imported parts and consumables
- Most of Keysbrook's activities are based on existing infrastructure with contract prices for services including dry plant processing, concentrate and final product transport and storage and shiploading
- Four panel shift roster arrangements based on providing a manageable number of average hours worked each week – provides time for safety and skills training, continuous improvement programmes to drive efficiencies and productivity

Short Term Project Upside

L88 recovery

- Current WCP recovery is 71%
- Losses mainly in the middlings circuit
- Testwork programme evaluating options for improved L88 recovery
- Objective is to identify plant modifications targeting 80% or better recovery i.e. overall 11% improvement in L88 production

Mineralogy

- Mineralogy results from recent years work programmes show higher
 L88 mineralisation when compared with the Reserve
- Further work from the grade control programme by drilling assaying selected twin holes
- Using three different analysis methods to determine/confirm mineralogy
- Potential for increase in high value L88 production

Market Outlook

- ✓ Strengthening mineral sands market
- ✓ Prices forecast to grow
- ✓ Broad demand for products used in everyday life.

Titanium Dioxide

- Demand for chloride TiO₂ feedstock is stable due to the reduction in downstream pigment inventory and improving Western economies.
- A shortage of high quality pigment could appear later in 2015.

Zircon

- The zircon price has remained stable over the past year with premium grades currently selling for ~ \$1,100 pmt.
- Supply/demand has moved back into balance with major producers (Iluka, Rio and Tronox) managing supply.
- Global consumption is currently assumed to be ~ 1.0 million tonnes per year. Demand is now estimated to be growing at ~ 4% per year.

Summary: on budget and ahead of schedule

Robust Project Economics

- ✓ Low Capex and Opex
- ✓ Low slimes and no waste
- ✓ Simple mining and processing
- ✓ Low sustaining capex
- ✓ High value mineral assemblage
- ✓ Sales agreements secured for 85% of product
- ✓ Profitable at current prices and exchange rates
- ✓ Low AUD strengthens project economics

Corporate

- ✓ Strong board and management +100 years of mineral sands experience
- ✓ Proven ability to develop and operate mineral sands projects
- ✓ Company has prior experience in developing and operating a successful project in the Tiwi Islands
- ✓ Support from cornerstone investor Resource Capital Funds
- ✓ Keysbrook fully funded to production and cash flow

Important Notice

Disclaimer

This presentation has been prepared by the management of MZI Resources Ltd (the 'Company') for the benefit of investors and not as specific advice of any particular party or person. The information is based on publicly available information, internally developed data and is based on the assumptions and limitations mentioned herein and is an expression of present opinion only. No warranties or representations can be made as to the origin, validity, accuracy, completeness, currency or reliability of the information. The Company disclaims and excludes all liability (to the extent permitted by the law), for losses, claims, damages, demands, costs and expenses of whatever nature arising in any way out of or in connection with the information, its accuracy, completeness or by reason of reliance by any person on any of it. Where the Company expresses or implies an expectation or belief as to the success of future exploration and the economic viability of future projects, such as expectation or belief is based on management's current predictions, assumptions and projections. However, such forecasts are subject to risks, uncertainties or other factors which could cause actual results to differ materially from future results expressed, projected or implied by such forecasts. Such risks include, but are not limited to, exploration success, gold and copper price volatility, changes to the current mineral resource estimates, changes to assumptions for capital and operating costs as well as political and operational risks and government regulation outcomes. For more detail of risks and other factors, refer to the Company's other Australian Securities Exchange announcements and filings. The Company does not have any obligation to advise any person if it becomes aware of any inaccuracy in, or omission from, any forecast or to update such forecast.

Forward-Looking Statements

This presentation contains forward looking statements concerning the projects owned by MZI Resources Ltd. Statements concerning mining reserves and resources may also be deemed to be forward looking statements in that they involve estimates based on specific assumptions. Forward-Looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward looking statements as a result of a variety of risks, uncertainties and other factors. Forward Looking statements are based on Management's beliefs, opinions and estimates as of the dates the forward looking statements are made and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

Data and amounts shown in this presentation relating to capital costs, operating costs and project timelines are internally generated best estimates only. All such information and data is currently under review as part of MZI Resources Ltd's ongoing development and feasibility studies. Accordingly, MZI Resources Ltd cannot guarantee the accuracy and/or completeness of the figures or data included in the presentation until the feasibility studies are completed.

Competent Person's Statement – Exploration Results

The information in this report that relates to exploration results is based on information compiled or reviewed by Mr Stephen Harrison BSc (Hons) who is a member of the Australia Institute of Geoscientists. Stephen Harrison is a full time employee of MZI Resources Ltd. Stephen Harrison has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Stephen Harrison consents to the inclusion of this information in the form and context in which it appears in this report.

Appendix

ASX ANNOUNCEMENT

16 April 2015

Significant extension to Keysbrook mineralisation

- Exploration drilling has significantly extended the Keysbrook mineralisation
- Confirms potential to materially extend the life of the Keysbrook Project
- Mineralisation remains open to south-west and west
- New Mineral Resource statement targeted for midvear

MZI Resources Ltd (ASX:MZI) is pleased to announce that the exploration program commenced in January 2015 has confirmed significant extensions to mineralisation at the Keysbrook Project.

Results received for drilling completed to 13 March 2015 confirm the Keysbrook orebody is significantly larger than the current Project area. Drilling to date is extending the mineralisation to the west and north of the existing Mineral Resources. Intersections include:

- 3m@2.8%THM (Total Heavy Mineral) from 0m in KE059
- 5.5m@1.8%THM from 0.5m in KE563
- 8m@2.3%THM from 3m in KE570
- 11m@1.5%THM from 0m in KE702
- 10m@2.5%THM from 1m in KE761
- 12m@1.3%THM from 0m in KE783

These drilling results are consistent with the existing Keysbrook Mineral Resource.

The exploration drilling program has drilled 908 holes to 13 March with the results reported in the table attached to this announcement. Approximately 500 drillholes are scheduled to be drilled to complete the program. The program to date has confirmed mineralisation extending over 5 square kilometres of lateral extent.

Importantly, the majority of intercepts are from near surface (i.e. minimal overburden), show low day fines and minimal oversize – all features consistent with the existing Keysbrook Mineral Resource.

COMPANY DIRECTORS

Mai Handaii Non-Executive Chairman Trevor Matthews Managing Director Nathan Wong

Non-Executive Director Stephen Ward Non-Executive Director

SENIOR MANAGEMENT

Mike Ferraro Chief Operating Officer

Peter Gazzard
Technical Director

John Traicos Legal Manager/Company Secretary

Jamle Wright
Chief Development Officer

CONTACT DETAILS

Principal & Registered Office Level 2, 100 Royal Street East Perth Western Australia 6004

Website www.mzi.com.au

admin@mzi.com.a

Phone +61(8) 9328 9800

Fax +61(8) 9328 9911

ABN: 52 077 221 722 ASX CODE: MZI

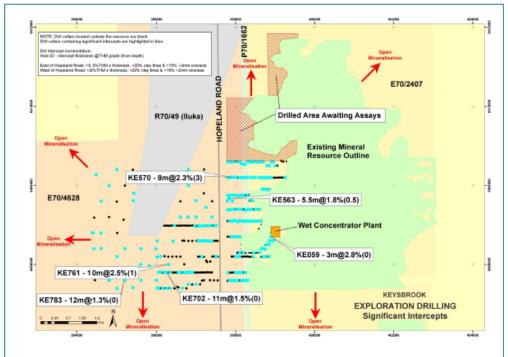


Figure 1 - Exploration Area

Assemblage analysis is yet to be completed on drill samples from the program. However, previous analysis on samples collected in the area (composited from an earlier auger program) indicate the L88 component of the mineral assemblage in the extension area may be higher than in the currently reported Mineral Resource.

Table 1: Comparison of Mineral Resource assemblage to extension area assemblage

Assemblage	ТНМ%	L70%	L88%	Zircon%
Current Mineral Resource	2.6	28.7	46.0	14.7
Composite collected in new area	1.6	17.2	64.1	11.6

Notes: Hole location and relevant data previously reported in the ASX release dated 20 January 2015. Mineral assemblage data for the current resource is extracted from the ASX release dated 1 March 2013.

MZI will provide further updates to the mineral assemblage as they are received.

Preliminary evaluation of the results suggest that the western portion of the exploration area, located approximately 2 kilometres west of the existing Mineral Resource, may represent a new zone of mineralisation, however this will not be able to be confirmed until further assaying is completed during the June quarter.

Mineralisation remains open to the south-west and west based on these results and will provide a focus for further exploration into the future.

Planned Work

Given the success to date, the drilling program has been extended to include infill drilling in the newly discovered areas reported on above, as well as to undertake further exploration drilling to test for additional extensions to the mineralisation.

In parallel to this part of the program, MZI will undertake further assaying to determine mineral assemblage and resource estimation to enable a revised Mineral Resource to be released early in the third quarter of 2015.

Commer

MZI Managing Director Trevor Matthews said: "These drilling results give us even greater confidence that the Keysbrook Project will be a long life producer of high value mineral sands products."

"With construction at Keysbrook progressing well toward the scheduled commencement of production in December 2015, MZI is well on the way to establishing itself as an independent Australian based supplier of high value mineral products with a positive market outlook."

The Keysbrook Project, located approximately 70 kilometres south of Perth in Western Australia, is designed to produce in excess of 95,000 tonnes of leucoxene and zircon products annually.

For further details please contact:

Trevor Matthews Managing Director

+61 8 9328 9800

Competent Person's Statement - Exploration Results

The information in this report that relates to exploration results is based on information compiled or reviewed by Mr Stephen Harrison BSr. (Hons) who is a member of the Australia Institute of Geoscientists. Stephen Harrison is a full time employee of MZI Resources Ltd. Stephen Harrison has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaining to qualify as a Competent Person as defined in the 2012 edition of the Yustralisation of the Open Technology of Exploration Results, Mineral Resources and One Reserves'. Stephen Harrison consents to the inclusion of this information in the form and context in which it appears in this report.

Appendix 1 - Results Table

			Section	A - Holes L	ocated	Fast of H	opeland F	load				
HOLE	Easting	Northing	RL(m)	Azimuth	Dip	Total Depth	Depth From (m)	Thickness (m)	Oversize %	Slimes %	Total Heavy Mineral %	Survey Method
KE013	397905.189	6406699.168	23.051	-	-90	4	1	1	0.9%	11.3%	1.8%	DGPS
KE014	397942.447	6406699.778	23.186	-	-90	6	0	4	0.7%	9.5%	1.5%	DGPS
KE015	397997.121	6406702.786	23.370	-	-90	5	2	3	2.0%	15.9%	1.5%	DGPS
KE016	398043.749	6406702.439	23.370	-	-90	4	1	1	0.9%	14.2%	1.1%	DGPS
KE017	398104.107	6406701.687	23.711	-	-90	4	0	3	0.5%	7.7%	1.9%	DGPS
KE040	398454	6406303	29	-	-90	6	4	2	1.1%	10.6%	1.5%	GPS
KE059	398896.198	6406702.992	26.944	-	-90	6	0	3	0.2%	5.1%	2.8%	DGPS
KE062	398946.974	6406604.035	26.336	-	-90	3	0	2	1.0%	8.1%	2.1%	DGPS
KE063	398901.562	6406602.462	26.629	-	-90	6	0	2	0.0%	4.2%	3.0%	DGPS
KE064	398850.501	6406603.517	27.173	-	-90	6	0	2	0.0%	2.3%	2.0%	DGPS
KE071	398798.834	6406505.881	26.034	-	-90	3	0	1	0.2%	16.9%	2.6%	DGPS
KE072	398849.777	6406503.774	25.800	-	-90	3	0	1	4.2%	10.4%	1.3%	DGPS
KE073	398748.186	6406390.727	25.314	-	-90	3	0	1	3.6%	9.7%	2.1%	DGPS
KE074	398695.745	6406402.618	25.088	-	-90	3	0	2	2.4%	14.7%	2.4%	DGPS
KE075	398650.266	6406399.882	25.090	-	-90	3	0	1	0.2%	9.2%	1.2%	DGPS
KE077	398604.240	6406301.734	25.210	-	-90	6	0	2	0.3%	8.6%	1.6%	DGPS
KE080	397997.182	6406201.057	23.168	-	-90	3	0	1	0.1%	18.4%	1.9%	DGPS
KE081	398042.827	6406204.335	23.942	-	-90	2.5	1	1.5	2.3%	14.5%	1.3%	DGPS
KE082	398093.141	6406202.069	23.743	-	-90	3	0	2	1.8%	11.9%	1.2%	DGPS
KE089	398446.404	6406198.469	24.296	-	-90	3	0	1	0.2%	7.2%	1.3%	DGPS
KE091	398697.121	6406198.274	24,963	-	-90	3	0	1	5.0%	9.7%	2.1%	DGPS
KE092	398749.103	6406200.413	25.108	-	-90	6	0	1	1.9%	10.0%	1.6%	DGPS
KE094	398848.363	6406203.408	25.343	-	-90	3	0	1	2.4%	4.9%	1.6%	DGPS
KE120	398199.491	6406303.837	23.649	-	-90	3	0	1	2.4%	17.6%	4.6%	DGPS
KE122	398099.805	6406303.712	23.428	-	-90	3	0	1	0.6%	9.2%	1.1%	DGPS
KE127	398247.269	6405798.850	23.765	-	-90	6	1	2	8.4%	13.3%	1.5%	DGPS
KE129	398150.185	6405799.951	23.078	-	-90	3	0	1	1.3%	10.0%	1.3%	DGPS
KE130	398100.308	6405798.398	22.997	-	-90	3	0	1	0.1%	20.0%	1.7%	DGPS
KE134	398050.924	6405795.961	22.886	-	-90	3	0	1	3.5%	12.2%	1.6%	DGPS
KE135	397999.022	6405797.877	22.847	-	-90	3	0	1	3.5%	18.2%	1.0%	DGPS
KE139	397800.917	6405799.156	22.257	-	-90	3	1.5	0.5	0.2%	17.2%	1.2%	DGPS
KE142	398300.107	6405598.691	23.275	-	-90	3	0	2	11.0%	11.8%	1.6%	DGPS
KE143	398251.059	6405598.079	23.101	-	-90	3	0	2.5	0.7%	4.9%	1.4%	DGPS
KE144	398198.808	6405597,429	22.995	-	-90	3	0.5	1	6.4%	5.7%	1.5%	DGPS
KE145	398150.378	6405596.787	22.907	-	-90	3	0	1	1.5%	6.6%	1.1%	DGPS
KE147	398049.872	6405595.860	22.662	-	-90	3	1	0.5	1.3%	19.9%	1.3%	DGPS
KE148	397999.372	6405595.459	22.651	-	-90	3	0	1	0.0%	2.5%	1.1%	DGPS
KE148	397999.372	6405595.459	22.651	-	-90	3	2.5	0.5	0.1%	16.8%	2.1%	DGPS
KE149	397949.365	6405594.738	22.523	-	-90	3	0	1	1.7%	4.6%	1.5%	DGPS
KE150	397899.747	6405594.253	22.368	-	-90	3	0	1	4.2%	1.2%	1.2%	DGPS
KE151	397848.258	6405593.988	22.205	-	-90	3	1	0.5	0.5%	12.7%	1.0%	DGPS

Appendix 1 - Results Table

			Section	A - Holes L	ooated	East of H	peland F	load				
KE381	398801.878	6408200.492	26.987	-	-90	3	0	1	2.3%	6.1%	1.8%	DGPS
KE382	398851.768	6408201.837	28.375		-90	3	0	1.5	0.7%	3.5%	1.5%	DGPS
KE383	398901.188	6408200.870	27.812	-	-90	3	0	1	1.8%	4.3%	1.8%	DGPS
KE390	399250.224	6408203.347	29.123	-	-90	3	0	1.5	1.4%	1.5%	2.9%	DGPS
KE419	398828.113	6407898.514	28.789	-	-90	3	0.5	1	3.5%	12.6%	2.1%	DGPS
KE421	398772.865	8407901.279	28.499	-	-90	8	0	2.5	2.8%	9.4%	2.1%	DGPS
KE421	398772.885	8407901.279	28.499	-	-90	8	3	1	0.5%	13.1%	1.8%	DGPS
KE422	398724.311	8407904.581	28.251	-	-90	6	0	2	3.1%	6.4%	1.3%	DGPS
KE423	398873.997	8407907.910	25.903	-	-90	3.5	0	0.5	1.9%	4.7%	1.0%	DGPS
KE423	398873.997	8407907.910	25.903	-	-90	3.5	1.5	0.5	5.8%	14.4%	1.7%	DGPS
KE525	398850.881	8407100.022	25.958	-	-90	3	0	2	0.9%	5.5%	2.5%	DGPS
KE528	398599.358	6407098.625	25.344	-	-90	3	0	1.5	0.8%	9.2%	3.0%	DGPS
KE527	398550.013	6407098.581	25.150	-	-90	3	0	1.5	2.7%	12.8%	1.8%	DGPS
KE528 KE529	398499.787 398450.537	8407099.181 8407099.259	25.280 25.218	-	-90	3	0	2.5	1.3%	5.0%	1.7%	DGPS DGPS
KE529	398400.537 398400.288	6407099.259 6407099.370	25.218	-	-90 -90	3	0	2.5	1.9%	9.5%	1.1%	DGPS
KE531	398349	6407098	25		-90	3	0	2.5	3.1%	7.2%	1.5%	GPS
KE532	398302	6407096	27	<u> </u>	-90	3	0	2	1.2%	12.0%	2.2%	GPS
KE533	398357	6407393	30		-90	3	0	2	0.0%	7.0%	1.3%	GPS
KE534	398399.515	8407397.148	25.018		-90	3	0	1.5	0.1%	4.3%	1.2%	DGPS
KE535	398599.350	6407398.707	25.685		-90	3	0	1.5	1.3%	4.9%	1.2%	DGPS
KE538	398548.804	6407398.103	25.472	-	-90	3	0.5	0.5	0.0%	5.2%	1.2%	DGPS
KE537	398498.538	6407397.843	25.198		-90	3	0	1	0.1%	5.6%	1.1%	DGPS
KE539	398302.448	6407397.208	24.198		-90	3	0.5	1	0.0%	11.1%	1.4%	DGPS
KE540	398249.870	6407098.982	23.925		-90	3	0.5	0.5	0.2%	4.0%	1.1%	DGPS
KE541	398199.138	6407098.984	24.407		-90	3	0	3	0.6%	6.8%	1.7%	DGPS
KE542	398150.638	6407106.681	24.276		-90	6	0	4	0.4%	3.8%	1.3%	DGPS
KE543	398100.210	6407100.188	24.937	-	-90	8	0	4	0.0%	3.5%	1.5%	DGPS
KE544	398058.335	6407081.403	26.062	-	-90	6	1.5	3.5	0.1%	4.4%	1.8%	DGPS
KE545	397995.043	6407105.201	25.792	-	-90	6	0	5	1.8%	4.9%	1.8%	DGPS
KE548	397958.813	6407114.315	24.788	-	-90	6	0.5	5	0.1%	9.0%	1.4%	DGPS
KE547	397898.650	6407099.298	23.317	-	-90	8	3	0.5	0.0%	14.8%	1.4%	DGPS
KE548	397849.253	8407098.379	23.254	-	-90	8	2	0.5	0.1%	5.7%	1.0%	DGPS
KE548	397849.253	8407098.379	23.254	-	-90	8	3.5	0.5	0.0%	12.0%	1.1%	DGPS
KE548	397849.253	6407098.379	23.254	-	-90	8	5	1	0.0%	17.2%	1.7%	DGPS
KE550	398249.823	8407370.885	24.082	-	-90	3	0	1	0.4%	4.9%	1.2%	DGPS
KE552	398152.000	6407395.998	23.509	-	-90	3	0	0.5	0.1%	7.1%	1.1%	DGPS
KE553	398099.502	6407395.020	23.688		-90	3	0.5	2.5	2.8%	13.7%	1.1%	DGPS
KE554 KE558	398049.303	8407395.119	23.814		-90	3	0	2	0.8%	10.8%	1.1%	DGPS
KE557	397949.998 397898.595	8407393.091	23.308		-90 -90	3	0	1.5	0.0%	9.4%	1.2%	DGPS DGPS
KE557 KE558	397898.595 397850.623	6407392.217 6407391.188	23.199 23.254		-90	3	0	2	1.3%	7.1%	1.4%	DGPS
KE559	397850.823	6407391.186	23.254		-90	3	0	2	1.3%	9.9%	1.4%	DGPS
KE580	398249.252	6407098.548	23.282	<u> </u>	-90	3	0	1	0.9%	3.6%	1.2%	DGPS
KE581	397913.874	8407802.987	24.828	-	-90	8	1	2.5	0.1%	7.2%	1.7%	DGPS
NEOD1	391913.014	ONUTOUZ.90/	24.020		490	0	1	23	0.1%	1.2%	1.776	Dura

Appendix 1 - Results Table

			Section	A - Holes L	ocated	Fast of U	oneland F	load .				
WEERE	207707.025	C107C12.2C		A - noies L			_		0.400	0.00	4.70	0.000
KE562	397787.038	6407613.384	24.501	-	-90	6	0	3.5	0.1%	2.9%	1.3%	DGPS
KE563	397833.655	6407668.689	25.909	-	-90	15	0.5	5.5	0.3%	6.5%	1.8%	DGPS
KE564	398198.410	6407751.293	23.750	-	-90	5.5	0.5	0.5	0.0%	2.5%	1.0%	DGPS
KE564	398198.410	6407751.293	23.750	-	-90	5.5	1.5	2	0.7%	10.8%	1.3%	DGPS
KE564	398198.410	6407751.293	23.750	-	-90	5.5	4.5	0.5	0.0%	19.8%	1.1%	DGPS
KE565	398150.574	6407750.043	23.690	-	-90	5	1	1	3.5%	16.2%	1.3%	DGPS
KE566	398100.839	6407749.329	23.489	-	-90	3	1	1	2.8%	15.4%	1.2%	DGPS
KE567	398049.424	6407750.768	23.743	-	-90	3	0	1.5	0.1%	3.4%	1.0%	DGPS
KE568	397997.655	6407750.291	23.811	-	-90	3	0	2.5	1.0%	9.7%	1.1%	DGPS
KE569	397951	6407748	31	-	-90	3	0	2.5	0.0%	8.4%	1.3%	GPS
KE570	397898.286	6407751.700	24.152	-	-90	3	0	2.5	0.1%	7.4%	1.3%	DGPS
KE571	397849.782	6407751.295	24.267	-	-90	- 6	0.5	3.5	0.3%	8.1%	1.3%	DGPS
KE572	397799.626	6407751.858	24.375	-	-90	4	1.5	1	0.0%	2.6%	1.0%	DGPS
KE574	398298.788	6407755.175	24.111	-	-90	4	2.5	0.5	0.0%	4.0%	3.5%	DGPS
KE578	398099.054	6408198.945	23.713	-	-90	3	0	0.5	0.1%	3.7%	1.0%	DGPS
KE579	398149.245	6408199.181	23.920	-	-90	3	0	1.5	0.9%	8.3%	1.4%	DGPS
KE580	398198.893	6408195.531	23.946	-	-90	3	0	1.5	4.9%	8.5%	1.4%	DGPS
KE581	398196.407	6408534.988	24.612	-	-90	3	0	1.5	0.6%	2.6%	1.6%	DGPS
KE582	398150.957	6408548.406	24.328	-	-90	3	0	0.5	0.1%	8.1%	2.3%	DGPS
KE583	397802.367	6408598.561	23.357	-	-90	3	0	0.5	3.6%	19.6%	1.1%	DGPS
KE584	397847.517	6408601.078	23.805	-	-90	3	0	1	0.4%	9.8%	1.9%	DGPS
KE585	397898.473	6408600.543	23.932	-	-90	3	0	1.5	0.1%	8.2%	1.5%	DGPS
KE586	397949.793	6408600.868	23.931	-	-90	3	0	2	0.7%	15.6%	1.3%	DGPS
KE588	397797.057	6408199.373	23.361	-	-90	3	0	1.5	2.0%	17.5%	1.2%	DGPS
KE589	397849.552	6408201.238	23.413	-	-90	3	0	2	3.1%	15.1%	1.5%	DGPS
KE590	397899.852	6408202.269	23.649	-	-90	3	0	2	0.3%	10.6%	1.8%	DGPS
KE591	397951.527	6408202.625	23,995	-	-90	3	0	2.5	0.8%	9.6%	1.6%	DGPS
KE592	397999.849	6408204.608	23,741	-	-90	3	0	1.5	3.0%	9.1%	1.0%	DGPS
KE593	398050.231	6408599.628	23.889	-	-90	3	0	0.5	1.7%	12.6%	1.6%	DGPS
KE594	398098.231	6408599.248	24.003	-	-90	3	0	2	2.0%	8.2%	1.4%	DGPS
KE595	398351.190	6408599.747	24.817	-	-90	3	0	1.5	2.4%	12.6%	1.5%	DGPS
KE596	398400.239	6408600.122	24.952	-	-90	3	0	1	0.0%	8.0%	1.4%	DGPS
KE597	398450.446	6408600.051	25.090	-	-90	3	0	1.5	3.6%	10.2%	1.8%	DGPS
KE598	398499.168	6408600.166	25.264	-	-90	3	0	2	1.9%	9.6%	1.6%	DGPS
KE599	398548.906	6408599.457	25.396	-	-90	2.5	0	0.5	0.1%	5.0%	1.1%	DGPS
KE600	398600.994	6408599.937	25.583	-	-90	3	0	0.5	0.9%	12.8%	1.5%	DGPS
KE601	398649.944	6408600.029	25.951	-	-90	3	0	2	0.6%	5.1%	1.4%	DGPS
KE602	398699.830	6408599.620	26.043	-	-90	3	0	1.5	0.6%	4.6%	2.0%	DGPS
KE603	398796.320	6408501.530	26.851	_	-90	3	0	2	3.2%	10.5%	2.6%	DGPS
KE605	398850	6408495	30	-	-90	3	0	2.5	1.5%	6.8%	2.3%	GPS
KE606	398901.392	6408598.463	27.254	-	-90	3	0	0.5	1.4%	10.6%	2.4%	DGPS
KE607	398949.293	6408599.535	27.685	-	-90	2	0	0.5	0.4%	4.6%	3.6%	DGPS
KE608	398999	6408503	25	-	-90	2.5	0	0.5	0.9%	5.0%	1.5%	GPS
KE612	398747.917	6408198.454	26.412	-	-90	1.5	0	1	10.7%	17.2%	1.2%	DGPS
KE613	398701.229	6408198.017	26.084	-	-90	3	0	2	2.4%	5.6%	2.3%	DGPS
112010	330.01.223		20.004		, ,,,,,			_		0.070	2000	

KF782

KE783

KE784

KE785

KE786

KE788

395402

395198

394800

394600

6405420

6405600

6405600

6405800

6406200

23

19

19

Appendix 1 –	Resul	ts T	ab	e
--------------	-------	------	----	---

			Section	A - Holes L	ocated	East of H	opeland F	load				
KE814	398850.111	6408198.442	25.751		-90	3	0	2.5	2.9%	9.3%	1.8%	DGPS
KE815	398599.507	6408198.814	25.591		-90	3	0	2	4.7%	10.9%	2.3%	DGPS
KE818	398547.350	6408198.901	25.358		-90	3	0	2.5	2.2%	12.4%	2.0%	DGPS
KE817	398498.574	6408198.544	24.989		-90	3	0	3	3.5%	14.7%	1.9%	DGPS
KE818	398449.128	6408198.197	24.708		-90	3	0	2.5	1.2%	13.1%	1.6%	DGPS
KE819	398397.011	6408198.041	24.553		-90	3	0	2.5	3.9%	7.9%	1.3%	DGPS
KE820	398345.983	6408197.875	24.484		-90	3	0	1	0.1%	10.9%	1.7%	DGPS
KE821	398299.820	6408199.680	24.350		-90	3	0	0.5	0.1%	10.3%	1.3%	DGPS
KE822	398240.048	6408533.968	24.582		-90	3	0	1	0.0%	12.1%	1.9%	DGPS
KE823	398249.750	6408199.054	24.049		-90	3	0	2.5	1.8%	9.4%	1.3%	DGPS
KE625	398301.235	6408804.974	25.070		-90	3	0	2	0.7%	8.2%	2.1%	DGPS
KE831	398411	6407815	27		-90	6	4.5	0.5	0.0%	15.8%	2.0%	GPS
KE832	398384.841	6407814.388	25.372		-90	8	4	0.5	0.0%	18.4%	1.1%	DGPS

NOTE: Intercepts are based on a cut-off of 0.5m thickness at 1%THM, 20% clay fines and 15% +2mm oversize. These cut-off figures represent the economic cut-off for the current Keysbrook reserve and display a degree of geological continuity.

	Section B - Holes Located West of Hopeland Road											
HOLE	Easting	Northing	RL(m)	Azimuth	Dip	Total Depth	Depth From (m)	Thickness (m)	Oversize %	Stimes %	Total Heavy Mineral %	Survey Method
KE857	398448.041	6406985.720	21.275	-	-90	9	1	2	0.0%	3.2%	1.3%	DGPS
KE887	396966.616	8408977.594	21.202	-	-90	9	6	2	0.1%	16.2%	1.5%	DGPS
KE889	397071.198	6406977.821	21.987	-	-90	15	2	3	0.1%	11.9%	1.5%	DGPS
KE870	397119.488	8406978.415	22.251	-	-90	12	1	7	0.1%	13.2%	1.0%	DGPS
KE871	397170.119	8408981.157	22.787	-	-90	12	1	2	0.0%	2.6%	1.7%	DGPS
KE872	397221.057	8408983.713	22.908	-	-90	12	1	4	0.0%	3.9%	1.2%	DGPS
KE874	397312.297	8408983.940	24.041	-	-90	15	2	2	0.0%	4.5%	1.4%	DGPS
KE875	397387.588	8408984.742	24.685	-	-90	15	2	4	0.0%	3.4%	1.8%	DGPS
KE878	397420	8408983	25	-	-90	21	2	3	0.0%	7.7%	2.0%	GP8
KE889	396905	8405800	18	-	-90	15	3	8	1.9%	16.5%	1.3%	GPS
KE890	396853	8405800	20	-	-90	15	7	5	0.6%	14.3%	1.1%	GPS
KE891	396800	8405800	19	-	-90	12	3	5	1.7%	9.0%	1.4%	GP8
KE892	398752	8405800	19	-	-90	12	4	7	0.4%	11.2%	1.1%	GP8
KE893	398899	8405800	17	-	-90	12	0	4	0.0%	7.2%	1.1%	GP8
KE895	398801	8405800	15	-	-90	12	2	6	0.9%	11.9%	1.2%	GP8
KE898	396548	8405800	14	-	-90	12	0	6	1.4%	12.9%	1.1%	GP8
KE700	396349	8405800	20	-	-90	12	10	1	0.1%	15.8%	4.1%	GPS
KE702	398250	8405800	20	-	-90	12	0	11	0.8%	10.3%	1.5%	GP8
KE703	396200	8405800	23	-	-90	14	1	6	1.2%	8.8%	1.5%	GP8
KE703	396200	6405800	23	-	-90	14	10	2	1.2%	12.8%	1.3%	GPS
KE708	397509	8408200	21	-	-90	9	3	2	0.0%	3.1%	1.3%	GP8
KE712	397399	6406590	19		-90	12	2	2	0.0%	4.4%	1.8%	GP8
KE713	397354	8408800	19	-	-90	12	2	2	0.0%	9.1%	1.3%	GP8
KE714	397300	8408590	18	-	-90	9	2	2	0.3%	5.4%	1.8%	GP8
KE715	397245	8408800	19	-	-90	9	2	4	1.7%	5.9%	1.2%	GPS

	Section B - Holes Located West of Hopeland Road											
LOTTAGE .	207400	CARCEDO.		o - noies L	_		•		0.00	0.00	4.70	000
KE716	397198	6406600	20	-	-90	15	1	3	0.0%	2.8%	1.7%	GPS
KE717	397153	6406590	24	-	-90	9	1	6	0.1%	2.5%	1.3%	GPS
KE718	397102	6406600	25	-	-90	9	2	4	0.1%	5.4%	1.3%	GPS
KE719	397053	6406600	25	-	-90	15	2	3	0.0%	7.2%	1.4%	GPS
KE721	396017	6406600	23	-	-90	21	2	7	0.1%	6.1%	1.6%	GPS
KE722	396055	6405800	16	-	-90	9	6	2	1.0%	15.7%	1.4%	GPS
KE723	396101	6405810	16	-	-90	9	6	2	0.4%	14.6%	1.4%	GPS
KE724	396011	6405400	24	-	-90	21	6	2	6.0%	11.8%	1.6%	GPS
KE725	396051	6405400	23	-	-90	6	2	1	1.1%	13.7%	2.3%	GPS
KE725	396051	6405400	23	-	-90	6	4	2	2.2%	15.5%	3.8%	GPS
KE727	396153	6405400	23	-	-90	12	7	3	2.6%	12.8%	1.6%	GPS
KE729	396252	6405400	21	-	-90	15	5	4	2.3%	14.2%	2.0%	GPS
KE731	396348	6405400	26	-	-90	9	2	1	2.1%	16.2%	4.3%	GPS
KE735	396650	6405400	25	-	-90	12	6	2	0.2%	13.4%	2.7%	GPS
KE735	396650	6405400	25	-	-90	12	11	1	1.3%	10.2%	2.1%	GPS
KE737	396801	6405500	26	-	-90	12	7	4	0.3%	13.4%	2.0%	GPS
KE739	396997	6405500	24	-	-90	12	6	2	3.3%	13.0%	3.0%	GPS
KE747	397147	6406200	16	-	-90	9	4	2	0.0%	14.0%	1.2%	GPS
KE678	397511	6406980	25	-	-90	9	2	5	0.0%	15.5%	2.3%	GPS
KE677	397471	6406980	24	-	-90	8	3	3	0.1%	15.7%	2.7%	GPS
KE753	396296	6406200	15	-	-90	12	0	2	0.3%	5.8%	1.2%	GPS
KE754	396012	6406190	16	-	-90	15	1	3	0.0%	2.1%	1.7%	GPS
KE754	396012	6406190	16	-	-90	15	8	1	2.2%	11.9%	2.2%	GPS
KE755	396101	6406200	16	-	-90	15	6	3	0.3%	13.9%	1.5%	GPS
KE761	396300	6406000	19	-	-90	15	1	10	0.2%	6.1%	2.5%	GPS
KE766	396418	6406590	15	-	-90	15	3	1	0.0%	11.6%	3.1%	GPS
KE769	397403	6407200	21	-	-90	9	2	4	0.0%	7.1%	1,5%	GPS
KE770	397000	6407200	19	-	-90	9	0	3	0.1%	5.9%	1.1%	GPS
KE771	396797	6407200	19	-	-90	9	0	6	0.0%	6.1%	1.4%	GPS
KE772	396994	6407610	21	-	-90	12	2	4	0.0%	4.5%	1.5%	GPS
KE774	397251	6407450	21	-	-90	12	1	4	0.0%	3.3%	1.8%	GPS
KE776	396602	6407200	19	-	-90	12	1	3	0.0%	5.5%	1.4%	GPS
KE777	395605	6406400	16		-90	9	0	9	0.2%	9.9%	1.7%	GPS
KE778	395982	6406400	18		-90	9	2	7	0.1%	6.8%	1.2%	GPS
KE779	395902	6405970	6	-	-90	12	6	2	2.4%	5.8%	2.1%	GPS GPS
KE780	395995	6405970	18	-	-90	6	0	1	0.0%	4.1%	2.1%	GPS GPS
						6						GPS GPS
KE780	395995	6405600	18	-	-90	_	3	2	3.7%	15.5%	1.4%	
KE781	395604	6405600	18	-	-90	8	0	2	5.7%	9.8%	2.8%	GPS

-90 12

-90

-90

-90

0

12

Appendix 1 - Results Table

16 0% 2 3%

10.5%

4.5%

14.5%

11.0%

12.0%

1.3%

2.5%

1.9%

GPS

GPS

GPS

GPS

GPS

GPS

0.7%

1.1%

0.2%

2.1%

0.9%

1.2%

Appendix 1 - Results Table

			- United Control	B - Holes L	o common a		орожина п	1000				
KE789	395200	8408400	18	-	-90	9	5	2	0.8%	9.6%	1.5%	GPS
KE790	395800	8408000	18	-	-90	9	0	1	0.4%	18.1%	2.7%	GPS
KE790	395600	8408000	18	-	-90	9	4	3	0.4%	11.9%	1.5%	GPS
KE792	394592	8408800	17		-90	9	4	2	0.0%	14.3%	1.9%	GPS
KE793	394598	8408400	22	-	-90	9	1	8	0.7%	10.7%	1.3%	GPS
KE794	394411	8408400	24		-90	12	7	5	1.8%	10.7%	2.1%	GPS
KE795	394389	6406800	25	-	-90	9	6	3	0.5%	11.5%	1.7%	GP8
KE800	395408	8407620	19		-90	9	0	2	0.7%	11.8%	1.9%	GPS
KE801	395424	6407800	19	-	-90	15	2	1	0.0%	18.9%	4.2%	GP8
KE801	395424	8407800	19		-90	15		4	0.4%	12.0%	1.4%	GPS
KE803	394802	6408000	18	-	-90	9	6	3	0.5%	11.7%	2.6%	GPS
KE804	394800	6407600	16	-	-90	9	2	4	0.2%	6.8%	1.9%	GPS
KE805	394468	6408280	17	-	-90	9	3	4	0.0%	5.0%	1.4%	GPS
KE808	394998	6408400	18	-	-90	9	2	2	0.0%	3.8%	1.8%	GPS
KE808	394998	8408400	18	-	-90	9	7	2	0.4%	10.1%	2.9%	GPS
KE808	396803	6408000	19	-	-90	9	3	2	0.0%	12.5%	1.6%	GPS
KE809	396802	8408400	19		-90	9	0	5	0.3%	9.2%	2.1%	GPS

NOTE: Intercepts are based on a minimum intercept grade of 2Mm (i.e. THM grade multiplied by thickness >2). Grade cut-offs have of 1%THM, 20% clay fines and 15% +2mm oversize have also been applied.

Appendix 2 – JORC Table 1

Criteria	JORC Code explanation	Commentary
sampling and assaying	personnel. The use of bulinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Olicusts are adultment to assay data.	 Data stored in Micromine logging files and backed up via Email nightly Compilation of analysis with geological data ongoing with any problems rectified prior to reporting
ocation of sata points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	"DGPS" in Appendix A – located via RTK DGPS. "GPS" in Appendix A – located via handheid GPS in MGA94. Topographic coverage – east of 396850E accurate LIDAR data was captured with 0.5m vertical contour intervals.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continutly appropriate for the Altherial Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample composting has been applied. 	 Drill spacing at either 400m spaced lines with 200m spaced drill centres, or 200m spaced lines with 50m spaced drill centres. Individual in samples collected. Composite calculations used only for significant intersections outlined in the report
Orientation of lata in elation to seological structure	Whether the orientation of sampling achieves unblased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralized structures is considered to have introduced a sampling bias, this should be assessed and reported of material.	 The orientation of the upper Bassendean sand dunes varies from north-south in the east of the licence adjacent to the Keysbrook deposit to east-viest in the west of the licence. The underlying base sone appears from current data coverage to have no preferred orientation.
Sample security	The measures taken to ensure sample security.	 Samples retained on locked property whilst awaiting dispatch for analysis. Samples stored in analytical laboratory sample preparation shed
ludits or eviews	The results of any audits or reviews of sampling techniques and data.	No reviews or audits undertaken to date

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownershib including agreements or material issues with third parties such as joint ventures, partnerships, oversiting regardler, native title interests, histolocal sites, wildomess or national part and environmental actings. The security of the tensive held at the time of reporting along with any known impediments to obtaining a licence to operate in this area. 	 Estiloration Licence numbers E700-607 à E7014528 are relevant to this report, as are Prospecting Licences P701462 and P701463. These tenements are held 100% by Keysbrook Leucrismer Pty, Ltd, a wholly owned subsidiary of M27 Resources Ltd. It is the current understanding that all licences are located on pre-1659 fee simple, freehold land.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Exploration has been undertaken during the period 2006-2008 by Iluka Resources as part of tenement E702495. This exploration work is the basis for a large proportion of the exploration data presented in this release. This data is acknowledged but not utilised as part of this release.
Geology	Deposit type, geological setting and style of mineralisation.	The tenement area is interpreted as being analogous to the Keysbrook deposit, with regards to geology, setting and mineralization. Geologically the deposit comprises Bassendean Sand Formation sediments. This is composed of localized sand utiles, overlying a beast zone of sand. These mineralized units overly the clay-rich Guidford Formation. Alternational in discerned throughout the sand units, having been rewarded by wind.

JORC Code, 2012 Edition - Table 1 report template

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (eg out channels, rendom ripin, or specific specialised industry standard measurement both agrounds to this mentional shock investigation, and has down hole garman sondes, or handheld XMF instruments, etc). These examples should not be taken as limiting the broad meaning of carapting. Include reference to measures failen to ensure sample representivity and the appropriate contained to the second of the production of this great contained to the production of the production of this great contained to the production of the production o	Samples analysed individually a Samples collected in sample backet, thoroughly homogenised by hand and placed in 28 g calcio bags, Initial intert to pass through rotary spiller, however damp nature of 28 g calcio bags, Initial intert to pass through rotary spiller, however damp nature of some samples and spiller design resulted in destinate contamination issues, so spiller was removed. A radja's undertaken spiller position in the place of the place of the place of the place of the place of the place into TBE with an GG of 2.05g/co for heavy media separation. Cleaned with acetone, then dried, weighted and calculations compiled.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 NQ sized (3½") Aircore rods were utilised for all drilling completed. Drilling completed using Arrinooka Drilling utilising a Hydco RAB50 truck-mounted drilling rig.
Drill sample recovery	Method of recording and assessing one and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine-locarse material.	Drilling conducted with water injection as required to obtain sample return. Sample quality recorded during drilling. All observations logged into spreadsheet based system at the drill site.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, maning studies and metallurgical studies. Whether logging is qualifative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged.	 Samples retained over 1 m intervals. Logging of rock types, quality, hardness, washability and grain size undertaken in fleid. Panned estimate of clay fines, oversize and heavy mineral also completed. No photography taken. All intervals logged.
Sub-sampling techniques and sample preparation	If one undersign and percentage of the recent interactions object. If cover, white are of or same and withther quarter, find or all core latences carried used or dry. If cover, white are first, table carried, or day yall, etc and of the carried programment of the carried or dry. For all control procedures adopted for all sub-campling stages to maximize representability of samples control procedures adopted for all sub-campling stages to maximize representability of samples carried table to ensure that the sampling is representable of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample states are appropriate to the grain situe of the material being sampled.	Samples collected in sample budet, thoroughly homogenised by hand and place into 20 good hoaps. Intail intent to asso through notway splitter, however damp nature of drilling and design resulted in extensive contamination issues, so splitter was removed. Duplicate samples taken at a rate of 1 in 25. Samples taken as a second 2kg graf from homogenised bucket of sample. Refer to sample preparation and analysis technique above. No analysis of duplicate sampling undertaken at this stage.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the beforinge is considered partial or lotal. For geophysical bods, spectrometers, handheid VPF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. factors applied and their derivation, etc. laborators (hocked) and whether accordable levels of coursors or less for fixed and recision.	Heavy media separation - appropriate method. Twin holes chiled at 1 in 20 rangle. Standards inserted at a rate of 1 in 25 samples Blanks inserted at a rate of 10 samples Duplicate samples taken at a rate of 1 in 25 samples

Appendix 2 - JORC Table 1

Criteria	JORC Code explanation	Commentary
	•	and water action from more frequently mined strandline-style mineral sands deposits.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the flowing information for all fullatival flohions: easting and northing of the drill hole collar elevation or FL (Reduced Level – elevation above sea level in metres) of the drill hole collar of and azimuth of the hole of the collar of the material or the season of the collar of the material or the season of the information is justified on the basis that the information is not Material and this exclusion does not detraid from the understanding of the report, the Competent Person should leavily replain with this is the case.	refer Appendix A.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade transitions (e.g. cutting of thing pracels) and cut-off grades are usually littleterial and should be stated. Matterial and should be stated. In the state of the stated of the stated of the state of the st	 Length weighted averages were created using a minimum analysis grade of 1%T-HM. Internal vasies of up to 2 m was incorporated into the length weighted average orly the average of the interval remained greater than 1%T-HM. Deeper mineralised interactions are noted in the assay sheets but are not included in this assessment. Analyses with 20% clay fines or >15% +2mm oversize are excluded.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the immeralisation with respect to the drift hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg down hole length, true width not known).	Flat-lying mineralisation intersected by vertical drillholes.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer Figure 1.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	Discussed within report.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observation; geophysical survey results; posteriorial survey results; butk samples – size and method of treatment; metallurgical text results; butk density, groundvaluef; geotechnical and rock characteristics, potential deleterious or contaminating substances. 	 Assemblage data disclosed in the report has been generated from samples cultimed in the ASX release dated 20 January 2015. The process of penerating these results is as follows: Compossing of TDEs sink material to form single sample Processing of composite via CARPOT compared to split sample into magnetic Processing of composite via CARPOT compared to split sample into magnetic XRF analysis of each component to ascertain concentration of relevant elements Post processing of XRF results via proprietary Excel-based algorithm to determine proportion of products
Further work	The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not	Land access agreement discussions. Aircore drilling in order to define the mineralisation laterally and at depth across the lease area. Resource estimation

JORC Mineral Resources

Keysbrook Project - Mineral Resources (above a 1% THM cut-off grade and below a 20% slimes grade)

Classification	Mineral Resource as at 28 February 2013						
	Million Tonnes	THM grade %	Slimes %				
Measured	34.1	2.6	8.7				
Indicated	33.2	2.2	7.6				
Inferred	11.6	2.6	10.5				
Total	78.9	2.5	8.5				

Kilimiraka Project – Mineral Resources (above a 1% THM cut-off grade)

Category	Tonnes (Mt)	Heavy Mineral Grade (%)	Heavy Mineral (kt)
Inferred	56.2	1.6%	894
Total	56.2	1.6%	894

Competent Persons Statement

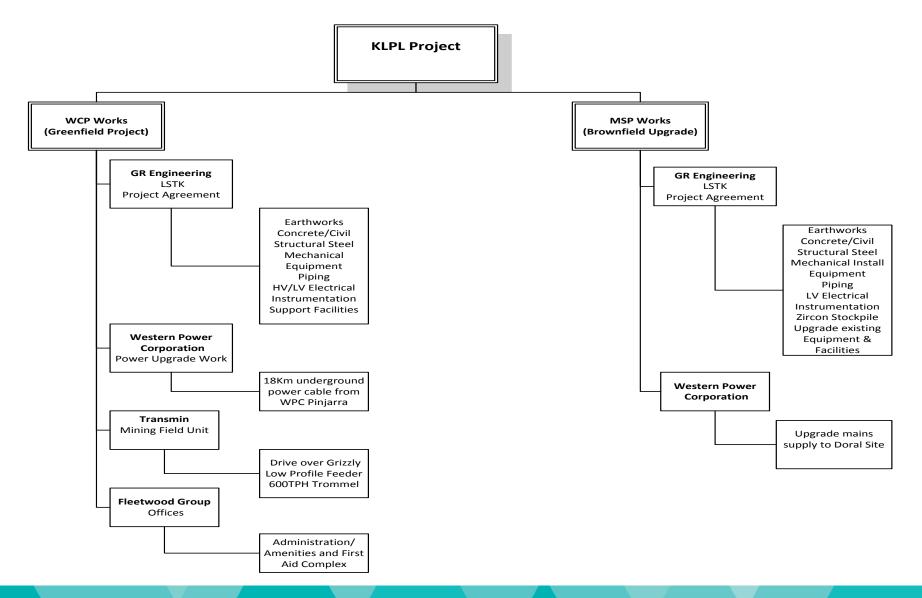
The information in this report which relates to Mineral Resources is based upon information compiled by Mrs Christine Standing (in relation to the Keysbrook Project) who is a Member of the Australasian Institute of Mining and Metallurgy and Mr John Baxter (in relation to the Kilimiraka Project) who is a Member of the Australasian Institute of Geoscientists. Mrs Standing is an employee of Optiro Pty Ltd and Mr Baxter is a Consulting Geologist, both have sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which they are undertaking to qualify as a Competent Person as defined in the 2004 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mrs Standing and Mr Baxter consent to the inclusion in the report of a summary based upon their information in the form and context in which it appears.

JORC Ore Reserves

Keysbrook Project – Ore Reserve statement as at 17 October 2012

	Ore	In-situ		THM Assemblage				
Classification	Million	THM	THM	Magnetite	L70	L88	Zircon	Other
	tonnes	tonnes	grade %	%	%	%	%	%
Proved	23.0	610,000	2.7	0.26	27.8	46.6	14.6	10.8
Probable	2.8	68,000	2.5	0.26	27.4	46.5	15.0	10.8
Total	26.0	670,000	2.6	0.26	27.8	46.6	14.6	10.8

Note: L70 and L88 in the THM assemblage equate to the two Leucoxene products containing 70% TiO_2 and 88% TiO_2 .


Notes accompanying the Ore Reserve Statement:

- Ore Reserves are based upon a cut-off grade of 1.0% THM and Mineral Rsource material containing more than 20% slimes have been excluded from the Ore Reserve estimation.
- 2. The Ore Reserves are based upon a Leucoxene 70 price of US\$352 per tonne, a Leucoxene 88 price of US\$1,166 per tonne and a Zircon price of US\$1,777 per tonne.
- 3. Mineral Resources have been reported as inclusive of Ore Reserves.
- 4. The Total Heavy Mineral (THM) assemblage is reported as a percentage of in-situ THM content.
- 5. Tonnes and grade data have been rounded to two significant figures. Discrepancies in summations may occur due to rounding.
- 6. This Ore Reserve statement has been compiled in accordance with the guidelines of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (The JORC Code 2004 Edition).

The information in this report which relates to Ore Reserves have been compiled by Mr Andrew Law of Optiro Pty Ltd, who is a Fellow of the Australasian Institute of Mining and Metallurgy. Mr Law has sufficient experience in Ore Reserve estimation relevant to the style of mineralisation and type of deposit under consideration to qualify as a Competent Person as defined in the 2004 Edition of the Australasian Code for Reporting of Mineral Resources and Ore Reserve. Mr Law consents to the inclusion in the report of the matters compiled by him in the form and context in which it appears.

Project Delivery Structure

