

Norton Gold Fields ("Norton" or the "Company") tenement area covers 1,092 km² within the world-class Kalgoorlie gold province in Western Australia which includes the Paddington Operations. Following on from 2013 acquisitions of the Bullant and Lady Bountiful projects, in 2014 Norton acquired Bullabulling Gold Limited and the Mt Jewell Project increasing its mineral resource inventory substantially. Norton provides an update on exploration activities, reflecting its exploration strategy to better exploit the potential of the Company's extensive landholdings.

HIGHLIGHTS

- Resource Development drilling programs during the March 2015 quarter have seen the completion of 21,429m in 174 drill holes, comprising reverse circulation (RC), surface and underground diamond core drill holes
- At the Homestead Underground Mine, infill and extensional diamond drilling of the recently identified Henning Vein is increasing confidence and extending mineralisation away from an initially defined core zone. Recent high grade downhole results including:

Homestead – Henning Vein
7.3m @ 26.7g/t Au from 58.1m
4.05m @ 7.52g/t Au from 75.6m
1.85m @ 22.1g/t Au from 84.5m

• Underground diamond drilling of the Bullant Main Lode continues to extend mineralisation at depth, and recent drilling has also returned indications of continuous high grade mineralisation along strike to the south in upper levels. Significant high grade down-hole intercepts include:

 Main Lode Deeps

 0.85m @ 62.2g/t Au from 137.3m

 11.15m @ 4.76g/t Au from 116.85m

Main Lode South – 6065 level 4.4m @ 13.5g/t Au from 64m 3.4m @ 18.8g/t Au from 141.1m 8.5m @ 12.4g/t Au from 138.3m

About Norton

Norton Gold Fields Limited (ASX:NGF) is an established mid-tier gold producer. In CY2014, Norton produced 178,269 ounces of gold from its open cut and underground operations at Paddington, near Kalgoorlie in Western Australia. The Company holds extensive granted mining and exploration leases in the pre-eminent Western Australian goldfields, with a land package of 1,092km². Norton's Vision is to be a leading long term gold producer and to achieve this has adopted a business model that seeks to attain sustainable and increased production within a strict cost control environment.

• Resource definition of the Racetrack Prospect has focussed on evaluation of oxide and transitional zones of mineralisation in the Racetrack West / Woolshed South Extended area. Evaluation of refractory mineralisation is also continuing, including recommencement of metallurgical testwork. Significant down-hole results include:

Racetrack West/ Woolshed South9m @ 9.3g/t Au from 23m9m @ 5.39g/t Au from 27m3m @ 23.4g/t Au from 85m

NORTON GOLD FIELDS

Racetrack Main Lodes 6m @ 6.27g/t Au from 233m 3.15m @ 15.7g/t Au from 71m

• At the Mulgarrie Well Prospect, infill resource definition RC drilling to increase confidence in the predominantly oxide and transitional resource has returned significant down-results including:

Mulgarrie Well Prospect

4m @ 5.83g/t Au from 43m

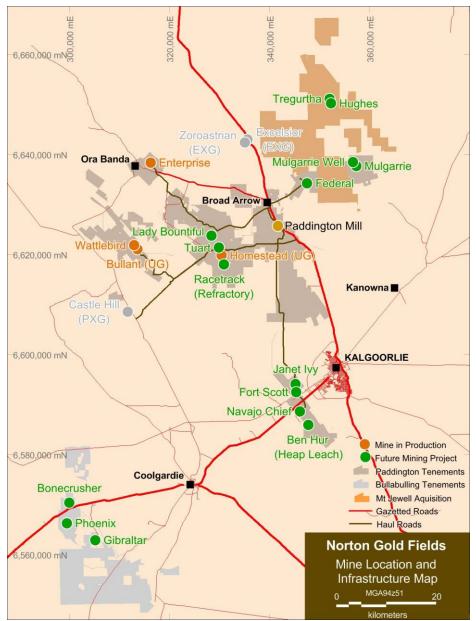
3m @ 11.3g/t Au from 30m

3m @ 9.31g/t Au from 39m

Norton Gold Fields – Kalgoorlie Overview

Paddington Project

Norton's Paddington tenement package covers a highly prospective area of 876 square kilometres within the Kalgoorlie Goldfields region (Figure 1), including the recent Mt Jewell acquisition. Paddington projects currently contain a Measured, Indicated and Inferred Mineral Resource inventory of 7.14Moz of gold, including a Proven and Probable Ore Reserve of 1.11Moz of gold (as at 31 December 2014). The 3.3Mt per annum Paddington processing plant is centrally located within the tenement package.


Geology of the Kalgoorlie region consists of Archaean greenschist facies mafic to ultramafic volcanics and intrusives with later intermediate to felsic volcanics, volcaniclastics and sediments. Gold mineralisation occurs in a number of different settings which typically include the interaction

of structural pathways with stratigraphically and rheologically reactive host rocks. Ore bearing alteration assemblages typically comprise ankerite-sericitealbite-silica-biotite-pyritepyrrhotite.

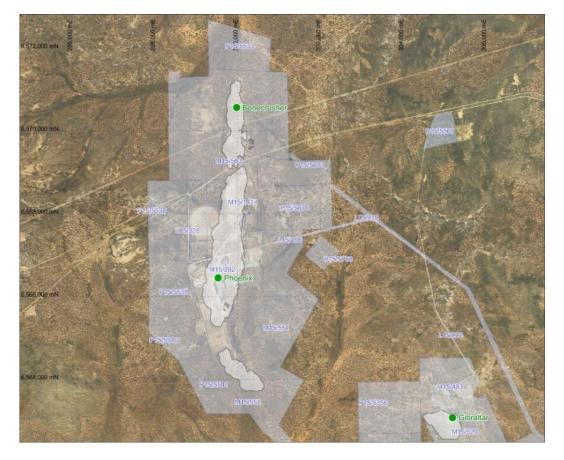
Open cut ore mining is in progress at the Enterprise Deposit (Ora Banda Project) where the bulk of mill feed ore is being sourced, supplemented by the small Wattlebird open cut mine, and by ore stockpiles from previously mined satellite open cut operations.

Underground mining is in progress at the Homestead Underground Mine (Mount Pleasant Project), which includes the Black Flag West Vein, and at the Bullant Underground Mine (Carbine-Bullant Project).

Figure 1: Norton Gold Fields – Kalgoorlie Tenure & Projects

Bullabulling Project

The Bullabulling Gold Project is located 70km west-southwest of Kalgoorlie and consists of the Bullabulling Line and Gibraltar gold deposits. The Bullabulling tenement package covers a total area of 215 square kilometres (Figures 1 and 2). Measured, Indicated and Inferred Mineral Resource inventory is estimated at **95.4Mt at 1.05g/t Au (3.22Moz)** (31 December 2014).


Previous mining in the Bullabulling area occurred historically in the early 1900s, modern open cut mining in the mid-1980s through to the mid-1990s, and the most recent phase of laterite mining up to 2010.

Gold mineralisation within the main Bullabulling Line occurs in a series of stacked north-south trending shear zones which dip shallowly to the west and extend over a strike length of 8km. The mineralised zones can be up to several hundred metres thick and extend down-dip up to 500m.

The mineralised sequence traces folded stratigraphy to the south, with the Gibraltar deposit lying on extensions to the south-east of the main Bullabulling Line.

The deposits are hosted by an Archaean amphibolite facies greenstone package with the dominant lithologies being mafic to ultramafic meta-volcanics and volcaniclastics, and felsic schists derived from sediments, felsic to intermediate volcanics and volcaniclastics. Mineralisation is associated with calc-silicate (amphibole-diopside-plagioclase-carbonate-biotite-quartz-pyrite-pyrrhotite) alteration assemblages.

Development options for the Bullabulling Project are currently being evaluated.

Figure 2: Bullabulling Project

Resource Development & Exploration

Drilling programs during the March 2015 quarter totalled 21,429.2m from 174 drill holes, and comprised 9,484m of Reverse Circulation (RC) from 104 drill holes, 3,591.9m of surface diamond core from 9 diamond only and 7 diamond tail drill holes, and 8,353.3m of underground core from 61 drill holes.

Resource development expenditure for the quarter was \$2.98M. Drilling programs are summarised in Table 1 below.

Project	Activity	Project Description		
Mount Pleasant Project : Homestead Underground – Henning Lode & Black Flag West Deeps	27 UG diamond drill holes for 3,688.2m	High grade vein evaluation - resource definition and extension		
Carbine-Bullant Project : Bullant Underground – Main Lode	34 UG diamond drill holes for 4,665.1m	Resource definition & extension		
Mount Pleasant Project : Racetrack West Prospect	60 RC drill holes for 4,999m	Resource definition & extension		
Mount Pleasant Project : Tuart Prospect	7 RC pre-collars for 720m, 7 diamond tails & 9 surface diamond drill holes for 2,817.4m of core	High grade vein evaluation		
Mount Pleasant Project : Green Gum Prospect	3 RC drill holes for 519m	High grade vein evaluation		
Mulgarrie Project : Mulgarrie Well Prospect	27 RC drill holes for 2,598m	Resource definition & extension		
Mt Jewell Project Tregurtha Prospect	7 RC drill holes for 648m	Resource definition & extension		
TOTAL	174 drill holes for 21,429.2m			

Table 1: Summary of Resource Development & Exploration Work Programs

March 2015 Quarterly Exploration Report

Figure 3: Racetrack West RC Drilling

Figure 4: Homestead – Core from Henning Vein

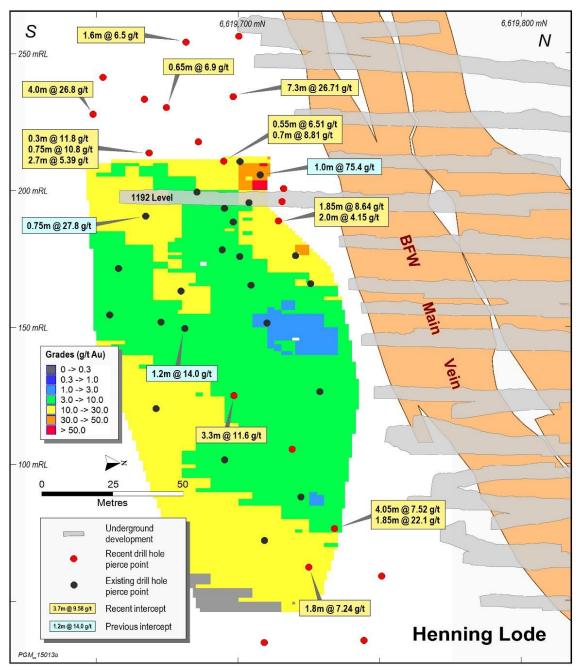
Homestead Underground Mine, Mount Pleasant Project

Underground mining at Homestead is active in two main mineralised vein areas, an east-west trending vein labelled the Black Flag West Vein and a shear hosted north-south trending vein labelled VN01. Preliminary development of the recently identified Henning Vein on the 1192 level (192mRL) is in progress and further development is being planned.

Combined underground resource development and grade control diamond core drilling during the reporting period comprised 3,688.2m from 27 drill holes. Drilling programs targeted both up and down-dip extensions of the Henning Vein. One drill hole was completed targeting depth extensions of the Black Flag West Vein. Significant down-hole results include:

Henning Vein						
HUD1083	1.85m @ 8.64g/t Au from 19.15m 2m @ 4.15g/t Au from 25					
HUD1087	0.7m @ 8.81g/t Au from 88.15m					
HUD1088	7.3m @ 26.7g/t Au from 58m					
HUD1090	0.75m @ 10.8g/t Au from 67.8m 2.7m @ 5.39g/t Au from 93m					
HUD1093	3m @ 7.52g/t Au from 65m					
HUD1105	1.8m @ 7.24g/t Au from 96m					
HUD1106	4.05m @ 7.52g/t Au from 75.6m 1.85m @ 22.1g/t Au from 84.5m					
HUD1108	4m @ 3.31g/t Au from 52m					
Black Flag West Deeps						
HUD1067	2.5m @ 5.24g/t Au from 259.5m					

A full list of all drilling results is included in Table 2 (Henning Vein) and Table 3 (Black Flag West Deeps). Figure 5 shows the relative positions of new drilling in long section for the Henning Vein. New results have extended mineralisation in all directions.


The Henning Vein is oriented north-south and dips moderately to the east. It sits in the immediate footwall of the north-easterly dipping Black Flag West Vein, and immediately west of the north-east trending, sub-vertically dipping Black Flag Vein. Mineralisation is characterised by massive to laminated vein quartz with a pyrite-pyrrhotite-galena-sphalerite sulphide assemblage, similar to other mineralised veins in the area.

Development along the vein on the 1192 level has delineated 60m metres of mineralised strike at a mineralised width of up to 3m. Drilling data indicates that average mineralised width is 1 - 2m, strike extent is up to 80m, and that the vein has a vertical dip extent of 200m. Mineralisation extends both up and down dip of the 1192 level.

In addition to a main vein, smaller footwall and hanging wall veins are interpreted from drill intercepts outside the main vein. Geometry of the main vein as indicated by development face exposures, takes the form of a shear vein with adjacent ladder vein stockwork.

Evaluation of recent drilling is continuing, and programs targeting up-dip extensions of the vein are in progress at the time of writing.

At the Black Flag West Vein, a single drill-hole (HUD1067) has been completed to continue evaluation of depth extensions. Drilling results reported last period indicate significant high grade results at depth, up to 100m below the current resource model.

The Mt Pleasant gold camp is a structurally complex area with known mineralised veins oriented in a number of different directions. Mapping and structural interpretation work by geological consultants has commenced in order to understand the structural framework, vein chronology, and litho-stratigraphic controls on vein development. The work will ultimately generate new high grade vein targets.

Bullant Underground Mine, Carbine-Bullant Project

The Bullant Underground Mine is situated along the Zuleika Shear Zone, a highly prospective regional north-northwest trending structure. The Shear Zone is a broad ductile to brittle structural corridor contained within a mafic unit in the mine area. The Shear Zone dips sub-vertically to steep east dipping.

Mineralisation occurs in up to four lodes (labelled the Main, East, West and Cross lodes) and is associated with biotite-silica-pyrite altered basalt and minor local quartz veining. Both the Main and East lodes remain open at depth and in various other positions around previously mined areas.

Drilling programs targeting depth extensions of the Main Lode were concluded during the period, and a program of drilling to infill and extend a relatively higher grade area of the resource in the upper Main Lode South area (from the 6065 level) has also been completed subsequently.

Combined underground resource development and grade control programs have recorded an advance of 4,665.1m from 34 diamond core drill holes. Significant down-hole results include:

Bullant Main Lode Depth Extensions					
BUGD1070	3.65m @ 6.32g/t Au from 149m				
BUGD1075	1m @ 8.15g/t Au from 69.8m 0.85m @ 62.2g/t Au from 137.3m				
BUGD1079	11.15m @ 4.76g/t Au from 116.85m				
BUGD1080	1m @ 9.13g/t Au from 123m 1.75m @ 6.1g/t Au from 127.5m				
BUGD1083	2m @ 6.88g/t Au from 52.5m				
BUGD1084	1.4m @ 5.71g/t Au from 61.6m				
BUGD1085	1.6m @ 4.93g/t Au from 22.8m				

Bullant Main Lode South (from 6065 level)				
BUGD1089	0.45m @ 33.3g/t Au from 55m			
BUGD1092	1m @ 11.1g/t Au from 58.8m 0.85m @ 11.1g/t Au from 68m			
BUGD1093	4.4m @ 13.5g/t Au from 64m			
BUGD1095	1m @ 6.3g/t Au from 73m			
BUGD1099	1m @ 5.71g/t Au from 92m			
BUGD1102	0.8m @ 15.4g/t Au from 112.8m			
BUGD1106	3.8m @ 9.8g/t Au from 129.2m			
BUGD1107	1.4m @ 8.7g/t Au from 112.6m			
BUGD1109	2.15m @ 8.92g/t Au from 114.45m			
BUGD1111	8.5m @ 12.4g/t Au from 138.3m			
BUGD1112	3.8m @ 5.5g/t Au from 130.8m			

Bullant Main Lode South (from 6065 level)					
BUGD1113	8.4m @ 4.6g/t Au from 126.5m				
BUGD1114	1m @ 5.2g/t Au from 140.7m				
BUGD1115	3.4m @ 18.8g/t Au from 141.1m 1.6m @ 6.0g/t Au from 155m 1.7m @ 5.9g/t Au from 201.8m				
BUGD1116	0.5m @ 12.5g/t Au from 148.8m				
BUGD1119	1.6m @ 13.4g/t Au from 226.5m				

All analytical results are appended in Table 4 (Main Lode Depth Extensions) and Table 5 (Main Lode South – 6065 level). A long section figure showing the location of recent results in presented below in Figure 6.

Main Lode Deeps drilling results continue to confirm mineralisation at depths up to 200m below deepest previous level development (5715 level), with mineralisation continuing to remain open at depth.

Drilling results from the upper Main Lode South area have confirmed a high grade pod of mineralisation immediately around the 6065 level area and have revealed good high grade mineralisation continuity in a far southern pod situated over 100m south of the southern extent of 6065 level development.

The greater Bullant Project area continues to offer numerous targets for resource and reserve addition.

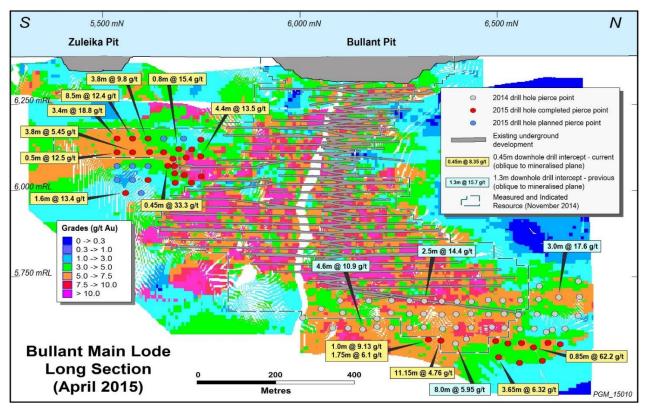


Figure 6: Bullant Main Lode – Schematic Long Section showing recent drilling results

Racetrack Prospect, Mount Pleasant Project

The Racetrack deposit is located in the Southern Mount Pleasant camp and is composed of a series of north-westerly to westerly dipping mineralised lodes over a 2km strike extent. The shallow oxide extensions of mineralisation have been previously exploited, remnant sulphide mineralisation is refractory in nature. Historic metallurgical testwork indicates a high flotation recovery of sulphide hosted gold mineralisation, and effective recovery of gold through one of the oxidation processes, namely pressure oxidation, biological oxidation or ultra-fine grind oxidative leach. If justifiable, development of a future refractory processing stream will provide Paddington with an opportunity to increase longer term production.

Drilling programs targeting resource definition and extension are continuing, with 4,999m of RC drilling completed from 60 RC drill holes during the period. Drilling has been restricted to the Racetrack West / Woolshed South Extended area, focussing on oxide-transitional mineralisation potential but has also included a few deeper holes into the primary Woolshed South Lodes. Results of drill holes completed last period for the Racetrack Main Lode area have also been received.

Significant RC and diamond core down-hole intercepts include:

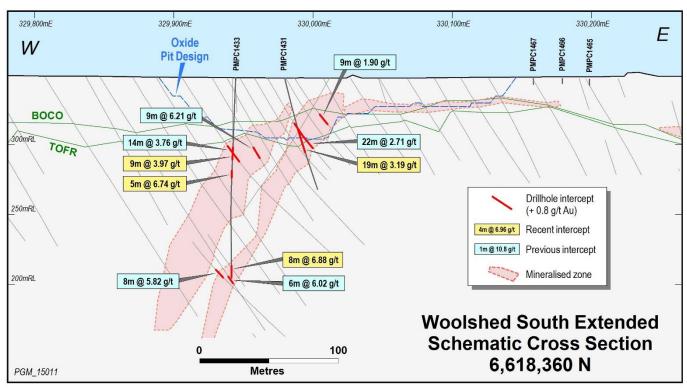
Racetrack Main Lode Area					
PMPD0096	2m @ 6.64g/t Au from 228m 6m @ 6.27g/t Au from 233m				
PMPD0097	5m @ 4.82g/t Au from 232m				
PMPD0104	3m @ 3.99g/t Au from 75m				
PMPD0105	6m @ 1.22g/t Au from 62m 16m @ 1.88g/t Au from 71m 3m @ 2.43g/t Au from 127m				
PMPD0111A	8.05m @ 2.76g/t Au from 177.95m				
PMPD0113	2m @ 15.0g/t Au from 119m				
PMPD0114	3.15m @ 15.7g/t Au from 71m				

Racetrack West / Woolshed South Extended					
PMPC1431	19m @ 3.19g/t Au from 37m				
PMPC1432	14m @ 1.86g/t Au from 47m 12m @ 2.40g/t Au from 71m				
PMPC1433	9m @ 3.97g/t Au from 50m 5m @ 6.74g/t Au from 67m 8m @ 6.88g/t Au from 136m				
PMPC1439	7m @ 1.38g/t Au from 55m				
PMPC1441	1m @ 10.1g/t Au from 46m				
PMPC1443	2m @ 19.2g/t Au from 53m				
PMPC1445	1m @ 16.2g/t Au from 41m 1m @ 6.57g/t Au from 59m 1m @ 8.46g/t Au from 67m				
PMPC1446	11m @ 3.02g/t Au from 39m				

Norton Gold Fields

Racetrack Wes	t / Woolshed South Extended
PMPC1451	1m @ 6.24g/t Au from 44m
PMPC1458	9m @ 9.93g/t Au from 32m 5m @ 1.39g/t Au from 44m 4m @ 2.59g/t Au from 59m
PMPC1459	2m @ 5.87g/t Au from 18m
PMPC1461	2m @ 5.09g/t Au from 18m
PMPC1469	3m @ 2.02g/t Au from 30m
PMPC1470	5m @ 3.46g/t Au from 44m
PMPC1471	2m @ 6.13g/t Au from 24m 3m @ 6.73g/t Au from 43m
PMPC1472	7m @ 1.42g/t Au from 32m
PMPC1473	3m @ 5.71g/t Au from 44m
PMPC1475	3m @ 3.68g/t Au from 25m
PMPC1479	3m @ 4.85g/t Au from 65m
PMPC1481	3m @ 11.2g/t Au from 86m 1m @ 17.8g/t Au from 111m
PMPC1484	4m @ 1.55g/t Au from 88m
PMPC1486	6m @ 2.33g/t Au from 58m
PMPC1488	4m @ 7.15g/t Au from 47m
PMPC1489	9m @ 5.39g/t Au from 27m 2m @ 2.83g/t Au from 56m 6m @ 4.97g/t Au from 61m
PMPC1491	3m @ 23.4g/t Au from 85m
PMPC1492	3m @ 4.70g/t Au from 78m
PMPC1493	5m @ 1.75g/t Au from 79m

A full list of drilling results for both Racetrack Main Lode Area and Racetrack West are appended in Tables 6 and 7 respectively. Drilling locations are illustrated in Figure 7. Schematic cross sections are depicted in Figures 8 – 9 overleaf.


The main Racetrack primary lodes are a series of stacked, north-east (060 degree) trending, north-west dipping mineralised structures generally 2 to 5m in true width and characterised by zones of shearing and brecciation within mafic volcanic host rocks with pervasive alteration mineral assemblages including ankerite-sericite-pyrite-arsenopyrite. The most significant primary lodes have been labelled the Main Lode, Splay Lode, Spur Lode and Dogtrack Lode. Refractory gold mineralisation is associated with arsenopyrite.

Mineralisation in the Racetrack West area is centred around the historical Woolshed South Extended pit, and includes both supergene and primary ore zones associated with: 1) the northerly trending Black Flag West Fault Zone, 2) a recently identified north-east (060 degree) trending sub-vertical lode, and 3) adjacent flat lying supergene mineralisation.

At the Woolshed South Extended pit, locally broad (~10m wide) zones of primary mineralisation occur immediately adjacent to the pit, with mineralisation plunging to the north.

Recent optimisation studies have highlighted potential for exploitation of non-refractory oxidetransitional mineralisation in the Racetrack West area, and recent results will be re-modelled to assess mining potential. Drilling of the Racetrack Main Lode areas will recommence in the forthcoming period.

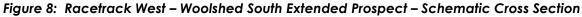
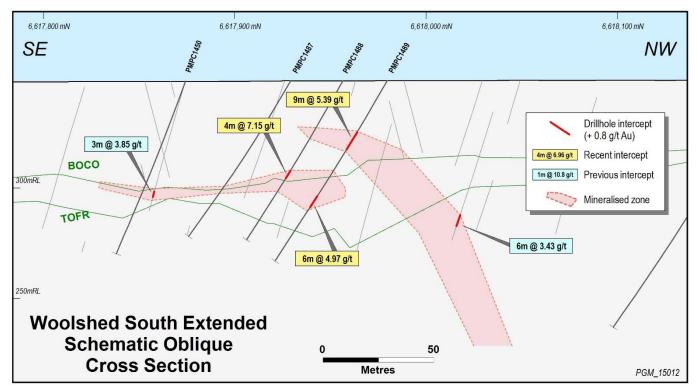



Figure 9: Racetrack West - Woolshed South Extended area - Schematic Cross Section

Tuart Prospect, Mount Pleasant Project

The Tuart deposit comprises a series of high grade quartz-carbonate-sulphide brecciated or laminated veins hosted within mafic volcanics. Supergene oxide mineralisation is developed in the regolith immediately above and/or adjacent to the primary veins. Mineralisation covers a broad area located to the north-west of the Homestead underground mine, and immediately west of the historically mined Quarters open pit and underground mine.

The greater Tuart resource area captures five main primary mineralised veins on varying orientations along with overlying and adjacent supergene oxide mineralisation. The primary veins are labelled the Tuart 060, 115 and 080 Veins, the Quarters 040 Vein, and the Golden Swan 090 Vein.

Recent drilling programs have targeted key areas of potential mineralisation upside, including the hanging wall of the Tuart 060 Vein, the Tuart 115 Vein and the Golden Tuart target area situated in the intervening area between the Tuart and Golden Kilometre 060 Lodes. A total of 4,311.9m of RC and surface diamond drilling has been completed from 16 drill holes.

Only RC pre-collar results are available. Significant results to date include:

Tuart Prospect	
PMPD0135	6m @ 3.46g/t Au from 28m 3m @ 1.54g/t Au from 41m

All results received to date are listed in Table 8. A drill hole location plan is appended in Figure 10, Figure 11 depicts a schematic long section view of the Tuart 060 Hanging Wall and a plan view showing distribution of the main mineralised lodes is shown below in Figure 12.

Reported RC pre-collar results are from supergene mineralisation adjacent to the pre-existing Tuart pit.

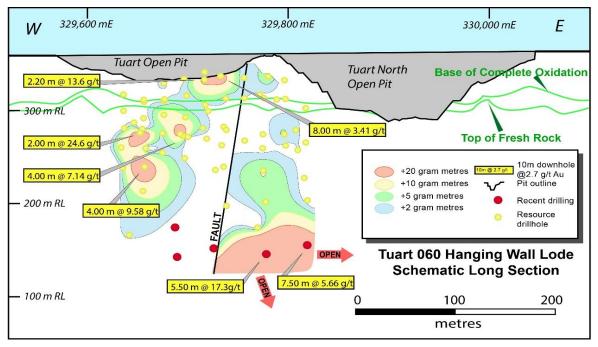
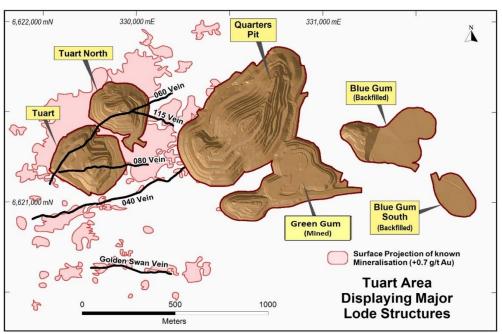
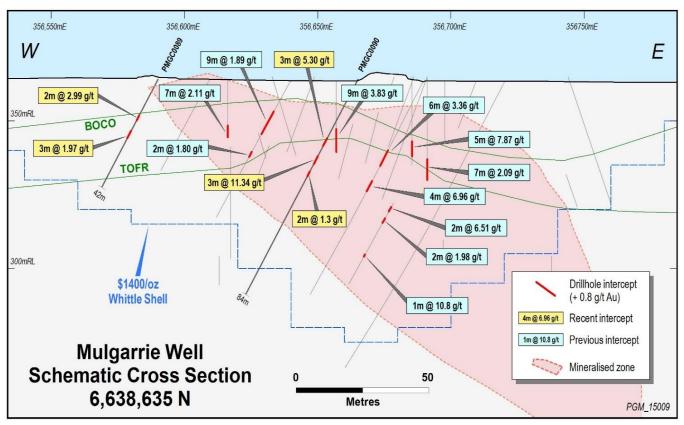



Figure 11: Tuart Prospect – 060 Hanging Wall Lode Schematic Long Section

Figure 12: Tuart Prospect – Plan View of Lode Structures

Mulgarrie Well Prospect, Mulgarrie Project

The Mulgarrie Well Prospect is located 30km east-northeast of the Paddington mill. The Prospect is of interest as a potential source of 'soft' oxide and transitional ore material for the mill, and can be mined in conjunction or in sequence with other deposits in the area including the larger Mulgarrie Deposit, the Mt Jewell Deposits (Tregurtha and Hughes), and the Federal Deposit.


A program of 27 RC drill holes for 2,598m has been completed to evaluate shallow mineralisation. Significant down-hole results from the program include:

Mulgarrie Well	Prospect
PMGC0080	1m @ 15.9g/t Au from 83m
PMGC0083	2m @ 7.11g/t Au from 46m
PMGC0084	5m @ 2.17g/t Au from 23m
PMGC0085	4m @ 5.83g/t Au from 43m
	5m @ 1.48g/t Au from 77m
PMGC0088	3m @ 1.80g/t Au from 54m
	5m @ 2.31g/t Au from 70m
PMGC0089	2m @ 2.99g/t Au from 14m
	3m @ 1.97g/t Au from 20m
PMGC0090	3m @ 5.30g/t Au from 23m
	3m @ 11.3g/t Au from 30m
PMGC0092	2m @ 4.43g/t Au from 35m
PMGC0093	10m @ 1.94g/t Au from 23m
	2m @ 2.52g/t Au from 64m
	2m @ 7.15g/t Au from 91m
PMGC0095	3m @ 1.73g/t Au from 69m
PMGC0097	6m @ 1.10g/t Au from 56m
PMGC0098	1m @ 11.4g/t Au from 34m
PMGC0101	3m @ 9.31g/t Au from 39m
	4m @ 1.53g/t Au from 70m

All drilling results from the program are appended in Table 9. A drilling location plan is appended in Figure 13. A schematic cross section is illustrated below in Figure 14.

Mineralisation is associated with carbonate-silica-biotite or fuchsite altered ultramafic rocks. Further drilling will be contemplated prior to the next resource update for the prospect.

Figure 14: Mulgarrie Well Prospect – Schematic Cross Section

Tregurtha & Hughes Prospects, Mt Jewell Project

The Mount Jewell Project is located 27km north-east of the Paddington Mill and 40km by road. The Project was acquired by Norton late in 2014, and comprises a large regional package of tenements (325 km²) cored by the Tregurtha and Hughes Prospects. The Mt Jewell package is contiguous with Paddington tenure and forms a natural extension to the greater Paddington Project.

Tregurtha and Hughes are located adjacent to each other and have a combined resource of 3.15Mt @ 1.32g/t Au (134,000oz), including a combined reserve of 1.18Mt @ 1.40g/t Au (53,000oz). The deposits are granite hosted and associated with biotite-sericite-silica-pyrite alteration and quartz-pyrite veining.

A program of resource definition infill and extensional RC drilling had just commenced at the end of the period with an initial advance of 648m in 7 RC drill holes. All analytical results are pending.

A drill hole location plan is appended in Figure 15, and a schematic cross section through the Tregurtha Prospect is illustrated in Figure 16.

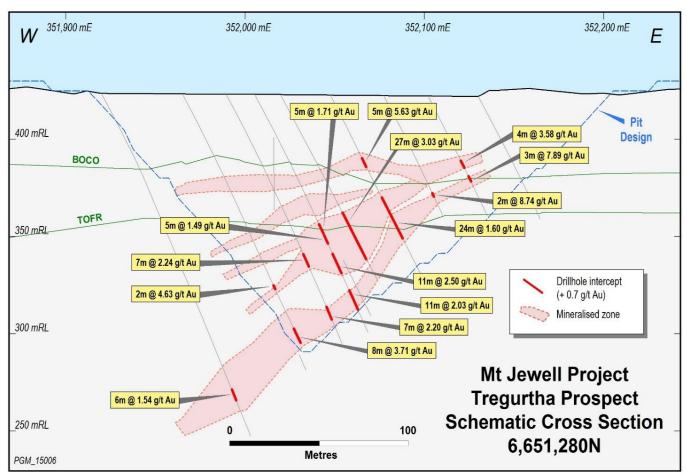


Figure 16: Tregurtha Prospect – Schematic Cross Section

Green Gum Prospect, Mt Pleasant Project

The Green Gum Prospect includes an area located to the south of the Blue Gum pit with historic high grade results. The area is considered prospective for development of high grade vein style mineralisation and a small program has been completed to evaluate this potential. Three (3) RC drill holes have been completed for 519m.

All drilling results from the program are appended in Table 10. A drilling location plan is appended in Figure 17. None of the results are considered to be of any significance.

330505.7

330505.7

330505.7

330505.7

Analysis by 30g Fire Assay

6619906.7

6619906.8

6619907.0

6619906.0

Maximum of 2m internal dilution, minimum interval of 0.3m

Results compiled by using a 3.5g/t cut-off grade, no top-cut grade

104

105

105

106

-32

-27

-22

-2

112

107

102

122

186.3

128.4

110.4

86

71

96

75.6

84.5

52

71.3

97.8

79.65

86.35

56

0.3

1.8

4.05

1.85

4

HUD1104

HUD1105

HUD1106

HUD1108

(
Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width	Grade g/t
TIOLE_ID		NOA_NORTH	I\L	ыр	AZI	Deptii		10 (11)	(m)	Au
HUD1079	330460.2	6619885.6	194	-40	128	135.3				NSR
HUD1081	330477.3	6619882.4	197	15	123	108	15.6	16.2	0.6	3.92
HUD1082	330477.3	6619882.4	197	-3	123	70.5				NSR
HUD1083	330477.3	6619882.4	197	-22	123	96.1	19.15	21	1.85	8.64
							25	27	2	4.15
HUD1085	330477.3	6619882.4	197	-52	123	119.7				NSR
HUD1087	330398.9	6619867.0	254	-28	103	108	4.25	4.6	0.35	7.11
							77	77.55	0.55	6.51
							88.15	88.85	0.7	8.81
HUD1088	330400.1	6619868.6	253	-17	103	99	58.1	65.4	7.3	26.7
HUD1089	33198.8	6619868.9	254	4	103	107.5				NSR
HUD1090	330400.1	6619868.1	253	-25	118	113.5	57.7	58.1	0.4	3.68
							61.2	61.5	0.3	11.8
							67.8	68.55	0.75	10.8
							93	95.7	2.7	5.39
HUD1091	330400.1	6619868.0	253	-17	118	83.6	43.7	44.3	0.6	8.28
							77.4	78.05	0.65	6.9
HUD1093	330400.2	6619867.7	253	-23	129	122.4	9.8	10.1	0.3	9.41
							38.45	38.75	0.3	4.59
							61.65	62.1	0.45	4.16
							65	68	3	7.52
HUD1094	330400.2	6619867.8	253	-16	129	95.5	43.15	43.45	0.3	5.04
HUD1096	330398.8	6619867.5	253	-8	140	86.6				NSR
HUD1100	330505.7	6619907.7	104	-36	89	180				NSR

Table 2: Henning Vein – Significant UG Diamond Drilling Results (long section view showing drill hole pierce points depicted in Figure 5)

Table 3: Black Flag West Deeps - Significant UG Diamond Drilling Results

Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width (m)	Grade g/t Au		
HUD1067	330261.1	6619954.8	884	-5	37	480.7	224	224.3	0.3	4.81		
							259.5	262	2.5	5.24		
Analysis by 3	Og Fire Assay	/										
Results com	Results compiled by using a 3.5g/t cut-off grade, no top-cut grade											
Maximum of 2m internal dilution, minimum interval of 0.3m												
Maximum of 2m internal dilution, minimum interval of 0.3m												

NSR

4.4

7.24

7.52

22.1

3.31

Table 4: Bullant - Main Lode Depth Extensions - Significant UG Diamond Drilling Results (long section view showing drill hole pierce points depicted in Figure 6)

Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width (m)	Grade g/t Au		
BUGD1070	313412.7	6621404.4	-356	-63	225	173.4	149	152.65	3.65	6.32		
BUGD1071	313411.4	6621405.4	-356	-69	276	185.9	160.4	161.1	0.7	5.09		
BUGD1072	313410.6	6621406.7	-356	-57	315	185.7				NSR		
BUGD1075	313410.7	6621406.0	-356	-51	300	152.7	69.8	70.8	1	8.15		
							137.3	138.15	0.85	62.2		
BUGD1077	313410.0	6621407.3	-355	-35	325	191.8	45	45.5	0.5	8.1		
							156	156.7	0.7	3.71		
BUGD1079	313533.5	6621279.9	-330	-65	248	179.8	116.85	128	11.15	4.76		
BUGD1080	313534.4	6621279.2	-330	-56	221	197.8	123	124	1	9.13		
							127.5	129.25	1.75	6.1		
BUGD1081	313487.6	6621358.7	-341	38	89	62.8		_		NSR		
BUGD1082	313487.5	6621359.3	-341	5	89	107.4	30	30.3	0.3	9.87		
BUGD1083	313487.4	6621359.2	-342	-28	89	122.7	52.5	54.5	2	6.88		
BUGD1084	313486.6	6621359.9	-342	2	56	155.7	61.6	63	1.4	5.71		
BUGD1085	313488.3	6621358.3	-342	2	119	116.2	22.8	24.4	1.6	4.93		
Analysis by 3	Analysis by 30g Fire Assay											
Results compiled by using a 3.5g/t cut-off grade, no top-cut grade												
Maximum o	f 2m internal	dilution, min	imum i	ntervo	al of 0.3	3m						

Table 5: Bullant - Main Lode South 6065 Level - Significant UG Diamond Drilling Results (long section view showing drill hole pierce points depicted in Figure 6)

	NACA Fact	MCA North	RL	Din	A:	Donth	Erom (m)	To (m)	DH Width	Grade g/t
Hole_ID	MGA_East	MGA_North	KL	Dip	Azi	Depth	From (m)	To (m)	(m)	Au
BUGD1086	313998.9	6620797.0	71	-28	225	86.6	43.9	44.3	0.4	3.74
BUGD1087	313999.0	6620797.2	71	0	225	71.8				NSR
BUGD1088	313998.9	6620796.8	73	25	225	80.9				NSR
BUGD1089	313999.6	6620797.7	72	0	209	89.1	55	55.45	0.45	33.3
BUGD1090	313995.6	6620800.2	70	-35	264	73.6				NSR
BUGD1091	313996.0	6620800.7	73	31	264	71.6	45.05	45.7	0.65	7.08
BUGD1092	313995.8	6620802.1	71	-26	305	101.4	58.8	59.8	1	11.1
							68	68.85	0.85	11.1
BUGD1093	313995.8	6620802.1	73	23	305	101.3	64	68.4	4.4	13.5
							89.5	90	0.5	3.98
BUGD1094	314000.0	6620807.3	71	-15	47	131.5		_		NSR
BUGD1095	314000.0	6620807.3	71	14	47	100.9	73	74	1	6.30
BUGD1096	314018.9	6620786.0	72	-17	105	89.4				NSR
BUGD1097	314018.9	6620786.0	72	15	105	101.2				NSR
BUGD1098	314015.7	6620835.6	73	43	241	146.6		_		NSR
BUGD1099	314015.7	6620835.6	73	32	227	116.2	92	93	1	5.71
BUGD1100	314015.7	6620835.6	73	-34	227	116.6				NSR
BUGD1102	314025.0	6620827.9	74	32	252	113.6	112.8	113.6	0.8	15.4
BUGD1103	314025.0	6620827.9	74	-34	247	120				NSR
BUGD1105	314029.7	6620826.9	75	23	231	122.2				NSR
BUGD1106	314029.7	6620826.9	75	34	213	182	129.2	133	3.8	9.80
BUGD1107	314029.7	6620826.9	75	18	213	151.3	112.6	114	1.4	8.70
BUGD1109	314029.7	6620826.9	73	-20	213	167.5	114.45	116.6	2.15	8.92
							154	155	1	4.83
BUGD1111	314029.7	6620826.9	75	28	202	234	138.3	146.8	8.5	12.4
BUGD1112	314028.1	6620826.9	74	14	202	205.2	130.8	134.6	3.8	5.5
BUGD1113	314028.1	6620827.0	73	-1	202	182.4	126.5	134.9	8.4	4.6
BUGD1114	314028.1	6620827.2	72	-16	202	188.4	140.7	141.7	1	5.2
BUGD1115	314028.7	6620826.6	74	23	195	263	141.1	144.5	3.4	18.8
							155	156.6	1.6	6.0
							201.8	203.5	1.7	5.9
BUGD1116	314028.7	6620826.5	73	12	222	251.4	148.8	149.3	0.5	12.5
BUGD1119	314029.7	6620826.9	73	-27	198	234	226.5	228.1	1.6	13.4
Results com		g a 3.5 g/t cu dilution, min	-			-	ide			

Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width (m)	Grade g/t Au
PMPD0096	331005.4	6618431.5	349	-55	146	279.2	122.5	123.5	1	0.91
							134	138	4	0.86
							156.6	157.6	1	2.12
							161	162	1	1.42
							167	168.8	1.8	0.89
							189	192	3	1.26
							194.1	194.55	0.45	2.41
							228	230	2	6.64
							233	239	6	6.27
PMPD0097	330986.1	6618421.1	349	-60	146	309.4	107.7	108.1	0.4	1.42
							140.7	144	3.3	1.18
							159	163	4	0.88
							232	237	5	4.82
PMPD0099	331400.4	6618626.4	368	-55	146	206.8	92.95	94.5	1.55	2.37
							103.15	103.5	0.35	2.87
							109.25	110.1	0.85	2.89
PMPD0104	330661.3	6618180.2	347	-55	146	331	47	48	1	0.85
							53	54	1	1.85
							71.5	72.4	0.9	2.38
							75	78	3	3.99
							82.9	86	3.1	0.76
							125	128.2	3.2	1.32
PMPD0105	330678.1	6618190.2	347	-55	146	350.8	62	68	6	1.22
							71	87	16	1.88
							123.5	124	0.5	1.46
							127	130	3	2.43
							182.3	183	0.7	4.58
							196	197	1	1.16
PMPD0111A	330783.0	6618285.9	348	-55	146	353.4	34.7	35.1	0.4	0.88
							56	58.5	2.5	0.61
							64.5	65.4	0.9	0.9
							85	86.1	1.1	1.59
							88.4	90	1.6	1.48
							107	107.5	0.5	1.04
							177.95	186	8.05	2.76
PMPD0113	331476.8	6618620.1	356	-60	146	225.3	74	74.5	0.5	1.23
							113	114	1	2.78
							119	121	2	15
							123.2	124.1	0.9	4.53
							173	174	1	0.91
PMPD0114	331533.7	6618573.2	349	-90	146	189.3	71	74.15	3.15	15.7
							128	130.7	2.7	1.64
							157.5	158.5	1	2.04
Analysis by 3 Results com		ay ing a 0.8g/t c	:ut-off	arade	e, no to	p-cut arc	Ide			

Maximum of 2m internal dilution, minimum interval of 0.3m

Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width (m)	Grade g/t Au
PMPC1431	329979.4	6618364.0	348	-72	124	84	37	56	19	3.19
PMPC1432	329944.0	6618363.0	348	-85	198	126	47	61	14	1.86
							71	83	12	2.4
							113	114	1	1.13
PMPC1433	329944.3	6618365.4	348	-57	176	181	50	59	9	3.97
							67	72	5	6.74
							78	79	1	2.57
							90	91	1	1.46
							94	97	3	1.35
							108	109	1	1.47
							136	144	8	6.88
							180	181	1	3.3
PMPC1437	330060.9	6617898.5	347	-70	150	60	41	43	2	2.11
PMPC1438	330074.2	6617835.4	347	-70	150	66	45	46	1	1.03
							51	54	3	1.15
PMPC1439	330062.0	6617816.6	347	-70	150	72	11	12	1	0.85
							55	62	7	1.38
PMPC1440	330042.1	6617851.7	348	-70	150	72				NSR
PMPC1441	330022.0	6617886.2	348	-70	150	72	46	47	1	10.1
							50	52	2	1.2
PMPC1442	329992.0	6617938.2	348	-70	150	84	59	60	1	2.52
PMPC1443	329986.1	6617868.5	348	-70	150	84	36	37	1	1.99
							53	55	2	19.2
PMPC1444	329956.3	6617920.6	348	-70	150	84	67	68	1	3.14
PMPC1445	329903.1	6618012.2	348	-70	150	90	41	42	1	16.2
							59	60	1	6.57
							67	68	1	8.46
PMPC1446	329874.7	6618021.4	348	-70	150	84	18	19	1	1.89
							39	50	11	3.02
							55	57	2	1.46
PMPC1447	329875.6	6617978.7	348	-70	150	84	37	38	1	2.94
							45	46	1	0.96
							53	54	1	0.95
							59	60	1	0.82
PMPC1448	329865.8	6617996.1	348	-70	150	84	47	48	1	2.1
PMPC1449		6617876.6	348	-70	150	84	53	55	2	1.34
PMPC1450	329907.9	6617883.8	348	-70	150	84	52	53	1	3.59
PMPC1451	329853.3	6617898.7	348	-70	150	72	29	31	2	1.56
							36	37	1	0.85
							44	45	1	6.24
							50	51	1	1.86
Analysis by	30g Fire Asso	y							•	
Results com	npiled by usi	ing a 0.8g/t c	ut-off	arade	e no to	p-cut ara	Ide			

Results compiled by using a 0.8g/t cut-off grade, no top-cut grade

Maximum of 2m internal dilution, minimum interval of 1.0 m

NORTON GOLD FIELDS LIMITED

	MCA Eact	MGA North	RL	Din	۸ ;	Donth	From (m)	$T_{0}(m)$	DH Width	Grade g/t
Hole_ID	MGA_East	NGA_NOTTI	ΠL	Dip	Azi	Depth	FIOIII (III)	To (m)	(m)	Au
PMPC1455	329777.7	6617949.6	349	-70	150	72				NSR
PMPC1456	329781.1	6617903.1	349	-70	150	72	54	56	2	2.16
PMPC1457	329761.2	6617938.5	349	-70	150	72	43	44	1	1.8
PMPC1458	330139.5	6618381.9	348	-60	90	72	23	32	9	9.3
							39	44	5	1.39
							49	55	6	3.11
							59	63	4	2.59
PMPC1459	330134.7	6618416.7	348	-60	90	48	18	20	2	5.87
							31	32	1	0.88
PMPC1460	330095.4	6618416.9	348	-60	90	48	14	15	1	0.92
PMPC1461	330075.3	6618416.7	348	-60	90	48	18	20	2	5.09
							34	35	1	1.19
PMPC1462	330138.9	6618436.9	348	-60	90	48	19	23	4	0.88
							43	44	1	0.81
PMPC1463	330098.5	6618436.9	348	-60	90	48	18	19	1	1.1
PMPC1464	330057.7	6618436.9	348	-60	90	84	19	20	1	2.1
PMPC1465	330198.5	6618349.8	347	-60	180	54	22	23	1	0.89
PMPC1466	330179.1	6618349.2	348	-60	180	54				NSR
PMPC1467	330158.2	6618349.6	348	-60	180	54	21	22	1	1.93
							48	49	1	1.65
PMPC1468	330020.8	6618538.3	348	-60	90	60	26	28	2	2
							35	39	4	0.69
PMPC1469	330000.3	6618538.5	348	-60	90	60	30	33	3	2.02
							43	44	1	0.82
PMPC1470	329961.1	6618538.7	348	-60	90	78	44	49	5	3.46
PMPC1471	329998.1	6618557.6	348	-60	90	84	24	26	2	6.13
							43	46	3	6.73
							52	53	1	1.09
PMPC1472	330014.4	6618576.5	348	-60	90	60	32	39	7	1.42
							51	52	1	1.35
PMPC1473	329974.1	6618576.4	348	-60	90	60	26	27	1	0.91
							44	47	3	5.71
PMPC1474	330001.0	6618613.2	348	-60	90	72	40	41	1	1.3
PMPC1475	330008.3	6618657.3	348	-60	90	72	25	28	3	3.68
PMPC1476	329989.1	6618657.5	349	-60	90	96	74	75	1	0.89
PMPC1477	330106.8	6618696.8	348	-60	90	72	32	33	1	1.9
PMPC1478	330009.2	6618697.2	348	-60	90	72	19	21	2	1.83
							30	33	3	1
PMPC1479	329988.2	6618697.4	349	-60	90	102	65	68	3	4.85
PMPC1480	329936.9	6618697.2	349	-60	90	78	19	20	1	1.4
							27	29	2	1.56

Table 7: Racetrack West – Significant RC Drilling Results (Cont.)

Maximum of 2m internal dilution, minimum interval of 1.0 m

		NCA North	Ы	Dim	A -:	Donth		To (m)	DH Width	Grade g/t
Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	(m)	Au
PMPC1481	329833.3	6618052.2	349	-68	150	150	80	81	1	3.57
							86	89	3	11.2
							111	112	1	17.8
							140	141	1	0.92
PMPC1482	330007.8	6618376.7	348	-60	90	84	14	15	1	3.26
PMPC1483	329968.0	6618437.7	348	-60	90	84	21	22	1	1.52
							26	27	1	1.47
							61	62	1	1.7
PMPC1484	329936.3	6618436.6	348	-55	90	114	88	92	4	1.55
PMPC1485	329929.1	6618416.5	348	-60	90	84	21	22	1	1.16
							36	37	1	1.42
							42	43	1	1.02
PMPC1486	329904.2	6618304.2	348	-60	90	132	58	64	6	2.33
							69	71	2	2.13
							78	79	1	0.94
							114	117	3	1.47
PMPC1487	329883.5	6617924.5	348	-60	150	84	56	58	2	1.77
PMPC1488	329872.2	6617945.3	348	-60	150	84	24	27	3	0.69
							47	51	4	7.15
PMPC1489	329862.4	6617962.8	349	-60	150	96	27	36	9	5.39
							50	51	1	1.1
							56	58	2	2.83
							61	67	6	4.97
							79	80	1	1.05
PMPC1490	329929.1	6617966.3	348	-60	150	102				NSR
PMPC1491	329914.4	6617992.3	348	-60	150	150	52	53	1	1.31
							85	88	3	23.4
PMPC1492	329963.2	6617988.0	348	-60	150	144	78	81	3	4.7
							105	108	3	0.72
PMPC1493	329946.7	6618017.1	348	-60	150	120	55	56	1	4.44
							79	84	5	1.75
							96	97	1	0.93
Results com		ay ng a 0.8g/t c al dilution, mi		-		-	ıde			

Table 7: Racetrack West – Significant RC Drilling Results (Cont.)

Figure 7: Racetrack Drill Hole Location Plan

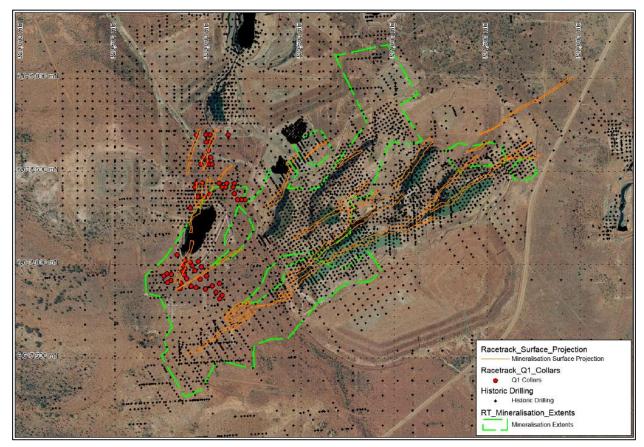


Table 8: Tuart Prospect – Significant RC Pre-Collar Drilling Results

Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width	Grade g/t		
									(m)	Au		
PMPD0131	330125.0	6620945.4	355	-60	360	284.7	41	42	1	1.38		
PMPD0133	330162.8	6621311.6	358	-90	360	102	68	73	5	0.86		
							77	78	1	3.78		
PMPD0134	329960.3	6621276.8	356	-60	360	300.2	25	26	1	0.8		
PMPD0135	329910.8	6621193.1	356	-60	360	303.3	2	3	1	1.44		
							28	34	6	3.46		
							41	44	3	1.54		
							54	55	1	0.86		
PMPD0136	329907.3	6621271.9	355	-60	360	102	3	4	1	1.35		
							17	18	1	0.99		
PMPD0137	329799.8	6621379.9	359	-60	180	102	24	25	1	1.27		
							33	34	1	0.8		
Analysis by 3	Analysis by 30g Fire Assay											
Results com	Results compiled by using a 0.8g/t cut-off grade, no top-cut grade											

Maximum of 2m internal dilution, minimum interval of 1.0 m

Figure 10: Tuart Drill Hole Location Plan

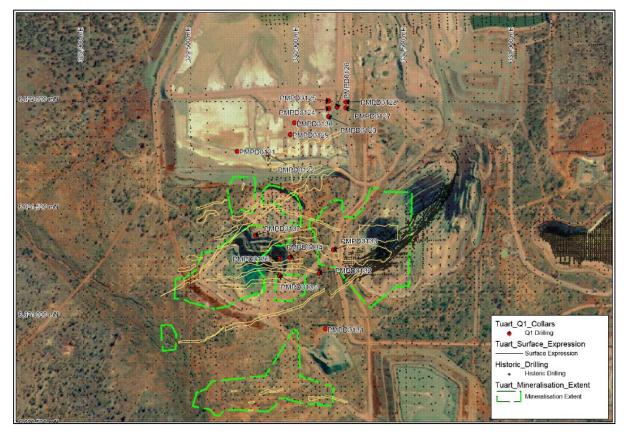
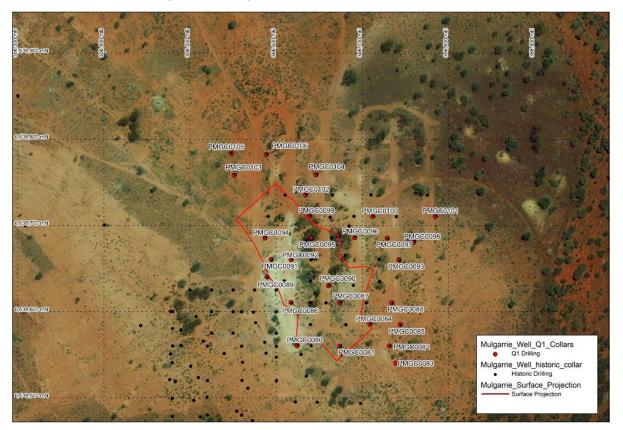



Figure 13: Mulgarrie Well Drill Hole Location Plan

Hole_ID	MGA_East	MGA_North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width (m)	Grade g/t Au
PMGC0080	356624.3	6638560.3	364	-60	270	90	25	26	1	2.51
							67	68	1	1.06
							83	84	1	15.9
PMGC0081	356673.7	6638560.0	363	-60	270	60	2	3	1	1.47
							8	9	1	1.11
PMGC0082	356731.4	6638560.1	363	-60	270	84	33	34	1	0.80
							51	54	3	1.44
PMGC0083	356738.9	6638540.2	363	-60	270	84	38	39	1	0.81
							46	48	2	7.11
							51	52	1	1.16
PMGC0084	356709.0	6638585.1	363	-60	270	90	23	28	5	2.17
							33	34	1	1.35
							61	62	1	2.06
							70	71	1	1.09
PMGC0085	356744.0	6638585.0	363	-60	270	96	43	47	4	5.83
							54	55	1	0.83
							58	62	4	0.89
							66	67	1	1.85
							71	72	1	1.02
							77	82	5	1.48
							88	91	3	1.37
PMGC0086	356617.2	6638610.6	364	-60	270	60	6	7	1	1.57
							21	23	2	2.25
PMGC0087	356673.9	6638610.1	363	-60	270	90	22	23	1	2.43
							30	31	1	0.85
PMGC0088	356734.0	6638610.1	363	-60	270	102	29	33	4	1.15
							54	57	3	1.80
							61	62	1	2.18
							70	75	5	2.31
PMGC0089	356589.3	6638640.3	364	-60	270	42	14	16	2	2.99
							20	23	3	1.97
PMGC0090	356660.8	6638630.1	364	-60	270	84	23	26	3	5.30
							30	33	3	11.3
							36	38	2	1.30
PMGC0091	356594.2	6638660.5	364	-60	270	60	21	23	2	1.54
PMGC0092	356617.5	6638660.2	364	-60	270	60	18	19	1	0.84
							28	29	1	0.81
							35	37	2	4.43
		ults compilec Maximum of 2	l by using	a 0.8	g/t cut	-	•	•		

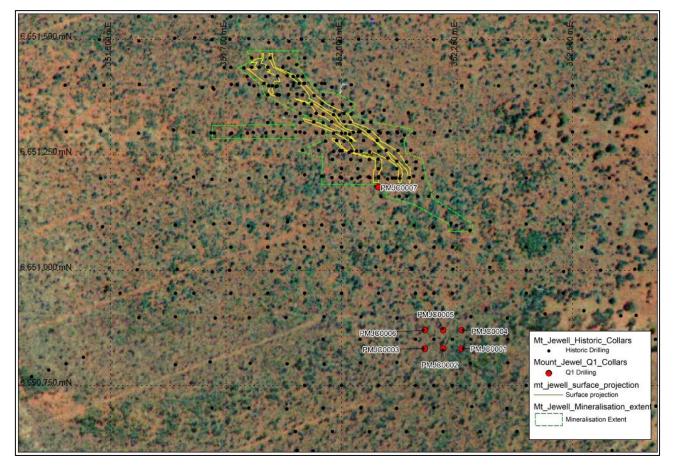
Table 9: Mulgarrie Well – Significant RC Drilling Results

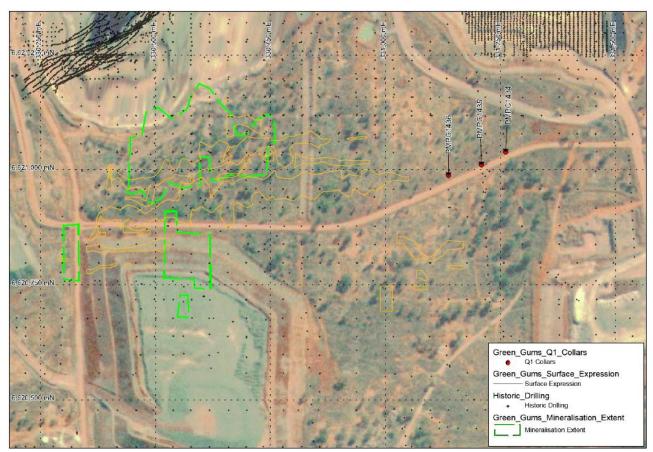
NORTON GOLD FIELDS LIMITED

	Table 9: Mulgarrie Well – Significant RC Drilling Results (Cont.)												
Hole_ID	MGA Fast	MGA North	RL	Dip	Azi	Depth	From (m)	To (m)	DH Width	Grade g/t			
note_ib	NICA_Last	MGA_NOTTI	ILL.	ыр	721	Deptil		10 (11)	(m)	Au			
PMGC0093	356742.4	6638660.1	364	-60	270	132	0	1	1	1.06			
							23	33	10	1.94			
							64	66	2	2.52			
							91	93	2	7.15			
PMGC0094	356587.0	6638685.4	364	-60	270	60	7	8	1	0.90			
							13	14	1	1.44			
PMGC0095	356641.2	6638685.0	364	-60	270	120	69	72	3	1.73			
PMGC0096	356690.9	6638685.5	364	-60	270	180	51	52	1	1.17			
							102	103	1	2.47			
							109	110	1	0.80			
PMGC0097	356729.0	6638685.1	364	-60	270	138	56	62	6	1.10			
							86	87	1	0.90			
							129	130	1	1.13			
PMGC0098	356759.7	6638680.3	364	-60	270	150	34	35	1	11.4			
							109	110	1	3.76			
PMGC0099	356638.9	6638710.5	364	-60	270	132	3	4	1	0.82			
							32	34	2	1.94			
							52	53	1	1.26			
							58	59	1	0.89			
PMGC0100	356712.3	6638710.1	364	-60	270	126	104	106	2	1.61			
PMGC0101	356784.7	6638710.2	364	-60	270	90	39	42	3	9.31			
							70	74	4	1.53			
PMGC0102	356634.2	6638735.1	364	-60	270	84	44	45	1	0.82			
PMGC0103	356551.4	6638757.9	364	-60	270	90				NSR			
PMGC0104	356646.3	6638758.6	364	-60	270	114	89	90	1	1.28			
PMGC0105	356548.5	6638783.1	364	-60	270	84				NSR			
PMGC0106	356588.5	6638781.9	364	-60	270	96	41	42	1	1.12			
		ults compilec Maximum of 2	l by using	a 0.8	g/t cut	-	-	-					

Table 9: Mulgarrie Well – Significant RC Drilling Results (Cont.)

Figure 15: Mt Jewell Drill Hole Location Plan




Table 10: Green Gum Prospect – Significant RC Drilling Results

		MCA North	ы	Din	۸ :	Donth	From (m)	To (m)	DH Width	Grade g/t
Hole_ID		MGA_North	RL	Dip	Azi	Depth	From (m)		(m)	Au
PMPC1434	331261.3	6621039.1	357	-60	180	163	27	28	1	1.93
							87	91	4	0.98
							138	139	1	2.31
PMPC1435	331208.8	6621011.2	357	-60	180	205	105	106	1	1.84
							154	155	1	1.00
PMPC1436	331136.9	6620988.0	357	-60	180	151	8	10	2	2.68
							34	35	1	1.65
Analysis by 3	Analysis by 30g Fire Assay									
Results com	Results compiled by using a 0.8 g/t cut-off grade, no top-cut grade									
Maximum c	of 2m interno	al dilution, m	inimur	m inte	rval of	1.0 m				

March 2015 Quarterly Exploration Report

Norton Gold Fields Limited

Figure 17: Green Gum Drill Hole Location Plan

	WESTERN AUSTRALIA							
Tenement	Holders	Locality	Expiry	Area (HA)	Equity			
E24/146	Kalnorth Gold Mines Limited	Ringlock Dam	14-May-17	9823.24	100/100			
E24/149	Kalnorth Gold Mines Limited	Gimlet Dam	24-Jul-17	9411.27	100/100			
E24/157	Kalnorth Gold Mines Limited	Kanowna	29-Dec-18	1894.7	100/100			
E24/171	Kalnorth Gold Mines Limited	Mulgarrie	04-Sep-16	5938.74	100/100			
E27/300	Kalnorth Gold Mines Limited	Mt Jewell	23-Mar-15	195.39	100/100			
E27/333	Kalnorth Gold Mines Limited	Silver Swan North	12-Nov-16	1895.84	100/100			
E27/404	Kalnorth Gold Mines Limited	Mt Jewell	24-Sep-14	1681.28	100/100			
E27/422	Kalnorth Gold Mines Limited	Mulgarrie	04-Oct-15	1243.29	100/100			
G24/11	Paddington Gold Pty Limited	Mt Pleasant	01-Sep-30	9.295	100/100			
G24/12	Paddington Gold Pty Limited	Mt Pleasant	01-Sep-30	3.7815	100/100			
G24/19	Paddington Gold Pty Limited	Grants Patch	16-Oct-31	4.803	100/100			
G24/20	Paddington Gold Pty Limited	Grants Patch	16-Oct-31	6.115	100/100			
G24/3	Paddington Gold Pty Limited	Grants Patch	16-Mar-28	4.8005	100/100			
G24/38	Paddington Gold Pty Limited	Mt Ellis	22-Aug-15	8.814	100/100			
G24/8	Paddington Gold Pty Limited	Ora Banda	24-Nov-30	4.503	100/100			
G24/9	Paddington Gold Pty Limited	Ora Banda	24-Nov-30	6.1985	100/100			

	WESTERN AUSTRALIA								
Tenement	Holders	Locality	Expiry	Area (HA)	Equity				
L16/48	Paddington Gold Pty Limited	Breakaway Dam	06-Apr-17	15	100/100				
L16/74	Paddington Gold Pty Limited	Rocky Dam (n/east of)	06-Mar-24	30	100/100				
L16/87	Kalgoorlie Mining Company (Bullant) Pty Ltd	Broads Dam - Rocky Dam	19-Aug-33	14	100/100				
L16/89	Kalgoorlie Mining Company (Bullant) Pty Ltd	Carbine - Hawkins Find 2	02-Sep-33	5	100/100				
L16/90	Kalgoorlie Mining Company (Bullant) Pty Ltd	Hawkins Find	02-Sep-33	18	100/100				
L24/109	Paddington Gold Pty Limited	Grants Patch	19-Sep-18	0.04	100/100				
L24/110	Paddington Gold Pty Limited	Grants Patch	19-Sep-18	1.4	100/100				
L24/111	Paddington Gold Pty Limited	Grants Patch	24-Oct-18	0.04	100/100				
L24/112	Paddington Gold Pty Limited	Grants Patch	21-Dec-18	0.35	100/100				
L24/119	Paddington Gold Pty Limited	Broad Arrow	09-Apr-19	17	100/100				
L24/125	Paddington Gold Pty Limited	Black Flag	13-Jun-19	5.5	100/100				
L24/135	Paddington Gold Pty Limited	Lady Bountiful	27-Mar-16	7.8	100/100				
L24/136	Paddington Gold Pty Limited	Lady Bountiful	27-Mar-16	8.25	100/100				
L24/144	Paddington Gold Pty Limited	Paddington West	30-Apr-16	8.34	100/100				
L24/145	Paddington Gold Pty Limited	Paddington West	30-Apr-16	15.2	100/100				
L24/155	Paddington Gold Pty Limited	Grants Patch	30-Sep-18	1.148	100/100				
L24/163	Paddington Gold Pty Limited	Rose Dam	14-Oct-16	45.123	100/100				
L24/164	Paddington Gold Pty Limited	Lake Arrow	04-Dec-16	17.82	100/100				
L24/171	Paddington Gold Pty Limited	Grants Patch North	19-Aug-33	3.28	100/100				
L24/173	Paddington Gold Pty Limited	Wendy Gully	19-Jan-18	1	100/100				
L24/177	Paddington Gold Pty Limited	Broad Arrow (s/west of)	16-Aug-33	22	100/100				
L24/178	Paddington Gold Pty Limited	Broad Arrow (Cawse to Woodcutters)	09-Sep-19	51	100/100				
L24/179	Paddington Gold Pty Limited	Broad Arrow	16-Aug-33	24.7	100/100				
L24/180	Paddington Gold Pty Limited	Broad Arrow	16-Aug-33	10.6	100/100				
L24/19	Paddington Gold Pty Limited	Black Flag	19-Oct-25	43.09	96/96				
L24/196	Paddington Gold Pty Limited	Paddington Mill (4km south of)	03-May-30	2.4172	100/100				
L24/198	Paddington Gold Pty Limited	Paddington	10-Jan-32	44.16	100/100				
L24/199	Paddington Gold Pty Limited	Paddington	16-Aug-33	2.689	100/100				
L24/20	Paddington Gold Pty Limited	Kalgoorlie (n/west of)	19-Oct-25	1	96/96				
L24/200	Paddington Gold Pty Limited	Bent Tree, South East of Ora Banda	12-Sep-33	2.6084	100/100				
L24/201	Paddington Gold Pty Limited	Lady Bountiful	12-Sep-33	6.2027	100/100				
L24/207	Paddington Gold Pty Limited	West of Paddington	25-Jun-34	14.4037	100/100				
L24/208	Paddington Gold Pty Limited	Bent Tree	25-Jun-34	10.2685	100/100				
L24/214	Norton Gold Fields Limited	Lady Bountiful	17-Dec-35	18.05	100/100				
L24/29	Paddington Gold Pty Limited	Paddington	19-Oct-25	9.6	96/96				
L24/34	Paddington Gold Pty Limited	Broad Arrow (3km south of)	19-Oct-25	14	96/96				
L24/54	Paddington Gold Pty Limited	Black Flag	26-Oct-17	11.54	200/200				
L24/63	Paddington Gold Pty Limited	Broad Arrow	22-Sep-16	27.4	100/100				
L24/64	Paddington Gold Pty Limited	Grants Patch	08-Jun-17	0.01	100/100				
L24/65	Paddington Gold Pty Limited	Grants Patch	08-Jun-17	4	100/100				

Norton Gold Fields

	WESTERN AUSTRALIA							
Tenement	Holders	Locality	Expiry	Area (HA)	Equity			
L24/69	Paddington Gold Pty Limited	Grants Patch	22-Jun-17	0.01	100/100			
L24/88	Paddington Gold Pty Limited	Balgarri	04-May-18	3.36	100/100			
L26/197	Bellamel Mining Pty Ltd	Gibson - Honman Rock	02-Dec-18	1.951	96/96			
L26/201	Norton Gold Fields Limited	Binduli	06-Jun-16	23	100/100			
L26/202	Bellamel Mining Pty Ltd	Binduli	09-Apr-17	0.859	100/100			
L26/203	Bellamel Mining Pty Ltd	Binduli	22-Jan-18	5.3476	100/100			
L26/204	Bellamel Mining Pty Ltd	Binduli	12-Aug-17	20.0634	100/100			
L26/247	Paddington Gold Pty Limited	Paddington Mill (20km south of)	03-May-30	8.2888	100/100			
L26/253	Paddington Gold Pty Limited	North Binduli	16-Aug-33	20.3	100/100			
L26/269	Norton Gold Fields Limited	Binduli (10km north of)	04-Dec-35	42	100/100			
M15/1745	Bellamel Mining Pty Ltd	White Lake	10-Dec-33	5	100/100			
M16/106	Paddington Gold Pty Limited	Carbine	14-Feb-31	542.2	100/100			
M16/150	Paddington Gold Pty Limited	Matt Dam	02-Aug-32	878.55	100/100			
M16/156	Paddington Gold Pty Limited	Hawkins Find	20-Sep-32	97.72	100/100			
M16/222	Norton Gold Fields Limited	Red Dam	11-Aug-29	330	100/100			
M16/23	Paddington Gold Pty Limited	Hawkins Area	23-Jul-28	196.05	100/100			
M16/243	Paddington Gold Pty Limited	Leo Dam	10-Sep-30	200	100/100			
M16/244	Paddington Gold Pty Limited	Zuleika	06-Dec-19	178.95	100/100			
M16/374	Paddington Gold Pty Limited	Ora Banda (13km s/west of)	13-May-31	182	100/100			
M16/396	Paddington Gold Pty Limited	White Elephant Dam	19-Apr-31	144	100/100			
M16/397	Paddington Gold Pty Limited	White Elephant Dam	19-Apr-31	122	100/100			
M16/398	Paddington Gold Pty Limited	White Elephant Dam	19-Apr-31	567	100/100			
M16/399	Paddington Gold Pty Limited	White Elephant Dam	19-Apr-31	445	100/100			
M16/44	Kalgoorlie Mining Company (Bullant) Pty Ltd	Ora Banda	02-Nov-29	593.35	100/100			
M16/45	Kalgoorlie Mining Company (Bullant) Pty Ltd	Ora Banda	02-Nov-29	614.85	100/100			
M16/48	Paddington Gold Pty Limited	Ora Banda	02-Nov-29	524.65	100/100			
M16/58	Paddington Gold Pty Limited	4km East - Carbine	08-Mar-30	292.65	100/100			
M16/86	Paddington Gold Pty Limited	Hawkin	17-May-30	437.95	100/100			
M24/101	Norton Gold Fields Limited	Gidji	16-Sep-29	864.55	96/96			
M24/102	Paddington Gold Pty Limited	Black Flag	15-Dec-28	643.1	1000/1000			
M24/113	Paddington Gold Pty Limited	Grants Patch (3km east of)	26-May-29	667.35	96/96			
M24/138	Paddington Gold Pty Limited	Lady Bountiful	17-Sep-29	59.135	96/96			
M24/148	Paddington Gold Pty Limited	Grants Patch	01-Dec-29	448.4	100/100			
M24/155	Paddington Gold Pty Limited	Black Flag	05-Aug-29	375.05	10000/ 10000			
M24/16	Paddington Gold Pty Limited	Mt Pleasant	19-Apr-25	18.5	96/96			
M24/165	Paddington Gold Pty Limited	Black Flag Lake	23-Dec-29	892.85	100/100			
M24/166	Paddington Gold Pty Limited	Black Flag	08-Feb-30	433.3	1000/1000			
M24/170	Paddington Gold Pty Limited	Ora Banda	02-Nov-29	819.75	100/100			
M24/172	Paddington Gold Pty Limited	Black Flag	08-Feb-30	144.55	1000/1000			

	WESTERN AUSTRALIA								
Tenement	Holders	Locality	Expiry	Area (HA)	Equity				
M24/180	Paddington Gold Pty Limited	Paddington	28-Dec-29	45.755	96/96				
M24/181	Paddington Gold Pty Limited	Paddington	28-Dec-29	41.405	96/96				
M24/182	Paddington Gold Pty Limited	Mt Pleasant	13-Mar-30	141.15	100/100				
M24/183	Norton Gold Fields Limited	Paddington	09-May-30	846.5	100/100				
M24/187	Paddington Gold Pty Limited	Lady Bountiful	18-Jan-30	221.7	96/96				
M24/188	Paddington Gold Pty Limited	Broad Arrow	28-Mar-30	79.305	100/100				
M24/193	Paddington Gold Pty Limited	Ora Banda Area	04-May-30	874.35	100/100				
M24/194	Paddington Gold Pty Limited	Ora Banda Area	04-May-30	966.85	100/100				
M24/20	Paddington Gold Pty Limited	Paddington	19-Oct-25	533.85	96/96				
M24/205	Paddington Gold Pty Limited	Lady Bountiful	18-Jan-30	561.2	100/100				
M24/211	Paddington Gold Pty Limited	Black Flag	29-May-30	171.9	100/100				
M24/220	Paddington Gold Pty Limited	Lady Bountiful	29-May-30	13.035	100/100				
M24/223	Paddington Gold Pty Limited	Mt Pleasant	13-Mar-30	136.05	100/100				
M24/227	Paddington Gold Pty Limited	Mt Pleasant	26-Jul-30	77.89	100/100				
M24/229	Paddington Gold Pty Limited	Mt Pleasant	29-May-30	99.245	1000/1000				
M24/231	Paddington Gold Pty Limited	Bellevue	30-May-30	14.575	100/100				
M24/234	Paddington Gold Pty Limited	Black Flag	12-Jun-30	370.55	100/100				
M24/236	Paddington Gold Pty Limited	Mt Pleasant	12-Jun-30	121.85	100/100				
M24/239	Norton Gold Fields Limited	Smithfield	20-Sep-30	889.6	100/100				
M24/240	Norton Gold Fields Limited	Smithfield	20-Sep-30	641	100/100				
M24/251	Norton Gold Fields Limited	Broad Arrow	24-Nov-30	878.25	96/96				
M24/255	Paddington Gold Pty Limited	Bellevue	24-Nov-30	105.1	100/100				
M24/256	Paddington Gold Pty Limited	Black Flag	03-Nov-30	110.55	100/100				
M24/265	Paddington Gold Pty Limited	Mt Pleasant	01-Sep-30	264.3	10000/ 10000				
M24/266	Paddington Gold Pty Limited	Mt Pleasant	28-Sep-30	122.75	10000/ 10000				
M24/267	Paddington Gold Pty Limited	Mt Pleasant	01-Sep-30	1.775	10000/ 10000				
M24/270	Paddington Gold Pty Limited	Arthur Dam (1km east of)	23-Oct-30	220.65	100/100				
M24/271	Paddington Gold Pty Limited	Lady Bountiful	14-Feb-31	104.3	100/100				
M24/272	Paddington Gold Pty Limited	Liberty	14-Feb-31	167.75	100/100				
M24/29	Paddington Gold Pty Limited	Ora Banda	03-Jan-26	845.15	100/100				
M24/291	Paddington Gold Pty Limited	Dixie	28-Mar-31	375.1	100/100				
M24/295	Paddington Gold Pty Limited	Dark Horse	10-Jul-31	115.95	100/100				
M24/300	Paddington Gold Pty Limited	Dark Horse	28-Mar-31	68.53	96/96				
M24/302	Paddington Gold Pty Limited	Black Flag	07-Dec-31	985.9	100/100				
M24/303	Paddington Gold Pty Limited	Black Flag	07-Dec-31	938.6	100/100				
M24/304	Paddington Gold Pty Limited	Black Flag	27-Mar-32	694.65	10000/ 10000				
M24/321	Paddington Gold Pty Limited	Mt Pleasant	30-Jul-31	9.885	1000/ 1000				
M24/333	Paddington Gold Pty Limited	Ora Banda	29-Nov-31	323	100/100				

Tenement	Holders	Locality	Expiry	Area (HA)	Equity
M24/363	Paddington Gold Pty Limited	Lady Bountiful	16-Sep-32	7.8405	96/96
M24/387	Paddington Gold Pty Limited	Grants Patch	14-Oct-33	58.525	100/100
M24/390	Paddington Gold Pty Limited	Black Flag	30-Jan-34	842.9	100/100
M24/393	Paddington Gold Pty Limited	Mt Pleasant	23-Nov-34	849.95	100/100
M24/398	Paddington Gold Pty Limited	Mt Ellis	27-Jan-35	824.65	100/100
M24/401	Paddington Gold Pty Limited	Paddington	14-Jan-35	239.45	100/100
M24/403	Paddington Gold Pty Limited	Bellvue	14-Jan-35	571.8	100/100
M24/411	Paddington Gold Pty Limited	Oxford	17-Mar-35	45	100/100
M24/416	Paddington Gold Pty Limited	Paddington	26-Aug-35	201	96/96
M24/417	Paddington Gold Pty Limited	Oxford	06-Sep-35	158	100/100
M24/422	Paddington Gold Pty Limited	Paddington	14-Jun-15	189.65	100/100
M24/423	Paddington Gold Pty Limited	Paddington West	17-Mar-15	135	100/100
M24/425	Paddington Gold Pty Limited	Broad Arrow	21-Dec-15	68.07	100/100
M24/426	Paddington Gold Pty Limited	Black Flag	29-Mar-15	526.65	100/100
M24/428	Paddington Gold Pty Limited	Black Flag	24-Mar-15	183	100/100
M24/430	Paddington Gold Pty Limited	Balgarri	01-Jun-15	355.05	96/96
M24/432	Paddington Gold Pty Limited	Mt Pleasant	28-Apr-15	6.7215	100/100
M24/433	Paddington Gold Pty Limited	Black Flag	17-Mar-15	8.3985	100/100
M24/437	Norton Gold Fields Limited	Smithfield	13-Feb-16	8.4385	100/100
M24/444	Border Resources NL Paddington Gold Pty Limited	Gidji	03-Oct-15	996	3834 10000 6166 10000
M24/445	Border Resources NL Paddington Gold Pty Limited	Gidji	03-Oct-15	934	3834 10000 6166 10000
M24/446	Border Resources NL Paddington Gold Pty Limited	Gidgi	03-Oct-15	730.85	3834 10000 6166 10000
M24/447	Border Resources NL Paddington Gold Pty Limited	Gidgi	03-Oct-15	917.7	3834 1000 6166 1000
M24/473	Paddington Gold Pty Limited	Ora Banda	20-May-20	18.8	100/100
M24/494	Paddington Gold Pty Limited	Grants Patch/Laurie Dam	16-Jun-19	326.7	100/100
M24/497	Norton Gold Fields Limited	Leeks	20-May-20	46.85	100/100
M24/557	Paddington Gold Pty Limited	Broad Arrow	23-Oct-18	601.5	100/100
M24/564	Paddington Gold Pty Limited	Broad Arrow (6km n/east of)	03-Nov-18	541.6	100/100
M24/565	Paddington Gold Pty Limited	Broad Arrow (6km n/east of)	03-Nov-18	580.55	100/100
M24/60	Paddington Gold Pty Limited	Mt Pleasant	25-Aug-27	9.7125	96/90
M24/616	Paddington Gold Pty Limited	Broad Arrow (east of)	18-Feb-19	984.1	100/100
M24/617	Paddington Gold Pty Limited	Lady Bountiful (north west of)	12-Nov-23	8	100/10
M24/618	Paddington Gold Pty Limited	Mt Pleasant	06-Jun-28	692	100/10
M24/620	Paddington Gold Pty Limited	Mt Pleasant	12-Sep-23	99	100/10

		WESTERN AUSTRALIA			
Tenement	Holders	Locality	Expiry	Area (HA)	Equity
M24/645	Paddington Gold Pty Limited	Blakc Flag(5km west of)	21-Aug-29	589	100/100
M24/677	Paddington Gold Pty Limited	Fenbark	21-Aug-29	16.968	100/100
M24/687	Paddington Gold Pty Limited	Wendy Gully (1.25km east of)	22-Apr-31	4.4	100/100
M24/705	Paddington Gold Pty Limited Xstate Resources Limited	King Brown	08-Jul-20	4.7225	88/100 12/100
M24/708	Paddington Gold Pty Limited	Black Flag (3km s/west of)	29-Dec-20	9.3475	100/100
M24/709	Paddington Gold Pty Limited	King Brown	29-Jun-20	3.2585	100/100
M24/710	Paddington Gold Pty Limited	Golden Kilometre	20-Jun-20	7.416	100/100
M24/711	Paddington Gold Pty Limited	Ora Banda (1km east of)	10-Aug-20	6.011	100/100
M24/712	Paddington Gold Pty Limited	Ora Banda	13-Mar-21	9.709	100/100
M24/716	Paddington Gold Pty Limited	Paddington	10-Aug-20	2.428	100/100
M24/721	Border Resources NL Paddington Gold Pty Limited	Lake Gidji (5kms s/west of)	01-Aug-32	931	3834/ 10000 6166/ 10000
M24/730	Border Resources NL Paddington Gold Pty Limited	Lake Gidji (5km s/west of)	01-Aug-32	200	3834/ 1000 6166/ 10000
M24/746	Border Resources NL Paddington Gold Pty Limited	Mount Pleasant (east of)	02-Aug-32	4	3834/ 10000 6166/ 10000
M24/78	Visiomed Group Limited	Broad Arrow	15-Dec-27	165.45	96/96
M24/79	Paddington Gold Pty Limited	Black Flag	27-Jan-29	9.602	1000/1000
M24/796	Norton Gold Fields Limited	Black Flag - Crown Dam	10-Apr-24	113.35	100/100
M24/80	Paddington Gold Pty Limited	Black Flag	11-Feb-28	4.498	1000/1000
M24/809	Paddington Gold Pty Limited	Ora Banda	19-Mar-22	9.7135	96/96
M24/81	Paddington Gold Pty Limited	Black Flag	11-Feb-28	37.895	1000/1000
M24/810	Paddington Gold Pty Limited	Black Flag	19-Mar-22	3.9475	96/96
M24/811	Paddington Gold Pty Limited	Black Flag	19-Mar-22	5.641	1000/1000
M24/82	Paddington Gold Pty Limited	Black Flag	11-Feb-28	82.735	1000/1000
M24/838	Paddington Gold Pty Limited	Mt Pleasant	22-Apr-31	5	100/100
M24/861	Norton Gold Fields Limited	Wendy Gully	29-Nov-22	7.534	96/96
M24/862	Paddington Gold Pty Limited	Lady Bountiful	02-Sep-28	113.1	100/100
M24/876	Visiomed Group Limited	Broad Arrow	21-Oct-24	5	96/96
M24/881	Border Resources NL Paddington Gold Pty Limited	Gidji West	01-Aug-32	899	3834, 10000 6166, 10000
M24/882	Border Resources NL Paddington Gold Pty Limited	Gidji West	01-Aug-32	838	3834, 10000 6166, 10000
M26/115	Bellamel Mining Pty Ltd	Seven Mile Hill	16-Mar-29	66.39	96/96
M26/235	Sandhurst Mining NL Norton Gold Fields Limited	Lake Gidji	18-Apr-32	681.55	10/100 90/100
M26/243	Bellamel Mining Pty Ltd	Binduli	11-Jun-32	228.8	96/96

WESTERN AUSTRALIA								
Tenement	Holders	Locality	Expiry	Area (HA)	Equity			
M26/387	Bellamel Mining Pty Ltd	Seven Mile Hile	10-Dec-34	111.2	96/96			
M26/420	Bellamel Mining Pty Ltd	Seven Mile Hill	16-Sep-35	121.2	100/100			
M26/430	Bellamel Mining Pty Ltd	Seven Mile Hill	24-Oct-35	130.55	100/100			
M26/445	Bellamel Mining Pty Ltd	Seven Mile Hill	19-Jan-16	207.2	100/100			
M26/446	Norton Gold Fields Limited	Binduli	29-Nov-15	510.35	100/100			
M26/447	Bellamel Mining Pty Ltd	White Dam	24-Jan-16	876.4	100/100			
M26/468	Bellamel Mining Pty Ltd	Binduli	03-Nov-18	881.6	100/100			
M26/474	Bellamel Mining Pty Ltd	Binduli	03-Nov-18	893.55	100/100			
M26/566	Norton Gold Fields Limited	Gidgi South	12-Aug-28	26.3	100/100			
M26/587	Moto Goldmines Australia Limited Paddington Gold Pty Limited	5 Mile Hill	02-Aug-32	331	3834/ 1000 6166/ 10000			
M26/629	Bellamel Mining Pty Ltd	Binduli	19-Nov-21	295.25	100/100			
M26/679	Border Resources NL Paddington Gold Pty Limited	Lake Gidji (5kms s/west of)	01-Aug-32	753	3834/ 10000 6166/ 10000			
M26/816	Norton Gold Fields Limited	West Nickel Smelter	14-Jul-31	561	100/100			
M26/833	Norton Gold Fields Limited	Binduli	27-Jan-36	14.0	100/100			
M27/149	Norton Gold Fields Limited	Mulgarrie	28-May-32	44.2	100/100			
M27/171	Norton Gold Fields Limited	Mulgarrie	06-Nov-15	113.8	100/100			
M27/178	Norton Gold Fields Limited	Mulgarrie	28-Dec-35	6.8205	100/100			
M27/185	Norton Gold Fields Limited	Mulgarrie	17-Jan-16	824.75	100/100			
M27/38	Norton Gold Fields Limited	Mulgarrie	15-Dec-28	109.75	100/100			
M27/436	Norton Gold Fields Limited	Mulgarrie	05-Dec-33	634	100/100			
M27/437	Norton Gold Fields Limited	Mulgarrie	05-Dec-33	746	100/100			
P16/2000	Paddington Gold Pty Limited	Kintore	01-Jul-14	121	100/100			
P16/2001	Paddington Gold Pty Limited	Kintore	01-Jul-14	121	100/100			
P16/2002	Paddington Gold Pty Limited	Kintore	01-Jul-14	121	100/100			
P16/2003	Paddington Gold Pty Limited	Kintore	01-Jul-14	70	100/100			
P16/2477	Paddington Gold Pty Limited	Carbine	06-Apr-17	161.02	100/100			
P16/2478	Paddington Gold Pty Limited	Carbine	29-Sep-16	200	100/100			
P16/2700	Kalgoorlie Mining Company (Bullant) Pty Ltd	Balgarrie	30-Jun-15	181	100/100			
P16/2701	Kalgoorlie Mining Company (Bullant) Pty Ltd	Balgarrie	30-Jun-15	172	100/100			
P16/2857	Paddington Gold Pty Limited		17-Mar-19	120.5	100/100			
P16/2858	Paddington Gold Pty Limited	Carbine Zuleika	1-Feb-19	63.6	100/100			
P16/2859	Paddington Gold Pty Limited	Carbine Zuleika	1-Feb-19	120.6	100/100			
P16/2860	Paddington Gold Pty Limited	Carbine Zuleika	1-Feb-19	120.5	100/100			
P24/4128	Paddington Gold Pty Limited	Grants Patch	24-Feb-17	50	100/100			
P24/4233	Kalnorth Gold Mines Limited	Scotia East	06-Feb-16	149	100/100			
P24/4234	Kalnorth Gold Mines Limited	Scotia East	06-Feb-16	122	100/100			
P24/4253	Paddington Gold Pty Limited	Smithfield - Kanowna	13-Aug-16	1.9815	100/100			

	WE	STERN AUSTRALIA			
Tenement	Holders	Locality	Expiry	Area (HA)	Equity
P24/4255	Paddington Gold Pty Limited	Mount Pleasant	20-Aug-16	135	100/100
P24/4256	Paddington Gold Pty Limited	Salt Lake Dam	27-May-16	160	100/100
P24/4257	Paddington Gold Pty Limited	Salt Lake Dam	27-May-16	115	100/100
P24/4258	Paddington Gold Pty Limited	2km West Of Gudarra	27-May-16	22	100/100
P24/4260	Paddington Gold Pty Limited	Black Flag	20-Aug-16	63	100/100
P24/4593	Kalgoorlie Mining Company (Bullant) Pty Ltd	Carnage (5km s/east of)	12-Mar-16	48	100/100
P24/4594	Kalgoorlie Mining Company (Bullant) Pty Ltd	Carnage (5km s/east of)	12-Mar-16	138	100/100
P26/3564	Bellamel Mining Pty Ltd	Gibson - Honman Rock	20-Apr-17	74	100/100
P26/3566	Bellamel Mining Pty Ltd	Gibson - Honman Rock	20-Apr-17	100	100/100
P26/3567	Bellamel Mining Pty Ltd	White Lake	15-Mar-15	109	100/100
P26/3609	Norton Gold Fields Limited	Binduli	13-Aug-16	38	100/100
P26/3611	Norton Gold Fields Limited	Gidji	13-Aug-16	193	100/100
P26/3612	Norton Gold Fields Limited	Gidji	13-Aug-16	195	100/100
P26/3613	Norton Gold Fields Limited	Kalgoorlie	13-Aug-16	118	100/100
P26/3631	Bellamel Mining Pty Ltd	Gibson Honman Rock	16-Nov-16	145	100/100
P27/1873	Norton Gold Fields Limited	Gordon (6km)	21-Jan-18	200	100/100
P27/2019	Kalnorth Gold Mines Limited	Mulgarrie	29-Dec-14	159.98	100/100
M 15/1414	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Bullabulling Mine	24-Oct-23	10	50/100 50/100
M 15/282	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Bullabulling Mine	28-Mar-30	218	48/96 48/96
M 15/503	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Bullabulling Mine	7-Feb-14	798	48/96 48/96
M 15/552	Resolute Pty Ltd	Bullabulling Mine	20-Mar-33	333	100/100
M 15/554	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Bullabulling Mine	20-Mar-33	602	50/100 50/100
P 15/5673	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Bullabulling Mine	12-Aug-16	114	48/96 48/96
P 15/5674	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Bullabulling Mine	12-Aug-16	192	48/96 48/96
M 15/483	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Gibraltar	27-Nov-31	133	50/100 50/100
M 15/529	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Gibraltar	2-Aug-32	251	48/96 48/96
P 15/5354	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Gibraltar	11-Apr-14	10	50/100 50/100
P 15/5355	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Gibraltar	11-Apr-14	9	50/100 50/100
P 15/5356	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Gibraltar	28-Sep-14	189	50/100 50/100
P 15/5357	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Gibraltar	28-Sep-14	103	50/100 50/100
P 15/5358	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Gibraltar	28-Sep-14	102	50/100 50/100
P 15/5758	Bullabulling Gold Limited	Hawks Tenement	12-May-17	36	96/96
P 15/5381	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	North Bullabulling	7-Apr-14	146	50/100 50/100
P 15/5382	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	North Bullabulling	13-Apr-14	93	50/100 50/100

	WE	STERN AUSTRALIA			
Tenement	Holders	Locality	Expiry	Area (HA)	Equity
P 15/5383	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	North Bullabulling	13-Apr-14	197	50/100 50/100
P 15/5384	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	North Bullabulling	12-Apr-14	159	50/100 50/100
P 15/5385	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	North Bullabulling	12-Apr-14	117	50/100 50/100
P 15/5386	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	North Bullabulling	12-Apr-14	180	50/100 50/100
P 15/5387	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	North Bullabulling	12-Apr-14	141	50/100 50/100
P 15/5388	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	North Bullabulling	12-Apr-14	39	50/100 50/100
P 15/5512	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	North Bullabulling	15-Nov-14	200	50/100 50/100
P 15/5513	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	North Bullabulling	15-Nov-14	187	50/100 50/100
P 15/5514	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	North Bullabulling	15-Nov-14	199	50/100 50/100
P 15/5515	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	North Bullabulling	15-Nov-14	196	50/100 50/100
P 15/5516	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	North Bullabulling	15-Nov-14	198	50/100 50/100
P 15/5533	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	North Bullabulling	29-Aug-15	150	50/100 50/100
P 15/5535	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	North Bullabulling	29-Aug-15	7	50/100 50/100
P 15/5567	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Sand Lease	20-Oct-15	48	50/100 50/100
E 15/1263	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	South Bullabulling	18-Oct-16	5175	48/96 48/96
E 15/1264	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	South Bullabulling	10-Aug-16	287	48/96 48/96
E 15/1320	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	South Bullabulling	18-Oct-17	4025	48/96 48/96
E 15/1392	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	South Bullabulling	18-Oct-19	2349	50/100 50/100
P 15/4798	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	South Bullabulling	19-Jul-15	194	50/100 50/100
P 15/4799	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	South Bullabulling	19-Jul-15	197	50/100 50/100
P 15/4887	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	South Bullabulling	11-Mar-16	191	50/100 50/100
P 15/5186	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	South Bullabulling	31-Mar-14	165	48/96 48/96
P 15/5187	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	South Bullabulling	31-Mar-14	190	48/96 48/96
P 15/5188	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	South Bullabulling	15-Jun-14	179	48/96 48/96
P 15/5661	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	South Bullabulling	16-Jul-16	199	48/96 48/96
P 15/5662	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	South Bullabulling	16-Jul-16	109	48/96 48/96
P 15/5663	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	South Bullabulling	16-Jul-16	126	48/96 48/96
P 15/5664	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	South Bullabulling	16-Jul-16	173	48/96 48/96
P 15/5669	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	South Bullabulling	16-Jul-16	192	48/96 48/96

Norton Gold Fields

	WESTERN AUSTRALIA							
Tenement	Holders	Locality	Expiry	Area (HA)	Equity			
P 15/5538	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	West Bullabulling	3-Mar-15	162	50/100 50/100			
P 15/5539	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	West Bullabulling	3-Mar-15	188	50/100 50/100			
P 15/5540	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	West Bullabulling	3-Mar-15	91	50/100 50/100			
P 15/5541	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	West Bullabulling	3-Mar-15	123	50/100 50/100			
P 15/5799	Bullabulling Operations Pty Ltd	North Bullabulling	26-Dec-17	33	100/100			
P 15/5800	Bullabulling Operations Pty Ltd	North Bullabulling	26-Dec-17	108	100/100			
P 15/5802	Bullabulling Operations Pty Ltd	South Bullabulling	26-Dec-17	118	100/100			
P 15/5848	Bullabulling Operations Pty Ltd	South Bullabulling	15-Jun-18	130	100/100			
P 15/5849	Bullabulling Operations Pty Ltd	South Bullabulling	15-Jun-18	46	100/100			
P 15/5850	Bullabulling Operations Pty Ltd	South Bullabulling	1-Jul-18	83	100/100			
P 15/5851	Bullabulling Operations Pty Ltd	South Bullabulling	1-Jul-18	150	100/100			
P15/5916	Bullabulling Operations Pty Ltd		1-Feb-19	121.4	100/100			
P15/5917	Bullabulling Operations Pty Ltd		1-Feb-19	128.5	100/100			
L 15/156	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Miscellaneous License	16-Jul-16	0.01	48/96 48/96			
L 15/157	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Miscellaneous License	16-Jul-16	0.01	48/96 48/96			
L 15/158	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Miscellaneous License	16-Jul-16	16	48/96 48/96			
L 15/196	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Miscellaneous License	8-May-15	32	50/100 50/100			
L 15/206	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Miscellaneous License	18-Nov-16	51	50/100 50/100			
L 15/218	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Miscellaneous License	12-Aug-13	257	50/100 50/100			
L 15/222	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Miscellaneous License	24-Sep-30	2	50/100 50/100			
L 15/328	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Miscellaneous License	10-Jul-34	18	48/96 48/96			
L 15/330	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Miscellaneous License	16-Apr-34	2	48/96 48/96			
L 15/331	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Miscellaneous License	16-Apr-34	2	48/96 48/96			
L 15/332	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Miscellaneous License	16-Apr-34	2	48/96 48/96			
L 15/333	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Miscellaneous License	14-Feb-34	11	48/96 48/96			
L 15/334	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Miscellaneous License	4-Apr-34	10	48/96 48/96			
L 15/335	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Miscellaneous License	13-Jun-33	10	48/96 48/96			
L 15/336	Bullabulling Gold (UK) Limited & Bullabulling Operations Pty Ltd	Miscellaneous License	13-Jun-33	28	48/96 48/96			
L 15/339	Bullabulling Operations Pty Ltd	Miscellaneous License	21-Mar-34	506	96/96			

Appendices: JORC 2012 'Table 1' Documentation

JORC Code, 2012 Edition Table 1 Exploration Report for Homestead Underground March 2015

Criteria	Commentary
Mineral tenement and land tenure status –Homestead	 Homestead is located on tenement M24/155 and M24/79 which are 100% owned by Paddington Gold P/L a wholly owned subsidiary of Norton Gold Fields P/L. The M24/155 and M24/79 licences are part of the Mount Pleasant Project area that has a combined reporting group reference of C36/2009. Mining lease status was granted for all tenements in the early to mid-1990's and has an annual expenditure commitment of \$36,600 Tenements are in good standing and there are not known impediments
Exploration done by other parties	 A significant proportion of exploration, resource development & open pit mining was completed by companies which held tenure over the Homestead and Tuart deposits since the mid 1990's. Companies included: Centaur Mining and Exploration PL (1995-2001), Aurion Gold (2001-2002), Placer Dome (2002-2005) Asia Pacific & Barrick Kanowna (2005-2007). Results of exploration and mining activities by the afore-mentioned companies aid in Norton Gold Field's more recent exploration, resource development and mining in the area. In the current Homestead resource only less than 3% of all data is legacy data. Reporting of results herein only relates to results obtained by Norton Gold Fields.
Geology – Homestead	 The Homestead deposits are located within the Norseman-Wiluna greenstone sequence, at or below the lithological contact between the Bent Tree (BTB) and Victorious Basalt (VB) units. The metamorphic grade is defined as lower green-schist facies. A significant deformation zone is observed at Homestead, the Homestead Shear Structure (HSS). The HSS is a splay off the Black Flag Fault. Homestead deposits are classified as a narrow vein, orogenic gold deposits. Gold mineralisation is hosted within the laminated quartz veins and typically associated with galena, sphalerite and scheelite mineralisation. One or two laminated quartz veins are observed in the underground development oriented parallel to the structural corridor (VN01). At the northern limit the veins are cut by a northeast trending fault, which offsets the HSS by 40 metres to the west. The offset northern extension is named VN03. Cross cutting veins (Black Flag West and Phantom) are generally brittle-ductile accommodation structures.
Drill hole Information	See Tables and Figures in main body of this report
Data aggregation methods – Homestead	 All reported assay results have been length-weighted, no top cuts have been applied. Assay results are reported above a 3.5/t Au lower cut. A maximum of 2m of internal dilution is included for reporting intercepts. Minimum reported interval is 1.0m for RC and 0.3m for Diamond core intercepts. No metal equivalent values are used for reporting exploration results
Relationship between mineralisation widths and intercept lengths – Homestead	 Most of the Diamond core holes were drilled to achieve the best possible angle of intersection. Some of the surface holes intersect the orebody at acute angles.
Diagrams	See Figures in main body of this report
Balanced reporting	All results have been reported relative to the intersection criteria.
Other substantive exploration data	No other exploration data collected is considered material to this announcement.
Further work – Homestead	• Further work at Homestead will include additional resource development drilling and updating geological models.

JORC Code, 2012 Edition Table 1 Exploration Report for Bullant Underground March 2015

Criteria	Commentary
Mineral tenement and land tenure status	 The Bullant mine is located on tenement M16/44 and M16/45 which are held by Kalgoorlie Mining Company (Bullant) Pty Ltd. On the 7 August 2013, Norton Gold Fields Limited (Norton) completed a 90% off-market takeover offer for all fully paid ordinary shares in Kalgoorlie Mining Company Limited (KMC) and moved to compulsory acquisition of the remaining shares under the provisions of the Corporation Act. Norton acquired Paddington Gold Pty Limited (Paddington) from Barrick Australia Ltd in August 2007. Paddington is the Operating Manager of the KMC tenements. The mine is located 20 kilometres south-west of Ora Banda and 65 kilometres north-west of Kalgoorlie. Access from Kalgoorlie is north via the sealed Menzies Highway, then west along the Broad Arrow to Ora Banda Road, then south via the unsealed Bullant access road. The tenements M16/44 and M16/45 are located in the Coolgardie Mineral Field within the Kunanalling District and are found on the Ora Banda 1:50,000 Map Sheet.
	Tenements are in good standing and there are no known impediments.
Exploration done by other parties	 A significant proportion of exploration, resource development and mining was completed by companies which held tenure over the Bullant deposit since 1980. Companies included: BHP Gold Mines; Newcrest Mining; Centaur; Goldfields Group; Aurion Gold; Placer Dome; Barrick; and Kalgoorlie Mining Company (KMC). Results of exploration and mining activities by the fore mentioned companies' aid in current resource development. In the current Bullant resource over 80% of all data is legacy data.
Geology	 The Bullant project is located in the western margin of the regionally extensive Norseman-Wiluna Belt, lying within the Coolgardie Domain of the Kalgoorlie Terrane. The geology of the Bullant area is dominated by the Bolshevic syncline which comprises a sequence of folded mafic and ultramafic rocks and interflow sediments constrained by the Zulieka Shear Zone in the east and by the Kunanalling Shear Zone in the west. The gold mineralisation at the Bullant project is hosted in four main reefs which include Main Lode, East Lode, West Lode and Cross Lode. The Main and East lodes to date have hosted the majority of the gold mineralisation mined at the project, and are hosted in biotite altered Bent Tree basalt.
Drill hole Information	See Tables and Figures in the main body of this report
Data aggregation methods	 All reported assay results have been length-weighted, no top cuts have been applied. Assay results are reported above a 3.5g/t Au lower cut. A maximum of 2m of internal dilution is included for reporting intercepts. Minimum reported interval is 1.0m for RC and 0.3m for Diamond core intercepts. No metal equivalent values are used for reporting exploration results
Relationship between mineralization widths and intercept lengths	 The Diamond core holes were drilled to achieve the best possible angle of intersection. Drill hole intersections vary due to infrastructure issues and drill rig access. Many of the drill holes intersect the ore body at acute angles. All development face sampling was performed across the mineralised veins and are representing approximate true width.
Diagrams	See Figures in main body of this report
Balanced reporting	All results have been reported relative to the intersection criteria.
Other substantive exploration data	No other exploration data collected is considered material to this announcement.
Further work	Further work at Bullant deposit will include additional resource development drilling and updating geological models.

JORC Code, 2012 Edition Table 1 Exploration Report for the Greater Mt Pleasant area March 2015

Criteria	Commentary				
Mineral tenement & land tenure status	 The Mt Pleasant Project covers Mining Licenses M 24/16, 79, 82, 155, 166, 227, 234, 265-266, 302, 304, 393, 433 & 710. General Purpose lease G 24/11 & Miscellaneous leases L 24/54 & 205-206 are also located within the project area. All tenements are 100% held by Paddington Gold P/L, a wholly owned subsidiary of Norton Gold Fields P/L. Several heritage sites exist within the tenure. All leases are granted pre-Native Title. Third party royalties are applicable to these tenements & are based on production (\$/t) or proportion of net profit. All production is subject to a WA state government NSR royalty of 2.5%. The tenements are in good standing & no known impediments exist. 				
Exploration done by other parties	 A significant proportion of exploration, resource development & mining was completed by companies which held tenure over Mt Pleasant since the mid 1990's. Companies included: Centaur Mining & Exploration PL (1995-2001), Auriongold (2001-2002), Placer Dome Asia Pacific (2002- 2005) & Barrick Kanowna (2005-2007). Results of exploration & mining activities by the afore-mentioned companies has assisted in Norton Gold Field's more recent exploration, resource development & mining in the area. 				
Geology	 The Mount Pleasant Project comprises several individual deposits that are characterised in geological setting. Deposits from north to south are: Golden Kilometre, Tuart, Marlock, Salmon Gum, Blue Gum, Blue Gum South, Green Gum, Golden Flag, Rose, Rose Dam South, Golden Road, Racetrack, Woolshed, Woolshed South, Woolshed South Extended & Natal. The deposit types are classified as narrow vein or stockwork and pervasive alteration style, orogenic gold deposits within the Norseman-Wiluna greenstone sequence. The accepted interpretation for gold mineralisation is related to (regional D2-D3) deformation of the stratigraphic sequence during an Archaean orogeny event. The mineralisation is hosted within the upper-mafic rock units of the Kalgoorlie stratigraphy. The metamorphic grade is defined as lower green-schist facies. The mineralisation is located in brittle-ductile shear zones typically associated with carbonate-sericite alteration +/- sulphides. A second type of deposit is classified as supergene-enriched gold formed by secondary geochemical processes, where mineralised structures intersect the regolith profile. A third type of deposit is classified as Palaeo-channel related gold mineralisation associated with the mechanical transport & geochemical enrichment of gold within the Tertiary material. 				
Drill hole Information	See Tables and Figures in main body of this report				
Data aggregation methods	 All reported assay results have been length-weighted; no top cuts have been applied. Assay results are reported to a 0.8g/t Au lower cut over a minimum intersection of 1m for RC & 0.3m for DC. A maximum of 2m of internal dilution (i.e. <2m @ <0.8g/t Au) is included for reporting RC intercepts targeting the supergene mineralisation & for DDH intercepts targeting the fresh rock mineralisation. No metal equivalent values are used for reporting exploration results. 				
Relationship between mineralisation widths & intercept lengths	• Drill hole intersections are generally at a high angle to each mineralised zone. Reported down hole intersections are noted as approximately true width, or otherwise are denoted as 'down-hole width'.				
Diagrams	See Figures in main body of this report				
Balanced reporting	All results have been reported relative to the intersection criteria.				

Criteria	Commentary
Other substantive exploration data	 No other exploration data collected is considered material to this announcement. Material known to be refractory is denoted as such in respective areas.
Further work	 Further work will include exploratory drilling of new target areas, resource definition and extension of known mineralisation, and mining optimisation and mine design studies where applicable.

JORC Code, 2012 Edition Table 1 Exploration Report for Mulgarrie Well Prospect March 2015

Criteria	Commentary
Mineral tenement & land tenure status	 The Mulgarrie Well deposit is located within Mining License M27/38. The ML is 100% held by Norton Gold Fields Ltd. No heritage or historical sites exist within the tenure. M27/38 was granted pre-Native Title. All production is subject to a WA state government NSR royalty of 2.5%. The tenements are in good standing & no known impediments exist.
Exploration done by other parties	 A significant proportion of exploration, resource development & mining was completed by companies which held tenure over the Mulgarrie Well deposit since the mid 1980's. Companies included: Broken Hill Proprietary Limited (pre 1990), Newcrest Mining PL (1990-1995), Delta Gold (1996-2002), Placer Dome Asia Pacific (2002-2005) & Barrick Kanowna (2005-2007). Results of exploration & mining activities by the afore-mentioned companies has assisted in Norton Gold Field's more recent exploration, resource development & mining in the area. Reporting of results here within only relates to results previously not required to have been reported to the ASX by Placer Dome Asia Pacific and Barrick.
Geology	 The deposit type is classified as an orogenic gold deposit within the Norseman-Wiluna greenstone sequence. The accepted interpretation for gold mineralisation is related to (regional D2-D3) deformation of the stratigraphic sequence during an Archaean orogeny event. The mineralisation is hosted within a komatiite unit in fault contact with a high-magnesium basalt unit. The metamorphic grade is defined as lower green-schist facies. The mineralisation is located in brittle deformation zones within carbonate alteration pods, associated with thrust-faulting along the komatiite/high-magnesium basalt contact.
Drill hole Information	See Tables and Figures in main body of this report
Data aggregation methods	 All reported assay results have been length weighted; no top cuts have been applied. Assay results are reported to a 0.8g/t Au lower cut over a minimum intersection of 1m. A maximum of 2m of internal dilution (i.e. <2m @ <0.8g/t Au) is included for reporting of drill intercepts. No metal equivalent values are used for reporting exploration results.
Relationship between mineralisation widths & intercept lengths	• Drill hole intersections are generally at a high angle to each mineralised zone. Reported down hole intersections are noted as approximate true width, or otherwise are denoted as 'down hole width'.
Diagrams	See Figures in main body of this report
Balanced reporting	All results have been reported relative to the intersection criteria.

Criteria	Commentary
Other substantive exploration data	No other exploration data collected is considered material to this announcement.
Further work	• Further infill and extensional resource definition drilling will be conducted before resource modelling, optimisation and mine design studies.

JORC Code, 2012 Edition – Table 1 Exploration Report for the Mt Jewell Project (Hughes and Tregurtha Deposits) March 2015

Criteria	Commentary
Mineral tenement & land tenure status	 The Hughes and Tregurtha deposits are located within Exploration License E24/146. The tenements are 100% held by Kalnorth Gold Mines Limited who completed sale of the project to Norton Gold Fields Limited (NGF) in November 2014. The lease is currently Native Title cleared. The State Government royalty of 2.5% applies on gold produced. An application for conversion to a mining lease of the part of E24/146 containing Hughes and Tregurtha is pending.
Exploration done by other parties	 There is no evidence of historic gold mining within the area. Various companies (Kennecott Australasia Pty Ltd, CSR Minerals Pty Ltd, Heron Resources Ltd, MPI Mines Pty Ltd, North Limited, Delta Gold, Pioneer Nickel Limited, Pioneer Resources Limited, Carrick Gold Limited and Kalnorth Gold Mines Limited) have held or joint ventured the area covered by the Hughes and Tregurtha deposits since the late 1960's exploring for both nickel and gold. First pass RC drilling for gold was undertaken in September 2009 by Pioneer. All subsequent RC and Diamond core drilling has been done by Pioneer and Carrick.
Geology	 Regional Geology The Hughes and Tregurtha gold deposits are located in the south west corner of the NNW trending Rainbow Dam Granodiorite (RDG). The RDG is a plutonic body with an area of approximately 70sq km. It sits as a NNW orientated tear drop shaped body bound to the east by the Ringlock Dam greenstone belt and to the west by the west dipping Scotia Greenstone Belt. Within the granodiorite zonation may be present as represented by zones of higher magnetic intensity that appear to form in roughly concentric bodies with the pluton. The higher magnetic zones may represent more magnetite rich phases of the granodiorite. The existing gold deposits both are located within a strongly demagnetized zone, partially related to the closeness of the mineralisation to the contact with the Scotia Ultramatic Belt but it may also represent a more localized regional; feature related to the gold mineralisation as is the case at the Golden Cities Deposits in the Scotia Granodiorite. Local Geology Hughes and Tregurtha are both wholly hosted within the Rainbow Dam Granodiorite. The area has a preserved weathering profile with weak weathering down to 60-70m vertical depth. A 30m thick depleted or leached zone is developed at the top of the profile that is devoid of gold. The mineralisation is shear associated with some mineralisation hosted within tensional settings. The unaltered host rock is a medium grained biotite granodiorite. The highest grade gold mineralisation is usually located in the core of the intensely biotite-silica-pyrite or sericite-silica-pyrite altered shear zones. These zones grade out into sericite-chlorite altered zones that grade into distal chlorite-epidote alteration. Haematite dusting is locally present though does not display a consistent spatial relationship with the shears and may represent an earlier alteration event. The deposits are analogous to the Golden Cities deposits with gold most

 may also be contemporaneous intrusive phases or large rafts and xenoliths. Feldspar porphyries and aplite are also present Alteration and Gold Mineralisation Three phases of alteration have been recognized: Hematite Alteration: Regional alteration seen in reconnaissance RAB drilling, and within 100-500m surrounding mineral structures. Characterized by deep red coloration of feldspar and deep green chloritisation of amphibole. Varies from light total replacement of rock fabric. Potassic Alteration: Generally restricted to dusting on feldspars and bitotite replacement of feror magnesian minerals. As shearing. Sericite – Chlorite: Appears to be associated with gold mineralisation, intensity varies from greenish coloration of feldspar replacement of biotite to a deep bottle green coloration of the granodiorite. The alteration types are generally associated with foliation within the granodiorite. The alteration types are generally associated with foliation within the granodiorite. Pryrita – Quartz: Both minerals are intimately associated with gold mineralisation. On a volume basis pyrite is generally fe and often recorded as trace. The pyrite is generally fine to very finer grained, disseminated euhedra or films upon foliatit associated with shearing. Quartz veining is generally in the trace to 5%, clear to while in colour and distinct from altered associated with shearing. Commonthy associated with pyrite and quartz veining. Structure The Hughes and Tregurtha deposits are associated with the 320-330 trending Lignum Dam Fault Zone (LDFZ), a north-north zone of shearing, mytonitisation and alteration which is most apparent as a zone of demagnetisation with associated chlorite-sericite and peripheral zones of footwall hierastion. The Hughes and Tregurtha as a series of anastomosing shears and mylonite zones oriented 320-330 degrees with a stardy associated with as a zone of demagnetisation within regional aeromaginagery.	Criteria	Commentary
 Hematite Alteration: Regional alteration seen in reconnaissance RAB drilling, and within 100-500m surrounding minerall structures. Characterized by deep red coloration of feldspar and deep green choritisation of amphibole. Varies from ligh total replacement of rock fabric. Potassic Alteration: Generally restricted to dusting on feldspars and bitotite replacement of ferromagnesian minerals. As shearing. Sericite – Chorite: Appears to be associated with gold mineralisation, intensity varies from greenish coloration of feldspar replacement of biotite to a deep bottle green coloration of the granodiorite. The alteration types are generally associated with foliation within the granodiorite and appear to form an outer halo to the min The following mineralisation styles are present: Pyrite – Quartz: Both minerals are intimately associated with gold mineralisation. On a volume basis pyrite is generally associated with gold mineralisation. On a volume basis pyrite is generally is and often recorded as trace. The pyrite is generally in the trace to 5%, clear to white in colour and distinct from altered present in the granice. Biottle – Silica: Common throughout the mineralised structures, manifesting as black, foliated biotitic line grained associated with zones of stronger shearing. Commonly associated with pyrite and quartz veining. Sercite – Silica: Associated with zones of intense shearing, probably representing post-mineralisation thrusting. The Hughes and Tregurtha deposits are associated with the 320-330 trending Lignum Dam Fault Zone (LDFZ), a north-north zone of shearing, mylonitisation and alteration which is most apparent as a zone of demagnetisation within regional aeromaging age. The LDFZ manifests at Tregurtha as a series of anastomosing shears and mylonite zones oriented 320-330 degrees with as the west. The shear zone at Tregurtha is p		 In addition to granodiorite, altered and sheared semi-continuous mafic units are present. These mafic rocks may represent later dykes but may also be contemporaneous intrusive phases or large rafts and xenoliths. Feldspar porphyries and aplite are also present in the area. Alteration and Gold Mineralisation
 structures. Characterized by deep red coloration of feldspar and deep green chloritisation of amphibole. Varies from ligh total replacement of rock fabric. Potassic Alteration: Generally restricted to dusting on feldspars and bitotite replacement of ferromagnesian minerals. As shearing. Sericite -Chlorite: Appears to be associated with gold mineralisation, intensity varies from greenish coloration of feldspar replacement of biotite to a deep bottle green coloration of the granodiorite. The alteration types are generally associated with gold mineralisation. Intensity varies from greenish coloration of feldspar replacement of biotite to a deep bottle green coloration of the granodiorite and appear to form an outer halo to the min The following mineralisation styles are present: Pyrite -Quartz: Both minerals are intimately associated with gold mineralisation. On a volume basis pyrite is generally fine to very finer grained, disseminated euhedra or films upon foliatitia associated with shearing. Quartz veining is generally fine to very finer grained, disseminated euhedra or films upon foliatitia associated with shearing. County purite is generally in the trace to 5%, clear to while in colour and distinct from altered present in the granite. Biotite – Silica: Common throughout the mineralised structures, manifesting as black, foliated biotitic fine grained materia associated with zones of stronger shearing. Commonly associated with pyrite and quartz veining. Sericite – Silica: Associated with zones of intense shearing, probably representing post-mineralisation throuting. The Hughes and Tregurtha deposits are associated with the 320-330 trending Lignum Dam Fault Zone (LDFZ), a north-north zone of shearing, mylonitisation and alteration. The Hughes colorated 20-330 degrees with a s the west. The shear zone at Tregurtha as a series of anastromosing shears and mylonite zones oriented 320-330 degrees with a s the west. The shear		Three phases of alteration have been recognized:
 Potassic Alteration: Generally restricted to dusting on feldspars and bitotite replacement of ferromagnesian minerals. As shearing. Sericite - Chlorite: Appears to be associated with gold mineralisation, intensity varies from greenish coloration of feldspare replacement of biotite to a deep bottle green coloration of the granodiorite. The alteration types are generally associated with foliation within the granodiorite and appear to form an outer halo to the min The following mineralisation styles are present: Pyrite -Quartz: Both minerals are intimately associated with gold mineralisation. On a volume basis pyrite is generally the and often recorded as trace. The pyrite is generally in the trace to 5%, clear to white in colour and distinct from altered present in the granite. Biotite -Silica: Common throughout the mineralised structures, manifesting as black, foliated biotitic fine grained materia associated with zones of stronger shearing. Commonly associated with pyrite and quarz veining. Sericite -Silica: Associated with zones of intense shearing, probably representing post-mineralisation thrusting. Structure The Hughes and Tregurtha deposits are associated with the 320-330 trending Lignum Dam Fault Zone (LDFZ), a north-north zone of shearing, mylonitisation and alteration which is most apparent as a zone of demagnetisation within regional aeromag imagery. The LDFZ manifests at Tregurtha as a series of anastomosing shears and mylonite zones oriented 320-330 degrees with a s the west. The shear zone at Tregurtha is present as a 15-30m thick zone of intense foliation with associated chlorite-sericite and peripheral zones of foctwall hematite alteration. The Hughes Deposit sits within a splay structure on a conjugate orientation to the main LDFZ and dips approximately 45 deg 110 degrees. This structure is present as a 30-45m thi		 Hematite Alteration: Regional alteration seen in reconnaissance RAB drilling, and within 100-500m surrounding mineralised structures. Characterized by deep red coloration of feldspar and deep green chloritisation of amphibole. Varies from light dusting to total replacement of rock fabric.
 replacement of biotite to a deep bottle green coloration of the granodiorite. The alteration types are generally associated with foliation within the granodiorite and appear to form an outer halo to the min The following mineralisation styles are present: Pyrite – Quartz: Both minerals are intimately associated with gold mineralisation. On a volume basis pyrite is generally led and often recorded as trace. The pyrite is generally fine to very finer grained, disseminated euhedra or films upon foliatic associated with shearing. Quartz veining is generally in the trace to 5%, clear to white in colour and distinct from altered present in the granite. Biotite – Silica: Common throughout the mineralised structures, manifesting as black, foliated biotitic fine grained materia associated with zones of stronger shearing. Commonly associated with pyrite and quartz veining. Sericite – Silica: Associated with zones of intense shearing, probably representing post-mineralisation thrusting. Structure The LDFZ manifests at Tregurtha deposits are associated with the 320-330 trending Lignum Dam Fault Zone (LDFZ), a north-north zone of shearing, mylonitisation and alteration which is most apparent as a zone of demagnetisation within regional aeromagi imagery. The LDFZ manifests at Tregurtha as a series of anastomosing shears and mylonite zones oriented 320-330 degrees with as the west. The shear zone at Tregurtha is present as a 15-30m thick zone of intense foliation with associated chlorite-sericite and peripheral zones of footwall hematite alteration. The Hughes Deposit sits within a splay structure on a conjugate orientation to the main LDFZ and dips approximately 45 deg 110 degrees. This structure is present as a 30-45m thick zone of intensely biotite-chlorite altered granodiorite with a strong si fabric, strongly associated with gold mineralisation. A similar 45/110 orientation is suggested at Tregurtha as a conjugate struct		2. Potassic Alteration: Generally restricted to dusting on feldspars and bitotite replacement of ferromagnesian minerals. Associated with
 The following mineralisation styles are present: Pyrite –Quartz: Both minerals are initmately associated with gold mineralisation. On a volume basis pyrite is generally fine to very finer grained, disseminated euhedra or films upon foliatid associated with shearing. Quartz veining is generally in the trace to 5%, clear to white in colour and distinct from altered present in the granite. Biotite –Silica: Common throughout the mineralised structures, manifesting as black, foliated biotitic fine grained material associated with zones of stronger shearing. Commonly associated with pyrite and quartz veining. Sericite –Silica: Associated with zones of intense shearing, probably representing post-mineralisation thrusting. Structure The Hughes and Tregurtha deposits are associated with the 320-330 trending Lignum Dam Fault Zone (LDFZ), a north-north zone of shearing, mylonitisation and alteration which is most apparent as a zone of demagnetisation within regional aeromaginagery. The LDFZ manifests at Tregurtha as a series of anastomosing shears and mylonite zones oriented 320-330 degrees with a sthe west. The shear zone at Tregurtha is present as a 15-30m thick zone of intense foliation with associated chlorite-sericite and peripheral zones of footwall hematite alteration. The Hughes Deposit sits within a splay structure on a conjugate orientation to the main LDFZ and dips approximately 45 deg 110 degrees. This structure is present as a 30-45m thick zone of intensely biotite-chlorite altered granodiorite with a strong s fabric, strongly associated with gold mineralisation. A similar 45/110 orientation is suggested at Tregurtha as a conjugate structural set which may control shoot orientation as a 80/160 approximately. A biotite-altered structure similar to Hughes, but poorly mineralised, is present at the north of Tregurth 		 Sericite – Chlorite: Appears to be associated with gold mineralisation, intensity varies from greenish coloration of feldspars and replacement of biotite to a deep bottle green coloration of the granodiorite.
 Pyrite –Quartz: Both minerals are intimately associated with gold mineralisation. On a volume basis pyrite is generally lead often recorded as trace. The pyrite is generally fine to very finer grained, disseminated euhedra or films upon foliatic associated with shearing. Quartz veining is generally in the trace to 5%, clear to white in colour and distinct from altered present in the granite. Biotite –Silica: Common throughout the mineralised structures, manifesting as black, foliated biotitic fine grained materia associated with zones of stronger shearing. Commonly associated with pyrite and quartz veining. Sericite –Silica: Associated with zones of intense shearing, probably representing post-mineralisation thrusting. Structure The Hughes and Tregurtha deposits are associated with the 320-330 trending Lignum Dam Fault Zone (LDFZ), a north-north zone of shearing, mylonitisation and alteration which is most apparent as a zone of demagnetisation within regional aeromagi imagery. The LDFZ manifests at Tregurtha as a series of anastomosing shears and mylonite zones oriented 320-330 degrees with as the west. The shear zone of fotwall hematite alteration. The Hughes Deposit sits within a splay structure on a conjugate orientation to the main LDFZ and dips approximately 45 deg 110 degrees. This structure is present as a 30-45m thick zone of intensely biotite-chlorite altered granodiorite with a strong s fabric, strongly associated with gold mineralisation. A similar 45/110 orientation is suggested at Tregurtha as a conjugate structural set which may control shoot orientation as a 80/160 approximately. A biotite-altered structure similar to Hughes, but poorly mineralised, is present at the north of Tregurtha the Scotia Greenstone Belt. The Tregurtha Deposit sits near the top of the rise and is covered by a 2-5 metre blanket of the gwith the Scotia Greenstone Belt. The Tregurtha Deposit sits near the top of the rise a		 The alteration types are generally associated with foliation within the granodiorite and appear to form an outer halo to the mineralisation. The following mineralisation styles are present:
 Biotite –Silica: Common throughout the mineralised structures, manifesting as black, foliated biotitic fine grained material associated with zones of stronger shearing. Commonly associated with pyrite and quartz veining. Sericite –Silica: Associated with zones of intense shearing, probably representing post-mineralisation thrusting. Structure The Hughes and Tregurtha deposits are associated with the 320-330 trending Lignum Dam Fault Zone (LDFZ), a north-north zone of shearing, mylonitisation and alteration which is most apparent as a zone of demagnetisation within regional aeromag imagery. The LDFZ manifests at Tregurtha as a series of anastomosing shears and mylonite zones oriented 320-330 degrees with a st the west. The shear zone at Tregurtha is present as a 15-30m thick zone of intense foliation with associated chlorite-sericite and peripheral zones of footwall hematite alteration. The Hughes Deposit sits within a splay structure on a conjugate orientation to the main LDFZ and dips approximately 45 deg 110 degrees. This structure is present as a 30-45m thick zone of intensely biotite-chlorite altered granodiorite with a strong s fabric, strongly associated with gold mineralisation. A similar 45/110 orientation is suggested at Tregurtha as a conjugate structural set which may control shoot orientation as a 80/160 approximately. A biotite-altered structure similar to Hughes, but poorly mineralised, is present at the north of Tregurth Weathering The Tregurtha and Hughes Deposits areas sit on the side of a gently sloping rise associated with the western contact of the g with the Scotia Greenstone Belt. The Tregurtha Deposit sits near the top of the rise and is covered by a 2-5 metre blanket of with the Scotia Greenstone Belt. The Tregurtha Deposit sits near the top of the rise and is covered by a 2-5 metre blanket of subscience and peripheral cones and hughes Deposits areas sit on the side of a gently sloping rise associa		 Pyrite –Quartz: Both minerals are intimately associated with gold mineralisation. On a volume basis pyrite is generally less than 1% and often recorded as trace. The pyrite is generally fine to very finer grained, disseminated euhedra or films upon foliation, associated with shearing. Quartz veining is generally in the trace to 5%, clear to white in colour and distinct from altered blue quartz
 Structure The Hughes and Tregurtha deposits are associated with the 320-330 trending Lignum Dam Fault Zone (LDFZ), a north-north zone of shearing, mylonitisation and alteration which is most apparent as a zone of demagnetisation within regional aeromage imagery. The LDFZ manifests at Tregurtha as a series of anastomosing shears and mylonite zones oriented 320-330 degrees with a set the west. The shear zone at Tregurtha is present as a 15-30m thick zone of intense foliation with associated chlorite-sericite and peripheral zones of footwall hematite alteration. The Hughes Deposit sits within a splay structure on a conjugate orientation to the main LDFZ and dips approximately 45 deg 110 degrees. This structure is present as a 30-45m thick zone of intensely biotite-chlorite altered granodiorite with a strong set fabric, strongly associated with gold mineralisation. A similar 45/110 orientation is suggested at Tregurtha as a conjugate structural set which may control shoot orientation as a 80/160 approximately. A biotite-altered structure similar to Hughes, but poorly mineralised, is present at the north of Tregurth Weathering The Tregurtha and Hughes Deposits areas sit on the side of a gently sloping rise associated with the western contact of the with the Scotia Greenstone Belt. The Tregurtha Deposit sits near the top of the rise and is covered by a 2-5 metre blanket of 		2. Biotite – Silica: Common throughout the mineralised structures, manifesting as black, foliated biotitic fine grained material generally
 The Hughes and Tregurtha deposits are associated with the 320-330 trending Lignum Dam Fault Zone (LDFZ), a north-north zone of shearing, mylonitisation and alteration which is most apparent as a zone of demagnetisation within regional aeromagi imagery. The LDFZ manifests at Tregurtha as a series of anastomosing shears and mylonite zones oriented 320-330 degrees with a sthe west. The shear zone at Tregurtha is present as a 15-30m thick zone of intense foliation with associated chlorite-sericite and peripheral zones of footwall hematite alteration. The Hughes Deposit sits within a splay structure on a conjugate orientation to the main LDFZ and dips approximately 45 deg 110 degrees. This structure is present as a 30-45m thick zone of intensely biotite-chlorite altered granodiorite with a strong stabric, strongly associated with gold mineralisation. A similar 45/110 orientation is suggested at Tregurtha as a conjugate structural set which may control shoot orientation as a 80/160 approximately. A biotite-altered structure similar to Hughes, but poorly mineralised, is present at the north of Tregurth Weathering The Tregurtha and Hughes Deposits areas sit on the side of a gently sloping rise associated with the western contact of the g with the Scotia Greenstone Belt. The Tregurtha Deposit sits near the top of the rise and is covered by a 2-5 metre blanket of 		3. Sericite – Silica: Associated with zones of intense shearing, probably representing post-mineralisation thrusting.
 zone of shearing, mylonitisation and alteration which is most apparent as a zone of demagnetisation within regional aeromagimagery. The LDFZ manifests at Tregurtha as a series of anastomosing shears and mylonite zones oriented 320-330 degrees with a sthe west. The shear zone at Tregurtha is present as a 15-30m thick zone of intense foliation with associated chlorite-sericite and peripheral zones of footwall hematite alteration. The Hughes Deposit sits within a splay structure on a conjugate orientation to the main LDFZ and dips approximately 45 deg 110 degrees. This structure is present as a 30-45m thick zone of intensely biotite-chlorite altered granodiorite with a strong si fabric, strongly associated with gold mineralisation. A similar 45/110 orientation is suggested at Tregurtha as a conjugate structural set which may control shoot orientation as a 80/160 approximately. A biotite-altered structure similar to Hughes, but poorly mineralised, is present at the north of Tregurth Weathering The Tregurtha and Hughes Deposits areas sit on the side of a gently sloping rise associated with the western contact of the with the Scotia Greenstone Belt. The Tregurtha Deposit sits near the top of the rise and is covered by a 2-5 metre blanket of 		Structure
 the west. The shear zone at Tregurtha is present as a 15-30m thick zone of intense foliation with associated chlorite-sericite and peripheral zones of footwall hematite alteration. The Hughes Deposit sits within a splay structure on a conjugate orientation to the main LDFZ and dips approximately 45 deg 110 degrees. This structure is present as a 30-45m thick zone of intensely biotite-chlorite altered granodiorite with a strong structure on a conjugate structural set which may control shoot orientation as a 80/160 approximately. A biotite-altered structure similar to Hughes, but poorly mineralised, is present at the north of Tregurtha as a 80/160 approximately. A biotite-altered structure similar to Hughes, but poorly mineralised, is present at the north of Tregurtha with the structure structure structure structure structure structure altered with the western contact of the swith the Scotia Greenstone Belt. The Tregurtha Deposit sits near the top of the rise and is covered by a 2-5 metre blanket of 		zone of shearing, mylonitisation and alteration which is most apparent as a zone of demagnetisation within regional aeromagnetic
 The Hughes Deposit sits within a splay structure on a conjugate orientation to the main LDFZ and dips approximately 45 deg 110 degrees. This structure is present as a 30-45m thick zone of intensely biotite-chlorite altered granodiorite with a strong stabric, strongly associated with gold mineralisation. A similar 45/110 orientation is suggested at Tregurtha as a conjugate structural set which may control shoot orientation as a 80/160 approximately. A biotite-altered structure similar to Hughes, but poorly mineralised, is present at the north of Tregurth Weathering The Tregurtha and Hughes Deposits areas sit on the side of a gently sloping rise associated with the western contact of the gwith the Scotia Greenstone Belt. The Tregurtha Deposit sits near the top of the rise and is covered by a 2-5 metre blanket of 		 The LDFZ manifests at Tregurtha as a series of anastomosing shears and mylonite zones oriented 320-330 degrees with a steep dip to the west. The shear zone at Tregurtha is present as a 15-30m thick zone of intense foliation with associated chlorite-sericite alteration, and peripheral zones of footwall hematite alteration.
 80/160 approximately. A biotite-altered structure similar to Hughes, but poorly mineralised, is present at the north of Tregurth Weathering The Tregurtha and Hughes Deposits areas sit on the side of a gently sloping rise associated with the western contact of the gwith the Scotia Greenstone Belt. The Tregurtha Deposit sits near the top of the rise and is covered by a 2-5 metre blanket of 		• The Hughes Deposit sits within a splay structure on a conjugate orientation to the main LDFZ and dips approximately 45 degrees towards 110 degrees. This structure is present as a 30-45m thick zone of intensely biotite-chlorite altered granodiorite with a strong submylonitic
 The Tregurtha and Hughes Deposits areas sit on the side of a gently sloping rise associated with the western contact of the with the Scotia Greenstone Belt. The Tregurtha Deposit sits near the top of the rise and is covered by a 2-5 metre blanket of 		• A similar 45/110 orientation is suggested at Tregurtha as a conjugate structural set which may control shoot orientation as a plunge of - 80/160 approximately. A biotite-altered structure similar to Hughes, but poorly mineralised, is present at the north of Tregurtha.
with the Scotia Greenstone Belt. The Tregurtha Deposit sits near the top of the rise and is covered by a 2-5 metre blanket of		Weathering
Cainozoic weathering.		 The Tregurtha and Hughes Deposits areas sit on the side of a gently sloping rise associated with the western contact of the granodiorite with the Scotia Greenstone Belt. The Tregurtha Deposit sits near the top of the rise and is covered by a 2-5 metre blanket of lateritised poorly cemented pisolite gravels, calcrete, rock fragments and red soil. This cover is a remnant of a broader laterite horizon related to Cainozoic weathering.
		lateritised, calcrete horizon is denuded in this area and is absent over the vast majority of the Rainbow Dam Granodiorite. In the vicinity of

Criteria	Commentary
Drill hole Information	See Tables and Figures in main body of this report
Data aggregation methods	 All reported assay results have been length-weighted; no top cuts have been applied. Assay results are reported to a 0.8g/t Au lower cut over a minimum intersection of 1m for RC & 0.3m for DC. A maximum of 2m of internal dilution (i.e. <2m @ <0.8g/t Au) is included for nominal reporting of drill intercepts. No metal equivalent values are used for reporting exploration results.
Relationship between mineralisation widths & intercept lengths	• Drill hole intersections are generally at a high angle to each mineralised zone. Reported down hole intersections are noted as approximately true width, or otherwise are denoted as 'down hole width'.
Diagrams	See Figures in main body of this report
Balanced reporting	All results have been reported relative to the intersection criteria.
Other substantive exploration data	No unreported exploration data has been collected relevant to these deposits considered material to this announcement.
Further work	 Further work will include infill and extensional resource definition drilling of the Hughes and Tregurtha Prospects, resource modelling updates, and optimisation and mine design studies.

Norton Gold Fields

Corporate Directory

Board & Senior Management Jinahe Chen

Non-Executive Chairman

Dianmin Chen Managing Director & Chief Executive Officer

Anne Bi Non-executive Director

Xuelin Cai Non-executive Director

Noel White Non-executive Director

Mark Braghieri General Manager Bullabulling Project

Terry Moylan General Manager Projects & Business Development

Steven Phan Chief Financial Officer

Peter Ruzicka General Manager Exploration

Guy Simpson General Manager Technical Services

Cullum Winn General Manager Paddington Operations

Company Secretary

Richard Jones General Counsel / Company Secretary

Media Relations

Warrick Hazeldine / Annette Ellis Purple Communications Tel: +61 (8) 6314 6300

ASX Listed Share Capital

931,850,668 million ordinary shares

Presentation and Rounding

Unless stated otherwise, all dollars shown are Australian dollars.

YTD

YTD means 2015 calendar year to date

Competent Persons Statement

The information in this report that relates to Mineral Resources is based on information compiled by Peter Ruzicka and Brad Daddow for Paddington, and Richard Sulway for Bullabulling. The information in this report that relates to Mineral Reserves is compiled by Guy Simpson and Elizabeth Jones. Exploration drilling results have been compiled by Peter Ruzicka.

Peter Ruzicka, Guy Simpson and Elizabeth Jones are all members of the Australasian Institute of Mining and Metallurgy and fulltime employees of Norton Gold Fields Limited. Brad Daddow is a member of the Australian Institute of Geoscientists and a former full-time employee of BM Geological Services PL, a consulting group to Norton Gold Fields Limited. Richard Sulway is a member of the Australasian Institute of Mining and Metallurgy, and a former fulltime employee of Snowden, a consulting group to Norton Gold Fields Limited.

Guy Simpson, Elizabeth Jones, Peter Ruzicka, Brad Daddow and Richard Sulway all have sufficient experience relevant to the styles of mineralisation and types of deposits which are covered in this report, and to the activity which they are undertaking to qualify as Competent Persons as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Guy Simpson, Elizabeth Jones, Peter Ruzicka, Brad Daddow and Richard Sulway all consent to the inclusion in this report of matters based on their information in the form and context in which it appears.

Mount Morgan Project

The information in this report that relates to Mineral Resources of the Mount Morgan Mine project was prepared in accordance with the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' ("JORC Code") and is based on, and fairly represents, information and supporting documents prepared by Troy Lowien, Resource Geologist, of consultants Coffey Mining Pty Ltd, who is a Member of The Australian Institute of Mining and Metallurgy ("AUSIMM") and has a minimum of five years of experience in the estimation, assessment and evaluation of Mineral Resources of this style and is the Competent Person as defined in the JORC Code. Troy Lowien conducted the geological modelling, statistical analysis, variography, grade estimation and report preparation. This report accurately summarises and fairly reports his estimations and he has approved and consented to the resource report in the form and context in which it appears. This information was prepared and first disclosed under the JORC Code 2004. It has not been updated since to comply with the JORC Code 2012 on the basis that the information has not materially changed since it was last reported.

March 2015 Quarterly Activities Report

Paddington Ore Reserve and Mineral Resource statement (gold) as at 31 December 2014

Reserve	Mt	g/t	Moz
Proven	1.67	1.53	0.08
Probable	16.86	1.89	1.02
Total	18.53	1.86	1.11
Resource	Mt	g/t	Moz
Resource Measured	Mt 2.32	g/t 1.80	Moz 0.14
Measured	2.32	1.80	0.14

Bullabulling Mineral Resource statement (gold) as at 31 December 2014

Resource	Mt	g/t	Moz
Measured	-	-	-
Indicated	68.57	0.99	2.19
Inferred	26.79	1.19	1.03
Total	95.37	1.05	3.21

Norton Gold Fields Consolidated Mineral Resource statement (gold) as at 31 December 2014

Resource	Mt	g/t	Moz
Measured	2.32	1.80	0.14
Indicated	141.33	1.21	5.51
Inferred	103.22	1.42	4.71
Total	246.87	1.30	10.35

Mount Morgan Mineral Resource statement (gold) as at 31 December 2012

	Mt	g/t	Moz
Indicated	2.487	1.59	0.127
Inferred	5.861	1.07	0.199
Total	8.348	1.23	0.326

Principal Office

Level 36, Exchange Plaza 2 The Esplanade, Perth WA 6000 Australia Tel +61 (0) 8 9263 9700 Fax +61 (0) 8 9263 9777

Postal Address

PO Box 5762 St Georges Terrace PERTH WA 6831 Australia www.nortongoldfields.com.au

Share Registry

Link Market Services Level 15, 324 Queen Street Brisbane QLD 4000 Tel 1300 554 474 (within Australia) Tel +61 1300 554 474 (overseas)

Please direct shareholding enquiries to the share registry