

ASX/Media Announcement 11 May 2015

Guitorga Delivers Significant Drilling Results 21m at 5.6 g/t gold including 8m at 11.8 g/t gold from 13m

- Multiple zones of significant bedrock gold mineralisation discovered within the Guitorga auger anomaly at Korongou.
- The best new RC drill intersections include:
 - 21m at 5.6 g/t gold from 13m, including 8m at 11.8 g/t gold and 12m at 1.1 g/t gold from 51m (BARC083)
 - o **9m at 3.2 g/t gold** from 40m (BARC059)
 - o 12m at 2.0 g/t gold from 4m, including 1m at 10.9 g/t gold (BARC060)
 - o 4m at 7.3 g/t gold from 71m, including 1m at 27.7 g/t gold (BARC055)
 - o 8m at 1.8 g/t gold from 112m (BARC074) (ended in mineralisation)
 - o **1m at 20.7 g/t gold** from 34m (BARC052)
 - 1m at 14.9 g/t gold from 56m (BARC086).
- The shallow, broad, high grade gold intercept in Hole BARC083 is open at depth and along strike and is hosted in diorite intrusive rocks.
- The gold mineralisation in Hole BARC083 seems to be associated with the 1.2km wide SW end of the Guitorga anomaly and a prominent, 5km long, E-W trending magnetic anomaly and both of these coincident anomalies offer very attractive targets for follow-up drilling.

Golden Rim Resources Ltd (**Golden Rim**; ASX: GMR) today announced that it has received the assay results from its reverse circulation (**RC**) drilling program at the Korongou Project in Burkina Faso. The program included 46 holes (BARC050 – BARC095) for a total of 4,850m to primarily test the Guitorga auger gold anomaly at the Banouassi Prospect (Figure 1).

Drill hole location details and significant gold intercepts are listed in Table 1.

SW Portion of the Guitorga Anomaly

The most promising gold mineralisation was discovered in the SW portion of the Guitorga auger anomaly in Hole BARC083 which intersected two mineralised zones with 21m at 5.6 g/t gold, including 8m at 11.8 g/t gold (from 13m) followed by 12m at 1.1 g/t gold (from 51m) (Figures 1 & 2). This shallow gold mineralisation lies under 8m of black soil cover and is associated with quartz-carbonate-sulphide veining. The mineralisation is different to that located elsewhere within the Guitorga anomaly in that it is hosted in diorite intrusive rocks. The diorite host rocks are very similar

in appearance to the diorite rocks that host Golden Rim's high grade Netiana Lodes gold resource at the Balogo Project in southern Burkina Faso.

The gold mineralisation in Hole BARC083 is open at depth and along strike (Figure 3).

The Guitorga auger gold anomaly (>50 ppb gold) in the vicinity of BARC083 balloons out for 1.2km in an E-W direction and remains open to the west. The auger holes above the significant gold intercepts in BARC083 returned 663 ppb gold and 1,267 ppb gold. There are some highly anomalous auger holes to the east and the west of BARC083 that have not been followed-up to date and offer very attractive strike extensional drill targets for Golden Rim. The best results in these auger holes include:

- 1,368 ppb gold (100m east);
- 1,167 ppb gold (200m east);
- 860 ppb gold (400m east);
- 1,034 ppb gold (150m west); and
- 743 ppb gold (750m west).

Coincident with the E-W trending portion of the Guitorga auger gold anomaly and the significant gold intercept in BARC083 is a prominent, E-W trending magnetic anomaly that extends for 5km within the Korongou permit. A 1.4km portion to the west of BARC083 has not been tested with auger drilling to date.

The coincident E-W trending auger gold anomalism and the magnetic anomaly cut across the NE-SW trending gold mineralised shear zones within the Guitorga auger gold anomaly at Korongou, and may lie within a possible dilational structural setting, offering an attractive target for follow-up exploration for a larger, bulk tonnage gold deposit.

As a priority, follow-up drilling is planned to test beneath the gold intercept in BARC083 and along strike.

NE Portion of the Guitorga Anomaly

Most of the holes in the NE portion of the Guitorga anomaly returned significant bedrock gold intersections within a 100m wide x 1km long corridor which is open SW and NE. The intersections relate to a series of step-dipping, NE-SW trending, gold mineralised shear structures (gold zones), predominantly hosted in volcanic rocks.

The gold zones generally range between 2m – 10m in width, with approximately 7 parallel zones intersected in each of the drill sections completed to date across the 100m wide corridor (Figure 4). Most of the zones remain open at depth and open along strike. Better intercepts from these gold zones include:

- 9m at 3.2 g/t gold from 40m (BARC059);
- 12m at 2.0 g/t gold from 4m, including 1m at 10.9 g/t gold (BARC060);
- 4m at 7.3 g/t gold from 71m, including 1m at 27.7 g/t gold (BARC055);
- 8m at 1.8 g/t gold from 112m (BARC074) (ended in mineralisation);
- 1m at 20.7 g/t gold from 34m (BARC052); and
- 1m at 14.9 g/t gold from 56m (BARC086).

Page | 2 32854_2

Follow-up drilling is also planned in the NE portion of the Guitorga anomaly and Golden Rim believes that with infill drilling the gold zones show sufficient continuity to enable them to be converted into gold resources.

Golden Rim's Managing Director, Craig Mackay, said "The RC drilling within the Guitorga auger anomaly at Korongou has confirmed the anomaly is related to multiple parallel zones of significant gold mineralisation over extensive strike lengths."

"Golden Rim is particularly excited about the shallow, broad and high grade gold mineralisation discovered in Hole BARC083 within diorite intrusive rocks and we look forward to testing the auger gold and magnetic anomalies in the vicinity of the hole for strike extensions to the mineralisation."

"Our contractor has agreed to leave its RC drilling rig on-site at Korongou and we are planning to commence a follow-up drilling program immediately upon receiving the funds from the sale of our Balogo Project which are expected shortly" said Mr Mackay.

-ENDS-

For further information, please contact:

Craig Mackay
Golden Rim Resources
Managing Director
+61 3 9890 2311

Hayley Butcher Golden Rim Resources Company Secretary +61 8 9481 5758

Page | 3 32854_2

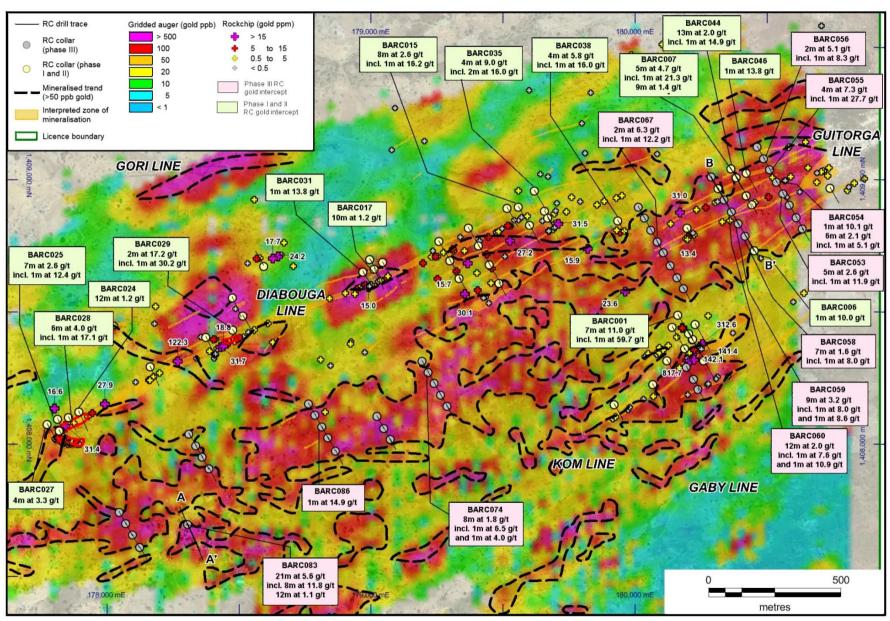


Figure 1. RC drill collars labelled with >10 m x g/t gold intercepts over a gridded auger gold image at the Banouassi prospect.

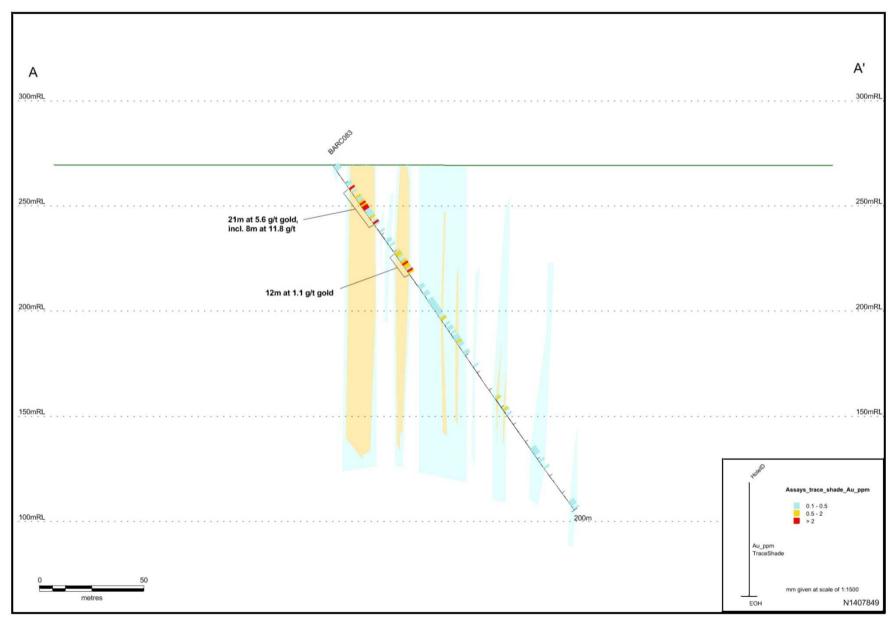


Figure 2. RC drill section A – A' across the SW portion of the Guitorga anomaly (section location depicted on Figure 1).

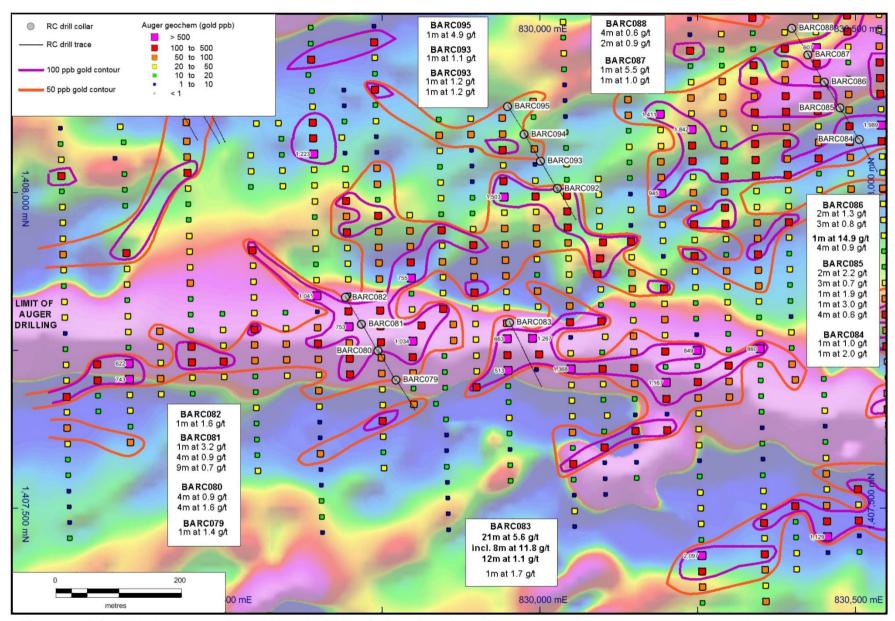
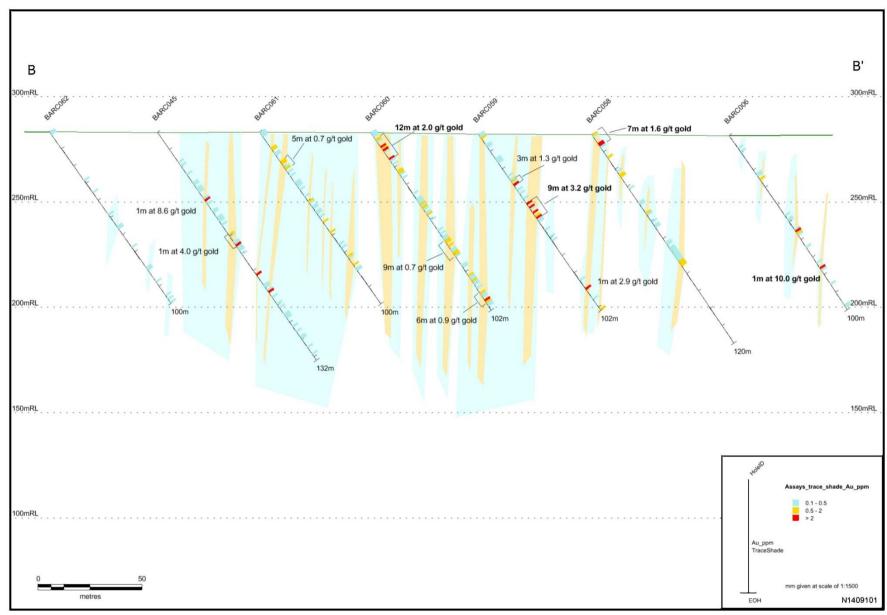



Figure 3. RC drill holes and auger gold results in the SW portion of the Guitorga anomaly over a ground magnetics image.

Page | 6 32854_2

Figure 4. RC drill section B – B' across the NE portion of the Guitorga anomaly (section location depicted on Figure 1).

Table 1. Significant intercepts from the RC drilling at Korongou

	Easting	Northing	RL	Dip	Azi.	ЕОН	From	То	Significant Intersections
Hole ID	(m)	(m)	(m)	(o)	(o)	(m)	(m)	(m)	(>0.5 g/t gold)
BARC050	180,630	1,408,819	285	-55	150	100	1	2	1m at 0.8g/t
									4m at 1.1 g/t, incl. 1m at 3.2 g/t
BARC051	180,608	1,408,861	285	-55	150	100	10	14	from 10m
BARC051							86	87	1m at 1.8 g/t
BARC052	180,582	1,408,908	286	-55	150	100	17	18	1m at 0.7 g/t
BARC052		_,,					34	35	1m at 20.7 g/t
BARC052							46	47	1m at 0.9 g/t
BARC052							55	56	1m at 1.0 g/t
BARC052							62	63	1m at 1.9 g/t
									5m at 0.9 g/t, incl. 1m at 3.4 g/t
BARC053	180,558	1,408,951	286	-55	150	120	8	13	from 12m
BARC053							17	19	2m at 0.8 g/t
BARC053							38	42	4m at 0.6 g/t
BARC053							55	62	7m at 1.0 g/t
BARC053							92	94	2m at 0.9 g/t
BARC053							99	104	5m at 2.6 g/t, incl. 1m at 11.9 g/t
BARC054	180,533	1,408,996	286	-55	150	100	20	21	1m at 10.1 g/t
DAD 605 4								50	6m at 2.1 g/t, incl. 1m at 5.1 g/t
BARC054							44	50	from 45m
BARC054							62	66	4m at 0.5 g/t
BARC054							71	75	4m at 0.7 g/t
BARC055	180,508	1,409,042	286	-55	150	100	0	5	5m at 0.9 g/t
DADCOEE							22	26	3m at 1.6 g/t, incl. 1m at 3.4 g/t
BARC055							23	26	from 24m
BARC055							32	33	1m at 7.6 g/t
BARC055							42	43	1m at 1.9 g/t
BARC055							47	48	1m at 0.7 g/t
BARC055							51	52	1m at 0.6 g/t
BARC055							71	75	4m at 7.3 g/t, incl. 1m at 27.7 g/t
BARCUSS							/1	75	from 74m
BARC055							81	82	1m at 1.2 g/t
BARC056	180,484	1,409,084	286	-55	150	102	0	1	1m at 0.6 g/t
BARC056							16	18	2m at 5.1 g/t, incl. 1m at 8.3 g/t
BARCO30							10	10	from 16m
BARC056							24	25	1m at 5.2 g/t
BARC056							61	63	2m at 1.0 g/t
BARC056							95	98	3m at 2.2 g/t
BARC057	180,461	1,409,128	286	-55	150	100	14	19	5m at 0.9 g/t
BARC057							72	73	1m at 0.6 g/t
BARC058	180,415	1,408,792	282	-55	150	120	0	7	7m at 1.6 g/t, incl. 1m at 8.0 g/t
BAILCOSO	100,413	1,400,732	202	-33	130	120	U	,	from 6m
BARC058							13	14	1m at 0.8 g/t
BARC058							23	25	2m at 1.3 g/t
BARC058							45	46	1m at 1.0 g/t
BARC058							73	76	3m at 1.0 g/t
BARC059	180,388	1,408,838	282	-55	150	102	2	3	1m at 1.8 g/t
BARC059							27	30	3m at 1.3 g/t
									9m at 3.2 g/t, incl. 1m at 8.0 g/t
BARC059							40	49	from 42m and 1m at 8.6 g/t from
									45m

Hole ID	Easting				471	EOH	From	To	Significant Intersections
	(m)	Northing (m)	RL (m)	Dip (o)	Azi. (o)	(m)	(m)	(m)	(>0.5 g/t gold)
BARC059	, ,	• •	. ,	,	. ,	. ,	89	90	1m at 2.9 g/t
BARC059							101	102	1m at 0.8 g/t
									12m at 2.0 g/t, incl. 1m at 7.6 g /t
BARC060	180,362	1,408,883	283	-55	150	102	4	16	from 8m and 1m at 10.9 g/t from
		_,,							15m
BARC060							22	24	2m at 0.8 g/t
BARC060							41	44	3m at 0.6 g/t
BARC060							47	48	1m at 0.5 g/t
BARC060							62	71	9m at 0.7 g/t
BARC060							82	86	4m at 0.8 g/t
BARC060							92	98	6m at 0.9 g/t
-	180,336	1,408,928	283	-55	150	100	9	11	2m at 1.1 g/t
BARC061	160,330	1,408,328	203	-55	130	100	17	22	5m at 0.7 g/t
BARC061							40	41	1m at 0.7 g/t
BARC061							52	53	1m at 0.7 g/t 1m at 1.2 g/t
							58	59	
BARCO61							72	73	1m at 0.5 g/t
BARCO61									1m at 1.6 g/t
BARCO61	400 200	4 400 045	202		450	100	77	78	1m at 1.1 g/t
	180,286	1,409,015	283	-55	150	100	65	66	No significant intersections
	180,182	1,408,592	280	-55	150	100	65	66	1m at 0.7 g/t
BARC063							92	93	1m at 0.9 g/t
	180,156	1,408,635	280	-55	150	100	19	20	1m at 0.6 g/t
	180,131	1,408,681	280	-55	150	100	24	25	1m at 0.6 g/t
BARC065							89	90	1m at 0.8 g/t
-	180,104	1,408,728	280	-55	150	100	0	3	3m at 0.5 g/t
BARC066							18	19	1m at 0.8 g/t
BARC066							21	22	1m at 0.7 g/t
BARC066							31	36	5m at 1.1 g/t
BARC066							82	83	1m at 1.9 g/t
BARC067	180,082	1,408,770	280	-55	150	120	18	20	2m at 6.3 g/t, incl. 1m at 12.2 from
	100,002	1,400,770	200	33	130	120			18m
BARC067							28	29	1m at 0.8 g/t
BARC067							45	46	1m at 3.3 g/t
BARC067							53	54	1m at 0.8 g/t
BARC067							56	58	2m at 0.6 g/t
BARC067							94	95	1m at 5.9 g/t
BARC068	180,058	1,408,814	280	-55	150	132	8	10	2m at 0.9 g/t
BARC068							18	19	1m at 0.6 g/t
BARC068							85	86	1m at 0.7 g/t
BARC068							105	106	1m at 1.7 g/t
BARC068							114	115	1m at 0.6 g/t
BARC069	180,033	1,408,860	280	-55	150	102	0	5	5m at 1.4 g/t
	·	•							3m at 2.0 g/t, incl. 1m at 4.8 g/t
BARC069							60	63	from 61m
BARC069							74	75	1m at 0.6 g/t
BARC069							96	97	1m at 2.0 g/t
	180,010	1,408,901	280	-55	150	100	39	40	1m at 1.7 g/t
BARC070	/	,,30-					54	55	1m at 0.7 g/t
-	179,285	1,408,147	274	-55	150	100	9	10	1m at 0.8 g/t
	,,,	_, , ,		- 55			46	47	1m at 0.7 g/t
BAKC0/1						 			
BARC071 BARC072	179,261	1,408,191	274	-55	150	114	13	14	1m at 1.5 g/t

Page | 9 32854_2

Hole ID	Easting	Northing	RL	Dip	Azi.	EOH	From	То	Significant Intersections
	(m)	(m)	(m)	(o)	(o)	(m)	(m)	(m)	(>0.5 g/t gold)
									from 28m
BARC072							48	49	1m at 5.6 g/t
BARC072							78	80	2m at 0.6 g/t
BARC072							95	98	3m at 0.6 g/t
BARC073	179,237	1,408,234	274	-55	150	102	38	42	4m at 0.8 g/t
BARC073							55	56	1m at 1.28g/t
BARC073							67	74	7m at 1.3 g/t, incl. 1m at 3.9 g/t
Brittee 7 5							07	, ,	from 68m
BARC073							82	83	1m at 0.8 g/t
BARC073							85	86	1m at 0.5 g/t
BARC074	179,214	1,408,276	274	-55	150	120	43	44	1m at 0.5 g/t
BARC074							45	46	1m at 0.5 g/t
BARC074							66	67	1m at 0.6 g/t
BARC074							71	72	1m at 1.0 g/t
BARC074							76	81	5m at 0.6 g/t
BARC074							93	94	1m at 2.6 g/t
									8m at 1.8 g/t, incl. 1m at 6.5g/t
BARC074							112	120	from 115m and 1m at 4.0 g/t from
									119m
BARC075	179,191	1,408,318	274	-55	150	90			No significant intersections
BARC076	179,071	1,408,022	272	-55	150	83	10	11	1m at 1.2 g/t
BARC077	179,047	1,408,064	272	-55	150	114	23	25	2m at 1.0 g/t
BARC077	,	, ,					48	49	1m at 0.5 g/t
BARC078	179,020	1,408,109	273	-55	150	104	10	11	1m at 0.5 g/t
BARC078	,	, ,					13	14	1m at 0.6 g/t
BARC078							18	27	9m at 0.6 g/t
BARC078							32	44	12m at 0.7 g/t
BARC078							48	49	1m at 0.5 g/t
BARC078							73	78	5m at 1.0 g/t
BARC078							87	88	1m at 2.7 g/t
BARC078							94	96	2m at 1.0 g/t
BARC079	178,122	1,407,614	268	-55	150	100	22	23	1m at 1.4 g/t
BARC079	170,122	1,407,014	200	-55	130	100	56	57	1m at 1.4 g/t 1m at 0.7 g/t
BARC080	178,095	1,407,661	268	-55	150	100	5	9	4m at 0.9 g/t
BARC080	178,093	1,407,001	208	-55	130	100	17	19	2m at 0.7 g/t
BARC080							23	24	1m at 0.5 g/t
-									1m at 1.0 g/t
BARC080							28	29	
BARC080							36	40	4m at 1.6 g/t, incl. 1m at 5.6 g/t from 36m
BARC081	178,070	1,407,704	268	-55	150	100	33	34	1m at 3.2 g/t
BARC081	178,070	1,407,704	208	-33	130	100	39	40	1m at 3.2 g/t 1m at 0.6 g/t
-								-	~
BARC081							54	58	4m at 0.9 g/t 9m at 0.7 g/t, incl. 1m at 3.5 g/t
BARC081							62	71	
DADCOGO	170 045	1 407 747	200		150	100	22	24	from 64m
BARCO82	178,045	1,407,747	268	-55	150	100	23	24	1m at 0.6 g/t
BARC082							82	83	1m at 1.6 g/t
BARC083	178,304	1,407,701	269	-55	150	200	13	34	21m at 5.6 g/t, incl. 8m at 11.8 g/t from 18m
									12m at 1.1 g/t incl. 1m at 4.0 g/t
BARC083							51	63	from 61m
BARC083							89	90	1m at 0.7 g/t
BARC083							102	103	1m at 0.6 g/t

Page | 10 32854_2

Hala ID	Easting	Northing	RL	Dip	Azi.	EOH	From	То	Significant Intersections
Hole ID	(m)	(m)	(m)	(o)	(o)	(m)	(m)	(m)	(>0.5 g/t gold)
BARC083							135	136	1m at 0.7 g/t
BARC083							141	142	1m at 1.7 g/t
BARC084	178,864	1,407,978	271	-55	150	105	34	35	1m at 1.0 g/t
BARC084							80	81	1m at 2.0 g/t
BARC084							104	105	1m at 0.5 g/t
BARC085	178,835	1,408,028	271	-55	150	102	1	3	2m at 2.2 g/t
BARC085							16	19	3m at 0.7 g/t
BARC085							24	25	1m at 0.7 g/t
BARC085							47	48	1m at 1.9 g/t
BARC085							52	53	1m at 3.0 g/t
BARC085							57	61	4m at 0.6 g/t
BARC086	178,811	1,408,070	272	-55	150	100	31	33	2m at 1.3 g/t
BARC086							38	41	3m at 0.8 g/t
BARC086							45	46	1m at 0.7 g/t
BARC086							56	57	1m at 14.9 g/t
BARC086							62	66	4m at 0.9 g/t
BARC087	178,786	1,408,114	272	-55	150	114	0	1	1m at 5.5 g/t
BARC087							95	96	1m at 1.0 g/t
BARC087							102	103	1m at 0.5 g/t
BARC088	178,762	1,408,156	272	-55	150	100	30	31	1m at 0.5 g/t
BARC088							37	41	4m at 0.6 g/t
BARC088							46	48	2m at 0.9 g/t
BARC089	180,236	1,408,211	282	-55	150	100	11	12	1m at 0.6 g/t
BARC089							72	73	1m at 0.8 g/t
BARC089							78	79	1m at 4.6 g/t
BARC090	180,219	1,408,250	280	-55	150	100	34	35	1m at 0.6 g/t
BARC091	180,192	1,408,296	280	-55	150	100	10	13	3m at 0.9 g/t
BARC091							21	22	1m at 0.9 g/t
BARC091							38	40	2m at 1.1 g/t
BARC091							46	47	1m at 1.4 g/t
BARC092	178,385	1,407,911	273	-55	150	100	19	20	1m at 0.9 g/t
BARC092							26	27	1m at 1.2g/t
BARC092							32	33	1m at 1.2 g/t
BARC092							61	62	1m at 0.8 g/t
BARC093	178,359	1,407,955	278	-55	150	100	62	63	1m at 0.5 g/t
BARC093							73	74	1m at 0.6 g/t
BARC093							89	90	1m at 1.1 g/t
BARC094	178,334	1,407,998	271	-55	150	102			No significant intersections
BARC095	178,309	1,408,043	276	-55	150	100	2	3	1m at 0.7 g/t
BARC095							28	29	1m at 4.9 g/t
BARC095							41	42	1m at 0.7 g/t
BARC095			_		_		60	61	1m at 0.6 g/t

- All holes are Reverse Circulation (RC) holes
- All reported intersections are assayed at 1m intervals
- Intercept cut-off grade is 0.5 g/t gold
- Intervals are reported with a maximum of 4m of internal dilution unless the total intercept grade falls below 0.5 g/t gold
- No top cut applied
- Coordinate projection is UTM, WGS 84, zone 31 North
- Sample preparation and assaying conducted by BIGS Laboratory in Ouagadougou.
- Assayed by 50g charge fire assay with AAS finish

Page | 11 32854_2

Appendix 1: JORC Code (2012 Edition), Assessment and Reporting Criteria

Section 1: Sampling Techniques and Data

 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 2 kg was pulver to produce a 50g charge for fire assay. The RC samples were reduced to a 2kg sample by riffle splitting on site. Measures were taken to avoid wet RC drilling. Samples were all collected by qualified geologists or under geological supervision of the rock being drilled, because representative sub sampling of the RC samples was achieved. Location of each hole was recorded by held GPS with positional accuracy of approximately +/- 5 metres. This was the followed up by surveying with a differer GPS, which is accurate to +/-0.1m in X, Yz. Location data was collected in WGS 8 UTM zone 30N or 31N. 	tain rised on. ative nand en
commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information.	
• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	n face
 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample bias may have occurred due to preferential loss/gain of fine/coarse material. RC recoveries are logged and recorded in database. Overall recoveries are >75% for RC. There are no significant sample recovery. RC samples were visually checked for recovery, moisture and contamination. The style of mineralisation, with common higher-grade, requires good recoveries are logged and recorded in database. Overall recoveries are >75% for RC. There are no significant sample recovery. RC samples were visually checked for recovery, moisture and contamination. The style of mineralisation, with common higher-grade, requires good recoveries devaluate the mineralisation adequately. consistency of the mineralised intervals density of drilling is considered to prevent any sample bias issues due to material logain. 	or the overy t at on to The and ent
 Whether core and chip samples have been geologically and geotechnically logged to a 	ried

Page | 12 32854_2

	level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. • Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. • The total length and percentage of the relevant intersections logged.	 out on all drill samples, recording lithology, weathering, structure, veining, mineralisation, grainsize and colour. Logging of sulphide mineralisation and veining is quantitative. The geological logging was done using a standardised logging system. This information and the e sample details were entered into Golden Rim's drilling database. No judgement has yet been made on whether the geological logging has been sufficient to support Mineral Resource estimation.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RC samples were collected on the rig using a three-tier riffle splitter. All samples were dry. Samples were transported by road to BIGS Laboratory in Ouagadougou. The sample preparation for all samples follows industry best practice. At the laboratory all samples were weighed, dried and crushed to -2mm in a jaw crusher. A split of the crushed sample was subsequently pulverised in a ping mill to achieve a nominal particle size of 85% passing 75um. Field QC procedures involve the use of certified reference material as assay standards, blanks and duplicates for the RC samples. The insertion rate of these averaged 3:30. Field duplicates were taken on 1m RC splits using a riffle splitter. The sample sizes are considered to be appropriate to correctly represent the style of mineralisation, the thickness and consistency of the intersections.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 The laboratory used an aqua regia digest followed by fire assay with an AAS finish for gold analysis. No geophysical tools were used to determine any element concentrations. Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 90% passing 75 microns. Internal laboratory QAQC checks are reported by the laboratory. Review of the internal laboratory QAQC suggests the laboratory is performing within acceptable limits. For RC samples we insert one blank, on chanderd and one duplicate for every 20.

Page | 13 32854_2

standard and one duplicate for every 30

samples.

Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Sample data is compiled and digitally captured by Golden Rim geologists. The compiled digital data is verified and validated by the Company's database geologist. Reported results are compiled by the Company's Senior Geologist and the Managing Director. There were no adjustments to the assay data.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Down-hole surveys were completed at the end of every hole (where possible) using a Reflex down-hole survey tool. Measurements were taken at approximately every 50 meters. At the completion of the program all holes are surveyed with a DGPS, which has locational accuracy of +/- 0.1m, X, Y and Z. Location data was collected in UTM grid WGS84, zone 31north.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 The drill intercepts are irregularly spaced. No judgement has been made on whether the drill density is sufficient to calculate a Mineral Resource. There was no sample composting.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 All drill holes reported here were drilled approximately at right angles to the strike of the target mineralisation. No orientation based sampling bias has been identified in the data at this point.
Sample security	The measures taken to ensure sample security.	Samples are stored on site prior to road transport by Company personnel to the laboratory in Ouagadougou, Burkina Faso.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	There has been no external audit or review of the Company's techniques or data.

Section 2: Reporting of Exploration Results

Criteria	JORC Code explanation	Explanation
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as 	 The RC drilling results are from the Korongou permit. Golden Rim is in an agreement to acquire 90% of the Project.

Page | 14 32854_2

	joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Tenure is in good standing.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The area that is presently covered by the Korongou permit has undergone some previous mineral exploration.
Geology	Deposit type, geological setting and style of mineralisation.	 The Korongou Project covers part of a highly prospective Lower Proterozoic Birimian, Samira Hill Greenstone belt and is traversed by a significant NE-trending fault splay which is connected to the major Markoye Fault system. This fault system controls a number of major gold deposits in Burkina Faso, including Kiaka (5.9 Moz), Bomboré (5.2 Moz) and Essakan (6.2 Moz). The mineralisation lies in a package of highly altered volcanic and volcaniclastic host rocks and is associated with a major gold-in-soil anomaly and a prominent dilational structural jog along a regional NE-trending shear zone.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Intercepts that form the basis of this announcement are tabulated in Table 1, within the body of this announcement and incorporate Hole ID, Easting, Northing, Dip, Azimuth, Depth and Assay data for the mineralised intercepts. Appropriate locality maps for some of the holes also accompanies this announcement.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the 	 All samples were taken at 1m intervals. For the 0.5 g/t Au cut-off calculations, up to 4m (down hole) of internal waste, unless the total intercept grade falls below 0.5 g/t gold. No weighting or high grade cutting techniques have been applied to the data

Page | 15 32854_2

	 procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 reported. Assay results are generally quoted rounded to 1 decimal place. Metal equivalent values are not reported in this announcement.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	The orientation of the mineralised zone has been established and the drilling was planned in such a way as to intersect mineralisation in a perpendicular manner.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Maps are provided in the main text.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All sample results containing significant (>0.5 g/t) gold are reported the table in the main text.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	There is no other exploration data which is considered material to the results reported in the announcement.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further infill drilling is planned to follow up the results reported in this announcement.

Page | 16 32854_2

The information in this report relating to previous auger sample results is extracted from the announcements Quarterly Activities and Cashflow Report 31 March 2015 dated 28 April 2015; and Guitorga Gold Anomaly at Korongou Exceeds 3.5km dated 12 February 2015, and has been reported in accordance with the 2012 edition of the JORC Code. These announcements are available on the Company's website (www.goldenrim.com.au). The Company confirms that it is not aware of any new information or data that materially affects the information included in these announcements.

The information in this report that relates to exploration results and mineral resources is based on information compiled by Mr Craig Mackay, a Competent Person who is a member of The Australasian Institute of Mining and Metallurgy. Mr Mackay is a full-time employee of Golden Rim Resources Ltd. Mr Mackay has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Mackay consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Further Company Information

E: <u>info@goldenrim.com.au</u> W:goldenrim.com.au

Capital Structure

Issued Shares: 1,438,520,000 Unlisted Options: 213,258,400

Major Shareholders

Sprott 17.95% Aurora Minerals 13.44% Acorn Capital 10.13% Royal Group, Abu Dhabi 3.79%

Share Registry

Security Transfer Registrars Pty Ltd 770 Canning Highway APPLECROSS WA 6153 AUSTRALIA

T: + 61 8 9315 2333 F: + 61 8 9315 2233

E: registrar@securitytransfer.com.au

Page | 17 32854_2