ASX ANNOUNCEMENT #### Rox Resources Limited ASX: RXL #### Address: Level 1 30 Richardson Street WEST PERTH WA 6005 PO Box 1167 West Perth WA 6872 Ph: (61 8) 9226 0044 Fax: (61 8) 9325 6254 #### Email: admin@roxresources.com.au #### Web: www.roxresources.com.au ABN: 53 107 202 602 ### **Projects:** Mt Fisher: nickel-gold (100%) Reward: zinc-lead (49%) Bonya: copper-silver (earning up to 70%) # SIGNIFICANT DOWNHOLE EM CONDUCTORS - Significant downhole EM conductors detected at **Cannonball and Musket North** - Musket North diamond hole returns 0.7m @ 3.6% Ni, including 14cm of massive sulphide @ 9.1% Ni Rox Resources Limited (ASX: RXL) ("Rox" or "the Company") is pleased to report that Downhole EM surveying recently undertaken at the Musket and Cannonball deposits at its 100% owned Fisher East Nickel project 500km north of Kalgoorlie WA, has produced some exciting results. In addition a diamond hole drilled at Musket North has extended mineralisation approximately 80m down plunge from a previous drill intercept (MFED058: **2.3m @ 4.1% Ni**). The new intercept was: MFED064: **0.7m @ 3.6% Ni**, including **0.14m @ 9.1% Ni** from 457.5m The grade of 9.1% Ni for the massive sulphide in hole MFED064 is very encouraging for development of this high tenor mineralisation further down dip and plunge. Meanwhile, diamond hole MFED065, drilled on the bottom southern edge of the Musket resource did not intersect any significant mineralisation. Downhole EM surveying was undertaken in holes MFED064 (Musket North) and MFED067 (Cannonball) and both surveys indicated significant off-hole EM conductors (Figure 1) which warrant further drill testing. These EM conductors can be seen in better overall context on Figure 2 which shows the mineralised system over the 3km of strike from Musket to Camelwood and the downhole EM conductors now obtained from within that area indicating potential extensions to mineralisation. "These Kambalda-style nickel sulphide deposits typically occur as shoots, pools and channels at the base of the ultramafic lava as it flows over the rock substrate. They can occur to great depths, certainly greater than 1km, and over significant strike lengths." "The drilling at Fisher East is starting to define such a system which should lead to many more nickel sulphide discoveries over time. Kambalda has had around 50 years of exploration yet we only discovered Fisher East a little over two years ago. It is very early days here but I think it is evident there is much more to come", Rox Managing Director, Mr Ian Mulholland said. Drilling at Fisher East is ongoing with a diamond rig currently on site and an RC rig expected shortly. ### **ENDS** For more information: Shareholders/Investors Ian Mulholland Managing Director Tel: +61 8 9226 0044 admin@roxresources.com.au ### Media Tony Dawe / Luke Sizer Professional Public Relations Tel: + 61 8 9388 0944 tony.dawe@ppr.com.au luke.sizer@ppr.com.au Figure 1: Musket-Cannonball Long Section showing the new downhole EM conductors Figure 2: Musket-Camelwood Long Section over 3km of strike and to 800m depth; showing drill piercement points, existing resource outlines, and downhole EM conductors ### **About Rox Resources** Rox Resources Limited is an emerging Australian minerals exploration company. The company has four key assets at various levels of development with exposure to gold, nickel, zinc, lead, copper and phosphate, including the Mt Fisher Gold Project (WA), Myrtle/Reward Zinc-Lead Project (NT), the Bonya Copper Project (NT) and the Marqua Phosphate Project (NT). ## Mt Fisher Gold-Nickel Project (100% + Option to Purchase \$2.3 million to pay) The Mt Fisher gold project is located in the highly prospective North Eastern Goldfields region of Western Australia and in addition to being well endowed with gold the project hosts strong nickel potential. The total project area is 655km², consisting of a 485km² area 100% owned by Rox and an Option to purchase 100% of a further 170km². Recent drilling at the Camelwood and Musket nickel prospects has defined a JORC 2012 Mineral Resource (ASX:RXL 9 October 2013 and 4 September 2014) of **3.6Mt grading 2.0% Ni** reported at 1.0% Ni cut-off (Indicated Mineral Resource: 1.8Mt grading 2.2% Ni, Inferred Mineral Resource: 1.9Mt grading 1.8% Ni) comprising massive and disseminated nickel sulphide mineralisation, and containing 72,100 tonnes of nickel. Higher grade mineralisation is present in both deposits (refer to ASX announcements above), and is still open at depth beneath each deposit. The nickel Mineral Resource occurs partly on tenements under Option to Purchase to Rox, with the remaining exercise price of \$2.3 million payable by 30 June 2015. Drilling by Rox has also defined numerous high-grade gold targets and a JORC 2004 Measured, Indicated and Inferred Mineral Resource (ASX:RXL 10 February 2012) of **973,000 tonnes grading 2.75 g/t Au** reported at a 0.8 g/tAu cut-off exists for 86,000 ounces of gold (Measured: 171,900 tonnes grading 4.11 g/t Au, Indicated: 204,900 tonnes grading 2.82 g/t Au, Inferred: 596,200 tonnes grading 2.34 g/t Au) aggregated over the Damsel, Moray Reef and Mt Fisher deposits. ## **Reward Zinc-Lead Project** (49% + Farm-out Agreement) Rox has signed an Earn-In and Joint Venture Agreement with Teck Australia Pty Ltd. ("Teck") to explore its highly prospective 670km² Myrtle/Reward zinc-lead tenements, located 700km south-east of Darwin, Northern Territory, adjacent to the McArthur River zinc-lead mine. The Myrtle zinc-lead deposit has a current JORC 2004 Mineral Resource (ASX:RXL 15 March 2010) of **43.6 Mt @ 5.04% Zn+Pb** reported at a 3.0% Zn+Pb cut-off (Indicated: 5.8 Mt @ 3.56% Zn, 0.90% Pb; Inferred: 37.8 Mt @ 4.17% Zn, 0.95% Pb). Drilling at the Teena zinc-lead prospect has intersected **26.4m** @ **13.3% Zn+Pb** including **16.2m** @ **17.2% Zn+Pb**, and **20.1m** @ **15.0% Zn+Pb** including **12.5m** @**19.5% Zn+Pb**, and together with historic drilling has defined significant high grade zinc-lead mineralisation over a strike length of at least 1.9km (ASX:RXL 5 August 2013, 26 August 2013, 18 September 2013, 11 October 2013, 27 October 2014, 10 November 2014, 15 December 2014). Teena is the most significant new discovery of zinc in Australia since Century in 1991. Under the terms of the Agreement, Teck has now met the expenditure requirement for a 51% interest, with Rox holding the remaining 49%. Teck has elected to increase its interest in the project to 70% by spending an additional A\$10m (A\$15m in total) by 31 August 2018 (ASX:RXL 21 August 2013). ## **Bonya Copper Project** (Farm-in Agreement to earn up to 70%) In October 2012 Rox signed a Farm-in Agreement with Arafura Resources Limited (ASX:ARU) to explore the Bonya Copper Project located 350km east of Alice Springs, Northern Territory. Outcrops of visible copper grading up to 34% Cu and 27 g/t Ag are present, with the style of mineralisation similar to the adjacent Jervois copper deposits (see ASX:KGL). EM surveys defined a number of anomalies that could represent sulphide mineralisation at depth (ASX:RXL 5 August 2014). Drill testing has intersected visible copper mineralisation at three prospects, with massive copper sulphides intersected at the Bonya Mine prospect, including 38m @ 4.4% Cu (ASX:RXL 20 October 2014, 5 November 2014, 1 December 2014). Under the Farm-in Agreement Rox earned a 51% interest in the copper, lead, zinc, silver, gold, bismuth and PGE mineral rights at Bonya by spending \$500,000 by 10 December 2014 (ASX:RXL 16 December 2014). Rox has elected to earn a further 19% (for 70% in total) by spending a further \$1 million by 10 December 2016. ## **Appendix** The following information is provided to comply with the JORC (2012) requirements for the reporting of the drilling and geophysical results on tenement E53/1318. # **Section 1 Sampling Techniques and Data** | Criteria | JORC Code explanation | Commentary | |-----------------------|--|--| | Sampling techniques | Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. | RC hole diameter was 5.5" (140 mm) reverse circulation percussion (RC). Sampling of RC holes was undertaken by collecting 1m cone split samples at intervals. | | | | Diamond drill hole core size is NQ2 size diameter through the mineralisation. Sampling of diamond holes was by cut half core as described further below. | | | | Drill holes were generally angled at -60° towards grid west (but see Table for individual hole dips and azimuths) to intersect geology as close to perpendicular as possible. | | | Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used | Drillhole locations were picked up by handheld GPS. Logging of drill samples included lithology, weathering, texture, moisture and contamination (as applicable). Sampling protocols and QAQC are as per industry best practice procedures. | | | Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information | Diamond core is dominantly NQ2 size, sampled on geological intervals, with a minimum of 0.1 m up to a maximum of 1.5 m. NQ2 core is cut into half, or quarter for HQ holes. RC drillholes were sampled on 1m intervals using riffle or cone splitter units. Samples were sent to Intertek Genalysis in Kalgoorlie, crushed to 10mm, dried and pulverised (total prep) in LM5 units (Some samples > 3kg were split) to produce a sub-sample. The pulps were then sent to Perth for analysis by four acid digest with a multi-element ICP-OES finish (code: 4A/OE-multi element). Au, Pt and Pd were analysed by 50 gram fire assay with a mass spectrometer finish. Internal laboratory QA uses CRM's, blanks, splits and replicates, along with 10% repeats. | | Drilling techniques | Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). | Drilling techniques were Reverse Circulation (RC) and diamond core (DD). The RC hole diameter was 140mm face sampling hammer. Hole depths range from 100m to 130m. | | | | DD hole diameter was mostly NQ2 with 5 ¼ inch mud rotary precollar and HQ upper hole portions. Hole depth was 330.8m. The core was orientated using a Camtech orientation tool. DD holes had RC or rock roller bit pre-collars drilled, generally to 100-150m depth. | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed | Diamond drill core recoveries were logged and recorded in the database. Overall recoveries were >95%, and there were no significant core loss or recovery problems. | | | | RC drill recoveries were high (>90%). | | | Measures taken to maximise sample recovery and ensure representative nature of the samples | Diamond core was reconstructed into continuous sample runs on an angle iron used for orientation marking. Depths are measured and checked against marked depths on the core blocks. | | | | RC samples were visually checked for recovery, moisture and contamination and notes made in the logs. | | | Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | There is no observable relationship between recovery and grade, and therefore no sample bias. | | Criteria | JORC Code explanation | Commentary | |--|--|--| | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. | Detailed geological logs have been carried out on all RC drill holes, but no geotechnical data have been recorded (or is possible to be recorded due to the nature of the sample). The geological data would be suitable for inclusion in a Mineral Resource estimate. | | | | Detailed geological and geotechnical logs were carried out on all diamond drill holes for recovery, RQD, structures etc. which included structure type, dip, dip direction, alpha angle, beta angle, texture, shape, roughness, fill material, and this data is stored in the database. | | | Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. | Logging of diamond core and RC chips recorded lithology, mineralogy, mineralisation, structure (DD only), weathering, colour, and other sample features. Core was photographed and is stored in plastic core trays. RC chips are stored in plastic RC chip trays. | | | The total length and percentage of the relevant intersections logged | All holes were logged in full except for rock roller bit diamond hole pre-collars (0-120m in most cases). | | Sub-sampling
techniques and sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. | Drill core was cut in half on site using a core saw. All samples were collected from the same side of the core, preserving the orientation mark in the kept core half. | | | If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. | RC samples were collected on the drill rig using a cone splitter. If any mineralised samples were collected wet these were noted in the drill logs and database. | | | For all sample types, the nature, quality and appropriateness of the sample preparation technique. | The sample preparation followed industry best practice. This involved oven drying, coarse crushing of diamond core to ~10mm, followed by pulverisation of the entire sample in an LM5 or equivalent pulverising mill to a grind size of 85% passing 75 micron. | | | Quality control procedures adopted for all sub-
sampling stages to maximise representivity of
samples. | Field QC procedures involve the use of Certified Reference Materials (CRM's) as assay standards, along with duplicates and barren waste samples. The insertion rate of these was approximately 1:20. | | | Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. | No diamond core field duplicates were taken. For RC drilling field duplicates were taken on a routine basis at an approximate 1:20 ratio using the same sampling techniques (i.e. cone splitter) and inserted into the sample run. | | | Whether sample sizes are appropriate to the grain size of the material being sampled. | The sample sizes are considered more than adequate to ensure that there are no particle size effects relating to the grain size of the mineralisation which lies in the percentage range. | | Quality of assay data and laboratory tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. | The analytical technique involved a four acid digest followed by multi-element ICP/OES analysis (Intertek analysis code 4A/OE). The four acid digest involves hydrofluoric, nitric, perchloric and hydrochloric acids and is considered a "complete" digest for most material types, except certain chromite minerals. | | | For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. | No geophysical or portable analysis tools were used to determine assay values stored in the database. | | | Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. | Internal laboratory control procedures involve duplicate assaying of randomly selected assay pulps as well as internal laboratory standards. All of these data are reported to the Company and analysed for consistency and any discrepancies. | | | | Check assays were undertaken at an independent third party assay laboratory and correlated extremely well. | | Verification of sampling and assaying | The verification of significant intersections by either independent or alternative company personnel. | Senior technical personnel from the Company (Managing Director and/or Exploration Manager) have visually inspected and verified the significant drill intersections. | | | | | | Criteria | JORC Code explanation | Commentary | |---|--|---| | | Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. | Primary data was collected using a standard set of Excel templates on Toughbook laptop computers in the field. These data are transferred to Geobase Pty Ltd for data verification and loading into the database. | | | Discuss any adjustment to assay data. | No adjustments or calibrations have been made to any assay data. | | Location of data points | Accuracy and quality of surveys used to locate drillholes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. | A hand held GPS has been used to determine collar locations at this stage, however DGPS collar surveys will be undertaken by a licensed surveyor shortly. EM survey loops were laid out using handheld GPS units to an accuracy of 3-5m. | | | | Topographic control 2-5m accuracy using published maps or aeromagnetic data digital terrain models is considered to be sufficient for modelling of EM survey results. | | | Specification of the grid system used. | The grid system is MGA_GDA94, zone 51 for easting, northing and RL. | | | Quality and adequacy of topographic control. | The topographic surface was generated from digital terrain models generated from low level airborne geophysical surveys. | | Orientation of data in relation to geological structure | Data spacing for reporting of Exploration Results. | The drill hole spacing varies 40-100 metres between drill sections, with some areas at 40 metre drill section spacing. Some sections (but not all) have had more than one hole drilled. Down dip step out distance varies 40-100 metres. | | | | The EM transmitter loops are laid out on the surface as 500 x 500m squares. The EM sensor probe is pulled from the bottom of the hole taking measurements at 10 m spacing with further 5m and 2m infill over anomalies of interest. | | | Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. | The mineralisation and geology shows very good continuity from hole to hole and will be sufficient to support the definition of a Mineral Resource or Ore Reserve and the classifications contained in the JORC Code (2012 Edition) in due course. | | | Whether sample compositing has been applied. | No sample compositing has occurred for diamond core drilling. Sample intervals are based on geological boundaries with even one metre samples between. | | | | For RC samples, sample compositing occurred over 4 metre intervals for non-mineralised material, but all mineralised intervals were sampled at a one metre interval. | | | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. | The deposits strike at between about 330-345 degrees and dip to the east at between -50 to -70 degrees. The drill orientation was planned to be 240-270 degrees, so slightly oblique to the perpendicular direction, however, some drill holes have swung slightly south (to up to 225-255 degrees) so were drilling essentially perpendicular to strike. This is confirmed in structural logging of mineralised zones. | | | | EM Transmitter loops are oriented in a NW direction to better couple with the deposits. | | | If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | No sampling bias is believed to have been introduced. | | Criteria | JORC Code explanation | Commentary | |-------------------|---|---| | Sample security | The measures taken to ensure sample security. | Sample security is managed by the Company. After preparation in the field samples are packed into polyweave bags and despatched to the laboratory. For a large number of samples these bags were transported by the Company directly to the assay laboratory. In some cases the sample were delivered to a transport contractor who then delivered the samples to the assay laboratory. The assay laboratory audits the samples on arrival and reports any discrepancies back to the Company. No such discrepancies occurred. | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | A review of previous sampling techniques and data was carried out by Optiro Pty Ltd ("Optiro") as part of the Camelwood Mineral Resource estimate (ASX:RXL 3 October 2013). The database is considered by Optiro to be of sufficient quality to support a Mineral Resource estimate. In addition, from time to time, the Company carries out its own internal data audits. | # **Section 2 Reporting of Exploration Results** | Criteria | JORC Code explanation | Commentary | |---|--|---| | Mineral tenement and land tenure status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. | The mineralisation reported is located within Exploration License E53/1318. Rox Resources holds an option to purchase E53/1318 (among other tenements) from Gerard Victor Brewer with \$2.3 million payable by 30 June 2015. | | | The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The tenement is in good standing and no known impediments exist. | | Exploration done by other parties | Acknowledgment and appraisal of exploration by other parties. | No previous detailed exploration for nickel sulphides had been undertaken on the tenement before Rox's involvement. | | Geology | Deposit type, geological setting and style of mineralisation. | The geological setting is of Archaean aged komatiite system, bounded by hangingwall basaltic rocks and footwall felsic metasediments. Mineralisation is mostly situated at the (eastern) basal ultramafic - felsic contact. The rocks are strongly talccarbonate altered. Metamorphism is mid-upper Greenschist. The deposit is analogous to Kambalda style nickel sulphide deposits. | | Drill hole Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: • easting and northing of the drill hole collar • elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar • dip and azimuth of the hole • down hole length and interception depth • hole length. | Refer to drill results Table/s and the Notes attached thereto. | | Data aggregation methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. | All reported assay intervals have been length weighted. No top cuts have been applied. A lower cut-off of 1% is applied with up to 2m of internal dilution allowed. See Notes to Table/s. | | | Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. | High grade massive or semi-massive sulphide intervals internal to broader zones of mineralisation are reported as included intervals. See Table/s. | | | The assumptions used for any reporting of metal equivalent values should be clearly stated. | No metal equivalent values have been used or reported. | | Criteria | JORC Code explanation | Commentary | |--|---|--| | Relationship between mineralisation widths and intercept lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). | The mineralisation is moderately east dipping throughout the deposit. Drillhole azimuths were generally planned at 240°-270° and holes generally inclined at -60° west (but see Table 1). Given the angle of the drill holes and the interpreted dip of the host rocks and mineralisation (see Figures 3-4), reported intercepts will be more than true width. | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | Refer to Figures and Table in the text. | | Balanced reporting | Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. | At this stage only likely mineralised intervals have been analysed. Full assays are underway and will be reported in due course. | | Other substantive exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | All core samples are measured for bulk density using the water displacement method. Multi element assaying on all samples was carried out for a suite of potentially deleterious elements such as Arsenic and Magnesium. | | | | Geotechnical data was collected from all diamond drillholes including recovery and RQD. Structural information was recorded; structure type, thickness, lithology, and alpha/beta angles (dip and dip direction). | | | | Downhole EM surveying was undertaken by Outer Rim Exploration using a B-field DigiAtlantis downhole sensor and a high power EM transmitter with an output of 100 amps. The down hole EM data was quality assured and modelled by Southern Geoscience Consultants in Perth | | Further work | The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive | Further work (RC and diamond drilling) is justified to locate extensions to mineralisation both at depth and along strike. | ## **Competent Person Statements:** The information in this report that relates to nickel Exploration Results for the Mt Fisher Project is based on information compiled by Mr Ian Mulholland BSc (Hons), MSc, FAusIMM, FAIG, FSEG, MAICD, who is a Fellow of The Australasian Institute of Mining and Metallurgy and a Fellow of the Australian Institute of Geoscientists. Mr Mulholland has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Mulholland is a full time employee and Managing Director of the Company and consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. The information in this report that relates to nickel Mineral Resources for the Mt Fisher project was reported to the ASX on 3 October 2013 and 4 September 2014. Rox confirms that it is not aware of any new information or data that materially affects the information included in the announcements of 3 October 2013 and 4 September 2014, and that all material assumptions and technical parameters underpinning the estimates in the announcements of 3 October 2013 and 4 September 2014 continue to apply and have not materially changed. The information in this report that relates to previous Exploration Results and Mineral Resources for the Reward Zinc-Lead, and Bonya Copper projects and for the gold Mineral Resource defined at Mt Fisher, was either prepared and first disclosed under the JORC Code 2004 or under the JORC Code 2012, and has been properly and extensively cross-referenced in the text. In the case of the 2004 JORC Code Exploration Results and Mineral Resources, they have not been updated to comply with the JORC Code 2012 on the basis that the information has not materially changed since it was last reported. All reports are based on information compiled by Mr Ian Mulholland BSc (Hons), MSc, FAusIMM, FAIG, FSEG, MAICD, who is a Fellow of The Australasian Institute of Mining and Metallurgy and a Fellow of the Australian Institute of Geoscientists. Mr Mulholland has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 and 2012 Editions of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Mulholland is a full time employee of the Company and consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.