

AUSTRALIAN SECURITIES EXCHANGE ANNOUNCEMENT

21 MAY 2015

Exploration Update

- Corrie Dam Drilling Results
- PACE support for Vulcan Drilling

Corrie Dam Drilling Results

Assay results have been received from the recent aircore drilling program at Corrie Dam, part of Tasman Resources 100% owned Parkinson Dam epithermal gold-silver project in South Australia (EL 5602). This program was designed to follow up mineralisation intersected in the initial aircore drilling reported previously (see ASX Announcement dated 8 April 2015) and summarised on page 5.

The most recent drilling has intersected further anomalous silver, lead and some copper mineralisation over a relatively wide area at shallow depth, from less than 50m below surface. The more significant results include 15m down hole from 55m at 6.6g/t Ag, 0.17% Cu and 0.11% Pb in drill hole CDAC 030 (true width is not known). These results are consistent with the presence of a more significant and more gold and silver-rich mineralised system at depth, similar to Tasman's main Parkinson Dam gold-silver prospect, located about eight kilometres to the northeast.

Accordingly, Tasman is planning to follow up the results by drilling a number of deeper RC drill holes beneath the main anomalous zones from the aircore drilling, to test for more extensive and potentially higher grade gold and silver mineralisation. This drilling is expected to occur early in the next quarter, subject to the necessary approvals being obtained and sufficient funds being raised in the Company's current rights issue.

The location of Corrie Dam prospect within EL 5602 is provided in Figure 1, and the silver geochemical anomaly which defines the prospect is shown in Figures 2 and 3. Figure 3 also includes the location of all holes drilled at Corrie Dam to date. A plan showing the distribution of the anomalous silver and lead values as histogram plots is provided in Figure 4. Hole location details and assay results for theses 16 follow up drill holes are provided in Appendices 1 and 2.

PACE Support for Vulcan Drilling

Tasman is pleased that the South Australian Department of State Development has awarded PACE (Plan for Accelerated Exploration) funding of \$70,000 to support drilling at Tasman's 100% owned Vulcan iron-oxide copper gold uranium prospect (IOCGU), located approximately 30km north of Olympic Dam.

Vulcan is a very large mineralised system discovered by Tasman. 17 exploration drill holes have been drilled at Vulcan and all have intersected large thicknesses of IOCGU-style alteration and/or

low to medium grade mineralisation. This drilling is expected to occur later in the year, subject to the necessary approvals being obtained and sufficient funds being raised in the Company's current rights issue.

Figure 1: Plan of Tasman's Parkinson Dam Project (EL 5602) showing area of previously defined epithermal mineralisation and the Corrie Dam Prospect adjacent to the Gawler Range Volcanics (GDA 94; Zone 53).

Figure 2: Corrie Dam location plan showing the silver geochemical anomaly (coloured) and the location of sampling points. The location of the area of Figure 3 is shown as a rectangle (AGD 84; Zone 53)

Figure 3: Corrie Dam prospect, drill hole location plan showing surface projections of inclined hole traces over portion of silver soil anomaly image shown in Figure 2 (AGD 84 Zone 53).

Tasman

Figure 4: Corrie Dam prospect, plan of southern drill hole locations showing Pb (green) and Ag (blue) bar graphs on 100m grid spacing. Highest Pb and Ag values in hole 15 inclined to east (AGD 84, Zone 53).

<u>Greg Solomon</u> Executive Chairman

Previous results

The initial aircore drilling (see ASX Announcement 8th April 2015) program at Corrie Dam intersected two styles of mineralisation:

Anomalous silver mineralisation approximately 25m below surface, with values up to 32g/t Ag over 5m down hole. The true width of this mineralisation is not known at this stage, and is interpreted to be essentially supergene in origin, having migrated from a primary source nearby.

Primary base metal (probably epithermal-style) mineralisation, predominantly lead, but containing anomalous copper, zinc and silver values in a number of drill holes, with grades up to 25m at 0.36% in one hole, including a 5m interval at 1.1% Pb and 2.6g/t Ag (the true width is unknown).

Tasman believes that the base metal intersection is very similar in style and tenor to a large halo of low grade mineralisation that surrounds high grade epithermal gold mineralisation at Tasman's Parkinson Dam prospect, where an intersection of 21m at 21g/t Au and 83 g/t Ag (down hole) from 152m was also returned in drill hole PD 63.

(Note that the results for PD 63 were prepared and first disclosed under the JORC Code 2004 and have not been updated since to comply with the JORC Code 2012 on the basis that the information has not materially changed since it was previously reported).

Disclaimer

The interpretations and conclusions reached in this announcement are based on current geological theory and the best evidence available to the authors at the time of writing. It is the nature of all scientific conclusions that they are founded on an assessment of probabilities and, however high these probabilities might be, they make no claim for complete certainty. Any economic decisions that might be taken on the basis of interpretations or conclusions contained in this report will therefore carry an element of risk. It should not be assumed that the reported Exploration Results will result, with further exploration, in the definition of a Mineral Resource.

Competent Persons Statement

The information in this announcement that relates to Exploration Results is based on and fairly represents information compiled by Robert N. Smith and Michael J. Glasson, Competent Persons who are members of the Australian Institute of Geoscientists. Mr Smith and Mr Glasson are full-time employees of the company and also share and option holders.

Mr Smith and Mr Glasson have sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as Competent Persons as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Smith and Mr Glasson consent to the inclusion in the report of the matters based on their information in the form and context in which it appears

Diffi Hole Collar Locations/Details							
	East	North		_			
Hole No.	AGD84	AGD84	RL	Az.	Incl.	Depth	
	m	m	m	grid	degrees	m	
CDAC023	697248	6391805	206	0	-90	78	
CDAC024	697148	6391798	207	90	-60	78	
CDAC025	697101	6391803	207	90	-60	99	
CDAC026	697055	6391798	207	90	-60	82	
CDAC027	697251	6391700	207	180	-60	69	
CDAC028	697249	6391752	207	180	-60	83	
CDAC029	697248	6391799	206	180	-60	74	
CDAC030	697251	6391851	206	180	-60	70	
CDAC031	697248	6391900	206	180	-60	61	
CDAC032	697051	6391603	208	270	-60	75	
CDAC033	697151	6391600	208	270	-60	74	
CDAC034	697247	6391599	209	270	-60	53	
CDAC035	697102	6392020	206	260	-60	72	
CDAC036	697150	6392028	205	260	-60	73	
CDAC037	697251	6392046	205	260	-60	72	
CDAC038	697347	6392062	205	260	-60	63	

Appendix 1

Drill Hole Collar Locations/Details

Appendix 2 Drill Hole Assay Results

Hole No	From	То	Au_ppb	Ag_ppm	As_ppm	Cu_ppm	Pb_ppm	Zn_ppm
CDAC023	0	5	17	0.11	10	15.9	23.8	29
CDAC023	5	10	5	0.35	8	11.7	22.2	20
CDAC023	10	15	3	0.18	6	9	43.7	8
CDAC023	15	20	0.5	0.09	2	6.3	18.8	6
CDAC023	20	25	2	0.12	8	44.4	70.5	68
CDAC023	25	30	2	0.19	4	43.1	87	114
CDAC023	30	35	3	0.32	4	34.4	144.3	117
CDAC023	35	40	0.5	0.36	2	18.5	94.3	33
CDAC023	40	45	0.5	0.93	3	137.8	170.5	32
CDAC023	45	50	0.5	4.25	7	335.4	624.9	86
CDAC023	50	52	0.5	0.45	12	19	384.9	108
CDAC023	52	54	0.5	0.42	17	25.2	286.3	86
CDAC023	54	56	0.5	0.32	13	9.2	170	96
CDAC023	56	58	0.5	0.57	30	41.6	842.3	86
CDAC023	58	60	0.5	0.38	8	8.2	168.4	53
CDAC023	60	62	0.5	0.46	9	14.6	56.2	52
CDAC023	62	64	0.5	0.25	4	4.6	10	51
CDAC023	64	66	0.5	0.5	7	11.9	56.9	74
CDAC023	66	68	0.5	0.47	8	10.5	128	76
CDAC023	68	70	0.5	1.87	12	21.8	73.4	56

Tasman

Hole No	From	То	Au_ppb	Ag_ppm	As_ppm	Cu_ppm	Pb_ppm	Zn_ppm
CDAC023	72	74	0.5	0.53	13	10.6	130.6	41
CDAC023	74	76	0.5	0.48	16	17.9	120.2	53
CDAC023	76	78	0.5	1.07	70	407.9	956.8	102
CDAC024	0	5	15	0.08	9	15.4	22	38
CDAC024	5	10	5	0.09	8	13.1	36.3	83
CDAC024	10	15	3	0.09	3	7.3	18.2	20
CDAC024	15	20	0.5	0.025	3	5	8.3	19
CDAC024	20	25	0.5	0.07	3	10.5	22.9	14
CDAC024	25	30	0.5	0.12	3	18.3	49.5	18
CDAC024	30	35	0.5	0.13	3	20.7	28.8	15
CDAC024	35	40	0.5	0.12	3	19.4	44	19
CDAC024	40	45	0.5	0.16	3	20.4	39.9	23
CDAC024	45	50	0.5	0.2	3	17.7	45.6	32
CDAC024	50	55	0.5	0.21	3	16.5	26.6	33
CDAC024	55	60	0.5	0.21	2	20.1	28.1	16
CDAC024	60	65	0.5	0.23	3	35.5	43.1	12
CDAC024	65	70	0.5	0.55	3	61.6	51.2	8
CDAC024	70	75	0.5	1.98	6	55.1	167	35
CDAC024	75	78	0.5	0.55	10	15.1	39.7	98
CDAC025	0	5	26	0.15	14	12.1	18.8	27
CDAC025	5	10	0.5	0.08	9	6.4	16.6	14
CDAC025	10	15	0.5	0.05	4	3.4	6.8	25
CDAC025	15	20	5	0.025	3	8.1	12.1	18
CDAC025	20	25	2	0.025	2	6.9	12.9	16
CDAC025	25	30	3	0.025	1	10	35.3	17
CDAC025	30	35	2	0.14	2	11.4	38.2	16
CDAC025	35	40	1	0.1	2	9.5	27.3	18
CDAC025	40	45	0.5	0.08	2	7.4	33.7	72
CDAC025	45	50	0.5	0.2	3	12.9	46.5	65
CDAC025	50	55	1	0.27	3	21.7	37	31
CDAC025	55	60	0.5	0.69	4	60.7	81.3	50
CDAC025	60	65	3	6.59	5	265.2	87.1	96
CDAC025	65	70	0.5	0.89	4	55.4	213.3	57
CDAC025	70	75	0.5	0.37	4	14.6	40.6	100
CDAC025	75	80	0.5	0.89	4	36.4	110.5	100
CDAC025	80	85	0.5	0.34	8	24.9	276	111
CDAC025	85	90	1	1.17	11	31.8	1980	100
CDAC025	90	95	0.5	0.52	7	12.6	290.4	47
CDAC025	95	99	0.5	0.65	4	23.8	567.7	72
CDAC026	0	5	11	0.06	11	10.4	19.4	36
CDAC026	5	10	3	0.09	10	6.4	23.4	13
CDAC026	10	15	2	0.025	5	2.7	7.4	6
CDAC026	15	20	0.5	0.025	3	29.3	21	11
CDAC026	20	25	0.5	0.025	3	13.2	37	16
CDAC026	25	30	0.5	0.06	3	29.4	51.6	15
CDAC026	30	35	0.5	0.1	3	27.8	52.4	27

Hole No	From	То	Au_ppb	Ag_ppm	As_ppm	Cu_ppm	Pb_ppm	Zn_ppm
CDAC026	35	40	0.5	0.19	2	24.4	52.8	27
CDAC026	40	45	0.5	0.13	3	16.5	56.3	21
CDAC026	45	50	0.5	0.22	3	37	101.6	17
CDAC026	50	55	0.5	0.54	4	53.8	131.8	23
CDAC026	55	60	0.5	0.25	7	165.4	96.8	240
CDAC026	60	65	0.5	0.24	12	211.1	82.4	193
CDAC026	65	70	0.5	0.24	25	203.7	35.8	130
CDAC026	70	75	0.5	0.21	8	125.1	112.7	216
CDAC026	75	80	2	0.31	10	294.2	434.8	318
CDAC026	80	82	0.5	0.22	27	122	381	239
CDAC027	0	5	0.5	0.09	9	12.6	21.6	33
CDAC027	5	10	0.5	0.18	6	7.6	20.8	13
CDAC027	10	15	0.5	0.19	10	10.5	28.8	9
CDAC027	15	20	0.5	0.19	5	13.2	147.1	8
CDAC027	20	25	0.5	0.1	3	9.3	93.4	7
CDAC027	25	30	0.5	0.44	4	41.4	43.3	11
CDAC027	30	35	0.5	0.17	6	35.8	23.3	20
CDAC027	35	40	0.5	0.14	5	16.3	15.2	50
CDAC027	40	45	0.5	0.14	6	13	37.5	134
CDAC027	45	50	0.5	0.17	9	17.4	43.4	90
CDAC027	50	55	0.5	0.14	6	20.3	88.8	49
CDAC027	55	60	0.5	0.18	12	25.3	60.9	365
CDAC027	60	65	0.5	0.13	7	18.7	32.2	231
CDAC027	65	69	0.5	0.16	9	20.3	57.9	125
CDAC028	0	5	3	0.07	11	11.3	17.9	48
CDAC028	5	10	0.5	0.23	10	6.7	18.7	11
CDAC028	10	15	0.5	0.2	7	8.2	13.6	10
CDAC028	15	20	0.5	0.19	5	12	70.1	9
CDAC028	20	25	1	0.18	3	9.9	27.6	4
CDAC028	25	30	0.5	0.025	4	24.1	43.5	8
CDAC028	30	35	0.5	0.09	5	18.1	21.1	9
CDAC028	35	40	0.5	0.48	6	21.3	13.8	42
CDAC028	40	45	0.5	0.38	7	34.3	18.2	41
CDAC028	45	50	0.5	0.3	5	12.5	10.9	26
CDAC028	50	55	0.5	0.25	5	15.8	18.5	21
CDAC028	55	60	0.5	0.3	7	17.5	27.8	18
CDAC028	60	65	0.5	0.33	6	14.9	14.5	24
CDAC028	65	70	0.5	0.3	6	20.1	38	37
CDAC028	70	75	0.5	0.34	9	23.9	83.1	77
CDAC028	75	80	0.5	0.27	8	20.6	62.1	75
CDAC028	80	83	0.5	0.5	18	27.9	139.1	489
CDAC029	0	5	2	0.09	11	11.7	22.2	62
CDAC029	5	10	0.5	0.36	10	7.3	21	27
CDAC029	10	15	0.5	0.21	7	6.8	9.8	7
CDAC029	15	20	0.5	0.11	3	11.9	14.8	27

Hole No	From	То	Au_ppb	Ag_ppm	As_ppm	Cu_ppm	Pb_ppm	Zn_ppm
CDAC029	20	25	0.5	0.025	7	51.5	105.3	64
CDAC029	25	30	0.5	0.025	3	18.2	96.5	80
CDAC029	30	35	0.5	0.05	4	20.7	107.3	95
CDAC029	35	40	0.5	0.1	7	106.8	252.8	337
CDAC029	40	45	1	0.22	5	100.9	237.1	264
CDAC029	45	50	0.5	0.31	5	98.7	57.5	141
CDAC029	50	55	0.5	0.08	5	231.8	10.8	106
CDAC029	55	60	0.5	0.07	4	231	2.6	98
CDAC029	60	65	0.5	0.3	7	90.5	14.3	61
CDAC029	65	70	0.5	0.37	8	20.4	62.7	31
CDAC029	70	74	0.5	0.24	6	155.4	50.7	132
CDAC030	0	5	3	0.13	8	16.5	20.6	32
CDAC030	5	10	0.5	0.21	7	8.1	18.2	14
CDAC030	10	15	0.5	0.18	3	6.1	9.2	9
CDAC030	15	20	0.5	0.06	5	3.5	11.7	12
CDAC030	20	25	0.5	0.025	8	32.9	99.8	21
CDAC030	25	30	0.5	0.025	8	49.8	82.1	31
CDAC030	30	35	0.5	0.08	3	15.2	20.3	33
CDAC030	35	40	0.5	0.12	3	17.7	18.7	34
CDAC030	40	45	0.5	0.16	3	22.3	18.6	29
CDAC030	45	50	0.5	1.03	4	36.9	86	45
CDAC030	50	55	2	21.72	5	70.8	79	25
CDAC030	55	60	1	19.04	8	3297.9	522.5	46
CDAC030	60	65	0.5	0.53	20	1415.1	1951.9	61
CDAC030	65	70	0.5	0.35	8	506.7	718.3	136
CDAC031	0	5	0.5	0.2	10	102.4	98.1	47
CDAC031	5	10	0.5	0.19	7	26	31.6	13
CDAC031	10	15	4	0.21	3	9.9	17.6	8
CDAC031	15	20	0.5	0.11	2	4.2	27.1	6
CDAC031	20	25	0.5	0.09	5	15.4	26.9	11
CDAC031	25	30	0.5	0.025	5	24.8	27	64
CDAC031	30	35	0.5	0.025	5	14.8	32.2	72
CDAC031	35	40	1	0.025	8	28.7	25.1	52
CDAC031	40	45	0.5	8.06	11	98.7	48.4	31
CDAC031	45	50	0.5	1.11	16	41.7	149.8	67
CDAC031	50	55	0.5	6.9	11	199.7	249.3	177
CDAC031	55	61	0.5	2.28	16	194.6	276	79
CDAC032	0	5	1	0.15	9	17.7	23.1	100
CDAC032	5	10	0.5	0.09	8	8	16.9	12
CDAC032	10	15	0.5	0.09	7	4.8	8.8	7
CDAC032	15	20	0.5	0.025	2	2.1	9.9	5
CDAC032	20	25	8	0.025	4	3.9	12.7	8
CDAC032	25	30	5	0.025	4	12.2	8	11
CDAC032	30	35	5	0.33	4	28.3	8.4	12
CDAC032	35	40	0.5	0.19	5	17.1	15.2	46

Hole No	From	То	Au_ppb	Ag_ppm	As_ppm	Cu_ppm	Pb_ppm	Zn_ppm
CDAC032	40	45	0.5	0.23	5	21	17.4	61
CDAC032	45	50	0.5	0.25	6	26.3	20.9	37
CDAC032	50	55	0.5	0.14	5	13.3	13.8	27
CDAC032	55	60	0.5	0.15	4	13.6	15.2	20
CDAC032	60	65	0.5	0.15	5	18.3	21.9	30
CDAC032	65	70	0.5	0.2	6	13.7	17	30
CDAC032	70	75	0.5	0.18	5	20.1	20.9	51
CDAC033	0	5	6	0.14	10	24.3	20.5	57
CDAC033	5	10	0.5	0.16	8	13.6	18.1	31
CDAC033	10	15	0.5	0.13	3	6.4	9.7	10
CDAC033	15	20	0.5	0.1	3	9.9	37	12
CDAC033	20	25	0.5	0.025	2	8.5	18	9
CDAC033	25	30	0.5	0.025	2	8.4	8.9	11
CDAC033	30	35	0.5	0.37	9	178.7	17.9	17
CDAC033	35	40	0.5	0.11	5	16.9	8.3	112
CDAC033	40	45	0.5	0.11	5	18	14.7	25
CDAC033	45	50	0.5	0.14	6	14.8	14.2	34
CDAC033	50	55	0.5	0.16	6	18.7	27.2	41
CDAC033	55	60	0.5	0.19	7	20	88.1	72
CDAC033	60	65	0.5	0.17	6	18.7	60.1	70
CDAC033	65	70	0.5	0.2	7	25.5	42.2	133
CDAC033	70	73	0.5	0.4	10	191.3	66.8	119
CDAC033	73	74	0.5	0.38	20	32.5	94.8	324
CDAC034	0	5	5	0.12	14	13.7	34	36
CDAC034	5	10	0.5	0.19	10	11.2	24.3	20
CDAC034	10	15	0.5	0.11	9	23.6	27.3	9
CDAC034	15	20	0.5	0.22	2	22.6	73.9	60
CDAC034	20	25	0.5	0.12	4	12.1	96.3	13
CDAC034	25	30	0.5	1.67	4	10	139.6	13
CDAC034	30	35	0.5	0.35	7	89	111.5	21
CDAC034	35	40	0.5	0.19	7	20.3	125.5	368
CDAC034	40	45	0.5	0.17	7	23.1	54	151
CDAC034	45	50	0.5	0.16	7	16.1	38	122
CDAC034	50	52	0.5	0.31	14	102	150.3	627
CDAC034	52	53	0.5	0.5	48	29.9	263.7	1756
CDAC035	0	5	0.5	0.16	7	15.2	22.4	46
CDAC035	5	10	0.5	0.06	5	5.7	11.9	22
CDAC035	10	15	0.5	0.025	2	1.9	2.7	5
CDAC035	15	20	0.5	0.025	1	1.1	3.4	4
CDAC035	20	25	0.5	0.025	4	7	22.9	9
CDAC035	25	30	0.5	0.025	5	12.8	64.9	19
CDAC035	30	35	0.5	0.12	4	17.4	36.1	35
CDAC035	35	40	0.5	0.36	4	12.8	7.2	28
CDAC035	40	45	0.5	0.2	6	19.6	8.8	76
CDAC035	45	50	0.5	0.22	8	12.8	8.3	35

Hole No	From	То	Au_ppb	Ag_ppm	As_ppm	Cu_ppm	Pb_ppm	Zn_ppm
CDAC035	50	55	0.5	0.25	4	15.9	13.5	39
CDAC035	55	60	0.5	0.15	4	9	7.9	27
CDAC035	60	65	0.5	0.13	3	7.7	7.2	23
CDAC035	65	70	0.5	0.17	4	8.4	9.8	19
CDAC035	70	72	0.5	0.24	5	13.3	8	16
CDAC036	0	5	1	0.07	9	12.1	15.7	33
CDAC036	5	10	0.5	0.08	8	7.1	16.4	13
CDAC036	10	15	0.5	0.025	4	2.5	3.2	5
CDAC036	15	20	0.5	0.025	3	2.9	10	7
CDAC036	20	25	0.5	0.025	4	6.2	17.8	8
CDAC036	25	30	0.5	0.025	3	8.7	15.3	16
CDAC036	30	35	0.5	0.12	6	33.9	64	51
CDAC036	35	40	0.5	0.07	6	16.3	30.2	72
CDAC036	40	45	0.5	0.19	5	14.7	19.1	60
CDAC036	45	50	0.5	0.24	4	15.1	17.8	29
CDAC036	50	55	0.5	0.19	4	10.4	45.3	28
CDAC036	55	60	0.5	0.32	5	11.5	82	27
CDAC036	60	65	0.5	0.24	4	11.4	12.1	21
CDAC036	65	70	0.5	0.19	4	6.3	9	22
CDAC036	70	73	0.5	0.16	4	14	11.2	14
CDAC037	0	5	0.5	0.07	9	11.8	14.4	27
CDAC037	5	10	0.5	0.09	6	5.9	11.7	11
CDAC037	10	15	0.5	0.11	18	3.5	6.2	6
CDAC037	15	20	0.5	0.05	3	1.7	3.1	4
CDAC037	20	25	1	0.025	3	12.4	11.9	10
CDAC037	25	30	0.5	0.025	9	22.8	12.7	13
CDAC037	30	35	0.5	0.025	5	16.2	5.2	23
CDAC037	35	40	0.5	0.025	2	7.2	5.4	17
CDAC037	40	45	1	0.06	5	9	5.8	13
CDAC037	45	50	0.5	0.16	4	8.4	26.3	15
CDAC037	50	55	0.5	0.19	4	9.8	7.4	20
CDAC037	55	60	0.5	0.27	4	10.8	9.8	17
CDAC037	60	65	0.5	0.34	4	25.6	38	26
CDAC037	65	70	0.5	0.28	4	14.9	12.3	18
CDAC037	70	72	0.5	0.25	5	14.9	11.2	21
CDAC038	0	5	0.5	0.12	7	11.8	16.9	32
CDAC038	5	10	0.5	0.6	6	7.5	15.6	11
CDAC038	10	15	0.5	0.19	4	3.2	5.5	5
CDAC038	15	20	0.5	0.37	5	10.5	9.9	7
CDAC038	20	25	0.5	0.17	3	8.8	3.9	8
CDAC038	25	30	0.5	0.025	3	5.3	4.4	19
CDAC038	30	35	0.5	0.025	2	8.4	3.4	19
CDAC038	35	40	0.5	0.025	3	7.4	4.5	14
CDAC038	40	45	0.5	0.025	3	6.1	5.1	13
CDAC038	45	50	0.5	0.3	4	9.1	10.4	22

Hole No	From	То	Au_ppb	Ag_ppm	As_ppm	Cu_ppm	Pb_ppm	Zn_ppm
CDAC038	50	55	0.5	0.28	4	13.9	23.8	22
CDAC038	55	60	0.5	0.4	5	14.5	153.7	16
CDAC038	60	63	0.5	0.3	5	13.9	24.1	37

Section 1 Sampling techniques and data						
	(criteria in this group apply to all succe	eding groups)				
Criteria	JORC Code explanation	Commentary				
Sampling techniques.	 Nature and quality of sampling (EG cut channels, random chips or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	Air core drilling was undertaken on several traverses to test a soil geochemical anomaly in the south west portion of EL5602 (formerly EL 4475). Holes on each line were generally spaced at either 50m or 100m intervals inclined at 60°, and drilled to depths of up to 99m. 16 holes were drilled in the follow up program (22 in the initial program) for a total of 1176 m.				
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	Hole locations were determined using a hand held GPS with an accuracy of ±5 metres. Coordinates are in UTM grid (AGD84 Z53).				
	 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where "industry standard" work has been done this would be relatively simple (eg "reverse circulation drilling was used to obtain 1m samples from which 3 kg was pulverised to produce a 30g charge for fire assay"). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	Air core drilling was used to obtain 1m samples throughout. These were composited into either 2 or 5m intervals for assay. A number of 1 and 2 metre samples from the earlier hole CDAC 015 were also submitted for assay. Each sample was then dried and pulverised and a 25gm sub sample analysed for Au, Ag, As, Cu, Pb & Zn using an aqua regia digest with an ICP/ MS finish. Detection limits are 1ppb for Au, and 0.05, 1, 0.2, 0.5 and 1ppm for Ag, As, Cu, Pb & Zn respectively.				
Drilling techniques .	 Drill type (eg. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka etc.) and details (eg. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.). 	Holes were drilled using air core to blade refusal (85mm hole diameter), A face sampling hammer was used to penetrate hard silcrete bands in the upper portion of some holes.				
Drill sample	Whether core and chip sample recoveries					
recovery.	have been properly recorded and results assessed.					
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	Drill hole cuttings were collected in a cyclone, which was cleaned between each 3 metre rod. Sample recovery was generally excellent. The very few intervals with obvious poorer sample recovery were recorded in the logs.				

JORC TABLE 1 (Parkinson Dam, EL 5602, formerly EL 4475))

Logging.	 Whether core and chip samples have been logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. 	Logging is conducted in detail at the drill site by the site geologist, who routinely records weathering, lithology, alteration, mineralisation, or any other relevant features. It is considered to be logged at a level of detail to support appropriate Mineral Resource estimation and mining studies.
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel etc.) photography. 	Logging is qualitative in nature.
	 The total length and percentage of the relevant intersections logged. 	The entire length of each hole was logged in 1m intervals.
Sub-sampling techniques and	 If core, whether cut or sawn and whether quarter, half or all core taken. 	n/a
sample preparation.	 If non-core, whether riffled, tube sampled, rotary split etc. and whether sampled wet or dry. 	Samples were placed on the ground in 1m piles and a representative vertical slice taken through each pile with a garden trowel. Nearly all samples were dry.
	• For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Sample preparation followed industry standard practice of drying, coarse crushing to -6mm, before pulverising to 90% passing 75 micron.
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	A certified standard was used in the sample stream (OREAS 60C) at the rate of 1 standard for every second hole.
	 Measures taken to ensure that the sampling is representative of the in situ material collected. 	
	 Whether sample sizes are appropriate to the grainsize of the material being sampled. 	Material sampled is generally fine grained, and a 0.25kg sample from each metre composited over 2m or 5m intervals was considered quite adequate for first pass exploration.
Quality of assay data and laboratory tests.	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	The assay procedure already described is considered appropriate for the elements and style of mineralisation and early stage of exploration. Analysis is considered total.
	• For geophysical tools, spectrometer, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation etc.	No tools used.
	 Nature of quality control procedures adopted (eg. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie. lack of bias) and precision have been established. 	The internal laboratory QAQC procedures included analysing their own suite of internal standards and blanks within every sample batch and also adding sample duplicates.

Verification of sampling and assauing	 The verification of significant intersections by either independent or alternative company personnel 	Significant intersections are determined by company personnel, and checked internally.
ussuying.	 The use of twinned holes. 	No holes twinned at this early stage of exploration
	 Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. 	Individual sample numbers are generated and matched on site with down hole depths. Sample numbers are then used to match assays when received from the laboratory. Verification of data is managed and checked by company personnel with extensive experience. All data is stored electronically, with industry standard systems and backups
	 Discuss any adjustment to assay data. 	Data is not subject to any adjustments.
Location of data points.	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	Hole locations were determined by hand held GPS and are accurate to approximately +/-5m (northing and easting);
	 Specification of the grid system used. 	The grid system used is AGD 84 Zone 53 which matches that on the available 1:50,000 topographic map.
	 Quality and adequacy of topographic control. 	The area drilled is very flat with only 4m of height variation throughout.
Data spacing and distribution.	 Data spacing for reporting of Exploration Results. 	Sample spacing is considered quite adequate for a first pass drilling programme.
	 Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. 	n/a at this early stage of exploration
	 Whether sample compositing has been applied. 	Cuttings were collected in 1m intervals but composited in 2m or 5m intervals.
Orientation of data in relation to geological structure.	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling. 	Holes were drilled approx. perpendicular to the interpreted strike of the geochemical anomaly. Alternate lines were drilled in opposite directions as the attitude of any structures is unknown. A single line was drilled in a north-south orientation in the follow up program
	 If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	n/a
Sample security	 The measures taken to ensure sample security. 	Samples are collected in pre numbered calico bags and packed into sealed sacks for transport. Tasman staff delivered the samples to Intertek's Adelaide laboratory for analysis.
Audits or reviews.	 The results of any audits or reviews of sampling techniques and data. 	No review or audits of sampling techniques or data have been conducted.

Г

Section 2 Reporting of Exploration Results (Parkinson Dam Project, EL 5602)								
(Cri								
Criteria	JORC Code explanation	Commentary						
Mineral tenement and land tenure status.	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and	Exploration Licence No 5602, is located approximately 60km west of Port Augusta, South Australia and is owned 100% by Tasman Resources Ltd. There are no partnerships or royalties involved. The EL is covered by the Barngala						
	environmental settings.	native title claim and a native title mining agreement is in place. Tasman has conducted a successful heritage clearance over the area currently under investigation by Tasman to permit initial drilling activities. There are no historical or wilderness sites or national parks or known environmental settings that affect the prospect.						
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Tasman has secure tenure over the EL at the time of reporting and there are no known impediments to obtaining a licence to operate in the area.						
Exploration done by other parties.	Acknowledgment and appraisal of exploration by other parties.	Prior to Tasman's tenure limited uranium exploration had been carried out within the tenement area by PNC Exploration during the 1980's. Calcrete sampling was completed by Helix Resources over the southern portion of the tenement area in the early 2000's and several anomalous calcrete values were obtained which attracted Tasman to the area. In 2005 Tasman discovered outcropping epithermal veining within the Corunna Conglomerate. Subsequent drilling intersected epithermal Au-Ag-Pb-Zn mineralisation associated with the veining at Tasman's (main) Parkinson Dam prospect, approx 8km to the north east.						
Geology.	Deposit type, geological setting and style of mineralisation.	The geology comprises Mesoproterozoic Corunna Conglomerate which forms a north plunging syncline overlying Palaeo- proterozoic metasediments and is in faulted contact with the Gawler Range Volcanics to the north. Tasman is exploring the area for epithermal Au-Ag-base metal mineralisation associated with the margin of the Gawler Range Volcanics.						
Drill hole information.	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: Easting and northing of the drill hole collar Elevation or RL (Reduced Level-elevation above sea level in metres) of the drill hole collar Dip and azimuth of the hole Down hole length and interception 	Refer to Appendices 1 & 2						
	depth Hole length							

Data aggregation methods.	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg. cutting of high grades) and cut-off grades are usually material and should be stated. 	n/a
	• Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	 The assumptions used for any reporting of metal equivalent values should be clearly stated. 	
Relationship between mineralisation	 These relationships are particularly important in the reporting of Exploration Results. 	Down hole lengths reported only, true widths unknown at this stage
widths and intercept lengths.	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	
	 If it is not known and only the down-hole lengths are reported, there should be a clear statement to this effect (eg. 'downhole length, true width not known') 	
Diagrams.	 Where possible, maps and sections (with scales) and tabulations of intercepts should be included for any material discovery being reported if such discovery being reported if such 	These are included in the body of the report.
Balanced reporting.	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All available geochemically anomalous data has been reported for this drilling programme.
Other substantive exploration data.	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Any other substantive exploration data such as pertinent geological observations, petrographic data, geochronological data, geophysical results are included where appropriate.
Further work.	 The nature and scale of planned further work (eg. tests for lateral extensions or depth extensions or large-scale step-out drilling). 	The nature and timing of planned further work is included in the report.
	 Diagrams clearly nighlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive 	