

#### ASX ANNOUNCEMENT

2<sup>nd</sup> June, 2015

# FURTHER INCREASE IN HIGH-GRADE LITHIUM RESOURCE AT PILGANGOORA AS DEPOSIT CONTINUES TO GROW

INTERIM RESOURCE UPGRADE DELIVERS 23% INCREASE IN CONTAINED LITHIUM OXIDE WITH DRILLING CONTINUING

#### HIGHLIGHTS:

- Updated JORC 2012 Mineral Resource completed for the Pilgangoora Tantalum-Lithium Project in WA's Pilbara region, with this interim upgrade incorporating the results of successful in-fill RC drilling completed in March and April. The updated Mineral Resource comprises:
  - Indicated and Inferred Resources of 23.83Mt @ 0.021% Ta<sub>2</sub>O<sub>5</sub> (tantalite) containing 11.3Mlbs Ta<sub>2</sub>O<sub>5</sub> and a corresponding lithium resource of 20.48Mt @ 1.16% Li<sub>2</sub>O (spodumene) containing 237,000 tonnes of lithium oxide;
  - Within the total Mineral Resource of 23.83M tonnes, and at a cut-off of 1% Li<sub>2</sub>O, the Inferred and Indicated Lithium Resource amounts to <u>12.73Mt @ 1.42% Li<sub>2</sub>O</u> containing 181,000 tonnes of lithium oxide.
- The recent in-fill drilling has boosted the Inferred lithium resource by 32%. This was achieved from drilling targeting the previously untested south-western pegmatite, which remains open to the south and at depth.
- Significant potential exists for future resource growth through further in-fill and step-out drilling, which is currently underway. Pilbara Minerals has updated its Exploration Target<sup>1</sup> for the Pilgangoora Project to 50-60 million tonnes @ 175-225ppm Ta<sub>2</sub>O<sub>5</sub> and 1.2-1.5% Li<sub>2</sub>O.

Australian strategic metals company Pilbara Minerals Ltd (ASX: PLS) is pleased to report a further interim upgrade to the JORC compliant Mineral Resource estimate for its **Pilgangoora Tantalum-Lithium Project** in WA's Pilbara region, with the latest update delivering a significant increase in the high-value lithium content of the resource.

The updated Mineral Resource includes a **23 per cent increase in contained lithium oxide** and a **6 per cent increase in contained tantalite**, based on information calculated from just 19 new holes. Recent drilling has also clearly indicated the substantial potential for the resource to grow further.

The overall Pilgnagoora mineral resource now comprises **11.3 million pounds of contained tantalite** and **237,000 tonnes of contained lithium oxide**, with the recent successful extensional drilling adding **45,000 tonnes of contained lithium oxide** to the Inferred category.

The recent drilling and interim resource upgrade has also allowed Pilbara to estimate an upgraded Exploration Target for the Pilgangoora Project, demonstrating that it is on track to delineate a **globally significant hard-rock lithium-tantalum deposit.** 

The next phase of resource extension drilling at Pilgangoora commenced in late April and is focusing on the central and southern domains, which are outside of the currently defined Mineral Resource. Drilling in these zones is expected to underpin further increases in the resource inventory.

The Pilgangoora Project comprises five tenements, including two Exploration Licences (EL45/2232 and EL45/2241) and three Mining Leases (M45/78, M45/333 and M45/511) covering an area of 31km<sup>2</sup>, which are prospective for tantalum and lithium mineralisation. The Project is located immediately north of and along strike from Altura Mining Limited's (ASX: AJM) Pilgangoora Lithium Deposit, which hosts a JORC Resource of **25.2Mt** @ **1.23%** Li<sub>2</sub>O (lithium oxide).<sup>2</sup>

## 2012 JORC Resource Estimation

This updated 2012 JORC compliant mineral resource for the Project incorporated all historical data, Pilbara's 2014 drilling program plus the new information from the drilling program completed during March-April 2015.

The estimation was carried out by independent resource consultancy, Trepanier Pty Ltd ("Trepanier"), resulting in the estimation of Inferred and Indicated Resources. The reporting of all domains (capturing material above 0.01% Ta<sub>2</sub>O<sub>5</sub>) results in an Indicated and Inferred Mineral Resource estimate (Table 1) totalling:

# 23.8 million tonnes @ 0.021% Ta<sub>2</sub>O<sub>5</sub> containing 11.3 million lbs of Ta<sub>2</sub>O<sub>5</sub>

Within the tantalite resource, there is a corresponding ithium resource of **20.5 million tonnes @ 1.16%** Li<sub>2</sub>O containing **237,000 tonnes of lithium oxide.** 

| Category  |                                | Tonnage<br>(million tonnes) | Ta₂O₅<br>(ppm) | Li₂O<br>(%) | Ta₂O₅<br>(tonnes) | Ta <sub>2</sub> O <sub>5</sub><br>(Mlbs) | Li <sub>2</sub> O<br>(T) |
|-----------|--------------------------------|-----------------------------|----------------|-------------|-------------------|------------------------------------------|--------------------------|
| Indicated | Ta <sub>2</sub> O <sub>5</sub> | 6.0                         | 233            |             | 1,405             | 3.1                                      |                          |
|           | Li <sub>2</sub> O              | 4.7                         |                | 1.36        |                   |                                          | 64,300                   |
| Inferred  | Ta <sub>2</sub> O <sub>5</sub> | 17.8                        | 208            |             | 3,710             | 8.2                                      |                          |
|           | Li <sub>2</sub> O              | 15.7                        |                | 1.10        |                   |                                          | 172,800                  |
| TOTAL     | Ta₂O₅                          | 23.8                        | 215            |             | 5,115             | 11.3                                     |                          |
|           | Li <sub>2</sub> O              | 20.5                        |                | 1.16        |                   |                                          | 237,100                  |

#### Table 1: Pilgangoora Project – Mineral Resource Estimate

The envelope was wire-framed using both geological logging information (in particular logging of zoning within the pegmatite) and assay data for  $Ta_2O_5$  and  $Li_2O$ . Note that there were insufficient samples analysed to allow  $Li_2O$  mineralisation to be populated into one of the 18 domains.

Another five domains are significantly lower grade and are excluded – hence the different tonnage reported above for the  $Li_2O$  resource.

If a **lower lithium cut-off of >1%** is used in reporting, this results in a reduction in tonnage but provides a significantly higher grade resource (see Figure 1: Grade vs. tonnage curves for the total lithium resource):

# • <u>12.73 million tonnes @ 1.42% Li<sub>2</sub>O containing 181,000 tonnes of lithium oxide.</u>

Importantly, the bulk of this is confined to the Central Zone (domains 3, 6 and 12) and the newly defined south-western pegmatite (see Figure 2).

After the current program of RC drilling is complete, the next phase of drilling will concentrate on infilling the resource (on 50m by 50m spacings) to convert Inferred Resources to Indicated Resources and including known extensions to these higher grade portions within the overall resource estimate.

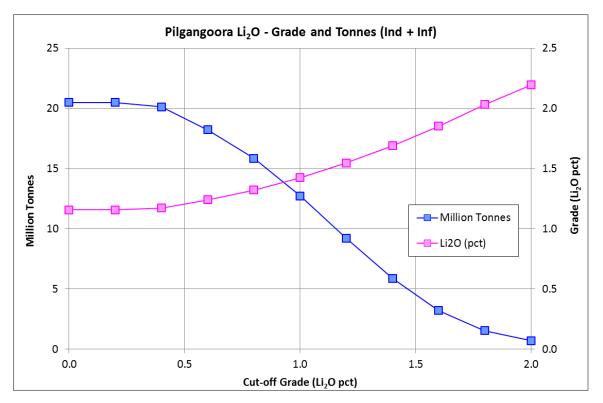
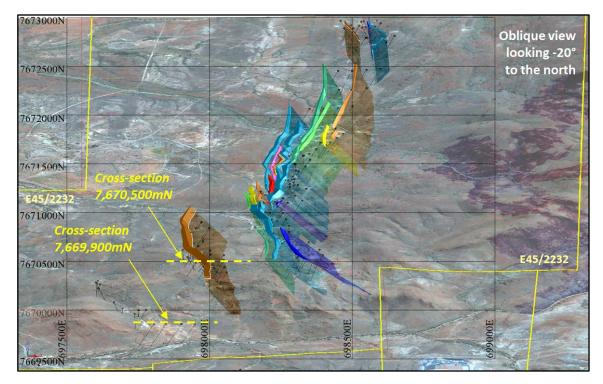




Figure 1 – Grade vs. Tonnage curves for the total lithium resource.



# Figure 2 – Snapshot of the Central lithium domains and South western pegmatite (See figure 6 -cross-section 7670500mN) and visible pegmatite outcrops south of the existing resource blocks (See figure 7-cross-section 7669900mN).

Details of the data used for the estimation, site inspection information and the quality control checks completed on the data are documented in Appendix 1 and 2 (Tables 1 to 3).

#### **Recent Results**

A single line of drilling has been completed in the Priority 3 Area outside of the resource area, with all four holes on 7660990mN intersecting pegmatite some 500m south of the South West pegmatite (See figures 2 and 3). Results here were exceptional with widths in excess of 20m. This pegmatite is open north and south of drill section 7660990mn with highlights from this drilling including (See ASX Release "Outstanding New Drill Results Pilgangoora', 30/4/2015);

- 35m @ 1.60% Li<sub>2</sub>O and 102ppm Ta<sub>2</sub>O<sub>5</sub> from 0m (PLS078) including: 4m @ 2.02% Li<sub>2</sub>O and 180ppm Ta<sub>2</sub>O<sub>5</sub> from 10m;
- 21m @ 1.69% Li₂O and 78ppm Ta₂O₅ from 29m (PLS079); including: 5m @ 2.06% Li₂O and 68ppm Ta₂O₅ from 29m;
- 9m @ 1.40% Li<sub>2</sub>O and 79ppm Ta<sub>2</sub>O<sub>5</sub> from 3m (PLS080); and 24m @ 1.35% Li<sub>2</sub>O and 137ppm Ta<sub>2</sub>O<sub>5</sub> from 27m; including: 4m @ 2.11% Li<sub>2</sub>O and 135ppm Ta<sub>2</sub>O<sub>5</sub> from 27m.

#### **Updated 2015 Exploration Target**

Due to the current estimation of the Mineral Resource being in excess of 23 million tonnes based on the RC drilling completed to date, Pilbara Minerals has updated its **Exploration Target**<sup>1</sup> for the Pilgangoora Project to **50-60 million tonnes @ 175-225ppm Ta<sub>2</sub>O<sub>5</sub> and 1.2-1.5% Li<sub>2</sub>O** (Table 2). An Exploration Target is conceptual in nature and there has been insufficient exploration to estimate a Mineral Resource in compliance with the JORC Code and it is uncertain if further exploration will result in the estimation of a Mineral Resource as defined by the JORC Code.

Figure 3 below illustrates the expected southern extensions of the known resource area.

| Exploration Target <sup>1</sup> | Tonnes (Mt) | Grade Li <sub>2</sub> O % | Grade Ta <sub>2</sub> O <sub>5</sub> ppm |
|---------------------------------|-------------|---------------------------|------------------------------------------|
| Northern Area                   | 20-25       | 1.2 - 1.5                 | 200 - 250                                |
| Central & Southern Area         | 30-35       | 1.2 - 1.5                 | 150 - 200                                |
| TOTAL                           | 50-60       | 1.2 - 1.5                 | 175 - 225                                |

Table 2 – Pilgangoora Tantalum-Lithium Exploration Target<sup>1</sup> on E45/2232 and M45/333

Exploration Target<sup>1</sup>: The potential quantities and grades are conceptual in nature and there has been insufficient exploration to date to define a Mineral Resource. It is not certain that further exploration will result in the determination of a Mineral Resource under the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves, the JORC Code" (JORC 2012). The Exploration Target is not being reported as part of any Mineral Resource or Ore Reserve.

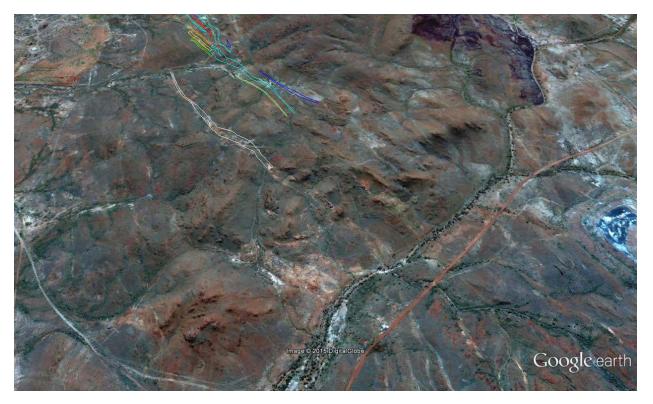



Figure 3 – Snapshot of the Central lithium domains (Light Blue) and South western pegmatite (White) and visible pegmatite outcrops south of the existing resource blocks.

#### **Summary and Management Comment**

Pilbara Minerals' Executive Director, Neil Biddle, said the Pilgangoora Project was continuing to grow in size, quality and significance with each round of drilling.

"This interim upgrade builds on the March resource update and, importantly, delivers a significant increment to the high-grade lithium resource," he said.

"Our latest work has also clearly demonstrated the broader potential of this deposit, with the Company announcing a 50-60Mt Exploration Target which gives investors a good indication of its potential as one of the world's largest and highest grade hard rock lithium deposits.

"Coming hard on the heels of the \$6 million capital raising announced yesterday, this latest resource upgrade shows that we are well on track towards realising our strategy of building a long-life strategic metals business at the Pilgangoora Project – supported in the short term by production and cash flow from the Tabba Tabba Project," Mr Biddle said.

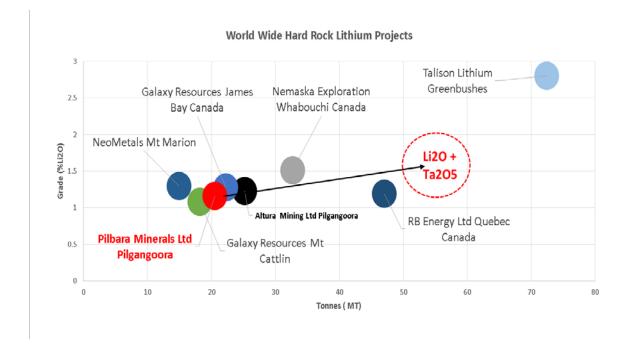



Figure 4 – Resource comparisons with other substantial global lithium deposits (from company publications)

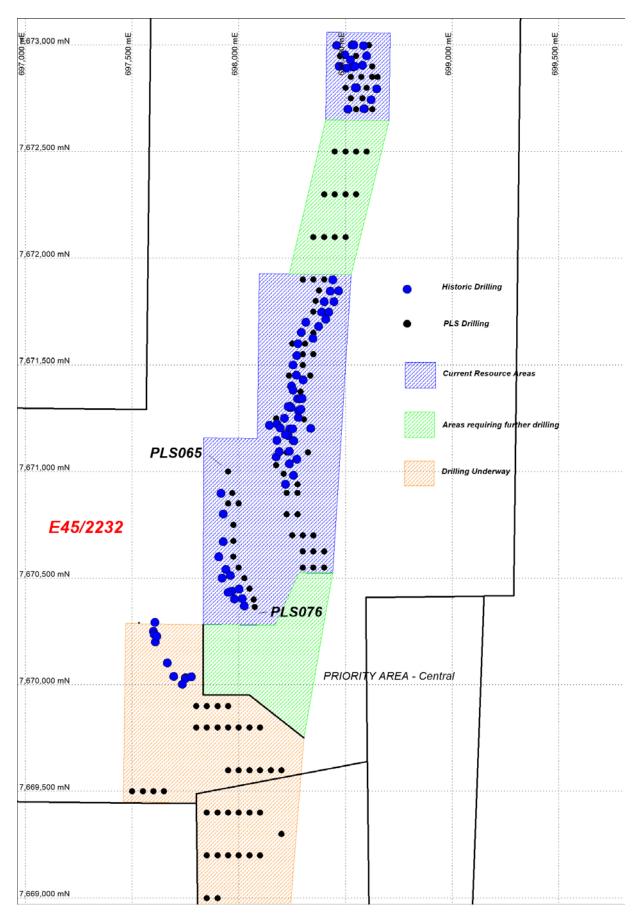



Figure 5 – Pilgangoora RC collar locations within Exploration Licence E45/2232, at a scale of 1:15000.

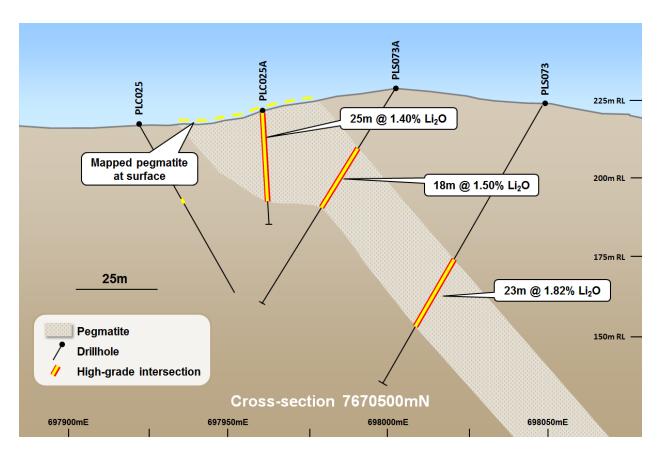
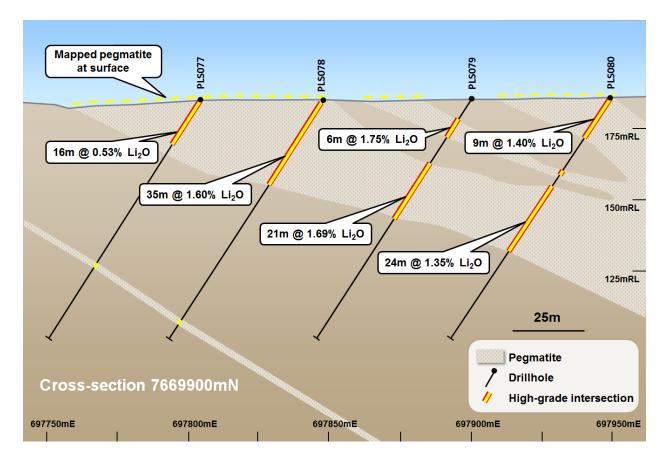
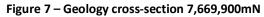





Figure 6 – Geology cross-section 7,670,500mN





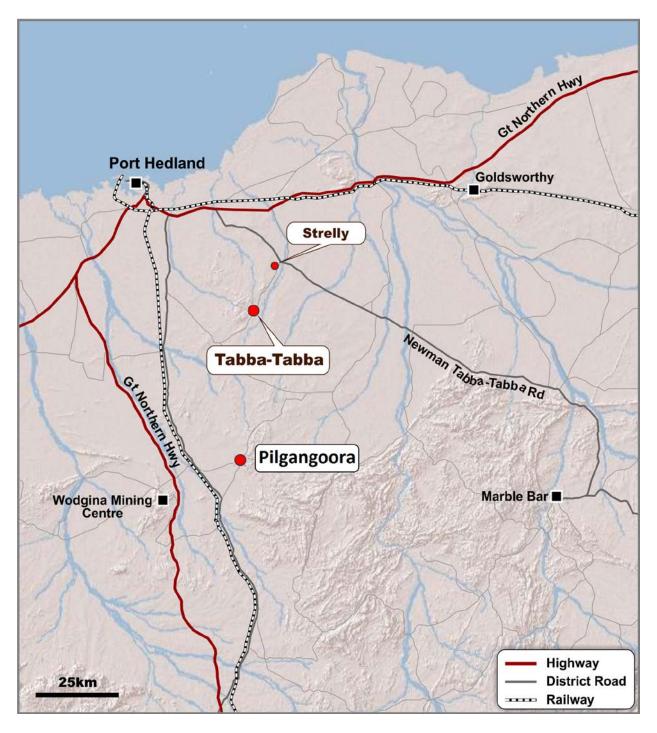



Figure 8 – Location Plan Pilgangoora Project

#### More Information:

#### What is Lithium?

Lithium (Li) is recovered from the mineral spodumene and lithium-rich brines. It is used in a range of products such as ceramics, glass, batteries and pharmaceuticals. Lithium use has expanded significantly in recent years due to increasing use in rechargeable batteries in portable electronic devices and in batteries and electric motors for hybrid and electric cars.

#### What is Tantalum?

The primary source of tantalum is from minerals such as tantalite, columbite, wodginite and microlite contained in pegmatite ore bodies. The largest deposits are located in Australia, Brazil and Africa. Tantalum's **major use is** in the production of electronic components, **especially for capacitors**, with additional use in components for chemical plants, nuclear power plants, airplanes and missiles. It is also used as a substitute for platinum.

The tantalum market is boutique in size with around 1,300 tonnes required each year. However the market is rapidly growing due to capacitor use in wireless and handheld devices. PLS's Tabba Tabba Project could supply approximately 7% of the annual market consumption over two years. There are two major buyers of tantalum raw product worldwide: HC Starck and Global Advanced Metals.

#### Contact:

Neil Biddle Director Ph 0418 915 752

--- ENDS ----

#### **Competent Person's Statement**

The information in this report that relates to Exploration Results and Exploration Targets is based on and fairly represents information and supporting documentation prepared by Mr John Young (Executive and Chief Geologist of Pilbara Minerals Limited). Mr Young is a shareholder of Pilbara Minerals. Mr Young is a member of the Australasian Institute of Mining and Metallurgy and has sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Specifically, Mr Young consents to the inclusion in this report of the matters based on his information in the form and context in which they appear.

The information in this report that relates to Mineral Resources is based on and fairly represents information compiled by Mr Lauritz Barnes, (Consultant with Trepanier Pty Ltd) and Mr John Young (Executive and Chief Geologist of Pilbara Minerals Limited). Mr Young is a shareholder of Pilbara Minerals. Mr Barnes and Mr Young are members of the Australasian Institute of Mining and Metallurgy and have sufficient experience of relevance to the styles of mineralisation and types of deposits under consideration, and to the activities undertaken to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Specifically, Mr Young is the Competent Person for the database, geological model and completed the site inspection. Mr Barnes is the Competent Person for the database and the resource estimation. Mr Barnes and Mr Young consent to the inclusion in this report of the matters based on their information in the form and context in which they appear.

#### SUMMARY OF RESOURCE ESTIMATE AND REPORTING CRITERIA

As per ASX Listing Rule 5.8 and the 2012 JORC reporting guidelines, a summary of the material information used to estimate the Mineral Resource is detailed below (for more detail please refer to Table 1, Sections 1 to 3 included below in Appendix 2).

#### Geology and geological interpretation

The Pilgangoora pegmatites are hosted in the East Strelley greenstone belt, which is a series of steeply dipping, mafic meta volcanic rocks and amphibolites. At Pilgangoora, the greenstones have been intruded by a swarm of north-trending, east-dipping pegmatites extending from Mount York in the south northwards for about 11km to McPhees Mining Centre. Many of the pegmatites are very large, reaching over 1000m in length and 200–300m in width. Despite their large size, mineralisation within these zoned pegmatites appears to be restricted to alteration zones, mainly along vein margins containing quartz, albite, muscovite, and spessartine garnet. These mineralised zones contain varying amounts of lepidolite, spodumene, tantalite, cassiterite, and minor microlite, tapiolite, and beryl.

The area of the Pilgangoora pegmatite field within E45/2232 comprises a series of extremely fractionated dykes and veins up to 15m thick within the immediate drilling area. These dykes and veins dip to the east at 45-60° and thicken slightly with depth, are parallel to sub-parallel to the main schistose fabric within the greenstones and are typically separated by 20-30m horizontally (Figures 2 to 4).

#### Drilling techniques and hole spacing

Talison Minerals Pty Ltd ("Talison") conducted a 54 drill hole RC program in 2008 totalling 3,198m and 29 drill holes for a total of 2,783m in 2010. Talison changed its name to Global Advanced Metals ("GAM") and completed 17 RC holes for 1,776m in 2012. Pilbara Minerals completed 41 RC holes for 3,812m in late 2014. Sections are generally spaced 25m to 50m (Grid North), while holes on section are spaced 5m to 50m apart (see Figures 1 to 4 above). In March 2015 Pilbara Minerals completed 23 RC holes for 2193m.

#### Sampling and sub-sampling techniques

Sample information used in resource estimation was derived exclusively from RC drilling. The drill samples have been geologically logged and sub-sampled for lab analysis.

#### Sample analysis method

The Talison and GAM samples were assayed by GAM's Wodgina Site Laboratory for a 36 element suite using XRF on fused beads. Selected pulps from the 2008 and 2010 drilling plus all pegmatite pulps from the 2012 drilling were collected and sent to SGS Laboratories in Perth for analysis of their lithium content. Lithium analysis was conducted by Atomic Absorption Spectroscopy (AAS). The recent PLS drillhole samples were analysed by the Nagrom Laboratory in Perth by both fused bead XRF and ICP. No geophysical tools were used to determine any element concentrations used in the resource estimate.

#### **Cut-off grades**

Grade envelopes have been wireframed to an approximate 100ppm  $Ta_2O_5$  cut-off which typically coincides with pegmatite boundaries and which allows for geological continuity of the mineralised zones.

#### **Estimation Methodology**

Grade estimation was by Ordinary Kriging ("OK") for  $Ta_2O_5$  and  $Li_2O$  using GEOVIA Surpac<sup>TM</sup> software. Note that there were insufficient samples analysed to allow populating of  $Li_2O$  into 3 of the 18 domains. The estimate was resolved into 5m (E) x 25m (N) x 5m (RL) parent cells that had been sub-celled at the domain boundaries for accurate domain volume representation. Estimation parameters were based on the variogram models, data geometry and kriging estimation statistics. Top-cuts were decided by completing an outlier analysis using a combination of methods including grade histograms, log probability plots and other statistical tools. Based on this statistical analysis of the data population, topcuts of between 800ppm and 1250ppm for  $Ta_2O_5$  were applied to 3 of the 18 domains prior to estimation. Outlier analysis identified that a top-cut of 3.5% was required for  $Li_2O$  for 4 of the 17 domains estimated.

#### **Classification criteria**

The Mineral Resource has been classified on the basis of confidence in the geological model, continuity of mineralized zones, drilling density, confidence in the underlying database and the available bulk density information. The Pilgangoora Mineral Resource in part has been classified as Indicated with the remainder as Inferred according to JORC 2012.

#### Mining and metallurgical methods and parameters

Based on the orientations, thicknesses and depths to which the pegmatite veins have been modelled, plus their estimated grades for  $Ta_2O_5$  and  $Li_2O$ , the potential mining method is considered to be open pit mining.

Historical mining operations and the presence of a tin-tantalum separation plant adjacent to a large tailings dump indicates that the assumption for potential successful processing of Pilgangoora ore is reasonable.

Nagrom Pty Ltd and Anzaplan have both completed scoping metallurgical testwork and have recovered both  $Ta_2O_5$  and  $Li_2O$  of marketable qualities. (see ASX release "Pilbara Testwork Confirms Potential" released 25/05/2015, "Quarterly Activities and Appendix 5B, released 24/04/2015).

#### **APPENDIX 1**

# Exploration Results – Downhole intercepts (to be read in conjunction with JORC Table 1)

|         | Hole | MGA     | MGA      |     |     | MGA     | Hole  |                 | Depth      | Interval | Ta <sub>2</sub> O <sub>5</sub> | Li <sub>2</sub> O |
|---------|------|---------|----------|-----|-----|---------|-------|-----------------|------------|----------|--------------------------------|-------------------|
| HoleID  | Туре | Easting | Northing | RL  | Dip | Azimuth | Depth | Domain          | From       | Length   | ppm                            | pct <sup>1</sup>  |
| PLC001  | RC   | 698458  | 7672998  | 188 | -60 | 94      | 45    | Not withii      |            |          |                                |                   |
| PLC002  | RC   | 698471  | 7672900  | 197 | -60 | 78      | 59    | 20              | 43         | 13       | 239                            |                   |
| PLC004  | RC   | 698512  | 7672699  | 188 | -60 | 82      | 30    | Not withii      | n resource | zone     |                                |                   |
| PLC005  | RC   | 698531  | 7673000  | 185 | -70 | 94      | 35    | Not withii      | n resource | zone     |                                |                   |
| PLC005A | RC   | 698540  | 7673000  | 185 | -60 | 96      | 60    | 22              | 43         | 12       | 288                            |                   |
| PLC006  | RC   | 698534  | 7672896  | 201 | -60 | 98      | 70    | Not withii      | n resource | zone     |                                |                   |
| PLC006A | RC   | 698545  | 7672900  | 201 | -60 | 98      | 50    | Not withii      | n resource | zone     |                                |                   |
| PLC007  | RC   | 698551  | 7672800  | 197 | -60 | 95      | 52    | Not withii      | n resource | zone     |                                |                   |
| PLC007A | RC   | 698546  | 7672800  | 196 | -60 | 274     | 55    | 20              | 43         | 9        | 279                            |                   |
| PLC008  | RC   | 698588  | 7672702  | 194 | -60 | 276     | 45    | 22              | 0          | 20       | 304                            |                   |
| PLC008A | RC   | 698587  | 7672701  | 194 | -60 | 94      | 30    | 22              | 0          | 8        | 327                            |                   |
| PLC013  | RC   | 698315  | 7671700  | 187 | -60 | 90      | 121   | 12              | 58         | 58       | 202                            |                   |
| PLC013A | RC   | 698293  | 7671652  | 189 | -60 | 96      | 76    | 12              | 43         | 25       | 194                            |                   |
| PLC014  | RC   | 698277  | 7671600  | 192 | -60 | 96      | 80    | 12              | 31         | 29       | 233                            | 1.38 <sup>2</sup> |
| PLC014A | RC   | 698273  | 7671544  | 192 | -70 | 100     | 64    | 12              | 23         | 25       | 224                            |                   |
| PLC015  | RC   | 698254  | 7671500  | 190 | -60 | 90      | 85    | 10              | 15         | 7        | 206                            |                   |
| PLC016  | RC   | 698247  | 7671400  | 190 | -60 | 72      | 60    | 12              | 0          | 2        | 459                            |                   |
|         |      |         |          |     |     |         |       | 10              | 15         | 2        | 99                             |                   |
|         |      |         |          |     |     |         |       | 9               | 40         | 3        | 134                            |                   |
| PLC016A | RC   | 698275  | 7671342  | 196 | -60 | 227     | 80    | 12              | 7          | 21       | 212                            |                   |
|         |      |         |          |     |     |         |       | 8               | 46         | 16       | 363                            |                   |
|         |      |         |          |     |     |         |       | 3               | 62         | 16       | 253                            |                   |
| PLC016B | RC   | 698254  | 7671381  | 191 | -60 | 109     | 79    | 12              | 0          | 34       | 294                            | 0.91 <sup>2</sup> |
|         |      |         |          |     |     |         |       | 9               | 54         | 16       | 121                            | 0.62 <sup>2</sup> |
| PLC017  | RC   | 698240  | 7671300  | 193 | -70 | 88      | 50    | 12              | 0          | 4        | 174                            |                   |
| PLC017A | RC   | 698239  | 7671305  | 193 | -60 | 50      | 88    | 8               | 40         | 45       | 318                            | 1.42              |
| PLC017B | RC   | 698246  | 7671300  | 194 | -60 | 88      | 80    | 12              | 0          | 20       | 227                            |                   |
| PLC018  | RC   | 698238  | 7671200  | 193 | -60 | 84      | 50    | 8               | 41         | 8        | 463                            |                   |
| PLC018A | RC   | 698231  | 7671169  | 193 | -60 | 140     | 60    | 12              | 0          | 25       | 259                            |                   |
|         |      |         |          |     |     |         |       | 8               | 27         | 6        | 362                            |                   |
| PLC019  | RC   | 698236  | 7671095  | 208 | -60 | 90      | 52    | 12              | 21         | 28       | 219                            | 0.82              |
| PLC019A | RC   | 698190  | 7671093  | 203 | -60 | 266     | 64    | 3               | 3          | 9        | 174                            |                   |
|         |      |         |          |     |     |         |       | 6               | 27         | 15       | 197                            |                   |
|         |      |         |          |     |     |         |       | 5               | 54         | 6        | 197                            |                   |
| PLC021  | RC   | 697916  | 7670899  | 191 | -60 | 96      | 50    | Not withii      | n resource | zone     |                                |                   |
| PLC022  | RC   | 697927  | 7670801  | 195 | -88 | 330     | 55    | Not withii      | n resource | zone     |                                |                   |
| PLC023  | RC   | 697927  | 7670670  | 200 | -90 | 90      | 60    | 1               | 0          | 6        | 267                            |                   |
| PLC024  | RC   | 697906  | 7670600  | 207 | -85 | 84      | 56    | Not withii      | n resource |          |                                |                   |
| PLC024A | RC   | 697939  | 7670540  | 218 | -60 | 0       | 30    | 1               | 0          | 21       | 191                            |                   |
| PLC025  | RC   | 697922  | 7670500  | 216 | -60 | 96      | 60    | Not withii      |            | zone     |                                |                   |
| PLC025A | RC   | 697961  | 7670512  | 220 | -80 | 20      | 34    | 1               | 0          | 28       | 174                            | 1.27              |
| PLC026  | RC   | 697980  | 7670401  | 215 | -60 | 96      | 124   | 1               | 43         | 81       | 118                            |                   |
| PLC026A | RC   | 697967  | 7670438  | 218 | -60 | 80      | 60    | –<br>Not withii |            |          |                                |                   |
| PLC032  | RC   | 698026  | 7670370  | 208 | -60 | 260     | 70    | 1               | 29         | 326      | 132                            |                   |
| . 10052 |      | 000020  |          | -00 | 00  | 200     |       | -               |            | 320      | 192                            |                   |

| HoleID  | Hole<br>Type | MGA<br>Easting | MGA<br>Northing | RL  | Dip | MGA<br>Azimuth | Hole<br>Depth | Domain    | Depth<br>From | Interval<br>Length | Ta₂O₅<br>ppm | Li <sub>2</sub> O<br>pct <sup>1</sup> |
|---------|--------------|----------------|-----------------|-----|-----|----------------|---------------|-----------|---------------|--------------------|--------------|---------------------------------------|
| PLC033  | RC           | 698016         | 7670403         | 211 | -60 | 268            | 80            | 1         | 18            | 10                 | 203          |                                       |
| PLC034  | RC           | 698001         | 7670448         | 220 | -60 | 274            | 80            | 1         | 0             | 24                 | 133          |                                       |
| PLC035  | RC           | 697951         | 7670433         | 219 | -60 | 280            | 60            | Not withi | n resourc     | e zone             |              |                                       |
| PLC036  | RC           | 698179         | 7671223         | 189 | -60 | 281            | 80            | 7         | 1             | 6                  | 193          | 0.82                                  |
|         |              |                |                 |     |     |                |               | 6         | 24            | 13                 | 211          | 1.71                                  |
|         |              |                |                 |     |     |                |               | 5         | 60            | 3                  | 201          | 0.22                                  |
| PLC037  | RC           | 698143         | 7671215         | 193 | -60 | 110            | 63            | 6         | 20            | 43                 | 192          |                                       |
| PLC038  | RC           | 698175         | 7671068         | 200 | -60 | 264            | 80            | 3         | 0             | 22                 | 158          |                                       |
|         |              |                |                 |     |     |                |               | 5         | 37            | 8                  | 209          |                                       |
| PLC039  | RC           | 698179         | 7671145         | 200 | -70 | 280            | 77            | 7         | 0             | 9                  | 158          |                                       |
|         |              |                |                 |     |     |                |               | 6         | 24            | 14                 | 266          |                                       |
|         |              |                |                 |     |     |                |               | 5         | 51            | 11                 | 100          |                                       |
| PLC040  | RC           | 698195         | 7671204         | 192 | -60 | 265            | 87            | 7         | 13            | 6                  | 152          |                                       |
|         |              |                |                 |     |     |                |               | 6         | 36            | 17                 | 267          |                                       |
|         |              |                |                 |     |     |                |               | 5         | 66            | 8                  | 205          |                                       |
| PLC041  | RC           | 698220         | 7671173         | 193 | -61 | 277            | 93            | 8         | 4             | 4                  | 250          |                                       |
|         | -            |                |                 |     | -   |                |               | 7         | 36            | 4                  | 115          |                                       |
|         |              |                |                 |     |     |                |               | 6         | 60            | 14                 | 200          |                                       |
|         |              |                |                 |     |     |                |               | 5         | 80            | 7                  | 212          |                                       |
| PLC042  | RC           | 698214         | 7671249         | 190 | -60 | 270            | 99            | 3         | 6             | 4                  | 430          | 0.48 <sup>2</sup>                     |
|         |              |                |                 |     |     |                |               | 7         | 43            | 5                  | 159          |                                       |
|         |              |                |                 |     |     |                |               | 6         | 62            | 10                 | 261          |                                       |
|         |              |                |                 |     |     |                |               | 5         | 88            | 5                  | 232          |                                       |
| PLC043  | RC           | 698373         | 7671681         | 190 | -60 | 275            | 117           | 14        | 35            | 5                  | 210          |                                       |
|         | -            |                |                 |     |     | -              |               | 13        | 43            | 3                  | 248          |                                       |
|         |              |                |                 |     |     |                |               | 12        | 65            | 9                  | 190          |                                       |
|         |              |                |                 |     |     |                |               | 9         | 91            | 2                  | 152          |                                       |
|         |              |                |                 |     |     |                |               | 3         | 102           | 9                  | 296          |                                       |
| PLC044  | RC           | 698348         | 7671625         | 191 | -60 | 264            | 105           | 13        | 28            | 11                 | 179          |                                       |
|         |              |                |                 |     |     |                |               | 12        | 52            | 12                 | 266          |                                       |
|         |              |                |                 |     |     |                |               | 10        | 67            | 3                  | 208          |                                       |
|         |              |                |                 |     |     |                |               | 9         | 76            | 3                  | 159          |                                       |
|         |              |                |                 |     |     |                |               | 3         | 88            | 13                 | 426          | 0.40 <sup>2</sup>                     |
| PLC045  | RC           | 698280         | 7671253         | 204 | -60 | 233            | 81            | 12        | 20            | 20                 | 242          | 1.31                                  |
|         |              | 000200         | /0/1200         | 201 |     | 200            | 01            | 8         | -0<br>56      |                    | 297          | 1.81                                  |
|         |              |                |                 |     |     |                |               | 3         | 68            | 4                  | 233          | 0.10                                  |
| PLC046  | RC           | 698281         | 7671285         | 203 | -60 | 277            | 87            | 12        | 19            | -<br>19            | 222          | 1.56                                  |
| . 20040 | ne           | 000201         | , , , 1205      | 205 | 00  | 277            | 07            | 8         | 53            | 8                  | 298          | 1.70                                  |
|         |              |                |                 |     |     |                |               | 3         | 69            | 7                  | 200          | 0.65                                  |
| PLC047  | RC           | 698288         | 7671341         | 199 | -60 | 269            | 93            | 12        | 12            | ,<br>21            | 211          | 1.32                                  |
| 1 20047 | ne -         | 000200         | , , , , ,,,,,   | 100 | 00  | 203            |               | 8         | 57            | 10                 | 412          | 0.86                                  |
|         |              |                |                 |     |     |                |               | 3         | 68            | 10                 | 342          | 1.57                                  |
| PLC048  | RC           | 698303         | 7671429         | 202 | -59 | 239            | 81            | 3<br>12   | 27            | 29                 | 342<br>292   | 1.57                                  |
| r LCU40 | ΝC           | 030303         | 1011423         | 202 | -72 | 239            | 01            | 9         |               |                    | 292<br>95    |                                       |
|         | PC           | 600270         | 7671453         | 105 | 71  | 262            | 67            |           | 67<br>0       | 1<br>15            |              | 0.91                                  |
| PLC049  | RC           | 698270         | 7671452         | 195 | -71 | 263            | 87            | 12<br>10  | 0             | 15                 | 234<br>109   | 0.96                                  |
|         |              |                |                 |     |     |                |               | 10        | 33            | 1                  | 109          | 0.25                                  |
|         |              |                |                 |     |     |                |               | 9         | 40<br>60      | 2                  | 174<br>229   | 1.39                                  |
|         |              |                |                 |     |     |                |               | 3         | 60            | 11                 | 338          | 1.14                                  |

| HoleID  | Hole<br>Type | MGA<br>Easting | MGA<br>Northing | RL  | Dip | MGA<br>Azimuth | Hole<br>Depth | Domain    | Depth<br>From | Interval<br>Length | Ta₂O₅<br>ppm | Li <sub>2</sub> O<br>pct <sup>1</sup> |
|---------|--------------|----------------|-----------------|-----|-----|----------------|---------------|-----------|---------------|--------------------|--------------|---------------------------------------|
| PLC050  | RC           | 698256         | 7671143         | 201 | -61 | 266            | 123           | 12        | 15            | 17                 | 407          | 1.82                                  |
| 1 20050 | ne           | 050250         | /0/11/0         | 201 | 01  | 200            | 125           | 8         | 34            | 2                  | 304          | 0.17                                  |
|         |              |                |                 |     |     |                |               | 3         | 51            | 3                  | 147          | 0.23                                  |
|         |              |                |                 |     |     |                |               | 7         | 75            | 6                  | 204          | 0.25                                  |
|         |              |                |                 |     |     |                |               | 6         | 92            | 24                 | 204          | 1.49                                  |
| PLC051  | RC           | 698273         | 7671058         | 216 | -60 | 273            | 135           | 11        | 20            | 8                  | 200          | 1.49                                  |
| PLC051  | ĸĊ           | 098273         | /0/1058         | 210 | -00 | 273            | 135           | 11        | 20<br>40      |                    | 211          |                                       |
|         |              |                |                 |     |     |                |               |           |               | 1                  |              | 2.23                                  |
|         |              |                |                 |     |     |                |               | 3         | 69            | 36                 | 173          | 1.34                                  |
| DI 6052 | 20           | 600227         | 7674026         | 210 | 60  | 266            | 02            | 4         | 113           | 5                  | 143          | 0.86                                  |
| PLC052  | RC           | 698237         | 7671036         | 210 | -60 | 266            | 93            | 12        | 13            | 2                  | 197          | 1.70                                  |
|         |              |                |                 |     |     |                |               | 3         | 40            | 37                 | 267          | 1.68                                  |
|         |              |                |                 |     |     |                |               | 4         | 80            | 4                  | 179          | 1.24                                  |
| PLC053  | RC           | 698256         | 7670982         | 205 | -60 | 284            | 125           | 3         | 40            | 30                 | 230          | 2.00 <sup>2</sup>                     |
|         |              |                |                 |     |     |                |               | 4         | 100           | 3                  | 150          |                                       |
| PLC054  | RC           | 698219         | 7670940         | 196 | -59 | 273            | 75            | 3         | 5             | 27                 | 203          |                                       |
|         |              |                |                 |     |     |                |               | 4         | 67            | 2                  | 93           |                                       |
| PLC055  | RC           | 698339         | 7671202         | 216 | -59 | 262            | 141           | 12        | 64            | 21                 | 291          |                                       |
|         |              |                |                 |     |     |                |               | 8         | 99            | 6                  | 238          |                                       |
|         |              |                |                 |     |     |                |               | 3         | 123           | 4                  | 343          | 0.77 <sup>2</sup>                     |
| PLC056  | RC           | 698252         | 7671200         | 197 | -59 | 269            | 129           | 12        | 0             | 12                 | 225          |                                       |
|         |              |                |                 |     |     |                |               | 8         | 21            | 9                  | 245          |                                       |
|         |              |                |                 |     |     |                |               | 3         | 38            | 10                 | 279          |                                       |
|         |              |                |                 |     |     |                |               | 7         | 75            | 5                  | 187          |                                       |
|         |              |                |                 |     |     |                |               | 6         | 102           | 17                 | 214          |                                       |
| PLC057  | RC           | 698496         | 7672954         | 187 | -60 | 273            | 69            | 20        | 16            | 32                 | 183          | 1.22                                  |
| PLC058  | RC           | 698585         | 7672997         | 189 | -60 | 267            | 51            | Not withi | n resourc     | e zone             |              |                                       |
| PLC059  | RC           | 698599         | 7672949         | 196 | -60 | 272            | 93            | 22        | 67            | 6                  | 352          | 1.35                                  |
|         |              |                |                 |     |     |                |               | 21        | 78            | 5                  | 417          | 0.95                                  |
| PLC060  | RC           | 698580         | 7672906         | 200 | -60 | 265            | 57            | 22        | 19            | 5                  | 328          | 0.86                                  |
|         |              |                |                 |     |     |                |               | 21        | 33            | 5                  | 515          | 1.49                                  |
| PLC061  | RC           | 698504         | 7672891         | 200 | -60 | 270            | 45            | 20        | 19            | 7                  | 180          | 1.33                                  |
| PLC062  | RC           | 698524         | 7672930         | 195 | -61 | 265            | 93            | 20        | 74            | 16                 | 208          | 0.92                                  |
| PLC063  | RC           | 698648         | 7672795         | 207 | -59 | 273            | 81            | 22        | 53            | 6                  | 432          | 1.51                                  |
| PLC064  | RC           | 698619         | 7672743         | 199 | -60 | 277            | 57            | 22        | 32            | 7                  | 261          | 0.98                                  |
| PLC065  | RC           | 698297         | 7671343         | 199 | -89 | 49             | 141           | 12        | 25            | 37                 | 220          |                                       |
|         |              |                |                 |     |     |                |               | 8         | 98            | 12                 | 327          | 0.69 <sup>2</sup>                     |
|         |              |                |                 |     |     |                |               | 3         | 120           | 5                  | 93           |                                       |
| PLC066  | RC           | 698282         | 7671285         | 203 | -89 | 108            | 117           | 12        | 23            | 30                 | 278          | 0.65 <sup>2</sup>                     |
|         |              |                |                 |     |     |                |               | 8         | 90            | 6                  | 365          | 0.80 <sup>2</sup>                     |
|         |              |                |                 |     |     |                |               | 3         | 101           | 9                  | 102          |                                       |
| PLC067  | RC           | 698257         | 7671144         | 202 | -77 | 276            | 147           | 12        | 14            | 16                 | 248          |                                       |
|         |              |                |                 | _/_ |     |                |               | 8         | 38            | 8                  | 233          |                                       |
|         |              |                |                 |     |     |                |               | 3         | 65            | 3                  | 313          |                                       |
|         |              |                |                 |     |     |                |               | 7         | 93            | 11                 | 201          |                                       |
|         |              |                |                 |     |     |                |               |           |               |                    | 201          |                                       |
| PLC068  | PC           | 600777         | 7671202         | 102 | 60  | 270            | 81            | 6<br>•    | 125<br>5      | 18<br>5            |              | 1 1 2                                 |
| FLCUDO  | RC           | 698232         | 7671303         | 192 | -60 | 270            | 01            | 8         | 5             | 5                  | 158          | 1.13                                  |
|         |              |                |                 |     |     |                |               | 3         | 20<br>65      | 9                  | 351          | 0.94                                  |
|         |              |                |                 |     |     |                |               | 7         | 65            | 2                  | 210          | 1.18                                  |

|          | Hole | MGA     | MGA      |     |     | MGA     | Hole  |           | Depth    | Interval | Ta <sub>2</sub> O <sub>5</sub> | Li <sub>2</sub> O |
|----------|------|---------|----------|-----|-----|---------|-------|-----------|----------|----------|--------------------------------|-------------------|
| HoleID   | Туре | Easting | Northing | RL  | Dip | Azimuth | Depth | Domain    | From     | Length   | ppm                            | pct <sup>1</sup>  |
| PLC069   | RC   | 698387  | 7671748  | 188 | -60 | 270     | 89    | 14        | 29       | 7        | 201                            | 0.43              |
|          |      |         |          |     |     |         |       | 13        | 45       | 3        | 223                            | 0.50              |
|          |      |         |          |     |     |         |       | 12        | 70       | 13       | 312                            | 1.03              |
| PLC070   | RC   | 698422  | 7671748  | 190 | -60 | 270     | 149   | 15        | 12       | 5        | 318                            | 0.47              |
|          |      |         |          |     |     |         |       | 14        | 63       | 5        | 200                            | 1.00              |
|          |      |         |          |     |     |         |       | 13        | 68       | 5        | 154                            | 0.88              |
|          |      |         |          |     |     |         |       | 12        | 98       | 13       | 235                            | 0.77              |
|          |      |         |          |     |     |         |       | 3         | 135      | 8        | 248                            | 0.56              |
| PLC071   | RC   | 698400  | 7671796  | 188 | -60 | 270     | 95    | 14        | 30       | 6        | 400                            | 0.67              |
|          |      |         |          |     |     |         |       | 13        | 43       | 7        | 286                            | 0.18              |
|          |      |         |          |     |     |         |       | 12        | 76       | 14       | 213                            | 0.71 <sup>2</sup> |
| PLC072   | RC   | 698446  | 7671797  | 189 | -60 | 270     | 161   | 16        | 7        | 2        | 235                            |                   |
|          |      |         |          |     |     |         |       | 15        | 31       | 3        | 413                            | 0.07              |
|          |      |         |          |     |     |         |       | 14        | 68       | 3        | 267                            |                   |
|          |      |         |          |     |     |         |       | 13        | 76       | 6        | 255                            | 0.64              |
|          |      |         |          |     |     |         |       | 12        | 108      | 15       | 217                            | 0.68 <sup>2</sup> |
|          |      |         |          |     |     |         |       | 3         | 140      | 7        | 216                            | 0.55              |
| PLC073   | RC   | 698429  | 7671845  | 188 | -60 | 270     | 119   | 15        | 14       | 3        | 450                            | 0.06              |
|          |      |         |          |     |     |         |       | 14        | 49       | 3        | 280                            | 0.81              |
|          |      |         |          |     |     |         |       | 13        | 60       | 4        | 245                            | 0.53              |
|          |      |         |          |     |     |         |       | 12        | 84       | 15       | 215                            | 0.59              |
| PLC074   | RC   | 698467  | 7671847  | 186 | -60 | 270     | 163   | 16        | 11       | 2        | 490                            | 0.40              |
|          |      |         |          |     |     |         |       | 15        | 45       | 3        | 417                            | 0.61              |
|          |      |         |          |     |     |         |       | 14        | 73       | 3        | 330                            | 0.64              |
|          |      |         |          |     |     |         |       | 13        | 89       | 7        | 233                            | 0.78              |
|          |      |         |          |     |     |         |       | 12        | 111      | 17       | 228                            | 0.54 <sup>2</sup> |
|          |      |         |          |     |     |         |       | 3         | 145      | 3        | 197                            | 0.66              |
| PLC075   | RC   | 698440  | 7671899  | 184 | -60 | 270     | 155   | 16        | 2        | 2        | 345                            | 0.00              |
| 1 2007 5 | ne   | 050440  | /0/1000  | 104 | 00  | 270     | 133   | 15        | 16       | 2        | 785                            |                   |
|          |      |         |          |     |     |         |       | 13        | 49       | 2        | 205                            | 0.04              |
|          |      |         |          |     |     |         |       | 14        | 49<br>54 | 5        | 266                            | 0.12              |
|          |      |         |          |     |     |         |       | 13        | 84       | 14       | 182                            | 0.74              |
|          |      |         |          |     |     |         |       | 3         | 122      | 3        | 427                            | 0.74              |
| PLC076   | RC   | 698407  | 7671714  | 191 | -60 | 270     | 161   | 5<br>15   | 0        | 2        | 427<br>145                     | 0.50              |
| PLC070   | ΝC   | 096407  | /0/1/14  | 191 | -00 | 270     | 101   |           |          |          |                                | 0.05              |
|          |      |         |          |     |     |         |       | 14        | 55       | 6<br>5   | 218                            | 0.85              |
|          |      |         |          |     |     |         |       | 13        | 61<br>02 | 5        | 172                            | 0.92              |
|          |      |         |          |     |     |         |       | 12        | 93       | 12       | 228                            | 0.80              |
| DICOLT   |      | 600450  | 7672500  | 402 | 50  | 262     |       | 3         | 121      | 11       | 234                            | 0.61 <sup>2</sup> |
| PLS017   | RC   | 698450  | 7672500  | 183 | -59 | 262     | 66    | 13        | 44       | 6        | 194                            | 0.51              |
| PLS018   | RC   | 698499  | 7672499  | 183 | -61 | 262     | 100   | Not withi |          |          |                                |                   |
| PLS019   | RC   | 698549  | 7672497  | 188 | -60 | 260     | 100   | 16        | 38       | 8        | 409                            | 1.63              |
| PLS020   | RC   | 698599  | 7672501  | 189 | -60 | 265     | 102   | 16        | 89       | 8        | 345                            | 1.45              |
| PLS021   | RC   | 698403  | 7672300  | 185 | -60 | 265     | 96    | Not withi |          |          |                                |                   |
| PLS022   | RC   | 698453  | 7672298  | 186 | -59 | 264     | 85    | 13        | 40       | 3        | 393                            | 0.13              |
| PLS023   | RC   | 698498  | 7672301  | 185 | -59 | 261     | 102   | 13        | 79       | 14       | 212                            | 0.94              |
| PLS024   | RC   | 698550  | 7672305  | 189 | -59 | 254     | 63    | 16        | 41       | 4        | 278                            | 0.43              |
| PLS025   | RC   | 698350  | 7672103  | 186 | -60 | 265     | 102   | 3         | 58       | 1        | 500                            | 0.04              |
| PLS026   | RC   | 698399  | 7672102  | 187 | -59 | 262     | 100   | 13        | 10       | 9        | 376                            | 0.62              |

| IdebicTypeEactNorthingNLDiaJientDeptDomainFromLegtprodPLS027RC698450767210218-59268102162822221.22PLS028RC698500767210318-5926810216262220.00PLS042RC69823376714719-60704810111000.07PLS043RC698335767147209-60270126122470322126123130123133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133133<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         | Hole | MGA    | MGA     |     |     | MGA | Hole | _ · | Depth | Interval | Ta₂O₅ | Li <sub>2</sub> O |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|------|--------|---------|-----|-----|-----|------|-----|-------|----------|-------|-------------------|
| Figure         Re         Figure         Figure <th></th> |         |      |        |         |     |     |     |      |     |       |          |       |                   |
| PLS028         RC         698500         7672103         19         -59         268         102         16         22         2         210         0.60           14         76         5         244         0.90           78         88         10         1         100         0.33           PLS042         RC         698235         767147         189         -60         270         126         12         47         32         210         1.52           PLS044         RC         698335         767147         209         -60         270         126         12         47         23         130         1.33           PLS044         RC         698319         767128         185         -60         268         40         12         14         4         303         1.63         1.00           RC         69810         7671250         12         -60         267         108         12         34         43         1.63         1.63         1.63         1.63         1.63         1.63         1.63         1.63         1.63         1.63         1.63         1.63         1.63         1.63         1.63         1.63                                                                                                                                                                                                                                                                                      | PLS027  | RC   | 698450 | /6/2102 | 189 | -59 | 264 | 96   |     |       |          |       |                   |
| P1S042         RC         698233         7671447         189         60         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20         20                                                                                                                                                                                                                                                                                     | DI 6020 | 56   | 600500 | 7679400 | 405 | 50  | 260 | 102  |     |       |          |       |                   |
| PL5042     RC     698233     7671447     189     60     270     A8     10     1     1     160     0.14       9     60     18     3     200     0.89       PL5043     RC     698335     7671447     209     60     270     126     12     47     32     2177     1.52       9     698355     7671447     209     60     270     126     12     47     32     2177     1.52       9     698178     7671380     19     60     268     200     12     14     25     1.00       9     645     64     140     140     140     1.00     1.00     1.00     1.00     1.00       9     645     64     140     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.00     1.                                                                                                                                                                                                                                                                                                                                                                                                                                                          | PLS028  | RC   | 698500 | /6/2103 | 195 | -59 | 268 | 102  |     |       |          |       |                   |
| P1S042     RC     698233     767147     18     -60     270     48     10     1     1     160     0.14       P1S043     RC     698335     7671447     209     -60     270     126     12     47     3     130     130     130     130       P1S043     RC     698335     7671447     209     -60     270     126     12     147     43     140     140     130     133       P1S044     RC     698291     7671380     195     -60     268     269     60     7     6     4     930     133     130       P1S045     RC     698217     7671248     188     -60     269     260     7     6     4     930     133       P1S045     RC     698178     7671248     188     -60     267     108     12     34     24     133     163       P1S045     RC     698178     7671248     122     -60     267     108     12     34     24     133       P1S045     RC     698178     7671087     212     -60     275     112     11     48     14     200       P1S047     RC <th< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                        |         |      |        |         |     |     |     |      |     |       |          |       |                   |
| PL5043         RC         698335         767147         209         60         270         126         12         14         13         130         33         200         6.98           PL5043         RC         698335         767147         209         60         270         126         12         14         250         100         133           PL5043         RC         69839         7671380         195         60         260         260         121         14         250         303         163         1.00           PL5045         RC         698178         7671248         188         60         269         60         7         66         24         193         1.63           PL5045         RC         698178         7671248         188         60         269         108         12         34         24         193         1.63           PL5046         RC         698323         7671289         212         60         275         112         11         48         1         200         1.66           PL5047         RC         698323         767169         20         767         112         13         40                                                                                                                                                                                                                                                                                  |         |      |        |         |     |     |     |      |     |       |          |       |                   |
| PLS043         RC         698335         767147         20         -60         270         126         12         47         52         21         1,52           PLS044         RC         698291         7671380         P         -60         260         260         9         90         3         11         4         340         1.40           PLS044         RC         698291         7671380         P         -60         269         90         12         14         255         203         1.30           PLS045         RC         698178         7671280         12         -60         267         108         12         34         43         393         0.92           PLS045         RC         698130         7671250         12         -60         267         108         12         34         424         133         1.63           PLS047         RC         698323         7671089         21         -60         277         112         11         48         1         200         1.60           PLS047         RC         698229         7671087         20         -60         277         110         13         103 </td <td>PLS042</td> <td>RC</td> <td>698233</td> <td>7671447</td> <td>189</td> <td>-60</td> <td>270</td> <td>48</td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                             | PLS042  | RC   | 698233 | 7671447 | 189 | -60 | 270 | 48   |     |       |          |       |                   |
| PIS043         RC         69335         7671447         20         60         270         126         12         47         32         217         1.52           PIS044         RC         698291         7671380         19         -60         268         90         3         111         4         25         203         1.33           PIS045         RC         698291         7671380         19         -60         269         60         7         6         4         95         1.73           PIS045         RC         698178         7671280         12         -60         267         108         12         34         24         193         1.63           PIS045         RC         698178         7671280         212         -60         267         108         12         34         24         193         1.63           PIS046A         RC         698178         7671280         216         -60         277         108         12         34         74         1.03         1.63           PIS047         RC         698323         7671087         260         276         112         11         48         11         200<                                                                                                                                                                                                                                                                                 |         |      |        |         |     |     |     |      |     |       |          |       |                   |
| PLS044         RC         698291         7671380         19         40         268         268         90         11         4         30         1.10           PLS044         RC         698291         7671380         19         60         268         20         111         4         30         1.00           PLS045         RC         698178         7671248         188         -60         269         60         7         60         4         930         0.02           PLS045         RC         698170         7671248         188         -60         267         108         12         34         24         193         1.63           PLS046         RC         698170         7671250         212         -60         275         112         11         48         1         200         1.62           PLS047         RC         698323         7671087         29         267         271         112         148         11         200         0.62           PLS047         RC         698229         7671087         209         277         110         8         11         100         1.09         1.09         1.00 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                    |         |      |        |         |     |     |     |      |     |       |          |       |                   |
| PL5044         RC         698291         7671380         19         -60         268         90         12         14         4         340         1.40           PL5044         RC         698291         7671380         18         -60         268         90         45         3         163         1.00           PL5045         RC         698178         7671248         188         -60         269         60         7         6         44         95         1.73           PL5046         RC         698178         7671250         212         -60         267         108         12         50         212         10         11         48         47         280         1.20           PL5046         RC         698323         767108         21         -67         7         6         3         207         12         12         67         7         6         18         130         130           PL5047         RC         69829         7671087         29         -67         7         18         13         30         31         31         31         31         33         31         33         31         33                                                                                                                                                                                                                                                                                              | PLS043  | RC   | 698335 | 7671447 | 209 | -60 | 270 | 126  |     |       |          |       |                   |
| PLS044         RC         69291         7671380         195         60         268         90         12         14         25         203         1.01           B         645         3         163         1.00         8         61         44         365         1.10           B         66         4         365         1.61         3         0.62         1.0         2.14         1.23           PLS045         RC         698178         7671250         212         60         267         108         12         34         42         1.33           PLS045         RC         69830         7671250         212         60         267         108         12         34         24         1.33           PLS047         RC         698323         767108         212         67         71         16         30         2.27         1.20         1.2         67         72         0.6         7.6         1.8         3.0         0.5         1.8         1.8         1         2.00         0.0         0.0         0.0         0.0         1.6         7.6         1.5         3.0         3.0         3.0         3.0         3.0                                                                                                                                                                                                                                                                                       |         |      |        |         |     |     |     |      | 9   |       |          |       |                   |
| 9         45         3         163         1.00           8         61         4         365         1.61           3         68         61         4         393         0.92           PLS045         RC         698178         7671248         188         -60         269         60         7         66         44         393         1.03           PLS046A         RC         698310         7671250         212         -60         267         108         12         34         24         133         1.63           PLS047         RC         698323         7671089         212         -60         275         112         11         48         1         200         0.60           PLS047         RC         698229         7671087         209         -60         274         110         88         17         1         100         0.25           PLS048         RC         698229         7671087         209         -60         270         100         3         105         110         130         1.62           PLS048         RC         698247         7671087         209         -60         270                                                                                                                                                                                                                                                                                                             |         |      |        |         |     |     |     |      | 3   | 111   |          | 340   | 1.40              |
| Res69697614361.1136843930.92PLS045RC6981787671250212602671081264241931.63PLS046ARC6983107671250212602671081234241931.63PLS047RC69832376712802126027112114872001.62PLS047RC69832376710872126027112114812000.60PLS048RC69822976710872096027411081713100.25PLS048RC69824976710872096027411081713100.25PLS048RC69827976710872096027411081713100.25PLS049RC6982747671080199.03436030221301.33PLS049RC6982747671081196027080316261871.85PLS049RC698274767091196027080316261871.85PLS050RC698278767091187-90096369201241.07PLS055 </td <td>PLS044</td> <td>RC</td> <td>698291</td> <td>7671380</td> <td>195</td> <td>-60</td> <td>268</td> <td>90</td> <td>12</td> <td>14</td> <td>25</td> <td>203</td> <td>1.30</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | PLS044  | RC   | 698291 | 7671380 | 195 | -60 | 268 | 90   | 12  | 14    | 25       | 203   | 1.30              |
| PLS045RC698178767124188-602696076644951.73PLS046ARC698107671250212602671081234241031.26PLS046ARC6983107671250212602671081234241.231.26PLS047RC698323767108921260275112114812700.82PLS047RC698229767108720960275112114812000.60PLS048RC69822976710872096027411081713100.25PLS048RC6981747671030199-903436030221901.54PLS050RC698217767091196260723472091.45PLS051RC698263767091186602607230131.65PLS053RC698278767091187-90096369201.451.65PLS055RC698278767090124602701003841560.68PLS055RC698278767090194602701003841560.68PLS055RC698278 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>9</td> <td>45</td> <td>3</td> <td>163</td> <td>1.00</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |         |      |        |         |     |     |     |      | 9   | 45    | 3        | 163   | 1.00              |
| PLS045         RC         698178         7671248         188         -60         269         60         7         6         4         95         1.73           PLS046A         RC         698310         7671250         212         -60         267         108         12         34         24         193         1.63           PLS047         RC         698323         7671089         212         -60         275         112         11         48         1         200         0.60           PLS047         RC         698323         7671087         20         -60         275         112         11         48         1         200         0.60           PLS047         RC         698229         7671087         209         -60         274         110         88         81         1         200         0.60           PLS048         RC         698229         7671087         209         -60         274         110         80         76         15         303         13         13         13         13         14         200           PLS048         RC         698217         767030         19         90         270 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>8</td> <td></td> <td>4</td> <td></td> <td>1.61</td>                                                                                                                                            |         |      |        |         |     |     |     |      | 8   |       | 4        |       | 1.61              |
| PLS046A         RC         698310         7671250         212         60         267         108         12         34         24         103         1.63           PLS047         RC         698323         7671089         212         60         275         112         11         48         44         70         260         1.52           PLS047         RC         698323         7671089         212         60         275         112         11         48         1         200         6.61         5.8           PLS047         RC         698229         7671087         209         60         274         110         8         17         1         310         0.25           PLS048         RC         698247         7671037         99         60         274         110         8         17         1         310         0.25           PLS049         RC         698247         7671037         99         60         270         80         3         16         22         160         1.5         30         12         160         1.6         1.6         1.6         1.6         1.6         1.6         1.6         1.6                                                                                                                                                                                                                                                                                    |         |      |        |         |     |     |     |      | 3   | 68    | 4        | 393   | 0.92              |
| PLS046A         RC         698310         7671250         212         60         267         108         12         34         24         193         1.63           PL5047         RC         698323         7671089         212         60         275         112         11         48         41         270         0.82           PL5047         RC         698323         7671087         209         60         275         112         11         48         1         270         0.82           PL5047         RC         698229         7671087         209         60         274         110         8         11         100         0.02           PL5048         RC         698279         7671087         209         60         274         110         8         17         1         310         0.25           PL5048         RC         698174         7671030         199         -90         243         60         33         16         26         187         1.83           PL5047         RC         698174         767030         199         -90         240         72         3         47         20         214         1.9                                                                                                                                                                                                                                                                                 | PLS045  | RC   | 698178 | 7671248 | 188 | -60 | 269 | 60   | 7   | 6     | 4        | 95    | 1.73              |
| RC         698323         767108         212         60         275         112         11         48         1         270         0.82           PLS047         RC         698323         767108         212         60         275         12         11         48         1         270         0.82           PLS048         RC         69829         7671087         20         60         274         110         48         11         200         0.60           PLS048         RC         69829         7671087         209         60         274         110         88         17         200         1.02           PLS048         RC         69829         7671087         209         60         274         110         88         17         200         1.02           PLS049         RC         698219         7671037         209         60         270         100         3         80         181         200           PLS051         RC         698211         767091         187         60         270         50         3         00         145         160           PLS053         RC         698221         767091<                                                                                                                                                                                                                                                                                          |         |      |        |         |     |     |     |      | 6   | 25    | 10       | 214   | 1.23              |
| Rb         698323         7671089         212         60         275         112         11         48         1         270         0.82           PLS047         RC         698323         7671087         212         640         275         12         11         48         1         270         0.82           PLS048         RC         698229         7671087         209         60         274         110         86         11         100         0.25           PLS048         RC         698229         7671087         209         60         274         110         83         13         13         131         0.25           PLS049         RC         698229         7671037         209         60         270         100         3         33         13         131         120         1.54           PLS049         RC         698171         767092         201         60         270         80         3         16         26         187         1.54           PLS053         RC         698243         767091         187         60         270         100         3         8         4         156         0.69                                                                                                                                                                                                                                                                                        | PLS046A | RC   | 698310 | 7671250 | 212 | -60 | 267 | 108  | 12  | 34    | 24       | 193   | 1.63              |
| PLS047         RC         698323         7671089         212         60         275         112         11         48         1         270         0.82           PLS048         RC         698229         7671087         209         60         274         110         83         11         200         0.00           PLS048         RC         698229         7671087         209         60         274         110         83         11         100         0.25           B         33         8         181         2.00         1.33         33         8         1.31           PLS049         RC         698174         7671030         199         90         343         60         3         0         22         190         1.54           PLS051         RC         698174         7671030         196         60         270         80         3         16         26         187         1.62           PLS051         RC         698211         767092         201         60         270         80         3         16         20         124         1.94           PLS053         RC         698213         767                                                                                                                                                                                                                                                                                                   |         |      |        |         |     |     |     |      | 8   | 84    | 7        | 280   | 1.26              |
| 12         67         7         266         1.58           8         81         1         200         0.60           9         105         1         100         1.00           9         68229         7671087         209         60         274         110         8         17         1         310         0.25           3         33         8         181         2.09         6         274         10         8         17         1         310         0.25           9         6         68174         767103         199         -90         343         60         26         76         15         33         133           9         10         -60         270         80         3         16         26         187         1.83           9         100         19         -60         260         72         3         47         20         214         1.94           9         100         185         60         270         50         3         69         20         1.24         1.07           9         165         6823         767091         187         -60 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3</td> <td>96</td> <td>3</td> <td>247</td> <td>1.20</td>                                                                                                                                                                                                   |         |      |        |         |     |     |     |      | 3   | 96    | 3        | 247   | 1.20              |
| RC         698229         7671087         209         60         274         110         8         11         1         200         0.05           PLS048         RC         698229         7671087         209         60         274         110         8         170         1         310         0.25           3         33         8         181         2.09         6         76         15         303         1.33           PLS049         RC         698174         7671030         199         -90         343         60         3         0         22         190         1.54           PLS051         RC         698211         767092         201         -60         270         80         3         16         26         187         1.85           PLS052         RC         698223         767091         196         60         270         70         3         47         20         214         1.94           PLS052         RC         698223         767091         194         60         270         100         3         8         4         156         0.68           PLS055         RC         698273<                                                                                                                                                                                                                                                                                                  | PLS047  | RC   | 698323 | 7671089 | 212 | -60 | 275 | 112  | 11  | 48    | 1        | 270   | 0.82              |
| PLS048         RC         698229         7671087         209         -60         274         110         8         171         1         100         0.25           PLS049         RC         698174         7671037         199         -90         343         60         76         15         303         1.33           PLS049         RC         698174         7671030         199         -90         343         60         3         0         22         190         1.54           PLS050         RC         698171         767092         201         -60         270         80         3         166         260         185         1.62         1.85           PLS051         RC         69828         7670901         187         -90         0         96         3         0         13         209         1.45           PLS052         RC         698273         7670901         187         -90         0         96         3         69         20         124         1.07           PLS054         RC         698273         767090         194         -60         270         100         3         8         4         156                                                                                                                                                                                                                                                                                        |         |      |        |         |     |     |     |      | 12  | 67    | 7        | 266   | 1.58              |
| PLS048         RC         698229         7671087         209         -60         274         110         8         17         1         310         0.25           B         33         33         8         181         2.09         33         33         8         181         2.09           B         6         76         15         303         1.33         1.33           PLS049         RC         698174         7671030         199         -90         343         60         3         0         22         190         1.54           PLS050         RC         698211         767092         201         -60         270         80         3         16         260         183         16         260         124         1.94           PLS051         RC         69823         767090         187         -90         0         96         3         69         20         124         1.07           PLS052         RC         698273         767090         187         -90         0         96         3         69         20         124         1.07           PLS055         RC         698273         76                                                                                                                                                                                                                                                                                                            |         |      |        |         |     |     |     |      | 8   | 81    | 1        | 200   | 0.60              |
| 1         3         33         8         181         2.09           6         76         15         303         1.33           PL5049         RC         698174         7671030         199         -90         343         60         3         0         22         190         1.54           PL5050         RC         698211         767092         201         -60         270         80         3         16         260         187         1.85           PL5051         RC         698233         7670896         185         -60         270         50         3         00         13         209         1.45           PL5052         RC         698223         767080         187         -90         0         96         3         69         20         124         1.07           PL5053         RC         698278         767090         187         -90         0         96         3         69         20         124         1.07           PL5055         RC         698278         767090         192         -60         263         96         3         0         9         39         0.09         39                                                                                                                                                                                                                                                                                                           |         |      |        |         |     |     |     |      | 3   | 105   | 1        | 170   | 1.09              |
| PLS049         RC         698174         7671030         199         -90         343         60         3         00         22         190         1.54           PLS050         RC         698211         767092         201         60         270         80         3         166         260         157         185           PLS050         RC         698211         767092         201         60         270         80         3         166         260         137         185           PLS051         RC         698268         767091         186         60         270         50         3         00         133         209         1.45           PLS052         RC         698278         767090         187         90         0         96         3         669         20         124         1.07           PLS054         RC         698278         767090         194         60         270         100         3         88         4         156         0.68           PLS055         RC         698251         767070         192         260         263         96         3         00         9         9         <                                                                                                                                                                                                                                                                                      | PLS048  | RC   | 698229 | 7671087 | 209 | -60 | 274 | 110  | 8   | 17    | 1        | 310   | 0.25              |
| PLS049         RC         698174         7671030         199         -90         343         60         3         0         22         190         1.54           PLS050         RC         698211         7670922         201         -60         270         80         3         166         266         187         1.85           PLS051         RC         698268         7670941         196         -60         260         72         3         477         20         214         1.94           PLS052         RC         698223         7670860         185         -60         270         50         3         00         133         209         1.45           PLS053         RC         698227         7670800         194         -60         270         100         3         84         4         1.66         0.68           PLS055         RC         698278         767079         201         -60         270         102         2         9         3         210         0.79           PLS055         RC         698251         7670700         192         -60         263         96         3         0         9                                                                                                                                                                                                                                                                                                |         |      |        |         |     |     |     |      | 3   | 33    | 8        | 181   | 2.09              |
| PLS050         RC         698211         767092         201         60         270         80         3         165         260         187         188           PLS051         RC         698268         7670941         196         -60         260         72         3         47         20         214         1.94           PLS052         RC         698223         767080         185         -60         270         50         3         00         13         209         1.45           PLS053         RC         698223         7670801         187         -90         0         96         3         69         20         124         1.07           PLS054         RC         698221         767080         194         -60         270         100         3         8         4         105         0.68           PLS055         RC         698217         767070         201         -60         270         102         2         9         3         210         0.79           PLS055         RC         698251         767070         192         -60         263         96         3         0         9         39                                                                                                                                                                                                                                                                                                |         |      |        |         |     |     |     |      | 6   | 76    | 15       | 303   | 1.33              |
| PLS050       RC       698211       7670992       201       -60       270       80       3       16       26       187       1.85         PLS051       RC       698268       7670941       196       -60       260       72       3       477       20       214       1.94         PLS052       RC       698223       7670896       185       -60       270       50       3       00       13       209       1.45         PLS053       RC       698278       7670901       187       -90       0       96       3       699       20       124       1.07         PLS054       RC       698278       767090       187       -90       0       96       3       69       20       124       1.07         PLS055       RC       698278       767070       194       -60       270       102       2       9       3       210       0.79         PLS056       RC       698251       767070       192       -60       263       96       3       0       9       39       0.09         PLS056       RC       698261       767070       192       -60       265 </td <td>PLS049</td> <td>RC</td> <td>698174</td> <td>7671030</td> <td>199</td> <td>-90</td> <td>343</td> <td>60</td> <td>3</td> <td>0</td> <td>22</td> <td>190</td> <td>1.54</td>                                                                                                                                                                                                  | PLS049  | RC   | 698174 | 7671030 | 199 | -90 | 343 | 60   | 3   | 0     | 22       | 190   | 1.54              |
| PLS051       RC       698268       7670941       196       -60       260       72       3       47       20       214       1.94         PLS052       RC       698223       7670896       185       -60       270       50       3       0       13       209       1.45         PLS053       RC       698223       7670800       187       -90       0       96       3       69       20       124       1.07         PLS054       RC       698221       7670800       194       -60       270       100       3       8       4       156       0.68         PLS055       RC       698278       767079       201       -60       270       102       2       9       3       210       0.79         PLS056       RC       698251       767070       192       -60       263       96       3       0       9       39       0.09         PLS056       RC       698251       7670700       192       -60       263       96       3       0       9       39       0.09         PLS057       RC       698304       7670699       195       -60       265                                                                                                                                                                                                                                                                                                                                                                                       |         |      |        |         |     |     |     |      | 4   | 36    | 6        | 380   | 1.62              |
| PLS052       RC       698223       7670896       185       -60       270       50       3       0       13       209       1.45         PLS053       RC       698278       7670901       187       -90       0       96       3       69       20       124       1.07         PLS054       RC       698221       7670800       194       -60       270       100       3       88       4       156       0.68         PLS055       RC       698278       767079       201       -60       270       102       2       9       3       210       0.79         PLS056       RC       698251       7670700       192       -60       263       96       3       0       9       39       0.09         PLS056       RC       698251       7670700       192       -60       263       96       3       0       9       39       0.09         PLS056       RC       698251       7670700       192       -60       263       96       3       0       9       39       0.09         PLS057       RC       698304       7670699       195       -60       265                                                                                                                                                                                                                                                                                                                                                                                        | PLS050  | RC   | 698211 | 7670992 | 201 | -60 | 270 | 80   | 3   | 16    | 26       | 187   | 1.85              |
| PLS053       RC       698278       7670901       187       -90       0       96       3       69       20       124       1.07         PLS054       RC       698221       7670800       194       -60       270       100       3       8       4       156       0.68         PLS055       RC       698278       7670799       201       -60       270       102       2       9       3       210       0.79         PLS055       RC       698278       7670799       201       -60       270       102       2       9       3       210       0.79         PLS056       RC       698251       7670700       192       -60       263       96       3       0       9       39       0.09         PLS056       RC       698251       7670700       192       -60       263       96       3       0       9       39       0.09         PLS056       RC       698261       7670700       192       -60       265       96       2       16       21       136       0.55         PLS057       RC       698304       7670699       195       -60       265 <td>PLS051</td> <td>RC</td> <td>698268</td> <td>7670941</td> <td>196</td> <td>-60</td> <td>260</td> <td>72</td> <td>3</td> <td>47</td> <td>20</td> <td>214</td> <td>1.94</td>                                                                                                                                                                                                       | PLS051  | RC   | 698268 | 7670941 | 196 | -60 | 260 | 72   | 3   | 47    | 20       | 214   | 1.94              |
| PLS054       RC       698221       7670800       194       -60       270       100       3       8       4       156       0.68         PLS055       RC       698278       7670799       201       -60       270       102       2       9       3       210       0.79         PLS055       RC       698278       7670799       201       -60       270       102       2       9       3       210       0.79         PLS056       RC       698251       7670700       192       -60       263       96       3       0       9       39       0.09         PLS056       RC       698251       7670700       192       -60       263       96       3       0       9       39       0.09         PLS056       RC       698251       7670700       192       -60       263       96       3       0       3       39       7       173       0.98         PLS057       RC       698304       7670699       195       -60       265       96       2       16       21       136       0.55         PLS058       RC       698347       7670701       199                                                                                                                                                                                                                                                                                                                                                                                        | PLS052  | RC   | 698223 | 7670896 | 185 | -60 | 270 | 50   | 3   | 0     | 13       | 209   | 1.45              |
| PLS055       RC       698278       7670799       201       -60       270       102       2       9       3       210       0.79         A       50       19       179       1.03       3       50       19       179       1.03         PLS056       RC       698251       7670700       192       -60       263       96       3       0       9       39       0.09         PLS056       RC       698251       7670700       192       -60       263       96       3       0       9       39       0.09         A       38       4       125       0.68       -60       263       96       3       39       7       136       0.55         A       39       7       173       0.98       -60       265       96       2       16       21       136       0.55         PLS057       RC       698304       7670699       195       -60       265       96       2       16       21       136       0.55         A       39       46       173       0.98       -60       265       100       2       34       1       350                                                                                                                                                                                                                                                                                                                                                                                                                    | PLS053  | RC   | 698278 | 7670901 | 187 | -90 | 0   | 96   | 3   | 69    | 20       | 124   | 1.07              |
| RC         698251         7670700         192         -60         263         96         4         81         14         112         0.03           PLS056         RC         698251         7670700         192         -60         263         96         3         0         9         39         0.09           4         38         4         125         0.68         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -         -                                                                                                                                                                                                                                                                                                                              | PLS054  | RC   | 698221 | 7670800 | 194 | -60 | 270 | 100  | 3   | 8     | 4        | 156   | 0.68              |
| PLS056       RC       698251       7670700       192       -60       263       96       3       0       9       39       0.09         4       38       4       125       0.68         2       16       5       136       0.55         3       39       7       173       0.98         4       85       2       155       0.20         4       85       2       156       0.55         3       39       7       173       0.98         4       85       2       155       0.20         5       155       0.20       16       21       136       0.55         3       39       46       173       0.98         4       85       87       155       0.20         5       100       2       34       1       350       1.35         5       100       2       34       1       350       1.35         6       98347       7670701       199       -59       265       100       2       34       1       350       1.35         3       54       8       176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PLS055  | RC   | 698278 | 7670799 | 201 | -60 | 270 | 102  | 2   | 9     | 3        | 210   | 0.79              |
| PLS056       RC       698251       7670700       192       -60       263       96       3       0       9       39       0.09         4       38       4       125       0.68         2       16       5       136       0.55         3       39       7       173       0.98         4       38       4       125       0.60         5       5       136       0.55       3       39       7       173       0.98         4       85       2       155       0.20       16       21       136       0.55         9       96       265       96       2       16       21       136       0.55         3       39       46       173       0.98         4       85       87       155       0.20         5       698347       7670701       199       -59       265       100       2       34       1       350       1.35         9       9       59       265       100       2       34       1       350       1.35         3       54       8       176       0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |      |        |         |     |     |     |      | 3   | 50    | 19       | 179   | 1.03              |
| 4       38       4       125       0.68         2       16       5       136       0.55         3       39       7       173       0.98         4       85       2       155       0.20         5       698304       7670699       195       -60       265       96       2       16       21       136       0.55         3       39       46       173       0.98       0.98       0.95       16       21       136       0.55         9       16       21       136       0.55       0.20       16       21       136       0.55         9       16       21       136       0.55       100       16       21       136       0.59         9       100       10       10       10       10       10       10         9       100       10       10       10       10       10       10         9       10       10       10       10       10       10       10       10         9       10       10       10       10       10       10       10       10         9 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>4</td> <td>81</td> <td>14</td> <td>112</td> <td>0.76</td>                                                                                                                                                                                                                                                                                                                            |         |      |        |         |     |     |     |      | 4   | 81    | 14       | 112   | 0.76              |
| 4       38       4       125       0.68         2       16       5       136       0.55         3       39       7       173       0.98         4       85       2       155       0.20         5       698304       7670699       195       -60       265       96       2       16       21       136       0.55         3       39       46       173       0.98       0.98       0.95       16       21       136       0.55         9       16       21       136       0.55       0.20       16       21       136       0.55         9       16       21       136       0.55       100       16       21       136       0.59         9       100       10       10       10       10       10       10         9       100       10       10       10       10       10       10         9       10       10       10       10       10       10       10       10         9       10       10       10       10       10       10       10       10         9 <td>PLS056</td> <td>RC</td> <td>698251</td> <td>7670700</td> <td>192</td> <td>-60</td> <td>263</td> <td>96</td> <td>3</td> <td>0</td> <td>9</td> <td>39</td> <td>0.09</td>                                                                                                                                                                                                                                                                                               | PLS056  | RC   | 698251 | 7670700 | 192 | -60 | 263 | 96   | 3   | 0     | 9        | 39    | 0.09              |
| PLS057       RC       698304       7670699       195       -60       265       96       2       16       21       136       0.98         PLS057       RC       698304       7670699       195       -60       265       96       2       16       21       136       0.55         3       39       46       173       0.98         PLS058       RC       698347       7670701       199       -59       265       100       2       34       1       350       1.35         PLS058       RC       698347       7670701       199       -59       265       100       2       34       1       350       1.35         3       54       8       176       0.94       354       354       354       354       354       354       354       354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |      |        |         |     |     |     |      | 4   | 38    | 4        | 125   | 0.68              |
| PLS057       RC       698304       7670699       195       -60       265       96       2       16       21       136       0.98         PLS057       RC       698304       7670699       195       -60       265       96       2       16       21       136       0.55         3       39       46       173       0.98         PLS058       RC       698347       7670701       199       -59       265       100       2       34       1       350       1.35         PLS058       RC       698347       7670701       199       -59       265       100       2       34       1       350       1.35         3       54       8       176       0.94       354       354       354       354       354       354       354       354                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         |      |        |         |     |     |     |      |     |       | 5        | 136   |                   |
| PLS057RC6983047670699195-6026596216211550.20339461730.98485871550.20485871550.205100234135054881760.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |      |        |         |     |     |     |      |     |       |          |       |                   |
| PLS057       RC       698304       7670699       195       -60       265       96       2       16       21       136       0.55         3       39       46       173       0.98         4       85       87       155       0.20         PLS058       RC       698347       7670701       199       -59       265       100       2       34       1       350       1.35         3       54       8       176       0.94       1       0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |         |      |        |         |     |     |     |      |     |       |          |       |                   |
| PLS058       RC       698347       7670701       199       -59       265       100       2       34       1       350       1.35         3       54       87       173       0.98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PLS057  | RC   | 698304 | 7670699 | 195 | -60 | 265 | 96   | 2   |       |          |       |                   |
| PLS058 RC 698347 7670701 199 -59 265 100 2 34 1 350 1.35<br>3 54 8 176 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |         |      |        |         |     |     |     |      |     |       |          |       |                   |
| PLS058         RC         698347         7670701         199         -59         265         100         2         34         1         350         1.35           3         54         8         176         0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |      |        |         |     |     |     |      |     |       |          |       |                   |
| 3 54 8 176 0.94                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PLS058  | RC   | 698347 | 7670701 | 199 | -59 | 265 | 100  |     |       |          |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |         |      |        | -       | -   | -   | -   | -    |     |       |          |       |                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | PLS059  | RC   | 698308 | 7670625 | 195 | -64 | 270 | 97   | 2   | 0     | 10       | 259   | 0.88              |

| HoleID  | Hole<br>Type | MGA<br>Easting | MGA<br>Northing | RL  | Dip | MGA<br>Azimuth | Hole<br>Depth | Domain    | Depth<br>From | Interval<br>Length | Ta₂O₅<br>ppm | Li <sub>2</sub> O<br>pct <sup>1</sup> |
|---------|--------------|----------------|-----------------|-----|-----|----------------|---------------|-----------|---------------|--------------------|--------------|---------------------------------------|
| Holeib  | .,,,,        | 2404116        |                 |     | 2.6 | ,              | Deptil        | 3         | 46            | 4                  | 80           | 0.45                                  |
|         |              |                |                 |     |     |                |               | 4         | 91            | 4                  | 103          | 0.48                                  |
| PLS060  | RC           | 698348         | 7670622         | 196 | -61 | 266            | 100           | 2         | 17            | 9                  | 201          | 1.41                                  |
|         |              |                |                 |     |     |                |               | 3         | 81            | 8                  | 109          | 1.07                                  |
| PLS061  | RC           | 698385         | 7670626         | 197 | -60 | 260            | 100           | 2         | 45            | 7                  | 204          | 1.16                                  |
| PLS062  | RC           | 698308         | 7670547         | 198 | -60 | 264            | 100           | 3         | 41            | 4                  | 198          | 0.44                                  |
|         | -            |                |                 |     |     | -              |               | 4         | 92            | 2                  | 110          | 0.43                                  |
| PLS063  | RC           | 698348         | 7670550         | 201 | -60 | 262            | 100           | 2         | 11            | 5                  | 190          | 0.74                                  |
|         |              |                |                 |     |     |                |               | 3         | 66            | 9                  | 144          | 1.77                                  |
| PLS064  | RC           | 698396         | 7670551         | 206 | -60 | 260            | 100           | 2         | 37            | 4                  | 303          | 0.88                                  |
| PLS065  | RC           | 697954         | 7671002         | 188 | -60 | 273            | 100           | 1         | 7             | 4                  | 235          | 1.16                                  |
| PLS066  | RC           | 697971         | 7670900         | 201 | -60 | 263            | 100           | 1         | 39            | 6                  | 302          | 0.31                                  |
| PLS067  | RC           | 697952         | 7670849         | 197 | -66 | 260            | 73            | 1         | 21            | 6                  | 263          | 1.09                                  |
| PLS068  | RC           | 697999         | 7670852         | 197 | -62 | 264            | 100           | 1         | 56            | 5                  | 290          | 0.75                                  |
| PLS069  | RC           | 697976         | 7670750         | 199 | -62 | 265            | 100           | 1         | 28            | 13                 | 189          | 1.21                                  |
| PLS070  | RC           | 697976         | 7670677         | 210 | -59 | 269            | 100           | 1         | 32            | 11                 | 181          | 0.87                                  |
| PLS071  | RC           | 697959         | 7670600         | 222 | -61 | 268            | 100           | 1         | 22            | 18                 | 231          | 0.34                                  |
| PLS072  | RC           | 698002         | 7670548         | 224 | -59 | 265            | 79            | 1         | 27            | 26                 | 197          | 1.52                                  |
| PLS073  | RC           | 698050         | 7670500         | 224 | -59 | 272            | 103           | 1         | 59            | 24                 | 131          | 1.79                                  |
| PLS073A | RC           | 698002         | 7670497         | 228 | -59 | 267            | 80            | 1         | 22            | 22                 | 200          | 1.40                                  |
| PLS074  | RC           | 698049         | 7670450         | 224 | -60 | 258            | 73            | 1         | <br>49        | 19                 | 110          | 1.08                                  |
| PLS075  | RC           | 698051         | 7670401         | 215 | -62 | 260            | 100           | 1         | 57            | 29                 | 108          | 1.42                                  |
| PLS076  | RC           | 698060         | 7670363         | 210 | -62 | 261            | 120           | 1         | 54            | 28                 | 84           | 1.00                                  |
| PLS077  | RC           | 697804         | 7669901         | 184 | -58 | 265            | 100           | Not withi |               |                    |              |                                       |
| PLS078  | RC           | 697847         | 7669901         | 185 | -58 | 269            | 100           | Not withi |               |                    |              |                                       |
| PLS079  | RC           | 697900         | 7669898         | 185 | -60 | 265            | 100           | Not withi |               |                    |              |                                       |
| PLS080  | RC           | 697948         | 7669897         | 185 | -60 | 273            | 100           | Not withi |               |                    |              |                                       |
| PLS113  | RC           | 698223         | 7671152         | 194 | -60 | 262            | 99            | 7         | 27            | 7                  | 170          | 1.85                                  |
|         |              |                |                 |     |     |                |               | 6         | 59            | 24                 | 154          | 1.45                                  |
| PLS114  | RC           | 698299         | 7671155         | 207 | -70 | 269            | 102           | 12        | 28            | 16                 | 272          | 1.21                                  |
| -       |              |                |                 |     |     |                |               | 8         | 72            | 3                  | 300          | 1.30                                  |
|         |              |                |                 |     |     |                |               | 3         | 93            | 2                  | 240          | 1.43                                  |
| PLS117  | RC           | 698310         | 7671417         | 202 | -90 | 0              | 90            | 12        | 29            | 27                 | 339          | 1.74                                  |
| PLS118  | RC           | 698265         | 7671344         | 195 | -60 | 266            | 84            | 12        | 4             | 11                 | 213          | 0.69                                  |
|         |              |                |                 |     |     |                |               | 8         | 32            | 7                  | 443          | 2.38                                  |
|         |              |                |                 |     |     |                |               | 3         | 49            | 14                 | 232          | 0.76                                  |
| PLS119  | RC           | 698294         | 7671298         | 203 | -90 | 0              | 120           | 12        | 25            | 27                 | 204          | 1.89                                  |
|         |              |                |                 |     |     |                |               | 8         | 90            | 6                  | 293          | 1.52                                  |
|         |              |                |                 |     |     |                |               | 3         | 101           | 7                  | 161          | 1.29                                  |
| PLS120  | RC           | 697402         | 7669493         | 177 | -60 | 266            | 100           | Not withi |               |                    |              |                                       |
| PLS126  | RC           | 698299         | 7671499         | 200 | -87 | 289            | 100           | 12        | 25            | 22                 | 188          | 1.62                                  |
| PLS126  |              |                |                 |     |     |                |               | 10        | 61            | 12                 | 277          | 1.69                                  |
| PLS126  |              |                |                 |     |     |                |               | 9         | 84            | 2                  | 455          | 1.44                                  |
| PLS127  | RC           | 698327         | 7671600         | 194 | -89 | 331            | 110           | 13        | 33            | 11                 | 244          | 1.50                                  |
| PLS127  |              |                |                 |     | -   |                | -             | 12        | 70            | 10                 | 222          | 1.38                                  |
| PLS127  |              |                |                 |     |     |                |               | 10        | 85            | 10                 | 281          | 1.81                                  |
| PLS127  |              |                |                 |     |     |                |               | 9         | 95            | 9                  | 214          | 1.61                                  |
| Notes:  |              |                |                 |     |     |                |               | -         |               | 2                  |              |                                       |

- <sup>1</sup> Where Li<sub>2</sub>O field is blank, it is because the interval was not sampled and analysed specifically for Li<sub>2</sub>O.
   <sup>2</sup> When compared to interval reported for Ta<sub>2</sub>O<sub>5</sub>, the interval length sampled and analysed specifically for Li<sub>2</sub>O is a subset of the reported interval. This is the case for 14 of the intervals reported in the table above, including:

| HoleID  | Domain | Ta <sub>2</sub> O <sub>5</sub> interval | Li <sub>2</sub> O interval |
|---------|--------|-----------------------------------------|----------------------------|
| PLC014  | 12     | 29 m                                    | 24 m                       |
| PLC016B | 12     | 34 m                                    | 33 m                       |
| PLC016B | 9      | 16 m                                    | 14 m                       |
| PLC042  | 3      | 4 m                                     | 1 m                        |
| PLC044  | 3      | 13 m                                    | 5 m                        |
| PLC053  | 3      | 30 m                                    | 21 m                       |
| PLC055  | 3      | 4 m                                     | 2 m                        |
| PLC065  | 8      | 12 m                                    | 1 m                        |
| PLC066  | 12     | 30 m                                    | 4 m                        |
| PLC066  | 8      | 6 m                                     | 4 m                        |
| PLC071  | 12     | 14 m                                    | 13 m                       |
| PLC072  | 12     | 15 m                                    | 14 m                       |
| PLC074  | 12     | 17 m                                    | 14 m                       |
| PLC076  | 3      | 11 m                                    | 7 m                        |

# Appendix 2

# JORC Code, 2012 Edition – Table 1 report

## Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

| Criteria               | JORC Code explanation                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sampling<br>techniques | • Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate                                                    | • The deposit has been sampled using a series of reverse circulation ("RC") holes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        | to the minerals under investigation, such as down hole gamma<br>sondes, or handheld XRF instruments, etc). These examples should<br>not be taken as limiting the broad meaning of sampling. | • Talison Minerals Pty Ltd ("Talison") conducted a 54 drill hole RC program in 2008 totalling 3,198m and 29 drill holes for a total of 2,783m in 2010.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                        |                                                                                                                                                                                             | • Between 2010 and 2012, Talison changed its name to Global Advanced Metals ("GAM"). GAM completed 17 RC holes for 1,776m in 2012.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |                                                                                                                                                                                             | • In late 2014, Pilbara Minerals completed 41 RC holes for 3,812m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                        |                                                                                                                                                                                             | • In March 2015, Pilbara Minerals completed 23 RC holes for 2,193m.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                        | Include reference to measures taken to ensure sample representivity<br>and the appropriate calibration of any measurement tools or systems<br>used.                                         | <ul> <li>Talison/GAM RC holes were all sampled every metre, with samples split on the rig using a cyclone splitter. The sampling system consisted of a trailer mounted cyclone with cone splitter and dust suppression system. The cyclone splitter was configured to split the cuttings at 85% to waste (to be captured in 600mm x 900mm green plastic mining bags) and 15% to the sample port in pre-numbered, draw-string calico sample bags (12-inch by 18-inch).</li> <li>Pilbara were all sampled every metre within pegmatite zones and one metre into footwall &amp; hanging wall country rock. Samples were collected using a cyclone and cone splitter attached to the rig with a stael brace. The cyclone splitter was configured to split the cuttings.</li> </ul> |
|                        |                                                                                                                                                                                             | steel brace. The cyclone splitter was configured to split the cuttings<br>at 85% to waste (to be captured in 600mm x 900mm green plastic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



| Criteria               | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mining bags) and 15% to the sample port in draw-string calico sample bags (12-inch by 14-inch).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                        | • Aspects of the determination of mineralisation that are Material to<br>the Public Report. In cases where 'industry standard' work has been<br>done this would be relatively simple (eg 'reverse circulation drilling<br>was used to obtain 1 m samples from which 3 kg was pulverised to<br>produce a 30 g charge for fire assay'). In other cases more<br>explanation may be required, such as where there is coarse gold that<br>has inherent sampling problems. Unusual commodities or<br>mineralisation types (eg submarine nodules) may warrant disclosure | <ul> <li>Talison/GAM holes are all RC, with samples split at the rig sent to the Wodgina site laboratory and analysed by XRF for a suite of 36 elements.</li> <li>Selected pulps from the 2008 and 2010 drilling plus all pegmatite pulps from the 2012 drilling were collected and sent to SGS Laboratories in Perth for analysis of their lithium content. Lithium analysis was conducted by Atomic Absorption Spectroscopy (AAS).</li> <li>Pilbara holes are all RC, with samples split at the rig sent to the</li> </ul>                                                                         |
|                        | of detailed information.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Nagrom laboratory in Perth and analysed by XRF and ICP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Drilling<br>techniques | <ul> <li>Drill type (eg core, reverse circulation, open-hole hammer, rotary air<br/>blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple<br/>or standard tube, depth of diamond tails, face-sampling bit or other<br/>type, whether core is oriented and if so, by what method, etc).</li> </ul>                                                                                                                                                                                                                                               | <ul> <li>The drilling rig used in 2008 is not noted in any reports.</li> <li>The 2010 drilling was completed by Australian Drilling Solutions using an Atlas Copco Explorac 220 RC truck mounted drill rig with a compressor rated to 350psi / 1200cfm and a booster rated to 800psi, with an expected 600psi down-hole. An auxiliary booster/compressor was not required at any point during the drilling.</li> </ul>                                                                                                                                                                               |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>The 2012 drilling was completed by McKay Drilling using an 8x8<br/>Mercedes Truck-mounted Schramm T685WS rig with a Foremost<br/>automated rod-handler system and on-board compressor rated to<br/>1,350cfm/500psi with an auxiliary booster mounted on a further 8x8<br/>Mercedes truck and rated at 900cfm/350psi. Drilling used a reverse<br/>circulation face sampling hammer. The sampling system consisted of<br/>a trailer mounted cyclone with cone splitter and dust suppression<br/>system.</li> <li>The 2014 drilling was completed by Quality Drilling Services (QDS</li> </ul> |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <ul> <li>The 2014 drilling was completed by Quality Drilling Services (QDS<br/>Kalgoorlie) using a Track-mounted Schramm T450 RC rig with a 6x6</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                           |



| Criteria                 | JORC Code explanation                                                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                                                                                                                                                                                                                                   | <ul> <li>truck mounted auxiliary booster &amp; compressor . Drilling used a reverse circulation face sampling hammer with nominal 51/4" bit. The system delivered approximately 1800cfm @ 650- 700psi down hole whilst drilling.</li> <li>The 2015 drilling was undertaken by Orbit Drilling.</li> </ul>                                                                                                                                                                                               |
| Drill sample<br>recovery | Method of recording and assessing core and chip sample recoveries and results assessed.                                                                                                                                           | <ul> <li>Recoveries for the majority of the historical holes are not known, while recoveries for 2012 GAM holes were overwhelmingly logged as "good."</li> <li>Recoveries for 2014 and 2015 Pilbara holes were virtually all dry and overwhelmingly logged as "good."</li> </ul>                                                                                                                                                                                                                       |
|                          | • Measures taken to maximise sample recovery and ensure representative nature of the samples.                                                                                                                                     | <ul> <li>Whilst drilling through the pegmatite, rods were flushed with air after each metre drilled (GAM and Pilbara holes). In addition, moist or wet ground conditions resulted in the cyclone being washed out between each sample run.</li> <li>Loss of fines as dust was reduced by injecting water into the sample pipe before it reached the cyclone. This minimises the possibility of a positive bias whereby fines are lost, and heavier, tantalum bearing material, is retained.</li> </ul> |
|                          | • Whether a relationship exists between sample recovery and grade<br>and whether sample bias may have occurred due to preferential<br>loss/gain of fine/coarse material.                                                          | No material bias has been identified.                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Logging                  | <ul> <li>Whether core and chip samples have been geologically and<br/>geotechnically logged to a level of detail to support appropriate<br/>Mineral Resource estimation, mining studies and metallurgical<br/>studies.</li> </ul> | <ul> <li>1m composites were laid out in lines of 20 or 30 samples, with cuttings collected and geologically logged for each interval, and stored in 20 compartment plastic rock-chip trays annotated with hole numbers and depth intervals (one compartment per 1m composite). Geological logging information was recorded directly into an Excel spreadsheet using a toughbook laptop computer.</li> <li>The GAM rock-chip trays were later stored onsite at Wodgina in one</li> </ul>                |



| Criteria                                          | JORC Code explanation                                                                                                                                                                                                                 | Commentary                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                   |                                                                                                                                                                                                                                       | <ul><li>of the exploration department sea containers.</li><li>The Pilbara rock-chip trays were transported back to Perth and stored at the company office.</li></ul>                                                                                                                                                           |
|                                                   | • Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.                                                                                                                              | Logging has primarily been quantitative, using RC chips.                                                                                                                                                                                                                                                                       |
|                                                   | • The total length and percentage of the relevant intersections logged.                                                                                                                                                               | • The database contains lithological data for all holes in the database.                                                                                                                                                                                                                                                       |
| Sub-sampling<br>techniques                        | • If core, whether cut or sawn and whether quarter, half or all core taken.                                                                                                                                                           | • RC samples collected by Talison/GAM were generally dry and split at the rig using a cyclone splitter.                                                                                                                                                                                                                        |
| and sample<br>preparation                         | <ul> <li>If non-core, whether riffled, tube sampled, rotary split, etc and<br/>whether sampled wet or dry.</li> <li>For all sample types, the nature, quality and appropriateness of the<br/>sample preparation technique.</li> </ul> | <ul> <li>RC samples collected by Pilbara were virtually all dry and split at the<br/>rig using a cone splitter mounted directly beneath the cyclone.</li> </ul>                                                                                                                                                                |
|                                                   | • Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.                                                                                                                               | Talison/GAM/Pilbara samples have field duplicates as well as laboratory splits and repeats.                                                                                                                                                                                                                                    |
|                                                   | • Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.                                                            | <ul> <li>For the Talison/GAM/Pilbara drilling, field duplicates were taken approximately every 20m, and splits were undertaken at the sample prep stage on every other 20m.</li> <li>Talison/GAM/Pilbara samples have field duplicates as well as laboratory splits and repeats.</li> </ul>                                    |
|                                                   | • Whether sample sizes are appropriate to the grain size of the material being sampled.                                                                                                                                               | • The Talison/GAM/Pilbara drilling sample sizes are considered to be appropriate to correctly represent the tantalum mineralization at Pilgangoora, based on the style of mineralization (pegmatite), and the thickness and consistency of mineralization.                                                                     |
| Quality of<br>assay data &<br>laboratory<br>tests | • The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.                                                                                    | <ul> <li>The Talison/GAM samples were assayed by the Wodgina Laboratory, for a 36 element suite using XRF on fused beads.</li> <li>The Pilbara samples were assayed at the Nagrom Perth laboratory, using XRF on fused beads plus ICP to determine Li<sub>2</sub>O, ThO<sub>2</sub> and U<sub>3</sub>O<sub>8</sub>.</li> </ul> |



| Criteria                                    | JORC Code explanation                                                                                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                             | • For geophysical tools, spectrometers, handheld XRF instruments, etc,<br>the parameters used in determining the analysis including instrument<br>make and model, reading times, calibrations factors applied and<br>their derivation, etc. | <ul> <li>No geophysical tools were used to determine any element<br/>concentrations used in this resource estimate.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                             | <ul> <li>Nature of quality control procedures adopted (eg standards, blanks,<br/>duplicates, external laboratory checks) and whether acceptable levels<br/>of accuracy (ie lack of bias) and precision have been established.</li> </ul>    | <ul> <li>GAM Wodgina laboratory splits of the samples were taken at twenty metre intervals with a repeat/duplicate analysis also occurring every 20m and offset to the lab splits by 10 samples. In total one field duplicate series, one splits series and one lab duplicate/repeat series were used for quality control purposes assessing different stages in the sampling process. This methodology was used for the samples from the 2010 and 2012 drilling programs. Comparison of these splits and duplicates by using a scatter chart to compare results show the expected strong linear relationship reflecting the strong repeatability of the analysis process.</li> <li>The GAM and Pilbara drilling contains QC samples (field duplicates and laboratory pulp splits, GAM internal standard, selected CRM's for Pilbara), and have produced results deemed acceptable.</li> </ul> |
| Verification<br>of sampling<br>and assaying | <ul> <li>The verification of significant intersections by either independent or alternative company personnel.</li> <li>The use of twinned holes.</li> </ul>                                                                                | <ul> <li>Infill drilling completed by GAM in 2012 and Pilbara in 2014 confirmed the approximate width and grade of previous drilling.</li> <li>No use of twins</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                             | <ul> <li>Documentation of primary data, data entry procedures, data<br/>verification, data storage (physical and electronic) protocols.</li> </ul>                                                                                          | <ul> <li>An electronic database containing collars, surveys, assays and geology was provided by GAM.</li> <li>All GAM assays were sourced directly from Wodgina internal laboratory files.</li> <li>All Pilbara assays were sourced directly from Nagrom as certified laboratory files.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                             | Discuss any adjustment to assay data.                                                                                                                                                                                                       | • Tantalum was reported as $Ta_2O_5$ %, and converted to ppm for the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



| ge 2 | 26 |  |  |  |
|------|----|--|--|--|
| ~    |    |  |  |  |

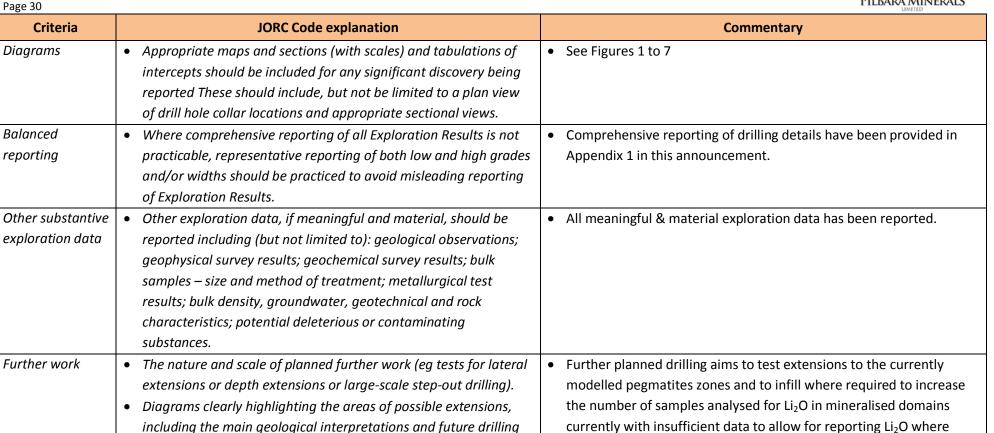
| Criteria                   | JORC Code explanation                                                                                                                                                       | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |                                                                                                                                                                             | estimation process.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Location of<br>data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. | <ul> <li>Talison/GAM holes were surveyed using a DGPS with sub one metre accuracy by the GAM survey department.</li> <li>Pilbara drill hole collar locations were surveyed at the end of the program using a dual channel DGPS with +/- 10mm accuracy on northing, easting &amp; RL by Pilbara personnel.</li> <li>No down hole surveys were completed for PLC001-039 (Talison).</li> <li>Gyro surveys were completed every 5m down hole for PLC040-068 (Talison).</li> <li>Eastman Single Shot surveys were completed in a stainless steel starter rod approximately every 30m for PLC069-076 &amp; PLRC001-009 (GAM).</li> <li>Reflex EZ-shot, electronic single shot camera surveys were completed in a stainless steel starter rod for each hole for the Pilbara November-December 2014 RC drilling. Measurements were recorded from approximately 8m; in the middle; and at the bottom of each hole.</li> <li>Camteq Proshot, electronic single shot cameras were completed in a stainless steel starter rod for each hole for the Pilbara Nore performance approximately 8m; in the middle; and at the bottom of each hole.</li> <li>Camteq Proshot, electronic single shot cameras were completed in a stainless steel starter rod for each hole for the Pilbara March 2015 RC drilling campaign. Measurements were recorded at 10m, 40m, 70m and 100m (or EOH) for each hole.</li> </ul> |
|                            | Specification of the grid system used.                                                                                                                                      | • The grid used was MGA Zone 50, datum GDA94.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                            | Quality and adequacy of topographic control.                                                                                                                                | <ul> <li>The topographic surface used was sourced from open file SRTM data (90m per pixel), and clipped to cover the Pilgangoora area.</li> <li>Surveyed drillhole collar elevation data was compared to the SRTM data and incorporated into the constructed topographic surface.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Data spacing               | Data spacing for reporting of Exploration Results.                                                                                                                          | Talison Completed 54 RC drillholes in 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |



| Criteria                                                            | JORC Code explanation                                                                                                                                                                                                                   | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|---------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and<br>distribution                                                 |                                                                                                                                                                                                                                         | <ul> <li>GAM completed 46 between 2010 and 2012</li> <li>Pilbara completed 41 in 2014 and 23 in 2015.</li> <li>Drilling spacings varied between 25m to 50m apart</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                     | • Whether the data spacing and distribution is sufficient to establish<br>the degree of geological and grade continuity appropriate for the<br>Mineral Resource and Ore Reserve estimation procedure(s) and<br>classifications applied. | • The continuity of the mineralization can confidently be interpreted from the geology of the pegmatite sheets, which can be mapped on surface as extending over several hundred metres in strike length.                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                     | • Whether sample compositing has been applied.                                                                                                                                                                                          | <ul> <li>No compositing was necessary, as all samples were taken at 1m<br/>intervals.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Orientation of<br>data in<br>relation to<br>geological<br>structure | • Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.                                                                            | <ul> <li>The mineralisation dips approximately 45 degrees at a dip direction of 90 degrees.</li> <li>The drilling orientation and the intersection angles are deemed appropriate.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                     | • If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.                            | <ul> <li>No orientation-based sampling bias has been identified.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sample<br>security                                                  | The measures taken to ensure sample security.                                                                                                                                                                                           | <ul> <li>Talison sampling security measures are unknown, but assumed to be equal to industry standards since the drilling is as recent as 2008.</li> <li>Chain of custody for GAM holes were managed by GAM personnel. Samples were delivered to the Wodgina laboratory by GAM personnel where samples were analysed.</li> <li>Chain of custody for Pilbara holes were managed by Pilbara personnel. Samples for analysis were delivered to the Regal Transport Depot in Port Hedland by Pilbara personnel. Samples were delivered from the Regal Transport Depot in Perth to the Nagrom</li> </ul> |

| Page 28   |                                                                         | LIMITED                                                               |
|-----------|-------------------------------------------------------------------------|-----------------------------------------------------------------------|
| Criteria  | JORC Code explanation                                                   | Commentary                                                            |
|           |                                                                         | laboratory in Kelmscott by Regal Transport courier truck.             |
| Audits or | • The results of any audits or reviews of sampling techniques and data. | The collar and assay data have been reviewed by compiling a new       |
| reviews   |                                                                         | SQL relational database. This allowed some minor sample numbering     |
|           |                                                                         | discrepancies to be identified and amended.                           |
|           |                                                                         | Drilling locations and survey orientations have been checked visually |
|           |                                                                         | in 3 dimensions and found to be consistent.                           |
|           |                                                                         | • All GAM assays were sourced directly from the laboratory (Wodgina   |
|           |                                                                         | laboratory). However it has not been possible to check these origina  |
|           |                                                                         | digital assay files.                                                  |

# Section 2 Reporting of Exploration Results


(Criteria listed in the preceding section also apply to this section.)

| Criteria                             | JORC Code explanation                                                                                                                      | Commentary                                                                                                                                                                                                                                          |
|--------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Mineral<br>tenement and              | • Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint             | • The Pilgangoora resource lays within E45/2232 which is 100% owned by Pilbara Minerals Limited.                                                                                                                                                    |
| land tenure<br>status                | ventures, partnerships, overriding royalties, native title interests,<br>historical sites                                                  |                                                                                                                                                                                                                                                     |
|                                      | • The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | No known impediments.                                                                                                                                                                                                                               |
| Exploration done<br>by other parties | • Acknowledgment and appraisal of exploration by other parties.                                                                            | <ul> <li>Talison completed RC holes in 2008</li> <li>GAM completed RC holes between 2010 and 2012.</li> </ul>                                                                                                                                       |
| Geology                              | • Deposit type, geological setting and style of mineralisation.                                                                            | • The Pilgangoora pegmatites are part of the later stages of intrusion of Archaean granitic batholiths into Archaean metagabbros and metavolcanics. Tantalum mineralisation occurs in zoned pegmatites that intruded a sheared Archaean metagabbro. |

PILBARA MINERALS



| Criteria                                                                     | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Drill hole<br>Information                                                    | <ul> <li>A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including easting and northing of the drill hole collar, elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar, dip and azimuth of the hole, down hole length and interception depth plus hole length.</li> <li>If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.</li> </ul> | Refer to Appendix 1 in this announcement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Data aggregation<br>methods                                                  | <ul> <li>In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.</li> <li>Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.</li> <li>The assumptions used for any reporting of metal equivalent values should be clearly stated.</li> </ul>                                                                                                        | <ul> <li>Length weighed averages used for exploration results are reported in<br/>Appendix 1 of this announcement. Cutting of high grades was not<br/>applied in the reporting of intercepts.</li> <li>No metal equivalent values are used.</li> </ul>                                                                                                                                                                                                                                                                                                         |
| Relationship<br>between<br>mineralisation<br>widths and<br>intercept lengths | <ul> <li>These relationships are particularly important in the reporting of Exploration Results.</li> <li>If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.</li> <li>If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known').</li> </ul>                                                                                                                                                                                                                                                                                    | <ul> <li>Downhole lengths are reported in Appendix 1 of this announcement.</li> <li>It is noted in previous sections that not all samples analysed for Ta<sub>2</sub>O<sub>5</sub> have also been analysed for Li<sub>2</sub>O. All pegmatite pulps from the 2012 drilling were analysed for Li<sub>2</sub>O but only selected pulps from the 2008 and 2010 drilling were. As noted in Appendix 1, there are 14 intervals reported for Ta<sub>2</sub>O<sub>5</sub> that were only partial analysed for Li<sub>2</sub>O – see Note 2 for Appendix 1.</li> </ul> |



Ta<sub>2</sub>O<sub>5</sub> resources have already been reported.

areas, provided this information is not commercially sensitive.





# Section 3 Estimation and Reporting of Mineral Resources

(Criteria listed in section 1, and where relevant in section 2, also apply to this section.)

| Criteria                     | JORC Code explanation                                                                                                                                                                             | Commentary                                                                                                                                                                                                                                                                                   |
|------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Database<br>integrity        | • Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral Resource estimation purposes. | <ul> <li>The original database was compiled by GAM and supplied as a<br/>Microsoft Access database.</li> <li>The data have then been imported into a relational SQL Server<br/>database using DataShed<sup>™</sup> (industry standard drillhole database</li> </ul>                          |
|                              | Data validation procedures used.                                                                                                                                                                  | <ul> <li>management software).</li> <li>Normal data validation checks were completed on import to the SQL database.</li> <li>Data has not been checked back to hard copy results, but has been checked against previous databases supplied by GAM.</li> </ul>                                |
| Site visits                  | • Comment on any site visits undertaken by the Competent Person and the outcome of those visits.                                                                                                  | <ul> <li>John Young (Executive and Chief Geologist - Pilbara Minerals and<br/>Competent Person) initially visited the site in November 2013<br/>followed by a further 5 times during 2014 and 2 times in 2015.</li> </ul>                                                                    |
| Geological<br>interpretation | <ul> <li>Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit.</li> <li>Nature of the data used and of any assumptions made.</li> </ul>         | • The confidence in the geological interpretation is considered robust.<br>Tantalum is hosted within pegmatite dykes intruded into mafic meta<br>volcanics and amphibolites of the East Strelley greenstone belt. The<br>area of the Pilgangoora pegmatite field within E45/2232 comprises a |
|                              | <ul> <li>The effect, if any, of alternative interpretations on Mineral Resource estimation.</li> </ul>                                                                                            | series of extremely fractionated dykes and veins up to 15m thick<br>within the immediate drilling area. These dykes and veins dip to the<br>east at 45-60° and thicken slightly with depth, are parallel to sub-<br>parallel to the main schistose fabric within the greenstones and are     |
|                              | • The use of geology in guiding and controlling Mineral Resource estimation.                                                                                                                      | <ul> <li>typically separated by 20-30m horizontally (Figures 2 to 4).</li> <li>The geological interpretation is supported by drill hole logging and mineralogical studies completed by GAM (previously Talison) and</li> </ul>                                                               |
|                              | • The factors affecting continuity both of grade and geology.                                                                                                                                     | Pilbara's recent drillholes.                                                                                                                                                                                                                                                                 |



| Criteria      |   | JORC Code explanation                                                   |   | Commentary                                                                                                                      |
|---------------|---|-------------------------------------------------------------------------|---|---------------------------------------------------------------------------------------------------------------------------------|
|               |   |                                                                         | • | No alternative interpretations have been considered at this stage.                                                              |
|               |   |                                                                         | • | Grade wireframes correlate extremely well with the logged                                                                       |
|               |   |                                                                         |   | pegmatite veins.                                                                                                                |
|               |   |                                                                         | • | The key factor affecting continuity is the presence of pegmatite.                                                               |
| Dimensions    | • | The extent and variability of the Mineral Resource expressed as         | • | The modelled mineralized zone has dimensions of 2,700m (north-                                                                  |
|               |   | length (along strike or otherwise), plan width, and depth below         |   | south), ranging between 50-100m (east-west) in multiple veins and                                                               |
|               |   | surface to the upper and lower limits of the Mineral Resource.          |   | ranging between 20m and 220m RL (AMSL).                                                                                         |
| Estimation    | • | The nature and appropriateness of the estimation technique(s)           | • | Grade estimation using Ordinary Kriging (OK) was completed using                                                                |
| and modelling |   | applied and key assumptions, including treatment of extreme grade       |   | Geovia Surpac <sup><math>M</math></sup> software for both Ta <sub>2</sub> O <sub>5</sub> and Li <sub>2</sub> O. Note that there |
| techniques    |   | values, domaining, interpolation parameters and maximum distance        |   | were insufficient samples analysed to allow populating of $Li_2O$ into 3                                                        |
|               |   | of extrapolation from data points. If a computer assisted estimation    |   | of the 18 domains.                                                                                                              |
|               |   | method was chosen include a description of computer software and        | • | Drill spacing typically ranges from 25m to 50m.                                                                                 |
|               |   | parameters used.                                                        | • | Drillhole samples were flagged with wireframed domain codes.                                                                    |
|               |   |                                                                         |   | Sample data was composited for $Ta_2O_5$ and $Li_2O$ to 1m using a best fit                                                     |
|               | • | The availability of check estimates, previous estimates and/or mine     |   | method. Since all holes were sampled on 1m intervals, there were no                                                             |
|               |   | production records and whether the Mineral Resource estimate            |   | residuals.                                                                                                                      |
|               |   | takes appropriate account of such data.                                 | • | Influences of extreme sample distribution outliers were reduced by                                                              |
|               |   |                                                                         |   | top-cutting on a domain basis. Top-cuts were decided by using a                                                                 |
|               | • | The assumptions made regarding recovery of by-products.                 |   | combination of methods including grade histograms, log probability                                                              |
|               |   |                                                                         |   | plots and statistical tools. Based on this statistical analysis of the                                                          |
|               | • |                                                                         |   | data population, an upper cut of between 800ppm and 1250ppm for                                                                 |
|               |   | economic significance (eg sulphur for acid mine drainage                |   | $Ta_2O_5$ was applied to three of the domains prior to estimation. A                                                            |
|               |   | characterisation).                                                      |   | top-cut of 3.5% was required for $Li_2O$ for 4 domains.                                                                         |
|               |   |                                                                         | • | Directional variograms were modelled by domain using traditional                                                                |
|               | • | In the case of block model interpolation, the block size in relation to |   | variograms. Nugget values are moderate to low (between 20 and                                                                   |
|               |   | the average sample spacing and the search employed.                     |   | 30%) and structure ranges up to 230m. Domains with more limited                                                                 |
|               |   |                                                                         |   | samples used variography of geologically similar, adjacent domains.                                                             |
|               | • | Any assumptions behind modelling of selective mining units.             | • | Block model was constructed with parent blocks of 5m (E) by 25m                                                                 |



| Page 33               |                                                                                                                                                        | LINITED                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Criteria              | JORC Code explanation                                                                                                                                  | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                       | <ul> <li>Any assumptions about correlation between variables.</li> <li>Description of how the geological interpretation was used to control</li> </ul> | <ul> <li>(N) by 5m (RL) and sub-blocked to 2.5m (E) by 12.5m (N) by 2.5m</li> <li>(RL). All estimation was completed to the parent cell size.</li> <li>Discretisation was set to 5 by 5 by 2 for all domains.</li> <li>Three estimation passes were used. The first pass had a limit of 75m,</li> </ul>                                                                                                                                    |
|                       | the resource estimates.                                                                                                                                | the second pass 150m and the third pass searching a large distance to fill the blocks within the wireframed zones. Each pass used a                                                                                                                                                                                                                                                                                                        |
|                       | • Discussion of basis for using or not using grade cutting or capping.                                                                                 | maximum of 12 samples, a minimum of 6 samples and maximum per<br>hole of 4 samples. The exceptions to this were domains with less                                                                                                                                                                                                                                                                                                          |
|                       | • The process of validation, the checking process used, the comparison of model data to drill hole data, and use of reconciliation data if available.  | than 20 samples, which used a maximum of 10 samples, a minimum of 4 samples and maximum per hole of 3 samples for the second pass.                                                                                                                                                                                                                                                                                                         |
|                       |                                                                                                                                                        | <ul> <li>Search ellipse sizes were based primarily on a combination of the<br/>variography and the trends of the wireframed mineralized zones.</li> <li>Hard boundaries were applied between all estimation domains.</li> </ul>                                                                                                                                                                                                            |
|                       |                                                                                                                                                        | <ul> <li>Validation of the block model included a volumetric comparison of<br/>the resource wireframes to the block model volumes. Validation of<br/>the grade estimate included comparison of block model grades to<br/>the declustered input composite grades plus swath plot comparison<br/>by easting, northing and elevation. Visual comparisons of input<br/>composite grades vs. block model grades were also completed.</li> </ul> |
| Moisture              | • Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.                 | Tonnes have been estimated on a dry basis.                                                                                                                                                                                                                                                                                                                                                                                                 |
| Cut-off<br>parameters | The basis of the adopted cut-off grade(s) or quality parameters applied.                                                                               | <ul> <li>Grade envelopes have been wireframed to an approximate 100ppm<br/>Ta<sub>2</sub>O<sub>5</sub> cut-off allowing for continuity of the higher-grade zone. Based<br/>on visual and statistical analysis of the drilling results and geological<br/>logging of the pegmatite zoning, this cut-off tends to be exactly the<br/>same or very close to the natural geological contact between the</li> </ul>                             |



| Criteria                                     | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Commentary                                                                                                                                                                                                                                                                           |
|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | pegmatite and host mafic rocks.                                                                                                                                                                                                                                                      |
| Mining<br>factors or<br>assumptions          | <ul> <li>Assumptions made regarding possible mining methods,<br/>minimum mining dimensions and internal (or, if applicable,<br/>external) mining dilution. It is always necessary as part of the<br/>process of determining reasonable prospects for eventual<br/>economic extraction to consider potential mining methods, but<br/>the assumptions made regarding mining methods and<br/>parameters when estimating Mineral Resources may not<br/>always be rigorous. Where this is the case, this should be<br/>reported with an explanation of the basis of the mining<br/>assumptions made.</li> </ul>                                          | <ul> <li>Based on the orientations, thicknesses and depths to which the<br/>pegmatite veins have been modelled, plus their estimated grades for<br/>Ta<sub>2</sub>O<sub>5</sub> and Li<sub>2</sub>O, the potential mining method is considered to be<br/>open pit mining.</li> </ul> |
| Metallurgical<br>factors or<br>assumptions   | • The basis for assumptions or predictions regarding<br>metallurgical amenability. It is always necessary as part of the<br>process of determining reasonable prospects for eventual<br>economic extraction to consider potential metallurgical<br>methods, but the assumptions regarding metallurgical<br>treatment processes and parameters made when reporting<br>Mineral Resources may not always be rigorous. Where this is<br>the case, this should be reported with an explanation of the<br>basis of the metallurgical assumptions made.                                                                                                    | <ul> <li>Historical mining operations and the presence of a tin-tantalum<br/>separation plant adjacent to a large tailings dump indicates that the<br/>assumption for potential successful processing of Pilgangoora ore is<br/>reasonable.</li> </ul>                               |
| Environmen-<br>tal factors or<br>assumptions | • Assumptions made regarding possible waste and process<br>residue disposal options. It is always necessary as part of the<br>process of determining reasonable prospects for eventual<br>economic extraction to consider the potential environmental<br>impacts of the mining and processing operation. While at this<br>stage the determination of potential environmental impacts,<br>particularly for a greenfields project, may not always be well<br>advanced, the status of early consideration of these potential<br>environmental impacts should be reported. Where these<br>aspects have not been considered this should be reported with | <ul> <li>Appropriate environmental studies and sterilisation drilling would be<br/>completed prior to determination of the location of any potential<br/>waste rock dump (WRD) facility.</li> </ul>                                                                                  |

Page 34



| Criteria                    | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Commentary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             | an explanation of the environmental assumptions made.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Bulk density                | <ul> <li>Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples.</li> <li>The bulk density for bulk material must have been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit.</li> <li>Discuss assumptions for bulk density estimates used in the evaluation process of the different materials.</li> </ul> | <ul> <li>Previously bulk density has been assigned on the basis of weathering state, based on a specific gravity study carried out in 2006 by the project holders at the time, Sons of Gwalia. Previous consultants as well as GAM personnel have referred to this study and used these figures for the previous resource estimations which were carried out in-house.</li> <li>Pilbara Minerals completed specific gravity testwork on nine samples across the deposit using both Hydrostatic Weighing (uncoated) on surface grab samples and Gas Pycnometry on RC chips which produces consistent results Geological mapping and rockchip / grab sampling has not observed any potential porosity in the pegmatite.</li> <li>The bulk density factors applied to the current resource estimate are 2.53 g/cm<sup>3</sup> in the (minimal) oxide/transition zone, and 2.65 g/cm<sup>3</sup> in fresh material.</li> <li>Further bulk density testwork is planned for core samples expected to be drilled this year.</li> </ul> |
| Classification<br>Audits or | <ul> <li>The basis for the classification of the Mineral Resources into varying confidence categories.</li> <li>Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data).</li> <li>Whether the result appropriately reflects the Competent Person's view of the deposit.</li> </ul>                                                                                                         | <ul> <li>The Mineral Resource has been classified on the basis of confidence<br/>in the geological model, continuity of mineralized zones, drilling<br/>density, confidence in the underlying database and the available bulk<br/>density information.</li> <li>All factors considered; the resource estimate has in part been<br/>assigned to Indicated resource with the remainder to the Inferred<br/>category.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Audits or<br>reviews        | <ul> <li>The results of any audits or reviews of Mineral Resource<br/>estimates.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | • Whilst Mr. Barnes (Competent Person) is considered Independent of PLS, no third party review has been conducted.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Discussion of               | Where appropriate a statement of the relative accuracy and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | • The relative accuracy of the Mineral Resource estimate is reflected in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |



| Criteria                            | JORC Code explanation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Commentary                                                                                                                                                                     |
|-------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| relative<br>accuracy/<br>confidence | <ul> <li>confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate.</li> <li>The statement should specify whether it relates to global or local estimates, and, if local, state the relevant tonnages, which should be relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used.</li> <li>These statements of relative accuracy and confidence of the estimate should be compared with production data, where available.</li> </ul> | <ul> <li>the reporting of the Mineral Resource as per the guidelines of the 2012 JORC Code.</li> <li>The statement relates to global estimates of tonnes and grade.</li> </ul> |