

www.alkane.com.au

ASX : ALK OTCQX : ANLKY

Tomingley Gold Project Dubbo Zirconia Project

NSW Resources & Energy Investment Conference 2015

27-28 July 2015 | InterContinental, Sydney

Hamum Praseodynalus Mining the metals of the future.

Disclaimer

This presentation contains certain forward looking statements and forecasts, including possible or assumed reserves and resources, production levels and rates, costs, prices, future performance or potential growth of Alkane Resources Ltd, industry growth or other trend projections. Such statements are not a guarantee of future performance and involve unknown risks and uncertainties, as well as other factors which are beyond the control of Alkane Resources Ltd. Actual results and developments may differ materially from those expressed of implied by these forward looking statements depending on a variety of factors. Nothing in this presentation should be construed as either an offer to sell or a solicitation of an offer to buy or sell securities.

This document has been prepared in accordance with the requirements of Australian securities laws, which may differ from the requirements of United States and other country securities laws. Unless otherwise indicated, all ore reserve and mineral resource estimates included or incorporated by reference in this document have been, and will be, prepared in accordance with the JORC classification system of the Australasian Institute of Mining, and Metallurgy and Australian Institute of Geosciences.

Competent Person

Unless otherwise stated, the information in this presentation that relates to mineral exploration, mineral resources and ore reserves is based on information compiled by Mr D I Chalmers, FAusIMM, FAIG, (director of the Company) who has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as Competent Person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Ian Chalmers consents to the inclusion in the presentation of the matters based on his information in the form and context in which it appears.

Tomingley Gold Operations

- Resource 830,000oz of gold (30 June 2014)*
- Construction CAPEX A\$116M
- Mine Method open cut & underground
- Mine Life 7.5 years (targeting 10+ years)
- Processing plant throughput 1.0Mtpa
- 2.00g/t Au and 93% recovery standard CIL
- Gold Production ~400,000oz over base case life
- Cash operating costs (AISC) estimated and averaged over base case life – ~A\$1,000 -\$1,100/oz
- Gold production commenced February 2014 FY15 at 30 June 2015:
 - Produced 69,612oz
 - AISC A\$1,249/oz
 - Revenue A\$101.9M
 - Cash flow A\$23.7M
 - Hedge 24,000oz @ A\$1,577/oz

TGO Resource Expansion

ALKANE RESOURCES LTD

Additional Resource Potential

- Caloma Two open pit and underground
- Expand Wyoming One underground
- Caloma underground
- Myalls underground (historic 70,000oz)
- Wyoming Two and Three underground
- McLeans

Dubbo Zirconia Project

- A very large polymetallic resource of the metals zirconium, hafnium, niobium (tantalum), yttrium and rare earths.
- Important and strategic metal mix.
- Reserve supports 35 year mine life at 1 million tonne ore processing per annum with defined resource potentially supporting a significantly longer operation*.
- Demonstrated flow sheet with pilot plant and products for market evaluation at ANSTO.
- Robust technical and financial feasibility completed April 2013. Bankable study nearing completion.
- Environmental Impact Statement lodged in June 2013 Development approved May 2015.
- Strong market interest in products.

lydrogen 1																		Hellum
H 1.008					Alka	ne												He
Lithium 3	Beryllium 4				Light	Rare	e Earth	าร					Boron 5	Carbon 6	Nitrogen 7	Oxygen 8	Fluorine 9	Neon 10
Li 6.94	Be 9.012	Heavy Rare Earths									Ne 20.180							
Sodium 11	Magnesium 12	nesum 12 Rare Metals									Sulfur 16	Chlorine 17	Argon 18					
Na 22.990	Mg 24.305												AI 26.982	Si 28.085	P 30.974	S 32.06	CI 35.45	Ar 37,748
Potassium 19	Calcium 20		Scandium 21	Titanium 22	Vanadium 23	Chromium 24	Manganese 25	lron 26	Cobalt 27	Nickel 28	Copper 29	Zinc 30	Gallium 31	Germanium 32	Arsenic 33	Selenium 34	Bromine 35	Krypton 36
К 39.098	40.078		SC 44.956	Ti 47.867	V 50.9415	Cr	Mn		CO 58.933	Ni 58.473		Zn	69.723	Ge	As 74.922	Se 78.76	Br 79.904	Kr 83.798
Rubidium 37	Strontium 38		Yttrium 39	Zirconium 40	Niobium 41	Volybdenum 42	Technelium 43	Ruthenium 44	Rhodium 45	Palladium 46	Silver 47	Cadmium 48	Indium 49	Tin 50	Antimony 51	Tellurium 52	lodine 53	Xenon 54
Rb	Sr 87.62		Y 88.906	Zr 91.224	Nb 72.704	Mo		RU 101.07	Rh	Pd	Ag		114.82	Sn	Sb	127.40	126.90	Xe
Caesium 55	Barium 56	57 -70	Lutefium 71	Hafnium 72	Tantalum 73	Tungsten 74	Rhenium 75	Osmuim 76	Iridium 77	Platinum 78	Gold 79	Mercury 80	Thallium 81	Lead 82	Bismuth 83	Polonium 84	Astatine 85	Radon 84
Cs	Ba	*	LU	Hf		W	Re	Os	Ir	Pt		Hg	TI 204.38	Pb	Bi	Po	At	Rn
Francium 87	Radium 88	89 -102	Lawrencium 103	Rutherfordiun 104	Dubnium 105	Seaborgium 106	Bohrium 107	Hassium 108	Meitnerium 109	Darmstaditum 110	Roentgenium 111	Copernicium 112		Flerovium 114	Ununqadium 115			
Fr	Ra	**	Lr	Rf	Db	Sg	Bh	Hs	Mt	Ds	Rg	Cn		FI	UUp			
220.02	10.05			A00.74		271.10		201.12	210.15	201.10								
ti an th	anido a	orios	Lanthanum 57	Cerium 58	Proseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbium 68	Thulium 69	Ytlerbium 70		
Lanin	ianiae s	enes	LCI 138.91	Ce 140.116	Pr 140.907	Nd 144.242	Pm	50.36	EU 151.96	Gd 157.25	158.92	Dy 162.50	HO 164.93	Er 167.259	168.93	Yb 173.05		
**Ac	tinide s	eries	Actinium 89	Thorium 90	Protactinium 91	Uranium 92	Neptunium 93	Plutonium 94	Americium 95	Curium 96	Berkelium 97	Californium 98	Einsteinium 99	Fermium 100	Vendelevium 101	Nobelium 102		
			AC 227.03	Th 232.04	Pa 231.04	238.03	Np 237.05	PU 244.06	Am 243.06	Cm 247.07	BK 247.07	Cf 251.08	ES 252.08	Fm 257.10	Md 258.10	NO 259.10		

DZP Discovery and Development

7

652500 mN

SEE

Deposit outline

- Trachyte lava or sub-volcanic intrusive
- Largely homogeneous ore body
- Ore mineralogy:
 - eudialyte ("like" Zr silicate +Y and HRE)
 - natroniobite (Nb-Ta)
 - bastnaesite (LRE)
- All readily soluble in sulphuric acid forms basis of recovery process

Geology and Resources

Resources and reserves detailed in slide 20

Flow Sheet with "new" Hafnium Recovery

Solvent Extraction

DZP Product Output

Tonnage based upon recoveries developed from mass balances of the demonstration pilot plant. Process optimization to improve recoveries is continuing.

Rare Earth Industry

11

Zirconium Industry

- **Global market US\$2-3B**
- 2014 consumer zircon inventories running down
- Market expected to stabilise through 2015 2016
- CAGR anticipated at 5% 7% pa

China dominates downstream zirconium industry (85-90%)

Niobium Industry

- 90% of Nb used in standard grade ferro-niobium for the production of high strength low alloy (HSLA) steels.
- World production estimated at 80,000t Nb in 2012. CBMM in Brazil accounts for 85%.
- Global market US\$3-4B. Price stability since 2008, including GFC.
- CAGR anticipated at 10%. Demand expected to be driven by greater intensity of use in steels by BRIC producers.

Hafnium Industry

- Super Alloys 73% of 2015 supply
- By-product from zirconium metal
 - Depends on nuclear industry
- Prices escalating through demand by aerospace industries 2014 into 2015

Definitive Feasibility completed April 2013 – BFS with updated capex and opex being compiled. BFS scheduled for completion Q3 2015.

DFS Base Case ~A\$1B capex and 20 year NPV A\$1.2B*

Zr-Nb-Pr-Nd-Tb-Dy-Y

Zr-Hf-Nb-Pr-Nd-Tb-Dy-Y

Anticipated revenue at current Chinese spot prices ~A\$400 – 450 million, and A\$500 – 550 million with hafnium production.

Opex ranges from ~A\$200 – 250 million, including hafnium production.

Rare earth revenues largely derived from Pr, Nd, Tb, Dy and Y (for production of RE magnets and special ceramics)

Funding Strategy

Investment at Project Level

- Strategic Investment(s)
- Advisors: SMBC & Credit Suisse
- Strategic interest(s) in long term supply of critical metals
- Intro of cornerstone investor(s)

Government Assistance Programs

- ECA Style Funding
- Lead coordinator: Sumitomo Mitsui Banking Corp
- Attractive Project
 - Long life, low cost
 - Long term off-takeagreements with international companies

Commercial Bank Debt

- Advisors: SMBC & Credit Suisse
- Attractive Project
 - Strong operating cash flows
 - Diversified revenue stream
- New markets

Equity Capital Markets (ALK)

 Advisors: Credit Suisse & Petra Capital

- Total project capex ~A\$1B (including A\$166M contingency) based on April 2013 DFS to +/-17%
- Current FEED program to achieve BFS standard @ +/-10%
- Capex, opex and revenue being reviewed
- Multiple off-take discussions and advancing ECA programs

Timetable

	2014	2015	2016	2017	2018
Finalise Off-Take Agreements			\rightarrow		
Project Approval Process					
Project Financing Program			\rightarrow		
Front End Engineering Design (FEED)		\rightarrow			
CONSTRUCTION				\rightarrow	
PRODUCTION				-	\rightarrow

State approval received 29 May 2015 ML and EPL anticipated by end of September

Estimates of times are indicative only and are subject to change. Alkane reserves the right to vary the timetable without notice.

17

- Internationally strategic DZP with supply of several critical metals from non-Chinese sources
- Diversified DZP output gives robust revenues, even at current Chinese domestic RE and Zr prices
- Full spectrum of rare earth magnet materials neodymium, praseodymium, dysprosium and terbium produced
- The DZP is very different to Lynas' Mt Weld and Molycorp's Mt Pass pure rare earth (mostly light RE) projects
- Potential to be the world's largest hafnium producer and supply long term stable production and pricing into the expanding aerospace industry
- Current operating cost structure very competitive @ US\$7 \$8/kg of product produced (~A\$10.40)

THANK YOU

DZP Demonstration Pilot Plant TGO CIL Plant

DZP Resources and Reserves

Toongi	Tonnage	ZrO ₂	HfO ₂	Nb ₂ O ₅	Ta₂O₅	Y ₂ O ₃	REO
Deposit	(Mt)	(%)	(%)	(%)	(%)	(%)	(%)
Measured	35.70	1.96	0.04	0.46	0.03	0.14	0.75
Inferred	37.50	1.96	0.04	0.46	0.03	0.14	0.75
Total	73.20	1.96	0.04	0.46	0.03	0.14	0.75

Dubbo Zirconia Project – Mineral Resources

These Mineral Resources are based upon information compiled by Mr Terry Ransted MAusIMM (Alkane Chief Geologist) who is a competent person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Terry Ransted consents to the inclusion in the report of the matters based on his information in the form and context in which it appears. The full details of methodology were given in the 2004 Annual Report.

Dubbo Zirconia Project – Ore Reserves

Toongi	Tonnage	ZrO ₂	HfO ₂	Nb ₂ O ₅	Ta₂O₅	Y ₂ O ₃	REO
Deposit	(Mt)	(%)	(%)	(%)	(%)	(%)	(%)
Proved	8.07	1.91	0.04	0.46	0.03	0.14	0.75
Probable	27.86	1.93	0.04	0.46	0.03	0.14	0.74
Total	35.93	1.93	0.04	0.46	0.03	0.14	0.74

These Ore Reserves are based upon information compiled by Mr Terry Ransted MAusIMM (Alkane Chief Geologist) who is a competent person as defined in the 2012 Edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. The reserves were calculated at $a_{1.5\%}$ combined $ZrO_2+Nb_2O_5+Y_2O_3+REO$ cut off using costs and revenues defined in the notes in ASX Announcement of 16 November 2011. Terry Ransted consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Note: ASX announcements 16 November 2011, 11 April 2013 and 30 October 2013 - the Company confirms that all material assumptions and technical parameters underpinning the estimated Mineral Resources and Ore Reserves, and production targets and the forecast financial information as disclosed continue to apply and have not materially changed.

Resource & Reserves: TGO

TOMINGLEY GOLD PROJECT MINERAL RESOURCES (as at 30 June 2014)												
	MEAS	URED	INDIC	ATED	INFE	RRED	TOTAL		Total			
DEPOSIT	Tonnage	Grade	Tonnage	Grade	Tonnage	Grade	Tonnage	Grade	Gold			
	(Kt)	(g/t Au)	(Kt)	(g/t Au)	(Kt)	(g/t Au)	(Kt)	(g/t Au)	(Koz)			
Open Pittable Resources (cut off 0.50g/t Au)												
Wyoming One	2,171	1.7	442	1.5	735	1.1	3,348	1.6	166.8			
Wyoming Three	473	1.8	25	1.5	98	1.1	597	1.6	31.5			
Caloma	2,556	2.0	649	1.7	2,464	1.4	5,669	1.7	316.9			
Caloma Two	-	-	1,085	2.4	704	1.3	1,789	2.0	112.4			
Sub Total	5,200	1.9	2,201	2.0	4,001	1.3	11,402	1.7	627.5			
Underground	Resources (o	ut off 1.75g/	/t Au)									
Wyoming One	229	4.1	296	3.7	869	2.9	1,394	3.3	147.3			
Wyoming Three	29	2.6	15	2.4	8	2.5	52	2.5	4.2			
Caloma	3	2.1	13	2.3	224	2.5	240	2.4	18.9			
Caloma Two	-	-	215	2.7	165	2.5	380	2.6	32.0			
Sub Total	261	3.9	539	3.2	1,266	2.8	2,066	3.0	202.4			
TOTAL	5,461	2.0	2,740	2.3	5,267	1.7	13,468	1.9	829.8			

TOMINGLEY GOLD PROJECT ORE RESERVES (as at 30 June 2014)											
	PRO\	/ED	PROE	BABLE	TO	Total Cold					
DEPOSIT	Tonnage	Grade	Tonnage	Grade	Tonnage	Grade	Total Gold				
	(Kt)	(g/t Au)	(Kt)	(g/t Au)	(Kt)	(g/t Au)	(Koz)				
Wyoming One	1,662	1.7	202	1.4	1,864	1.6	98.4				
Wyoming Three	379	1.7	10	1.8	389	1.7	21.4				
Caloma	1,744	2.2	184	1.7	1,928	2.2	136.0				
Caloma Two	-	-	239	3.6	239	3.6	27.4				
TOTAL	3,785	1.9	635	2.3	4,420	2.0	283.2				
Stockpiles	186	1.9			186	1.9	11.5				
TOTAL					4,606	2.0	294.7				

Full details are given in the ASX release of 5 September 2014