9 September 2015 Hastings Rare Metals Limited ABN 43 122 911 399 ASX Code: HAS Level 25, 31 Market Street Sydney NSW 2000 PO Box Q128 Queen Victoria Building NSW 1225 Australia Telephone: +61 2 8268 8689 Facsimile: +61 2 8268 8699 admin@hastingsraremetals.com #### **Board and Management** Charles Lew (Chairman) Anthony Ho (Non Exec Director) Malcolm Mason (Non Exec Director) www.hastingsraremetals.com # FINAL ASSAY RESULTS FURTHER ENHANCE BALD HILL SOUTH POTENTIAL ### **HIGHLIGHTS** - Final assays returned from the Pre-Feasibility drilling programme at Bald Hill South, Yangibana Project - Best intersections include:- - 5m at 2.04%TREO with 1.08%Nd₂O₃-Eq* - 3m at 1.92%TREO with 1.15%Nd₂O₃-Eq* - 10m at 1.62%TREO with 0.59%Nd₂O₃-Eq* - 5m at 1.37%TREO with 0.62%Nd₂O₃-Eq* - Diamond drilling completed:- - logged geologically and geotechnically - samples taken for comminution test work and specific gravity measurements - assays awaited #### Introduction The Board of Hastings Rare Metals Limited (ASX: HAS) is pleased to announce that final assay results have been received from its Pre-Feasibility drilling programme at Bald Hill South. The most recent results are from reverse circulation (RC) holes drilled to extend targets identified earlier this year, to the north (as announced in the ASX release dated 28/7/15) and south (as announced in the ASX release dated 14/7/15). Diamond drilling has also been completed, with logging indicating good correlation with the RC results. #### **Bald Hill South RC Drilling Programme** Final assay results from RC drilling completed to test both the north and south extension of the Bald Hill South deposit have continued to expand these targets, with both remaining open at depth and along strike. Table 1 provides details of significant intersections from these holes. Collar details of the drillholes are provided in Appendix 1. Individual assays for the Company's target oxides (neodymium, praseodymium, dysprosium and europium) from the mineralised zone and surrounding samples are provided in Appendix 2. #### Northern Extension Additional drilling at the northern extension to the Bald Hill South deposit (Figure 1) has continued to intersect mineralisation hosted by a relatively shallow, flat-lying ironstone layer. Holes BHRC142, 10m (52-62m) at 1.62%TREO with 0.59%Nd₂O₃-Eq, and BHRC143, 7m (45-52m) at 1.37%TREO with 0.62%Nd₂O₃-Eq, are of particular interest as they indicate strong potential for the mineralisation to continue further to the west at potentially open-pittable depths. Figure 1 – Yangibana Project – Bald Hill South, northern extension additional drill coverage Best intersections from the northern extension are provided in Table 1. | Hole No | From | То | Interval | % | % | |---------|------|-----|----------|--------|-------------------------------------| | (BHRC) | (m) | (m) | (m) | TREO** | Nd ₂ O ₃ -Eq* | | 125 | 16 | 19 | 3 | 1.92 | 1.15 | | 126 | 35 | 40 | 5 | 0.84 | 0.40 | | 132 | 39 | 44 | 5 | 0.96 | 0.59 | | 142 | 52 | 62 | 10 | 1.62 | 0.59 | | 143 | 45 | 52 | 7 | 1.37 | 0.62 | | 144 | 26 | 31 | 5 | 2.04 | 1.08 | | 145 | 35 | 38 | 3 | 1.45 | 0.69 | Table 1 – Yangibana Project, Best intersections, Bald Hill South northern extension additional drill results #### **Southern Extension** Best intersections from the southern extension are provided in Table 2 with hole locations shown in Figure 2. Figure 2 – Yangibana Project – Bald Hill South, southern extension additional drill coverage | Hole No | From | То | Interval | % | % | |---------|------|-----|----------|--------|-------------------------------------| | (BHRC) | (m) | (m) | (m) | TREO** | Nd ₂ O ₃ -Eq* | | 124 | 80 | 83 | 3 | 1.01 | 0.61 | | 139 | 50 | 55 | 5 | 0.71 | 0.53 | Table 2 – Yangibana Project, Bald Hill South, southern extension additional drilling results #### Terry's Find Two RC holes on one section tested a small, northwest oriented ironstone outcrop known as Terry's Find, some 650m to the west of the westernmost hole at Bald Hill South. Rock chip samples collected in 2014 returned grades ranging from 0.80-2.13%TREO with 0.40-0.81%Nd $_2$ O $_3$ -Eq. These holes returned positive intersections of 3m (4-7m) at 1.58%TREO with 0.60%Nd $_2$ O $_3$ -Eq (BHRC152) and 3m (33-36m) at 0.80%TREO with 0.40%Nd $_2$ O $_3$ -Eq (BHRC153). The outcrop appears to occur on a trend between Bald Hill South and the eastern end of the main mineralised zone that extends from Kane's Gossan, some 2.5km to the northwest, right through to the western end of Yangibana West, a further 11km to the west (Figure 3). Figure 3- Yangibana Project – Location of Terry's Find prospect #### **Diamond Drilling** Diamond drilling has also been completed at Bald Hill South, Fraser's and Yangibana West deposits. Geological logging indicates good correlation with the RC results and assays are awaited. #### Geotechnical The core has been logged geotechnically by the Company's mining consultants, Snowden. It is noted that the ground conditions in the hangingwall and interburden units at the northern extension of Bald Hill South and in portions of the Fraser's deposit are heavily altered. These materials can be extracted by excavator rather than requiring the more expensive drill-and-blast method that had been predicted. Selected samples from both the mineralised zone and the hangingwall have been sent for comminution test work to determine sizing of crushing and grinding equipment and power requirements. The remaining core has been quartered and sent for specific gravity measurements and assay. Results will be fed into the ongoing geological interpretations, leading to new JORC resource estimates expected in the coming weeks. #### Bulk Metallurgical Sample – Neodymium-rich sample from Eastern Belt Approximately 12 tonnes of samples from Bald Hill South and Fraser's RC drilling have been sent to Perth for splitting and compositing into a sample to represent mineralisation from the two deposits that is termed the Eastern Belt Master Composite. This sample will now be the focus of ongoing beneficiation tests and subsequent hydrometallurgical and separation test work. ** TREO is the sum of the oxides of the heavy rare earth elements (HREO) and the light rare earth elements (LREO). **HREO** is the sum of the oxides of the heavy rare earth elements europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium (Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), and yttrium (Y). **CREO** is the sum of the oxides of neodymium (Nd), europium (Eu), terbium (Tb), dysprosium (Dy), and yttrium (Y) that were classified by the US Department of Energy in 2011 to be in critical short supply in the foreseeable future. **LREO** is the sum of the oxides of the light rare earth elements lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), and samarium (Sm). #### **Neodymium Equivalence** Hastings is concentrating its efforts on the recovery of four important rare earths – neodymium, praseodymium, dysprosium and europium. To portray the grade of the mineralisation Hastings has established neodymium-equivalent figures where:- *The Nd₂O₃ equivalent (Nd₂O₃-Eq) values have been calculated based on the following rare earths prices. These prices have been established by independent consultants Adamas Intelligence and are being used by Hastings in the evaluation of the project. - Nd₂O₃ U\$\$85/kg - Pr₂O₃ US\$95/kg - Dy₂O₃ US\$550/kg and - Eu₂O₃ U\$\$635/kg Where Nd₂O₃-Eq = $((Nd_2O_3grade + ((Pr_2O_3grade * (Pr_2O_3price + Nd_2O_3price)) + (Dy_2O_3grade * (Dy_2O_3price + Nd_2O_3price)) + (Eu_2O_3grade * (Eu_2O_3price + Nd_2O_3price)))$ Such that Nd_2O_3 Eq = Nd_2O_3 + (1.1176 x Pr_2O_3) + (6.4706 xDy₂O₃) + (7.4706 xEu₂O₃) #### For further information please contact: Andy Border, General Manager Exploration +61 2 8268 8689 Guy Robertson, Company Secretary +61 2 8268 8689 #### **About Hastings Rare Metals** - Hastings Rare Metals is a leading Australian rare earths company, with two JORC compliant rare earths projects in Western Australia. - The Yangibana Project hosts JORC Indicated and Inferred Resources totalling 6.79 million tonnes at 1.52% TREO, including 0.35% Nd₂O₃ (comprising 3.96 million tonnes at 1.59% TREO Indicated Resources and 2.83 million tonnes at 1.43% TREO in Inferred Resources). - The Brockman deposit contains JORC Indicated and Inferred Resources totalling 36.2 million tonnes (comprising 27.1mt Indicated Resources and 9.1mt Inferred Resources) at 0.21% TREO, including 0.18% HREO, plus 0.89% $\rm ZrO_2$ and 0.35% $\rm Nb_2O_5$. - Rare earths are critical to a wide variety of current and new technologies, including smart phones, hybrid cars, wind turbines and energy efficient light bulbs. - The Company aims to capitalise on the strong demand for critical rare earths created by expanding new technologies. In late 2014 Hastings completed a Scoping Study of the Yangibana Project that confirmed the economic viability of the Project and in early 2015 commenced work on a Pre-Feasibility Study. #### **Competent Person's Statement** The information in this announcement that relates to Resources is based on information compiled by Simon Coxhell. Simon Coxhell is a consultant to the Company and a member of the Australasian Institute of Mining and Metallurgy. The information in this announcement that relates to Exploration Results is based on information compiled by Andy Border, an employee of the Company and a member of the Australasian Institute of Mining and Metallurgy. Each has sufficient experience relevant to the styles of mineralisation and types of deposits which are covered in this announcement and to the activity which they are undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' ("JORC Code"). Each consents to the inclusion in this announcement of the matters based on his information in the form and
context in which it appears. Appendix 1 – Drill hole data | iii nole dala | East | North | | Azimuth | EOH | |---------------|-----------|--------------------------|-------|---------|-----| | Hole_ID | MGA94 | MGA94 | Decln | (mag) | (m) | | BHRC121 | 428432.09 | 7355216.32 | -60 | 90 | 100 | | BHRC122 | 428454.93 | 7355167.38 | -60 | 90 | 88 | | BHRC123 | 428478.5 | 7355115.13 | -60 | 90 | 88 | | BHRC124 | 428478.75 | 7355064.09 | -60 | 90 | 88 | | BHRC125 | 428321.33 | 7356118.92 | -90 | 0 | 28 | | BHRC126 | 428221.89 | 7356116.98 | -90 | 0 | 58 | | BHRC127 | 428446.44 | 7355625.84 | -90 | 0 | 40 | | BHRC128 | 428443.1 | 7355520.41 | -90 | 0 | 34 | | BHRC129 | 428512.72 | 7355418.34 | -90 | 0 | 40 | | BHRC130 | 428513.22 | 7355318.03 | -90 | 0 | 34 | | BHRC131 | 428408.67 | 7356650.15 | -90 | 0 | 52 | | BHRC132 | 428271.24 | 7356651.13 | -90 | 0 | 52 | | BHRC133 | 428318.67 | 7356652.58 | -90 | 0 | 46 | | BHRC134 | 428366.01 | 7356651.15 | -90 | 0 | 28 | | BHRC135 | 428459.97 | 7356652.51 | -90 | 0 | 22 | | BHRC136 | 428653.9 | 7354966.19 | -60 | 90 | 16 | | BHRC137 | 428696.89 | 7354918.35 | -60 | 50 | 22 | | BHRC138 | 428732.79 | 7354884.32 | -60 | 50 | 16 | | BHRC139 | 428597.22 | 7354964.36 | -60 | 90 | 64 | | BHRC140 | 428659.82 | 7354882.3 | -60 | 50 | 58 | | BHRC141 | 428701.1 | 7354849.95 | -60 | 50 | 58 | | BHRC142 | 428159.54 | 7356147.34 | -90 | 0 | 70 | | BHRC143 | 428024.95 | 7356353.61 | -90 | 0 | 58 | | BHRC144 | 428060.19 | 7356452.99 | -90 | 0 | 54 | | BHRC145 | 428135.02 | 7356552.46 | -90 | 0 | 48 | | BHRC146 | 428181.4 | 7356601.85 | -90 | 0 | 42 | | BHRC147 | 428223.09 | 7356652.32 | -90 | 0 | 60 | | BHRC148 | 428130.9 | 7356602.26 | -90 | 0 | 54 | | BHRC149 | 428087.69 | 7356552.22 | -90 | 0 | 54 | | BHRC150 | 428010.52 | 735645 <mark>2.19</mark> | -90 | 0 | 60 | | BHRC151 | 427977.62 | 7356353 <mark>.15</mark> | -90 | 0 | 78 | | BHRC152 | 427452.83 | 7356603. <mark>07</mark> | -60 | 40 | 12 | | BHRC153 | 427418.91 | 7356566.14 | -60 | 40 | 42 | Appendix 2 – Assay data from mineralised zone and surrounding samples | | | | | | | | | Nd ₂ O ₃ - | |---------|------|----|-----------|--------------------------------|-----------------------|-----------|------|----------------------------------| | | _ | _ | Dy_2O_3 | EU ₂ O ₃ | Nd_2O_3 | Pr_2O_3 | TREO | Eq | | Hole_ID | From | То | ppm | ppm | ppm | ppm | Ppm | ppm | | BHRC121 | 80 | 81 | 15.38 | 20.96 | 1101.43 | 260.16 | 0.33 | 0.16 | | BHRC121 | 81 | 82 | 28.23 | 42.03 | 2658.23 | 619.09 | 0.76 | 0.38 | | BHRC121 | 82 | 83 | 18.13 | 15.98 | 608.86 | 127.80 | 0.17 | 0.10 | | BHRC121 | 83 | 84 | 18.13 | 18.64 | 840.74 | 172.97 | 0.21 | 0.13 | | BHRC121 | 84 | 85 | 56.01 | 45.39 | 1964.10 | 346.06 | 0.45 | 0.31 | | BHRC121 | 85 | 86 | 19.51 | 14.59 | 555.09 | 99.36 | 0.13 | 0.09 | | BHRC121 | 91 | 92 | 13.66 | 18.64 | 1021.07 | 241.67 | 0.31 | 0.15 | | BHRC121 | 92 | 93 | 84.01 | 57.55 | 1466.86 | 278.18 | 0.37 | 0.28 | | BHRC121 | 93 | 94 | 35.35 | 25.24 | 746.96 | 143.24 | 0.19 | 0.13 | | BHRC122 | 70 | 71 | 10.33 | 11.58 | 509.25 | 123.12 | 0.17 | 0.08 | | BHRC122 | 71 | 72 | 20.31 | 32.88 | 1850.38 | 470.23 | 0.64 | 0.28 | | BHRC122 | 72 | 73 | 23.41 | 35.89 | 1889.22 | 479.35 | 0.67 | 0.28 | | BHRC122 | 73 | 74 | 20.20 | 29.53 | 1879.30 | 504.17 | 0.72 | 0.28 | | BHRC122 | 74 | 75 | 16.87 | 12.27 | 343.04 | 74.43 | 0.11 | 0.06 | | BHRC122 | 77 | 78 | 16.30 | 10.88 | 285.53 | 58.75 | 0.08 | 0.05 | | BHRC122 | 78 | 79 | 33.74 | 45.27 | 1931.79 | 346.41 | 0.45 | 0.29 | | BHRC122 | 79 | 80 | 6.43 | 1.85 | 90.51 | 19.08 | 0.03 | 0.02 | | BHRC123 | 74 | 75 | 39.48 | 32.88 | 1215.97 | 274.20 | 0.36 | 0.20 | | BHRC123 | 75 | 76 | 47.17 | 54.77 | 2581.94 | 618.97 | 0.80 | 0.40 | | BHRC123 | 76 | 77 | 33.40 | 36.36 | 1301.70 | 270.22 | 0.36 | 0.21 | | BHRC123 | 77 | 78 | 16.30 | 17.95 | 747.43 | 168.29 | 0.22 | 0.12 | | BHRC124 | 79 | 80 | 5.85 | 3.94 | 109.52 | 22.24 | 0.03 | 0.02 | | BHRC124 | 80 | 81 | 73.45 | 108.84 | 5301.17 | 1246.37 | 1.54 | 0.80 | | BHRC124 | 81 | 82 | 70.35 | 75.38 | 3173.77 | 616.51 | 0.75 | 0.49 | | BHRC124 | 82 | 83 | 95.37 | 96.45 | 3375.68 | 608.20 | 0.75 | 0.54 | | BHRC124 | 83 | 84 | 36.50 | 32.88 | 1019.55 | 185.61 | 0.23 | 0.17 | | BHRC125 | 13 | 14 | 30.53 | 27.91 | 1123.48 | 251.97 | 0.34 | 0.18 | | BHRC125 | 14 | 15 | 24.91 | 24.08 | 1058.27 | 247.05 | 0.34 | 0.17 | | BHRC125 | 15 | 16 | 23.30 | 27.67 | 1429.89 | 343.25 | 0.45 | 0.22 | | BHRC125 | 16 | 17 | 179.62 | 180.86 | <mark>5</mark> 555.21 | 1108.16 | 1.48 | 0.93 | | BHRC125 | 17 | 18 | 169.40 | 231.70 | 9 552.58 | 2222.17 | 2.86 | 1.49 | | BHRC125 | 18 | 19 | 284.97 | 252.07 | 5562.79 | 971.11 | 1.42 | 1.04 | | BHRC125 | 19 | 20 | 53.14 | 47.36 | 1267.18 | 238.62 | 0.34 | 0.22 | | BHRC125 | 20 | 21 | 41.32 | 35.08 | 1467.56 | 311.18 | 0.42 | 0.23 | | 3HRC125 | 21 | 22 | 35.23 | 26.63 | 846.34 | 158.81 | 0.22 | 0.15 | | 3HRC125 | 22 | 23 | 88.26 | 61.72 | 2926.73 | 568.65 | 0.78 | 0.46 | | 3HRC126 | 34 | 35 | 9.76 | 2.66 | 55.87 | 12.99 | 0.03 | 0.02 | | BHRC126 | 35 | 36 | 30.07 | 38.56 | 1691.86 | 396.03 | 0.54 | 0.26 | | Hole_ID | From | То | Dy2O3_ppm | Eu2O3_ppm | Nd2O3_ppm | Pr2O3_ppm | TREO | Nd2O3-
Eq | |---------|------|----|-----------|-----------|-----------------------|-----------|------|--------------| | BHRC126 | 36 | 37 | 22.84 | 40.64 | 2370.01 | 577.78 | 0.75 | 0.35 | | BHRC126 | 37 | 38 | 23.41 | 14.71 | 397.98 | 85.90 | 0.13 | 0.08 | | BHRC126 | 38 | 39 | 36.84 | 42.49 | 2361.38 | 554.14 | 0.71 | 0.35 | | BHRC126 | 39 | 40 | 57.16 | 98.42 | 6562.40 | 1640.41 | 2.07 | 0.95 | | BHRC126 | 40 | 41 | 26.86 | 31.84 | 1540.81 | 361.15 | 0.47 | 0.24 | | BHRC126 | 44 | 45 | 10.67 | 9.03 | 352.37 | 78.88 | 0.11 | 0.06 | | BHRC126 | 45 | 46 | 30.76 | 51.87 | 4307.63 | 1176.39 | 1.44 | 0.62 | | BHRC126 | 46 | 47 | 19.51 | 22.00 | 1063.64 | 256.30 | 0.34 | 0.16 | | BHRC126 | 47 | 48 | 16.30 | 29.18 | 1882.80 | 462.97 | 0.57 | 0.27 | | BHRC126 | 48 | 49 | 26.05 | 49.44 | 2849.87 | 690.24 | 0.86 | 0.42 | | BHRC126 | 49 | 50 | 17.33 | 23.16 | 1013.60 | 237.45 | 0.31 | 0.16 | | BHRC132 | 25 | 26 | 12.28 | 11.00 | 336.62 | 75.95 | 0.10 | 0.06 | | BHRC132 | 26 | 27 | 52.45 | 62.76 | 1648.01 | 330.84 | 0.44 | 0.28 | | BHRC132 | 27 | 28 | 6.77 | 4.17 | 117.69 | 26.57 | 0.04 | 0.02 | | BHRC132 | 28 | 29 | 6.54 | 4.17 | 166.45 | 38.27 | 0.06 | 0.03 | | BHRC132 | 37 | 38 | 7.12 | 2.55 | 95.64 | 24.46 | 0.04 | 0.02 | | BHRC132 | 38 | 39 | 11.02 | 10.42 | 623.91 | 142.89 | 0.19 | 0.09 | | BHRC132 | 39 | 40 | 64.04 | 71.91 | 2403.37 | 545.83 | 0.73 | 0.40 | | BHRC132 | 40 | 41 | 197.86 | 215.72 | 5361.24 | 1084.17 | 1.40 | 0.95 | | BHRC132 | 41 | 42 | 120.05 | 130.61 | 4372.72 | 991.95 | 1.28 | 0.72 | | BHRC132 | 42 | 43 | 89.18 | 99.12 | 3210.52 | 670.35 | 0.84 | 0.53 | | BHRC132 | 43 | 44 | 52.56 | 58.94 | 2066.98 | 429.85 | 0.54 | 0.33 | | BHRC132 | 44 | 45 | 23.99 | 18.76 | 569.79 | 114.81 | 0.15 | 0.10 | | BHRC133 | 17 | 18 | 2.87 | 0.93 | 12.95 | 2.46 | 0.01 | 0.00 | | BHRC133 | 18 | 19 | 51.65 | 67.74 | 2765.77 | 635.59 | 0.80 | 0.43 | | BHRC133 | 19 | 20 | 6.43 | 6.14 | 134.60 | 26.33 | 0.04 | 0.03 | | BHRC133 | 31 | 32 | 4.59 | 2.55 | 56.34 | 10.18 | 0.02 | 0.01 | | BHRC133 | 32 | 33 | 125.44 | 116.14 | 2965.92 | 575.20 | 0.79 | 0.53 | | BHRC133 | 33 | 34 | 27.54 | 30.80 | 1263.33 | 278.77 | 0.36 | 0.20 | | BHRC133 | 34 | 35 | 19.40 | 17.37 | <mark>6</mark> 32.89 | 136.69 | 0.18 | 0.10 | | BHRC134 | 11 | 12 | 13.20 | 22.35 | 1174.33 | 256.76 | 0.29 | 0.17 | | BHRC134 | 12 | 13 | 36.38 | 73.18 | <mark>2</mark> 912.15 | 624.59 | 0.78 | 0.44 | | BHRC134 | 13 | 14 | 12.74 | 15.17 | 526.40 | 112.82 | 0.15 | 0.08 | | BHRC134 | 14 | 15 | 6.89 | 6.14 | 176.94 | 38.27 | 0.05 | 0.03 | | BHRC135 | 3 | 4 | 11.59 | 8.45 | 271.19 | 56.99 | 0.08 | 0.05 | | BHRC135 | 4 | 5 | 49.92 | 83.25 | 4263.08 | 894.58 | 1.17 | 0.62 | | BHRC135 | 5 | 6 | 21.12 | 31.84 | 1508.39 | 291.29 | 0.40 | 0.22 | | BHRC135 | 6 | 7 | 15.49 | 5.09 | 130.64 | 29.61 | 0.06 | 0.03 | | Hole_ID | From | То | Dy2O3_ppm | Eu2O3_ppm | Nd2O3_ppm | Pr2O3_ppm | TREO | Nd2O3-
Eq | |---------|------|----|-----------|----------------------|-----------------------|-----------|------|--------------| | BHRC137 | 5 | 6 | 4.82 | 4.28 | 142.42 | 33.94 | 0.05 | 0.02 | | BHRC137 | 6 | 7 | 61.75 | 73.64 | 2938.39 | 692.82 | 0.86 | 0.47 | | BHRC137 | 7 | 8 | 18.02 | 15.86 | 562.09 | 131.19 | 0.17 | 0.09 | | BHRC137 | 8 | 9 | 18.13 | 15.05 | 467.96 | 106.85 | 0.14 | 0.08 | | BHRC137 | 9 | 10 | 88.37 | 74.57 | 1775.26 | 327.92 | 0.44 | 0.33 | | BHRC137 | 10 | 11 | 4.71 | 3.47 | 102.64 | 25.16 | 0.04 | 0.02 | | BHRC139 | 49 | 50 | 22.72 | 22.93 | 821.73 | 184.56 | 0.23 | 0.13 | | BHRC139 | 50 | 51 | 240.10 | 197.65 | 4354.99 | 750.75 | 1.00 | 0.82 | | BHRC139 | 51 | 52 | 137.61 | 118.80 | 2968.02 | 547.58 | 0.72 | 0.54 | | BHRC139 | 52 | 53 | 46.37 | 34.62 | 888.80 | 168.64 | 0.22 | 0.16 | | BHRC139 | 53 | 54 | 101.46 | 90.66 | 2497.50 | 489.77 | 0.63 | 0.44 | | BHRC139 | 54 | 55 | 150.23 | 153.65 | 4020.11 | 739.75 | 0.97 | 0.70 | | BHRC139 | 55 | 56 | 20.66 | 17.72 | 454.55 | 88.12 | 0.12 | 0.08 | | BHRC141 | 47 | 48 | 14.00 | 12.85 | 467.73 | 105.21 | 0.14 | 0.08 | | BHRC141 | 48 | 49 | 79.19 | 81.86 | 3501.77 | 836.30 | 1.06 | 0.56 | | BHRC141 | 49 | 50 | 112.02 | 100.04 | 3476.81 | 781.88 | 0.99 | 0.58 | | BHRC141 | 50 | 51 | 51.99 | 46.78 | 1750.07 | 405.16 | 0.52 | 0.29 | | BHRC141 | 51 | 52 | 43.50 | 40.41 | 1615.35 | 385.50 | 0.50 | 0.26 | | BHRC141 | 52 | 53 | 11.13 | 8.68 | 361.70 | 88.47 | 0.12 | 0.06 | | BHRC142 | 50 | 51 | 20.20 | 14.36 | 405.79 | 86.84 | 0.13 | 0.07 | | BHRC142 | 51 | 52 | 25.59 | 29.99 | 1435.96 | 339.04 | 0.47 | 0.22 | | BHRC142 | 52 | 53 | 30.30 | 72.60 | 5689.93 | 1446.37 | 1.95 | 0.80 | | BHRC142 | 53 | 54 | 47.29 | 50.95 | 2056.83 | 461.68 | 0.62 | 0.33 | | BHRC142 | 54 | 55 | 31.33 | 29.29 | 1079.27 | 234.06 | 0.32 | 0.18 | | BHRC142 | 55 | 56 | 62.78 | 74.92 | 2648.08 | 555.78 | 0.70 | 0.42 | | BHRC142 | 56 | 57 | 100.19 | 132.58 | 6896.92 | 1735.44 | 2.21 |
1.05 | | BHRC142 | 57 | 58 | 57.73 | 57.55 | 1868.92 | 397.55 | 0.52 | 0.31 | | BHRC142 | 58 | 59 | 56.81 | 70.40 | 2808.22 | 628.10 | 0.82 | 0.44 | | BHRC142 | 59 | 60 | 84.59 | 104.91 | 5000.59 | 1233.96 | 1.60 | 0.77 | | BHRC142 | 60 | 61 | 165.84 | 178.55 | <mark>5</mark> 753.73 | 1307.11 | 1.69 | 0.96 | | BHRC142 | 61 | 62 | 89.52 | 106.8 <mark>7</mark> | <mark>3</mark> 815.88 | 874.57 | 1.18 | 0.62 | | BHRC142 | 62 | 63 | 43.50 | 43.19 | <mark>1</mark> 491.36 | 323.82 | 0.44 | 0.25 | | BHRC143 | 25 | 26 | 24.56 | 22.69 | 526.28 | 96.55 | 0.13 | 0.10 | | BHRC143 | 26 | 27 | 39.02 | 63.45 | 4575.90 | 1118.46 | 1.35 | 0.66 | | BHRC143 | 27 | 28 | 16.53 | 11.69 | 346.65 | 76.07 | 0.11 | 0.06 | | BHRC143 | 28 | 29 | 13.66 | 9.73 | 285.42 | 63.55 | 0.10 | 0.05 | | BHRC143 | 29 | 30 | 9.76 | 5.56 | 162.36 | 35.69 | 0.06 | 0.03 | | BHRC143 | 30 | 31 | 72.53 | 98.31 | 4432.67 | 962.92 | 1.22 | 0.67 | | Hole_ID | From | То | Dy2O3_ppm | Eu2O3_ppm | Nd2O3_ppm | Pr2O3_ppm | TREO | Nd2O3
Eq | |---------|------|----|-----------|-----------|-----------------------|-----------|------|-------------| | BHRC143 | 31 | 32 | 23.53 | 22.93 | 968.00 | 222.59 | 0.30 | 0.15 | | BHRC143 | 44 | 45 | 16.30 | 29.76 | 1361.31 | 300.42 | 0.38 | 0.20 | | BHRC143 | 45 | 46 | 19.05 | 50.02 | 3623.42 | 845.89 | 1.06 | 0.51 | | BHRC143 | 46 | 47 | 19.51 | 29.64 | 1758.35 | 419.90 | 0.53 | 0.26 | | BHRC143 | 47 | 48 | 35.00 | 65.65 | 4197.41 | 1086.16 | 1.37 | 0.61 | | BHRC143 | 48 | 49 | 68.86 | 169.98 | 12009.02 | 2920.13 | 3.90 | 1.70 | | BHRC143 | 49 | 50 | 29.61 | 60.44 | 3724.43 | 907.10 | 1.21 | 0.54 | | BHRC143 | 50 | 51 | 36.61 | 57.78 | 2728.91 | 632.08 | 0.82 | 0.41 | | BHRC143 | 51 | 52 | 23.76 | 39.25 | 2184.90 | 519.26 | 0.67 | 0.32 | | BHRC143 | 52 | 53 | 15.95 | 23.62 | 1320.36 | 305.80 | 0.42 | 0.19 | | BHRC143 | 53 | 54 | 11.82 | 10.42 | 523.01 | 126.98 | 0.18 | 0.08 | | BHRC143 | 54 | 55 | 12.97 | 8.11 | 347.70 | 77.94 | 0.11 | 0.06 | | BHRC144 | 26 | 27 | 37.76 | 50.95 | 1723.94 | 362.91 | 0.49 | 0.28 | | BHRC144 | 27 | 28 | 35.46 | 49.67 | 1568.57 | 328.15 | 0.45 | 0.25 | | BHRC144 | 28 | 29 | 39.60 | 129.34 | 5291.84 | 1188.79 | 1.51 | 0.78 | | BHRC144 | 29 | 30 | 47.40 | 221.27 | 9857.60 | 2017.95 | 2.65 | 1.41 | | BHRC144 | 30 | 31 | 89.86 | 424.02 | 18757.69 | 3957.72 | 5.11 | 2.69 | | BHRC144 | 31 | 32 | 15.38 | 29.06 | 1036.11 | 220.84 | 0.30 | 0.16 | | BHRC145 | 34 | 35 | 14.69 | 10.07 | 221.38 | 45.52 | 0.07 | 0.04 | | BHRC145 | 35 | 36 | 15.03 | 64.84 | 5651.44 | 1387.74 | 1.69 | 0.78 | | BHRC145 | 36 | 37 | 24.22 | 66.81 | 4870.30 | 1199.79 | 1.41 | 0.69 | | BHRC145 | 37 | 38 | 33.63 | 62.64 | 4240.21 | 998.97 | 1.24 | 0.60 | | BHRC145 | 38 | 39 | 18.82 | 15.05 | 554.51 | 121.71 | 0.18 | 0.09 | | BHRC145 | 39 | 40 | 10.21 | 12.97 | 424.22 | 85.31 | 0.13 | 0.07 | | BHRC146 | 34 | 35 | 7.12 | 7.29 | 524.18 | 130.49 | 0.18 | 0.08 | | BHRC146 | 35 | 36 | 123.26 | 158.40 | 4539.63 | 936.59 | 1.20 | 0.76 | | BHRC146 | 36 | 37 | 22.61 | 48.40 | 325 <mark>5.66</mark> | 799.67 | 1.04 | 0.47 | | BHRC146 | 37 | 38 | 147.02 | 187.58 | 4315.10 | 741.39 | 0.98 | 0.75 | | BHRC146 | 38 | 39 | 36.27 | 48.05 | 1371.10 | 258.75 | 0.34 | 0.23 | | BHRC147 | 22 | 23 | 42.92 | 57.78 | 1 <mark>751.70</mark> | 347.35 | 0.46 | 0.28 | | BHRC147 | 23 | 24 | 38.10 | 62.18 | <mark>3</mark> 018.29 | 690.48 | 0.90 | 0.45 | | BHRC147 | 24 | 25 | 9.87 | 6.37 | 153.73 | 31.83 | 0.05 | 0.03 | | BHRC147 | 50 | 51 | 24.10 | 28.48 | 718.74 | 147.57 | 0.20 | 0.13 | | BHRC147 | 51 | 52 | 66.68 | 104.21 | 4126.02 | 919.62 | 1.21 | 0.64 | | BHRC147 | 52 | 53 | 56.58 | 85.11 | 3229.41 | 710.02 | 0.93 | 0.50 | | BHRC147 | 53 | 54 | 81.60 | 118.34 | 4317.78 | 956.49 | 1.22 | 0.68 | | BHRC147 | 54 | 55 | 25.82 | 28.60 | 871.77 | 175.55 | 0.25 | 0.14 | | BHRC148 | 44 | 45 | 10.10 | 13.66 | 718.39 | 174.49 | 0.23 | 0.11 | | Hole_ID | From | То | Dy2O3_ppm | Eu2O3_ppm | Nd2O3_ppm | Pr2O3_ppm | TREO | Nd2O3-
Eq | |---------|------|----|-----------|-----------|-----------------------|-----------|------|--------------| | BHRC148 | 45 | 46 | 21.46 | 32.42 | 1752.17 | 421.43 | 0.57 | 0.26 | | BHRC148 | 46 | 47 | 39.60 | 83.14 | 3906.51 | 907.45 | 1.14 | 0.58 | | BHRC148 | 47 | 48 | 34.55 | 58.82 | 2114.92 | 432.07 | 0.57 | 0.33 | | BHRC148 | 48 | 49 | 23.30 | 38.33 | 1769.66 | 400.36 | 0.53 | 0.27 | | BHRC148 | 49 | 50 | 9.87 | 8.22 | 319.94 | 72.79 | 0.10 | 0.05 | | BHRC150 | 41 | 42 | 17.56 | 23.51 | 1003.69 | 220.25 | 0.29 | 0.15 | | BHRC150 | 42 | 43 | 64.04 | 124.82 | 6832.19 | 1660.89 | 1.99 | 1.00 | | BHRC150 | 43 | 44 | 20.66 | 31.15 | 1410.53 | 328.62 | 0.41 | 0.21 | | BHRC150 | 50 | 51 | 16.18 | 11.93 | 283.44 | 58.75 | 0.09 | 0.05 | | BHRC150 | 51 | 52 | 9.18 | 8.92 | 237.71 | 49.15 | 0.07 | 0.04 | | BHRC150 | 52 | 53 | 26.86 | 42.61 | 1868.92 | 343.83 | 0.47 | 0.27 | | BHRC150 | 53 | 54 | 10.33 | 4.98 | 181.73 | 37.10 | 0.06 | 0.03 | | BHRC151 | 60 | 61 | 10.44 | 10.07 | 329.74 | 73.49 | 0.10 | 0.06 | | BHRC151 | 61 | 62 | 32.25 | 46.08 | 2939.21 | 739.40 | 0.94 | 0.43 | | BHRC151 | 62 | 63 | 48.43 | 106.53 | 6701.20 | 1697.75 | 2.05 | 0.97 | | BHRC151 | 63 | 64 | 22.49 | 33.23 | 1538.71 | 342.66 | 0.44 | 0.23 | | BHRC151 | 64 | 65 | 29.27 | 41.11 | 1761.96 | 403.29 | 0.52 | 0.27 | | BHRC151 | 65 | 66 | 8.72 | 15.52 | 718.74 | 168.87 | 0.22 | 0.11 | | BHRC151 | 66 | 67 | 10.21 | 10.07 | 324.61 | 73.38 | 0.10 | 0.05 | | BHRC151 | 67 | 68 | 10.33 | 11.35 | 501.20 | 119.02 | 0.16 | 0.08 | | BHRC151 | 68 | 69 | 28.46 | 61.14 | 3375.56 | 825.41 | 1.11 | 0.49 | | BHRC151 | 69 | 70 | 19.51 | 35.20 | 2107.10 | 514.35 | 0.69 | 0.31 | | BHRC151 | 70 | 71 | 11.13 | 3.71 | 129.47 | 31.60 | 0.06 | 0.03 | | BHRC152 | 3 | 4 | 6.77 | 6.83 | 228.61 | 52.90 | 0.08 | 0.04 | | BHRC152 | 4 | 5 | 19.40 | 33.93 | 3403.44 | 1045.55 | 1.36 | 0.50 | | BHRC152 | 5 | 6 | 45.56 | 77.00 | 5300.94 | 1566.91 | 2.15 | 0.79 | | BHRC152 | 6 | 7 | 49.01 | 66.12 | 3334.15 | 874.45 | 1.23 | 0.51 | | BHRC152 | 7 | 8 | 4.94 | 1.97 | 69.75 | 18.14 | 0.03 | 0.01 | | BHRC153 | 32 | 33 | 12.97 | 17.72 | 748.01 | 197.31 | 0.27 | 0.12 | | BHRC153 | 33 | 34 | 43.27 | 69.36 | <mark>3</mark> 173.19 | 840.04 | 1.15 | 0.49 | | BHRC153 | 34 | 35 | 73.57 | 87.77 | <mark>2</mark> 738.24 | 621.66 | 0.83 | 0.46 | | BHRC153 | 35 | 36 | 53.37 | 56.39 | 1503.02 | 308.37 | 0.42 | 0.26 | #### **JORC Code, 2012 Edition - Table 1** #### **Section 1 Sampling Techniques and Data** (Criteria in this section apply to all succeeding sections.) # Sampling techniques Criteria ## JORC Code explanation - Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. - Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. - Aspects of the determination of mineralisation that are Material to the Public Report. - In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. #### Commentary - Reverse circulation drilling was carried out at the Bald Hill South prospect to obtain drill chip samples from one-metre intervals from which a 2-4kg sample was collected for submission to the laboratory for analysis for rare earths, rare metals, U, Th and a range of rock-forming elements. Mineralised zones were identified visually during geological logging in the field. - Samples from each metre were collected in a cyclone and split using a 3 level riffle splitter. Field duplicates, blanks and Reference Standards were inserted at a rate of approximately 1 in 20. - Hurlston Pty Limited drilled RC holes at eleven ironstone targets within tenements in which Hastings has an interest, in the 1980s. The Bald Hill South prospect was tested to a limited extent during that phase of exploration. Hurlston reported the results of most drill holes and a non-JORC resource estimation in its Annual Report for the period 1/1/87 to 31/12/88 (A25937). This report provides little data regarding processes used during the exploration, but Hastings has undertaken sufficient work on the project to indicate that Hurlston's work was carried out professionally and that certain assumptions can reasonably be based on the results reported in that report. #### Drilling techniques - Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc). - Reverse Circulation drilling at Bald Hill South utilised a nominal 5 1/4 inch diameter facesampling hammer. - No details are known regarding the RC drilling carried out by Hurlston. # Drill sample recovery - Method of recording and assessing core and chip sample recoveries and results assessed. - Measures taken to maximise sample recovery and ensure representative nature of the samples. - Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. - Recoveries are recorded by the geologist in the field at the time of drilling/logging. - If poor sample recovery is encountered during drilling, the geologist and driller have endeavoured to rectify the problem to ensure maximum sample recovery. Visual assessment is made for moisture and contamination. A cyclone and splitter were used to
ensure representative samples and were routinely cleaned. - Sample recoveries to date have generally been | Criteria | IORC Code explanation | Commentary | |---|--|---| | Criteria | JORC Code explanation | Commentary | | | | high, and moisture in samples minimal. Insufficient data is available at present to determine if a relationship exists between recovery and grade. This will be assessed once a statistically valid amount of data is available to make a determination. No details are known regarding the RC drilling carried out by Hurlston. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | All drill chip samples are geologically logged at 1m intervals from surface to the bottom of each individual hole to a level that will support appropriate future Mineral Resource studies. Logging is considered to be semi-quantitative given the nature of reverse circulation drill chips and the inability to obtain detailed geological information. All RC drill holes in the current programme are logged in full. No details are known regarding the RC drilling carried out by Hurlston. | | Sub-
sampling
techniques
and sample
preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. | The RC drilling rig was equipped with an in-built cyclone and triple tier riffle splitting system, which provided one bulk sample of approximately 20kg, and a sub-sample of 2-4kg per metre drilled. All samples were split using the system described above to maximise and maintain consistent representivity. The majority of samples were dry. For wet samples the cleanliness of the cyclone and splitter was constantly monitored by the geologist and maintained to avoid contamination. | | | Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | Bulk samples were placed in green plastic bags, with the sub-samples collected placed in calico sample bags. Field duplicates were collected directly from the splitter as drilling proceeded through a secondary sample chute. These duplicates were designed for lab checks as well as lab umpire analysis. A sample size of 2-4kg was collected and considered appropriate and representative for the grain size and style of mineralisation. No details are known regarding the RC drilling carried out by Hurlston. | | Quality of
assay data
and
laboratory
tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in | Genalysis (Perth) was used for all analysis work carried out on the 1m drill chip samples and the rock chip samples. The laboratory techniques below are for all samples submitted to Genalysis and are considered appropriate for the style of mineralisation defined at the Yangibana REE | determining the analysis including instrument make and model, reading times, calibrations Project: FP6/MS | Criteria | JORC Code explanation | Commentary | |---|---|---| | | factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | Blind field duplicates were collected at a rate of approximately 1 duplicate for every 20 samples that are to be submitted to Genalysis for laboratory analysis. Field duplicates were split directly from the splitter as drilling proceeded at the request of the supervising geologist. No details are known regarding the RC drilling carried out by Hurlston. | | Verification
of sampling
and assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | At least two company personnel verify all significant intersections. All geological logging and sampling information is completed firstly on to paper logs before being transferred to Microsoft Excel spreadsheets. Physical logs and sampling data are returned to the Hastings head office for scanning and storage Electronic copies of all information are backed up daily. No adjustments of assay data are considered necessary. No details are known regarding the RC drilling carried out by Hurlston. | | Location of
data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | A Garmin GPSMap62 hand-held GPS is used to define the location of the drill hole collars. Standard practice is for the GPS to be left at the site of the collar for a period of 5 minutes to obtain a steady reading. Collar locations are considered to be accurate to within 5m. Collars will be picked up by DGPS in the future. Down hole surveys are conducted by the drill contractors using a Reflex electronic single-shot camera with readings for diand magnetic azimuth nominally taken every 30m down hole, except in holes of less than 30m. The instrument is positioned within a stainless steel drill rod so as not to affect the magnetic azimuth. Grid system used is MGA 94 (Zone 50) Topographic control is based on the detailed 1m topographic survey undertaken by Hyvista Corporation in 2014 Most of Hurlston's RC hole collars are preserved in the field. Many have been surveyed using a Garmin GPSMap62 hand-held GPS and results | | | | indicate that the Hurlston data can be regarded a professional and certainly indicative of the potential of the mineralisation. | | Data spacing
and
distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation | Drill hole spacing is nominally 50m along drill-lines, with a line spacing of 50m. Collar locations were varied slightly dependent
on access at a given site. Further details are provided in the collar coordinate table contained elsewhere in this report. | | Criteria | JORC Code explanation | Commentary | |---|--|--| | | procedure(s) and classifications applied. Whether sample compositing has been applied. | No sample compositing is used in this report, all results detailed are the product of 1m down hole sample intervals. Hurlston's RC drilling was not systematic other than holes were drilled to test obvious outcropping mineralised zones at each of the eleven targets tested by them. | | Orientation
of data in
relation to
geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Most drill holes in the current programme are vertical (subject to access to the preferred collar position) and as such intersected widths do not represent true thickness. Hurlston's drilling was generally planned to intersect mineralisation as near to perpendicular as possible. A few holes tested specific conceptual targets away from the obvious lenses. | | Sample
security | The measures taken to ensure sample security. | The chain of custody is managed by the project geologist who places calico sample bags in polyweave sacks. Up to 10 calico sample bags are placed in each sack. Each sack is clearly labelled with: Hastings Rare Metals Ltd Address of laboratory Sample range Samples were delivered by Hastings personnel to the Nexus Logistics base in order to be loaded on the next available truck for delivery to Genalysis. The freight provider delivers the samples directly to the laboratory. Detailed records are kept of all samples that are dispatched, including details of chain of custody. No details are known regarding the RC drilling carried out by Hurlston | | Audits or
reviews | The results of any audits or reviews of sampling techniques and data. | No audit of sampling data has been completed to date but a review will be conducted once all data from Genalysis (Perth) has been received. Data is validated when loading into the database and will be validated again prior to any Resource estimation studies. No details are known regarding the RC drilling carried out by Hurlston | ### **Section 2 Reporting of Exploration Results** | Criteria | preceding section also apply to this section.) JORC Code explanation | Commentary | |--|---|--| | Mineral
tenement and
land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The RC drilling at Bald Hill South was carried out within E09/2007. All Yangibana tenements are in good standing and no known impediments exist. | | Exploration done by other parties | Acknowledgment and appraisal of exploration
by other parties. | Limited RC drilling was completed at Bald Hill
South in the 1980s by Hurlston Pty Limited. Rock chip sampling programmes have been
carried out more recently but add little to the
project. | | Geology | Deposit type, geological setting and style of
mineralisation. | The Yangibana ironstones within the Yangibana Project are part of an extensive REE-mineralised system associated with the Gifford Creek Carbonatite Complex. The lenses have a total strike length of at least 12km. These ironstone lenses have been explored previously to limited degree for base metals, manganese, uranium, diamonds and rare earths. The ironstones are considered by GSWA to be coeval with the numerous carbonatite sills that occur within Hastings tenements, or at least part of the same magmatic/hydrothermal system. | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the | Refer to details of drilling in table in the body of this report and the appendices. | | Data
aggregation
methods | case. In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high | All intervals reported are composed of 1m down hole intervals and as such are length weighted. A lower cut-off grade of 5000ppm TREO has | | Criteria | JORC Code explanation | Commentary | |--|--|--| | | grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | been used for assessing significant intercepts, and no upper cut-off grade was applied. Maximum internal dilution of 1m was incorporated in reported significant intercepts. The basis for the metal equivalents used for reporting are
provided in the body of the ASX announcement. | | Relationship
between
mineralisation
widths and
intercept lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | True widths for mineralisation have not been calculated and as such only down hole lengths have been reported. While interpretation of the results is still in the early stages, a better understanding of the geometry of the deposit will be achieved, and true widths reported, later in the programme. It is expected that true widths will be less than down hole widths, due to the apparent dip of the mineralisation. | | Diagrams | Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. | Appropriate maps and sections are available in
the body of this ASX announcement. | | Balanced
reporting | Where comprehensive reporting of all
Exploration Results is not practicable,
representative reporting of both low and high
grades and/or widths should be practiced to
avoid misleading reporting of Exploration
Results. | Reporting of results in this report is considered balanced. | | Other
substantive
exploration data | Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. | Geological mapping has continued in the vicinity of the drilling as the programme proceeds. | | Further work | The nature and scale of planned further work (eg tests for lateral extensions, depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not | The Company is currently undertaking a major drilling programme within the Yangibana Project area as part of its ongoing Pre-Feasibility Study programme. Work is also progressing in the areas of metallurgical test work, plant design and costing: geotechnical studies, pit optimisation, mine design, scheduling and costing; environmental studies including | | Criteria | JORC Code explanation | Commentary | |----------|-------------------------|---| | | commercially sensitive. | baseline environmental studies; test work for | | | | waste dump and tailings disposal sites; water | | | | sourcing and costing; and overall project costing | | | | and financial evaluation. |