

T +61 8 94239777 F +61 8 9423 9733 admin@abmresources.com.au abmresources.com.au

ASX: ABU

ASX ANNOUNCEMENT / MEDIA RELEASE

9th September 2015

Further Exploration Drill Results on Twin Bonanza Gold Project include 17 metres averaging 2.63g/t gold

ABM Resources NL ("ABM" or the "Company") is pleased to provide an update on exploration at the Twin Bonanza Gold Project located in the Northern Territory, Australia.

Near Surface Drilling at the Buccaneer Porphyry Gold Deposit

- o 17 metres averaging 2.63g/t gold (30 metres below surface) including:
 - 4 metres averaging 5.30g/t gold
- 19 metres averaging 1.23g/t gold (36 metres below surface) including:
 - 2m averaging 3.27g/t gold
- o 6 metres averaging 3.26g/t gold (44 metres below surface)
- 4 metres averaging 2.18g/t gold (from 12 metres below surface)

High-Grade results from the Black Cat Prospect:

- o **3 metres averaging 9.18g/t gold** (from 13 metres below surface)
- o **3 metres averaging 5.02g/t gold** (from 26 metres below surface)

First drill results from the Casa Prospect:

- 3 metres averaging 3.52g/t gold (from 65 metres below surface)
- Visible gold sighted at surface

First drill results from the Vampire Prospect

o **3 metres averaging 2.29g/t gold** (from 44 metres below surface)

Darren Holden, Managing Director of ABM said, "These latest drill results highlight the near surface potential on the wider Twin Bonanza Gold Project. With these new wide intersections at Buccaneer, and interesting first results from reconnaissance work at Black Cat, Casa and Vampire, we are once again reminded of the outstanding potential in this underexplored district."

Buccaneer Porphyry Gold Deposit Drilling

The Buccaneer Porphyry Gold Deposit contains a total resource estimate of 15.3 million tonnes averaging 2.23g/t gold for 1.1 million ounces of gold (Indicated and Inferred Resource categories - refer Appendix 2). The resource estimation was based on several drilling campaigns undertaken by ABM and previous explorers and consists of widespread drilling focussing on large scale low-grade mineralisation. There are, however, several near-surface targets within the mineralised envelope that have the potential to yield smaller tonnage and higher grade mineralised zones. These zones are being targeted to potentially add production to the Old Pirate High-Grade Gold Mine, which the Company is currently processing material from at the Coyote Processing Plant. The first round of results from this program were announced on 10/07/2015 and included 19 metres averaging 5.82g/t gold.

The drill results issued in this release are from Buccaneer holes drilled towards the south-west and targeting a shallow (25 to 40 degree) north-east dipping zone in the near surface environment. Mineralisation in this upper zone has been defined at over 600 metres strike length, with widths between 5 and 30 metres and extending from the near surface to >100 metres down dip. Full assay results can be found in Appendix 1.

On 17/08/2015 ABM announced preliminary metallurgical test-work results from Buccaneer which included both, 96.3% gold extraction using conventional cyanide leaching test-work and potential for gold extraction using heap leaching. ABM will review these latest drill results in the context of both processing methods to establish the best path forward through scoping and feasibility studies.

Drilling on other prospects

Drilling was also undertaken at the Black Cat Prospect located ~22 kilometres south west of the Old Pirate Gold Mine, the Casa Prospect located 11 kilometres south east of the Old Pirate Gold Mine and the Vampire Prospect located 15 kilometres north east of the Old Pirate Gold Mine.

At Black Cat, drilling targeted areas beneath a number of outcropping quartz veins (with visible gold) and areas of historic shallow drilling with anomalous results. Four different areas were tested (Figure 2) with results documented in Appendix 1. Most drill results were low-grade, however, re-split check sampling is being undertaken on the higher grade results where visible gold was sighted in drill chips (including 3 metres averaging 9.18g/t gold). Current drill results define a trend of mineralisation over 700 metres of strike length.

At Casa, the drilling targeted areas beneath widespread, anomalous surface geochemistry. Results are documented in Appendix 1. The best result (3 metres averaging 3.52g/t gold) was in the most northerly hole and hence potentially provides a vector to mineralisation to the north. In addition, recent reconnaissance work has identified visible gold grains up to 1mm in outcropping quartz veins nearby.

The Vampire Prospect located north of the Old Pirate Gold Mine has also been drilled. Drill results are mainly low-grade and did not emulate the high-grade results seen at surface. However, further interpretation of the structural geology is underway to ascertain the plunge of the high-grade mineralisation within the quartz veins to provide better drill targets.

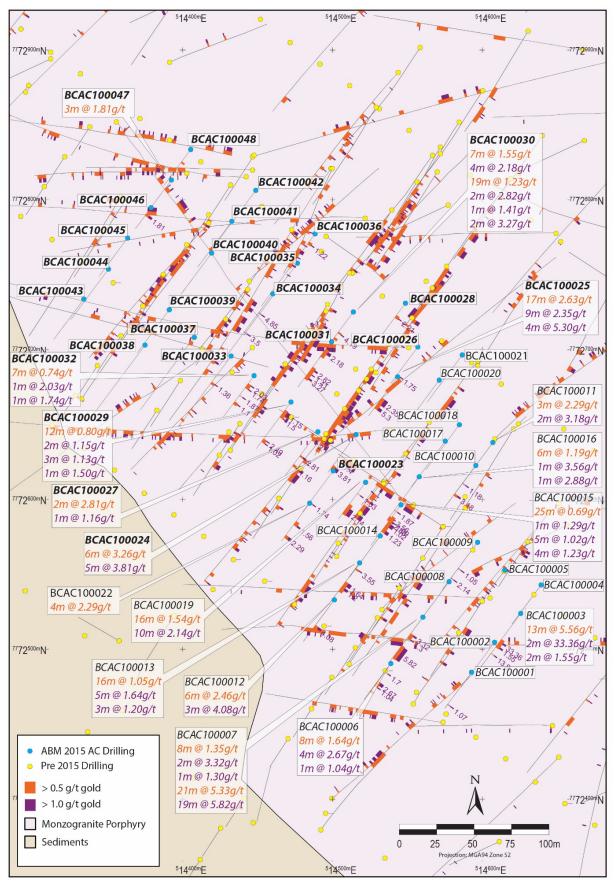


Figure 1. Buccaneer main zone drill plan (2015 holes labelled with holes reported in this release in bold)

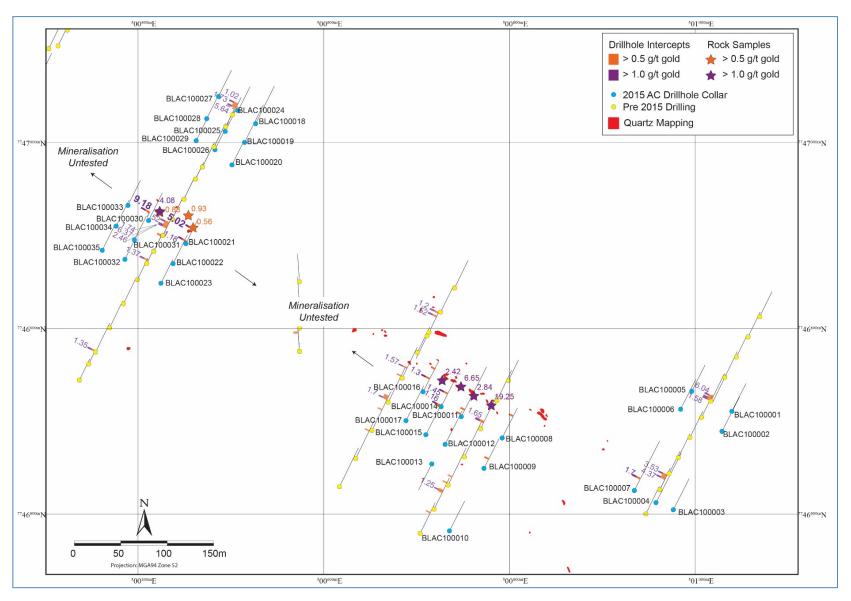


Figure 2. Black Cat Prospect drill map

Figure 3. Casa drill map

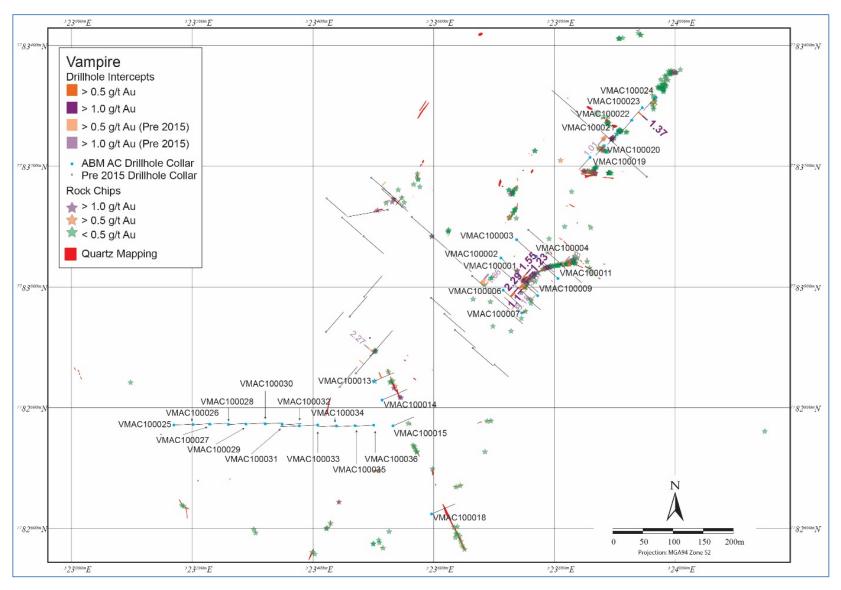


Figure 4. Vampire drill map

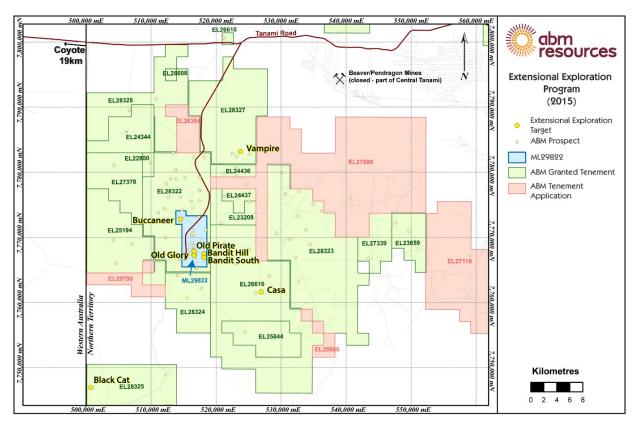


Figure 5. Twin Bonanza Gold Project - deposit and prospect location map

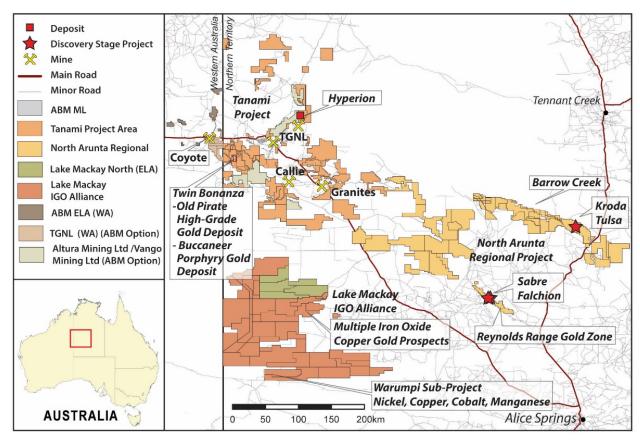


Figure 6. ABM's land position in the Central Desert

About ABM Resources

ABM is developing several gold discoveries in the Central Desert region of the Northern Territory of Australia. The Company has a multi-tiered approach to exploration and development with a combination of high-grade production scenarios such as the Old Pirate High-Grade Gold Deposit, large scale discoveries such as Buccaneer Porphyry Gold Deposit, and regional exploration discoveries such as the Hyperion Gold Project. In addition, ABM is committed to regional exploration programs throughout its extensive holdings including the alliance with Independence Group NL at the regional Lake Mackay Project.

Signed

Darren Holden - Managing Director

Competent Persons Statement

The information in this announcement relating to exploration results is based on information reviewed and compiled by Mr Darren Holden and Mr Alwin Van Roij who are Members of The Australasian Institute of Mining and Metallurgy. Mr Holden and Mr Van Roij are full time employees of ABM Resources NL and have sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which they are undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves". Mr Holden and Mr Van Roij consent to the inclusion in the documents of the matters based on this information in the form and context in which it appears.

The information in this announcement relating to mineral resource estimation is based on information reviewed and compiled by Mr Darren Holden who is a Member of The Australasian Institute of Mining and Metallurgy. Mr Holden is a full time employee of ABM Resources NL and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves". Mr Holden consents to the inclusion in the documents of the matters based on this information in the form and context in which it appears.

APPENDIX 1. Drill Hole Details

Table A.1. Buccaneer Porphyry Gold Deposit (latest results only) significant intercepts at 0.5g/t gold cut-off.

Hole ID	Vertical depth below surface	From (m)	To (m)	Interval Width (m)	Grade (g/t gold)	Gram Metres (Grade * Width)
BCAC100025	30	35	52	17	2.63	44.71
BCAC100030	36	42	61	19	1.23	23.37
BCAC100024	44	51	57	6	3.26	19.56
BCAC100030	10	12	19	7	1.55	10.85
BCAC100029	11	13	25	12	0.80	9.60
BCAC100027	34	39	41	2	2.81	5.62
BCAC100047	48	56	59	3	1.81	5.43
BCAC100032	11	13	20	7	0.74	5.18
BCAC100031	29	33	35	2	2.35	4.70
BCAC100029	53	61	66	5	0.73	3.65
BCAC100031	55	64	74	10	0.36	3.60
BCAC100028	17	20	24	4	0.89	3.56
BCAC100032	37	43	47	4	0.80	3.20
BCAC100036	11	13	17	4	0.72	2.88
BCAC100033	37	43	46	3	0.79	2.37
BCAC100027	47	54	57	3	0.74	2.22
BCAC100048	17	20	22	2	0.64	1.28
BCAC100031	36	42	45	3	0.41	1.23

Table A.2. Buccaneer Porphyry Gold Deposit (latest results only) significant intercepts at 1g/t gold cut-off.

Hole ID	Vertical depth below surface	From (m)	To (m)	Interval Width (m)	Grade (g/t gold)	Gram Metres (Grade * Width)
BCAC100025	42	48	52	4	5.30	21.20
BCAC100025	30	35	44	9	2.35	21.15
BCAC100024	45	52	57	5	3.81	19.05
BCAC100030	12	14	18	4	2.18	8.72
BCAC100030	49	57	59	2	3.27	6.54
BCAC100030	38	44	46	2	2.82	5.64
BCAC100047	48	56	59	3	1.81	5.43
BCAC100029	12	14	17	3	1.13	3.39
BCAC100029	16	19	21	2	1.15	2.30
BCAC100034	27	31	32	1	4.85	4.85
BCAC100031	29	34	35	1	4.19	4.19
BCAC100034	55	63	64	1	3.50	3.50
BCAC100029	53	61	62	1	2.49	2.49
BCAC100028	19	22	23	1	2.21	2.21

Hole ID	Vertical depth below surface	From (m)	To (m)	Interval Width (m)	Grade (g/t gold)	Gram Metres (Grade * Width)
BCAC100027	11	13	14	1	2.10	2.10
BCAC100032	11	13	14	1	2.03	2.03
BCAC100032	28	32	33	1	1.87	1.87
BCAC100026	40	46	47	1	1.75	1.75
BCAC100023	45	52	53	1	1.74	1.74
BCAC100032	16	19	20	1	1.74	1.74
BCAC100029	21	24	25	1	1.50	1.50
BCAC100030	44	51	52	1	1.41	1.41
BCAC100024	36	42	43	1	1.40	1.40
BCAC100033	37	43	44	1	1.36	1.36
BCAC100036	13	15	16	1	1.22	1.22
BCAC100027	48	56	57	1	1.16	1.16
BCAC100032	38	44	45	1	1.10	1.10
BCAC100029	56	65	66	1	1.02	1.02

Table A.3. Black Cat Prospect significant intercepts at 1g/t gold cut-off.

Hole ID	Vertical depth below surface	From (m)	To (m)	Interval Width (m)	Grade (g/t gold)	Gram Metres (Grade * Width)
BLAC100030	13	15	18	3	9.18	27.54
BLAC100021	26	30	33	3	5.02	15.06
BLAC100007	23	27	30	3	1.70	5.10
BLAC100014	26	30	33	3	1.45	4.35
BLAC100016	26	30	33	3	1.30	3.90
BLAC100022	44	51	54	3	1.18	3.54
BLAC100015	60	69	72	3	1.16	3.48

Table A.4. Casa Prospect significant intercepts at 1g/t gold cut-off.

Hole ID	Vertical depth below surface	From (m)	To (m)	Interval Width (m)	Grade (g/t gold)	Gram Metres (Grade * Width)
CSAC100050	65	75	78	3	3.52	10.56
CSAC100042	5	6	9	3	1.79	5.37
CSAC100043	36	42	45	3	1.21	3.63

Table A.5. Vampire Prospect significant intercepts at 0.5g/t gold cut-off.

Hole ID	Vertical depth below surface	From (m)	To (m)	Interval Width (m)	Grade (g/t gold)	Gram Metres (Grade * Width)
VMAC100009	44	51	54	3	2.29	6.87
VMAC100006	26	30	36	6	0.84	5.04
VMAC100001	16	18	21	3	1.55	4.65
VMAC100023	16	18	21	3	1.37	4.11
VMAC100001	26	30	33	3	1.23	3.69
VMAC100009	52	60	63	3	0.67	2.01
VMAC100013	23	27	30	3	0.57	1.71
VMAC100024	13	15	18	3	0.56	1.68

Table A.6. Buccaneer Porphyry Gold Deposit drill hole details.

Hole ID	Hole Type	Total Depth (m)	East (GDA94 Zone 52)	North (GDA94 Zone 52)	RL (m)	Dip (degrees)	Azimuth
BCAC100023	AC	68	514498	7772617	430	-60	216.7
BCAC100024	AC	63	514513	7772637	430	-60	216.7
BCAC100025	AC	65	514542	7772678	430	-60	216.7
BCAC100026	AC	61	514557	7772698	430	-60	216.7
BCAC100027	AC	73	514486	7772643	429	-60	216.7
BCAC100028	AC	68	514547	7772727	430	-60	216.7
BCAC100029	AC	77	514469	7772662	430	-60	216.7
BCAC100030	AC	75	514498	7772703	430	-60	216.7
BCAC100031	AC	76	514513	7772723	430	-60	216.7
BCAC100032	AC	69	514449	7772677	430	-60	216.7
BCAC100033	AC	72	514429	7772692	430	-60	216.7
BCAC100034	AC	65	514458	7772733	430	-60	216.7
BCAC100035	AC	62	514473	7772753	430	-60	216.7
BCAC100036	AC	66	514473	7772753	430	-60	216.7
BCAC100037	AC	65	514409	7772707	430	-60	216.7
BCAC100038	AC	55	514373	7772700	430	-60	216.7
BCAC100039	AC	72	514387	7772720	431	-60	216.7
BCAC100040	AC	68	514416	7772760	431	-60	216.7
BCAC100041	AC	76	514431	7772780	431	-60	216.7
BCAC100042	AC	88	514446	7772800	431	-60	216.7
BCAC100043	AC	67	514332	7772728	431	-60	216.7
BCAC100044	AC	84	514346	7772749	431	-60	216.7
BCAC100045	AC	63	514361	7772769	431	-60	216.7
BCAC100046	AC	35	514376	7772789	431	-60	216.7
BCAC100047	AC	59	514390	7772809	431	-60	216.7
BCAC100048	AC	60	514405	7772830	431	-60	216.7

Table A.7. Black Cat Prospect drill hole details.

Hole ID	Hole Type	Total Depth (m)	East (GDA94 Zone 52)	North (GDA94 Zone 52)	RL (m)	Dip (degrees)	Azimuth
BLAC100001	AC	67	501038	7746709	411	-60	30.7
BLAC100002	AC	84	501026	7746688	411	-60	30.7
BLAC100003	AC	75	500977	7746602	411	-60	30.7
BLAC100004	AC	120	500955	7746615	411	-60	30.7
BLAC100005	AC	63	500995	7746734	411	-60	30.7
BLAC100006	AC	72	500995	7746734	411	-60	30.7
BLAC100007	AC	120	500934	7746628	411	-60	30.7
BLAC100008	AC	72	500792	7746681	411	-60	30.7
BLAC100009	AC	72	500774	7746651	411	-60	30.7
BLAC100010	AC	72	500774	7746651	411	-60	30.7
BLAC100011	AC	120	500748	7746706	411	-60	30.7
BLAC100012	AC	81	500731	7746676	411	-60	30.7
BLAC100013	AC	63	500709	7746657	411	-60	210.7
BLAC100014	AC	75	500726	7746718	411	-60	30.7
BLAC100015	AC	75	500726	7746718	411	-60	30.7
BLAC100016	AC	75	500705	7746731	411	-60	30.7
BLAC100017	AC	84	500687	7746701	411	-60	30.7
BLAC100018	AC	90	500527	7747023	411	-60	30.2
BLAC100019	AC	90	500514	7747001	411	-60	30.2
BLAC100020	AC	54	500502	7746979	411	-60	30.2
BLAC100021	AC	57	500452	7746893	411	-60	30.2
BLAC100022	AC	69	500439	7746871	411	-60	30.2
BLAC100023	AC	57	500427	7746849	411	-60	30.2
BLAC100024	AC	57	500505	7747035	411	-60	30.2
BLAC100025	AC	60	500492	7747013	411	-60	30.2
BLAC100026	AC	66	500480	7746992	411	-60	30.2
BLAC100027	AC	63	500483	7747047	411	-60	30.2
BLAC100028	AC	60	500471	7747026	411	-60	30.2
BLAC100029	AC	54	500458	7747004	411	-60	30.2
BLAC100030	AC	66	500408	7746918	411	-60	30.2
BLAC100031	AC	57	500396	7746896	411	-60	30.2
BLAC100032	AC	54	500383	7746874	411	-60	30.2
BLAC100033	AC	60	500387	7746930	411	-60	30.2
BLAC100034	AC	63	500375	7746909	411	-60	30.2
BLAC100035	AC	63	500362	7746887	411	-60	30.2

Table A.8. Casa Prospect drill hole details.

Hole ID	Hole Type	Total Depth (m)	East (GDA94 Zone 52)	North (GDA94 Zone 52)	RL (m)	Dip (degrees)	Azimuth
CSAC100001	AC	90	526925	7761175	425	-60	90.7
CSAC100002	AC	90	526750	7760725	425	-60	90.7
CSAC100003	AC	90	526700	7760725	425	-60	90.7
CSAC100004	AC	90	526650	7760725	425	-60	90.7
CSAC100005	AC	90	526600	7760725	425	-60	90.7
CSAC100006	AC	93	526550	7760725	425	-60	90.7
CSAC100007	AC	90	526500	7760725	425	-60	90.7
CSAC100008	AC	90	526450	7760725	425	-60	90.7
CSAC100009	AC	90	526400	7760725	425	-60	90.7
CSAC100010	AC	90	526350	7760725	425	-60	90.7
CSAC100011	AC	78	526300	7760725	425	-60	90.7
CSAC100012	AC	90	526650	7761025	425	-60	90.7
CSAC100013	AC	90	526600	7761025	425	-60	90.7
CSAC100014	AC	93	526550	7761025	425	-60	90.7
CSAC100015	AC	90	526500	7761025	425	-60	90.7
CSAC100016	AC	90	526450	7761025	425	-60	90.7
CSAC100017	AC	99	526400	7761025	425	-60	90.7
CSAC100018	AC	99	526350	7761025	425	-60	90.7
CSAC100019	AC	120	526300	7761025	425	-60	90.2
CSAC100020	AC	84	526250	7761025	425	-60	90.2
CSAC100021	AC	120	526200	7760125	425	-60	90.7
CSAC100022	AC	79	526550	7761125	425	-60	90.7
CSAC100023	AC	73	526500	7761125	425	-60	90.7
CSAC100024	AC	80	526450	7761125	425	-60	90.7
CSAC100025	AC	90	526400	7761125	425	-60	90.7
CSAC100026	AC	84	526350	7761125	425	-60	90.7
CSAC100027	AC	75	526600	7761325	425	-60	90.7
CSAC100028	AC	82	526550	7761325	425	-60	90.7
CSAC100029	AC	81	526500	7761325	425	-60	90.7
CSAC100030	AC	87	526450	7761325	425	-60	90.7
CSAC100031	AC	90	526400	7761325	425	-60	90.7
CSAC100032	AC	90	526350	7761325	425	-60	90.7
CSAC100033	AC	90	526300	7761325	425	-60	90.7
CSAC100034	AC	87	526250	7761325	425	-60	90.7
CSAC100035	RC	90	526200	7761325	425	-60	90.7
CSAC100036	AC	93	526150	7761325	425	-60	90.7
CSAC100037	AC	120	526600	7761425	425	-60	90.2
CSAC100038	AC	120	526550	7761425	425	-60	90.2
CSAC100039	AC	87	526500	7761425	425	-60	90.7
CSAC100040	AC	90	526450	7761425	425	-60	90.7
CSAC100041	AC	90	526400	7761425	425	-60	90.7
CSAC100042	AC	80	526350	7761425	425	-60	90.7

Hole ID	Hole Type	Total Depth (m)	East (GDA94 Zone 52)	North (GDA94 Zone 52)	RL (m)	Dip (degrees)	Azimuth
CSAC100043	AC	90	526300	7761425	425	-60	90.7
CSAC100044	AC	120	526250	7761425	425	-60	90.7
CSAC100045	AC	93	526200	7761425	425	-60	90.7
CSAC100046	AC	90	526150	7761425	425	-60	90.7
CSAC100047	AC	120	526390	7761490	425	-60	90.2
CSAC100048	AC	120	526450	7761625	425	-60	90.2
CSAC100049	AC	120	526480	7761705	425	-60	90.2
CSAC100050	AC	120	526275	7761760	425	-60	90.2
CSAC100051	AC	120	526550	7761125	425	-60	270.7

Table A.9. Vampire Prospect drill hole details.

Hole ID	Hole Type	Total Depth (m)	East (GDA94 Zone 52)	North (GDA94 Zone 52)	RL (m)	Dip (degrees)	Azimuth	Assay Status
VMAC100001	AC	90	523740	7783021	447	-60	132	RECEIVED
VMAC100002	AC	90	523711	7783048	445	-60	132	RECEIVED
VMAC100003	AC	90	523737	7783078	445	-60	132	RECEIVED
VMAC100004	AC	78	523770	7783051	446	-60	132	RECEIVED
VMAC100006	AC	81	523715	7782995	446	-60	132	RECEIVED
VMAC100007	AC	78	523746	7782957	446	-60	312	RECEIVED
VMAC100009	AC	72	523772	7782986	447	-60	312	RECEIVED
VMAC100011	AC	78	523806	7783014	448	-60	312	RECEIVED
VMAC100013	AC	73	523500	7782844	444	-60	67	RECEIVED
VMAC100014	AC	90	523514	7782813	445	-60	67	RECEIVED
VMAC100015	AC	75	523533	7782770	445	-60	67	RECEIVED
VMAC100018	AC	84	523596	7782624	450	-60	67	RECEIVED
VMAC100019	AC	54	523859	7783215	451	-60	222	RECEIVED
VMAC100020	AC	42	523883	7783234	449	-60	222	RECEIVED
VMAC100021	AC	46.5	523904	7783253	449	-60	222	RECEIVED
VMAC100022	RC	60	523928	7783276	448	-60	222	RECEIVED
VMAC100023	AC	60	523945	7783297	448	-60	222	RECEIVED
VMAC100024	AC	60	523968	7783315	448	-60	222	RECEIVED
VMAC100025	AC	60	523170	7782771	444	-60	87	RECEIVED
VMAC100026	AC	60	523201	7782772	443	-60	87	RECEIVED
VMAC100027	AC	60	523229	7782773	444	-60	87	RECEIVED
VMAC100028	AC	60	523260	7782772	444	-60	87	RECEIVED
VMAC100029	AC	60	523289	7782773	443	-60	87	RECEIVED
VMAC100030	AC	60	523321	7782773	444	-60	87	RECEIVED
VMAC100031	AC	63	523349	7782772	444	-60	87	RECEIVED
VMAC100032	AC	63	523378	7782770	445	-60	267	RECEIVED
VMAC100033	AC	60	523408	7782771	443	-60	267	RECEIVED
VMAC100034	AC	60	523439	7782770	447	-60	267	RECEIVED
VMAC100035	AC	60	523470	7782770	448	-60	267	RECEIVED
VMAC100036	AC	60	523501	7782771	449	-60	267	RECEIVED

APPENDIX 2. Buccaneer Resource Estimation

	Buccaneer Higher Grade Zone Mineral Resource at 2g/t gold cut-off Grade										
Category	Tonnes	Grade (g/t gold) top-cut	Grade (g/t gold) uncut	Ounces gold top-cut	Ounces gold uncut						
Indicated	2,261,000	3.39	4.17	246,200	303,000						
Inferred	3,573,000	3.75	4.56	431,100	523,500						
Total	5,834,000	3.61	4.41	677,300	826,500						

Buccaneer Higher Grade Zone Mineral Resource at 1g/t gold cut-off Grade					
Grade (g/t gold) Grade (g/t gold) Ounces gold Ounces gold Category Tonnes top-cut uncut top-cut uncut					Ounces gold uncut
Indicated	7,117,000	2.00	2.25	458,500	515,300
Inferred	8,183,000	2.43	2.78	639,700	732,200
Total	15,300,000	2.23	2.54	1,098,200	1,247,500

Buccaneer Bulk Tonnage Mineral Resource at 0.2g/t gold cut-off Grade				
0.2g/t gold cut-off	Million tonnes	Gold (g/t)	Million ounces	
Indicated	34.0	0.64	0.702	
Inferred	93.9	0.65	1.970	
Total	127.9	0.65	2.672	

Note – Totals may vary due to rounding. Refer to press release 5th February 2013 and 16th April 2012 for details. Re-reported in 2013/2014 annual report to be compliant with JORC 2012.

JORC Code, 2012 Edition – Table 1 - Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 ABM has used aircore and slimline RC drilling techniques to obtain 1m samples. Samples were collected in the field using the 'hand spearing' technique. At Buccaneer, samples were collected at 1m intervals and submitted for analysis. At all other prospects, 1m drill cutting samples were composited in the field to form 3m composites. All samples were pulverised to produce a 50g charge for fire assay.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 2015 drilling comprises aircore and slimline RC, drilled with a Schramm drill rig that has a depth capacity (in favourable conditions) of 120 metres, using 250psi, 740cfm air capacity. Hole diameters vary, depending on the bit used. The aircore blade bit has a diameter of 90mm. In addition to the aircore blade, two percussion hammers have been used, in areas where the blade bit is unable to penetrate; a Sandvik RE35 hammer with an 89.5mm diameter bit and a Sandvik RE540 hammer with a 111mm diameter bit. Both hammers allow the use of through-the-bit sampling. Previously, ABM RC drilling at Buccaneer was completed with either a Schramm 685 or Atlas Copco RC rig. Both rigs had a depth capability of approximately 600m, using a 1000psi, 1350cfm Sullair compressor and auxiliary booster. Holes were 5 5/8" diameter. ABM diamond drilling at Buccaneer was completed by Boart Longyear. The 4 diamond drill holes completed in 2011 were drilled using a dual-purpose KL-1500 diamond/RC drill rig with 6m barrel. The 8 diamond drill holes completed in 2012 were drilled using a late-model, top drive IDR Diamond coring rig, mounted on a MAN 8x8 truck. Near

Criteria	JORC Code explanation	Commentary
		 surface (i.e. weathered rock) HQ (hole diameter 96mm, core diameter 63.5mm) was drilled, with all remaining core drilled with NQ2 (hole diameter 75.7mm, core diameter 50.6mm). Historic drilling was vacuum, AC, RAB, RC, or diamond. Specifics of drilling techniques are unknown, except diamond drilling at Buccaneer was NQ triple tube.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. 	 In the current program, drill cuttings were collected from the rig mounted cyclone and placed on the ground for further sampling.
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 Sample size, as delivered from the splitter, was monitored and assessed by the supervising geologist on site.
	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	• Sample size varies, dependent on the drill bit used. See the description of bit diameters above.
		• For the current program, which has been undertaken for the purpose of exploration, the variation in sample size is not seen as significant.
		 Previous ABM RC samples from Buccaneer were taken using a 12.5:1 Sandvik static cone splitter mounted under a polyurethane cyclone. Samples were split into 3 aliquots, with one sent to the lab for assay, one stored and retained for QA/QC purposes, and one remaining at the drill site. Size of the sample was monitored at the drill site by the responsible geologist to ensure adequate recovery. Total sample weight was recorded for six ABM RC holes drilled in 2010 and 2011, and typically showed recoveries of over 90%.
		 No relationship between sample recovery and grade is apparent. With recoveries over 90%, sample bias due to preferential loss/gain of fine/coarse material is unlikely.
		• To increase recovery of diamond drill samples, core runs were limited to 3. As previously noted, larger diameters were used near surface. Drillers recorded the length of the run, and this was later reconciled in camp by the logging geologist. There were no significant missing diamond drill intervals.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, 	 ABM drilling samples were geologically logged at the drill rig by a geologist using a laptop with Maxwell Logchief data capture system. Data on lithology, weathering, alteration, ore mineral content and style of mineralisation, and quartz content and style of quartz were collected.
	 etc) photography. The total length and percentage of the relevant intersections logged. 	 Logging is both qualitative and quantitative. Lithological factors, such as the degree of weathering and strength of alteration are logged in a qualitative fashion. The

Criteria	JORC Code explanation	Commentary
		presence of quartz veining, the ratios of multiple lithologies in a single sample and minerals of economic importance are logged in a quantitative manner.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 In the current Aircore / Slimline RC program, samples have been recovered using the 'hand spearing' technique. Drill spoils are collected from the drill rig by the drill offsider, and are placed on the ground. ABM staff use a 'spear'; a length of 50mm (diameter) PVC pipe to cut through the drill spoil, collecting a representative sample by cutting through the drill spoil several times, in varied orientations and locations through the spoil. At Buccaneer, as the mineralisation is not readily identifiable in drill chips, samples were collected at 1 metre intervals. Elsewhere, samples were composited to 3 metre composites. To form a composite sample, 3 x 1 metre drill spoil piles are 'speared' into a single sample bag, with similar volumes of material taken from each of the 3 spoil piles. Field duplicates were taken every 50 samples. A blank or standard was inserted every 50 samples. For drill samples, blank material was sourced from a quarry in Alice Springs – this material matches that used as a flush material by ALS in Alice Springs. Three certified standards acquired from GeoStats Pty. Ltd., with different gold grade and lithology, were also used. Upon receipt by the laboratory samples were logged, weighed, and dried if wet. Samples were then crushed to 2mm (70% pass), then split using a riffle splitter, with 250g crushed to 75 µm (85% pass). 50g charges were then fire assayed.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 All samples have been analysed for gold by ALS Minerals. For low detection, ABM use AU-ICP22, which is an inductively coupled plasma atomic emission spectroscopy technique, using a 50g sample charge with a lower detection limit of 0.001ppm gold and an upper limit of 10ppm gold. Where higher grades are expected, or where >10ppm gold is reported from AU-ICP22 analysis, samples are assayed by AU-AA26, which is a fire-assay technique with an atomic absorption spectroscopy (AAS) finish, using a 50g sample charge. The lower detection limit is 0.01ppm, and the upper detection limit is 100ppm gold. Where results exceed 100ppm gold, gold is determined by over-dilution with an AAS finish. In addition to standards and blanks previously discussed, ALS conducted internal lab checks using standards, blanks. Standards and blanks returned within acceptable limits, and field duplicates showed good correlation.

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Significant intersections were calculated independently by both a project geologist and the Managing Director. The drilling being reported for Casa, Black Cat and Vampire is exploratory in nature. As such, none of the holes have been twinned in the current program. Where results warrant, follow-up drilling will be completed. ABM has previously used diamond drilling to twin RC holes at Buccaneer, and has found geology and assays to be consistent with variations acceptable within the context of the deposit. ABM assumes that the targets currently being tested will perform similarly. For drilling data, ABM uses the Maxwell Data Schema (MDS) version 4.5.1. The interface to the MDS used is DataShed version 4.5 and SQL 2008 R2 (the MDS is compatible with SQL 2008-2012 – most recent industry versions used). This interface integrates with LogChief and QAQCReporter 2.2, as the primary choice of data capture and assay quality control software. DataShed is a system that captures data and metadata from various sources, storing the information to preserve the value of the data and increasing the value through integration with GIS systems. Security is set through both SQL and the DataShed configuration software. ABM has two Database Administrators and an external contractor with expertise in programming and SQL database administration. Access to the database by the geoscience staff is controlled through security groups where they can export and import data with the interface providing full audit trails. Assay data is provided in MaxGEO format from the laboratories and imported by the Database Administrator. The database assay management system records all metadata within the MDS and this interface provides full audit trails to meet industry best practice.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Hole collars were laid out with Handheld GPS, providing accuracy of ± 5m. Drilled hole locations vary from 'design' by as much as 10m (locally) due to constraints on access clearing. This degree of variation is deemed acceptable for exploration drilling. Final hole locations will be determined at the completion of the program using DGPS where practicable. Where DGPS cannot be used, collar positions will be collected with a handheld GPS using waypoint averaging for greater accuracy. The current drill program has not been downhole surveyed. At the early exploration stage and due to the shallow depths, downhole survey control is not deemed necessary.

Criteria	JORC Code explanation	Commentary
		The grid system used is MGA_GDA94, Zone 52.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill spacing at both targets varies, with a maximum drill density of 25m x 25m. At Buccaneer, drilling has been routinely completed on a grid pattern at 50m x 50m, 50m x 25m and 25m x 25m. Additional holes have been included where specific targets exist. Black Cat has three separated drill patterns at 35m x 25m. At Casa, drilling was completed on a grid pattern at 100m x 50m. The main target vein at Vampire is tested on a 25m x 25m grid, with additional holes at various spacings testing other targets. Sample spacing is sufficient to provide geologic and grade continuity. At Buccaneer, no sample compositing was applied. At Black Cat, Casa and Vampire, samples were composited to 3m. Compositing details are provided above.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Mineralisation at Buccaneer is veins and stockwork with variable structural orientations and control; however, previous drilling suggests a SE / NW trend dipping shallowly to the northeast. Drilling in the current program has been undertaken to best intersect this orientation. The structure at Casa is interpreted to be predominantly steep west dipping from magnetic features and nearby outcrop. The drilling orientation is aimed to be predominantly across structures and mineralisation, avoiding potential bias from drill direction. Black Cat mineralisation is hosted in moderately south-dipping quartz veins trending NW. Drilling to NE intersects these veins at right angles and intersects mineralisation at approximately right angles. Vampire mineralisation is identified in an outcropping SW-NE trending vein at slight angles to bedding. Drilling to the SE has intersected this vein at right angles.
Sample security	The measures taken to ensure sample security.	Samples were transported daily by ABM personnel from the drill locations to the Wilson camp, where fortnightly they were loaded onto a courier truck, and taken to the secure preparation facility in Alice Springs. The preparation facilities use the laboratory's standard chain of custody procedure.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	 ABM has conducted several audits of ALS's Perth and Alice Springs laboratory facilities and found no faults. QA/QC review of laboratory results is ongoing as results are finalized. ABM has also

Criteria	JORC Code explanation	Commentary
		conducted annual reviews at the end of every calendar year, and found no significant
		statistical outliers.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 Buccaneer is located within ML29822, Casa on EL26616, Black Cat on EL28325 and Vampire on EL28327. All tenements are in the Northern Territory. The tenements are wholly owned by ABM, and subject to various agreements between ABM and the Traditional Owners via the Central Land Council (CLC). The Mineral Lease was granted in April 2014 for a term of 25 years.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The general target area was first recognised in this district in outcropping veins in the late 1990s by North Flinders Mines. North Flinders, Normandy NFM and Newmont Asia Pacific all conducted exploratory work on the project with the last recorded drilling (prior to ABM) completed in 2005. Previous exploration work provided the foundation on which ABM based its exploration strategy.
Geology	Deposit type, geological setting and style of mineralisation.	 At Buccaneer, gold mineralisation is disseminated in nature. Gold occurs within veins that are distributed through a variably altered porphyritic intrusive. Locally, gold occurs as coarse visible grains. In 2013, ABM described a discrete zone of higher grade within the Buccaneer system. Casa is similar in its geology and mineralisation controls to Old Pirate, being a high-grade (coarse) gold-bearing quartz-vein system hosted by a sequence of intercalated sandstone and shale horizons (turbidite sequence). Quartz veins ranging from 20cm to 4m in width host the gold mineralisation. Black Cat is a series of NW trending quartz veins which possible form part of a west plunging antiform. Visible gold is sighted and quartz features are similar to the Heartland zone of Old Pirate. Vampire mineralisation was first recognised in a SW-NE trending quartz vein which is trending at slight angles to a very coarse grained turbidite sequence. The main vein is located on the eastern limb of a south plunging antiform. Other mineralised veins are

Criteria	JORC Code explanation	Commentary
		identified in rock sampling. Some significant faulting and shearing is mapped.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	Summaries of all material drill holes are available within the Company's ASX releases.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 ABM does not use weighted averaging techniques or grade truncations for reporting of exploration results. ABM reports two significant intercept values; 0.5g/t gold and 1.0g/t gold. The 0.5g/t gold is an average of all continuous values which collectively average greater than 0.5g/t gold, with no more than 5 continuous values below this cut-off. The 1.0g/t gold cut-off is an average of all continuous values which collectively average greater than 1.0g/t gold, with no more than 2 continuous values below this cut-off.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 The majority of drilling is percussion or rotary, and thus the exact geometry of the mineralisation with respect to drill angle cannot be determined. From surface mapping and historic drilling in the district, host lithologies and mineralisation are most commonly steeply dipping (between 60 and 80 degrees). Where sufficient outcrop exists to inform planning, drill holes are angled so as to drill as close to perpendicular to mineralisation as possible. Intercepts reported are down hole length, true width is not known.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Maps and tables are located within the report or associated appendices, and released with all exploration results.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 The Company reports all assays as they are finalised by the laboratory and compiled into geological context.

Criteria	JORC Code explanation	Commentary
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	The Company reports all other relevant exploration results.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Following receipt of assays, and interpretation of results, ABM will plan follow-up work to verify those results and to infill and extend as required.