

Quarterly Report for the Period Ending 30 September 2015

30 October 2015

Emmerson Resources Limited ABN 53 117 086 745

3 Kimberley Street West Leederville WA 6007 PO BOX 1573, West Perth WA 6872

Tel: (08) 9381 7838 Fax: (08) 9381 5375 admin@emmersonresources.com.au

ASX Code: ERM 377.6 million Ordinary shares

Market Cap ~A\$20.8 million (@ \$0.055)

Available Cash A\$2.6 million (30-09-15)

Shares in Evolution Mining Ltd A\$3.2 million (30-09-15)

Board of Directors Andrew McIlwain Non-executive Chairman

Rob Bills Managing Director & CEO

Allan Trench Non-executive Director

Investor Relations Phil Retter NWR Communications phil@nwrcommunications.com.au Tel: +61 407 440 882

Website: www.emmersonresources.com.au

Highlights

- High grade copper sulphide mineralisation intersected in pre-collar to deep diamond drill hole completed at Gecko:
 - o 7m at 5.98% Cu from 123m including 3m at 10.4% Cu
 - o 3m at 4.75% Cu from 162m including 1m at 10.6% Cu
 - \circ $\,$ 1m at 2.37% Cu from 221m $\,$
- New shallow, high-grade gold discovery at the Mauretania prospect
 - 31m at 3.49g/t Au, 16.7g/t Ag, 0.45 % Cu and 773 ppm Bi from 57m within an upper gold-rich zone
 - incl. **19m at 5.50g/t Au**, 17.2g/t Ag, 0.11% Bi, 0.33% Cu from 60m; or
 - 2m at 36.2g/t Au, 7.2g/t Ag, 0.20% Bi, 0.32% Cu from 63m
 - 26m at 1.08% Cu, 15.1g/t Ag, 0.48g/t Au from 78m within the lower copper-rich zone
- Gold production to recommence at Edna Beryl following singing of tribute agreement
- Strategic alliance with Kenex to identify new gold and copper opportunities in Australia
- Cash and listed investments of \$5.8 million at quarter end

Tennant Creek gold-copper project

1. Eastern Project Area

Post quarter-end, Emmerson announced the discovery of high-grade gold and copper mineralisation at the Mauretania prospect in the Eastern Project Area (Figure 1).

The Mauretania area was targeted using the recent high resolution aeromagnetic survey that highlighted a number of new, subtle anomalies corresponding to major structures and in some cases, historical mines. Exploration work completed at Mauretania and immediate surrounds during the quarter consisted of systematic geochemistry over selected areas by Rotary Air Blast (RAB) drilling and rock chip sampling. The first of three RC drill holes completed at Mauretania (hole MTRC004) targeted the centre of an interpreted, but blind, northwest trending magnetic anomaly 400m south of the former Mauretania mine and intersected ~60m of brecciated quartz-hematite-specularite ironstone. Encouraging assay results of 6m at 2.26g/t Au were returned from a down-hole depth of 195m.

The discovery hole, MTRC006 was drilled up-dip of MTRC004 and intersected a 70m thick interval of ferruginous limonitic-kaolin-quartz-jasper alteration, while drill hole MTRC005 drilled below the base of the supergene zone yielded correspondingly low-level assay results.

Significant intersections from hole MTRC006 included:

- 30m at 3.22g/t Au, 13.1g/t Ag, 0.33 % Cu and 723 ppm Bi from 57m within an upper gold-rich zone
 incl. 15m at 5.67g/t Au, 14.7g/t Ag, 0.11% Bi, 0.24% Cu from 60m; or
 - 3m at 21.3g/t Au, 5.01g/t Ag, 0.20% Bi, 0.23% Cu from 63m
- 24m at 1.07% Cu, 8.51g/t Ag, 0.40g/t Au from 78m within the lower copper-rich zone

By way of background, the bonanza-grade Nobles Nob Mine, located some 35km to the south produced over 1.1 million ounces of gold at an average recovered grade of 17.3g/t Au from a very small footprint of ~200m in strike extent and within 100m of surface. Moreover, the alteration, geochemistry and mineralogy from this recent drilling at Mauretania is similar, with high grade gold associated with silver, copper and bismuth within hematite ironstone. In exploration, this corresponds to weak magnetic geophysical signatures that have been overlooked by many previous explorers and is reflective of conversion of primary magnetite to mostly non-magnetic, supergene hematite in the near surface environment.

The Mauretania discovery remains open along strike and is associated with multi-element geochemical anomalies and rock chip assays up to 214g/t Au. Follow-up drill testing will commence in late October.

2. Gecko-Goanna-Monitor Corridor

The deep drill hole (GODD032) to test for gold mineralisation some 400m beneath the historic underground Gecko mine was completed during the quarter at a total down-hole depth of 1,279m (Figure 2). This hole was co-funded as part of the Northern Territory's "Creating Opportunities for Resources Exploration" (CORE) initiative.

The RC pre-collar to this hole intersected multiple zones of copper sulphide mineralisation associated with quartz - chlorite veins, analogous to the recently discovered Goanna mineralisation some 800m to the east (Figure2). Significant down-hole intersections included:

- 7m at 5.98% Cu from 123m including 3m at 10.4% Cu
- 3m at 4.75% Cu from 162m including 1m at 10.6% Cu
- 1m at 2.37% Cu from 221m

Additional zones of alteration with visible copper, pyrite and bismuth mineralisation were intersected at depth at approximately 400m below the historic Gecko copper mine (Figure 3).

The results from the pre-collar GODD032 indicate good potential to materially extend the Goanna resource (Table 4) along strike within the already significant 2.7km long Gecko-Goanna-Monitor mineralised corridor. Further infill drilling is planned along this new zone during the December quarter.

All significant assay results are presented in Table 1.

3. Edna Beryl Tribute Agreement

In August, Emmerson entered into a mining tribute agreement with Edna Beryl Mining Company (EBMC) as part of its strategy to monetise non-core assets.

The agreement will allow underground production to recommence at the historic, high-grade Edna Beryl Gold mine subject to EBMC meeting all statutory requirements. Royalty payments to Emmerson will be in the range of 12% to 17% from gold dore produced. Emmerson will receive 100% of the proceeds from the royalty during the period while Evolution Mining is earning its initial 65% interest in the Tennant Creek project tenements. It is anticipated that mining will commence ahead of the wet season in December.

Edna Beryl was discovered by prospectors in 1935 and mined underground in the 1940s and 1950s to a maximum depth of approximately 50 metres. Production up until 1952 was reportedly 2,700t of ore at an exceptional grade of 53g/t Au.

More recent exploration in the Edna Beryl area between 1996 and 2000 by Giants Reef Mining outlined additional high-grade gold mineralisation below the historic workings and resulted in an estimate being reported in 1998. While this estimate does not meet the minimum reporting requirements for a Mineral Resource under the current 2012 JORC Code, Emmerson considers the Edna Beryl mineralisation to constitute a conceptual exploration target of 5,000t to 10,000t at a likely grade of 20 to 30 g/t gold.

EBMC are narrow vein mining specialists with over 50 years of combined mining and mine management experience. The principals of EMBC are very familiar with the Tennant Creek Mineral Field, having started their careers at the White Devil gold mine and successfully completed similar small-scale underground mining projects at Rising Sun, New Hope and at Edna Beryl.

This standalone tribute agreement with EBMC provides Emmerson with a number of advantages:

- a risk-free, near term income stream from its non-core assets via a royalty agreement;
- future access to refurbished underground workings for near mine exploration; and
- the opportunity to monetise other non-core assets within our extensive tenement holding, subject to formal agreements being executed.

4. December Quarter Activities

The following activities are planned for the December quarter:

- Drilling at the Mauretania discovery to define potential along strike and down dip extensions of mineralisation;
- Drilling at the Gecko-Goanna area to assess the potential for the Goanna copper resource extension west to GODD032;
- Commencement of Tribute mining at Edna Beryl; and
- Field Assessment of further targets generated by the Kenex modelling.

Corporate

1. Strategic Alliance with Kenex

During the quarter, Emmerson entered into a strategic alliance with Kenex to identify new gold and copper opportunities in Australia. Kenex is a highly regarded project generation and exploration company and the complementary strengths of both companies will provide a significant competitive advantage in the current downturn through securing new high calibre projects for a modest capital outlay and increasing the probability of new discoveries.

Under the alliance, Emmerson will hold the exclusive rights to any new targets identified for a period of 12 months and may, through a modest payment to Kenex, acquire full exclusivity. Kenex can earn up to a 10% interest in any tenements acquired as part of the alliance upon achieving certain predetermined milestones, with exploration costs shared proportionally.

Kenex is at the forefront of developing 2D and 3D predictive models from multiple data sets to statistically identify areas of geological potential for a specified mineralisation style and therefore the most likely locations for the discovery of new mineral deposits. Since its inception over 12 years ago, Kenex has acquired numerous geological data sets and compiled close to one hundred predictive models for use in exploration targeting studies for a variety of mineral systems on most continents (20 different countries) including the marine environment.

2. Listed Investments

Subsequent to the end of the quarter Emmerson has taken advantage of recent market prices sold its shareholding in Evolution Mining Limited.

Announcements

The Company has made the following announcements since the start of the quarter.

15/07/2015 Significant Copper Sulphides Intersected 29/07/2015 Significant Copper Sulphides Intersected (Amended) 30/07/2015 Quarterly Activities and Cashflow Report 03/08/2015 Deep Drilling Intersects Further Mineralisation 11/08/2015 Gold Production to Restart in Tennant Creek 17/08/2015 Questions & Answers with Rob Bills 19/08/2015 High grade copper in diamond pre-collar 20/08/2015 Becoming a substantial holder 26/08/2015 Presentation - Mining the Territory Conference 27/08/2015 Strategic Alliance with Kenex 27/08/2015 Presentation - Mining the Territory Conference (Amended) 16/09/2015 2015 Annual Report and Financial Statements 16/09/2015 Appendix 4G 25/09/2015 Notice of Annual General Meeting/Proxy Form 08/10/2015 Trading Halt 12/10/2015 New High-Grade Gold Discovery 14/10/2015 Corporate Presentation 15/10/2015 Change in substantial holding 21/10/2015 Change in substantial holding 27/10/2015 Drilling Recommences at Mauretania and Gecko

Emmerson Resources Limited

RTB'll

Mr. Rob Bills Managing Director and Chief Executive Officer

About Tennant Creek and Emmerson Resources

The Tennant Creek Mineral Field (TCMF) is one of Australia's highest grade gold and copper fields producing over 5.5 million ounces of gold and 470,000 tonnes of copper from a variety of deposits including Gecko, Orlando, Warrego, White Devil, Chariot and Golden Forty, all of which are within Emmerson Resources (ASX: ERM) exploration and joint venture portfolio. These deposits are considered to be highly valuable exploration targets and, utilising modern exploration techniques, Emmerson has been successful in discovering copper and gold mineralisation at Goanna and Monitor in late 2011, the first discoveries in the TCMF for over a decade. To date, Emmerson has only covered 5.5% of the total tenement package (in area) with these innovative exploration techniques and is confident that, with further exploration, more such discoveries will be made.

Emmerson holds 2,500km² of ground in the TCMF, owns the only gold mill in the region and holds a substantial geological database plus extensive infrastructure and equipment. Emmerson has consolidated 95% of the highly prospective TCMF where only 8% of the historical drilling has penetrated below 150m.

Emmerson is led by a board and management group of experienced Australian mining executives including former MIM and WMC mining executive Andrew McIlwain as non-executive chairman, and former senior BHP Billiton and WMC executive Rob Bills as Managing Director and CEO.

Pursuant to Farm-in agreement entered into with Evolution Mining Limited (Evolution) on 11 June 2014, Evolution is currently sole funding exploration expenditure of \$15 million over three years to earn a 65% interest (Stage 1 Farm-in) in Emmerson's tenement holdings in the TCMF. An option to spend a further \$10 million minimum, sole funded by Evolution over two years following the Stage 1 Farm-in, would enable Evolution to earn an additional 10% (Stage 2 Farm-in) of the tenement holdings. Evolution must spend a minimum of \$7.5 million on exploration, or pay Emmerson the balance in cash, before it can terminate the farm-in. Emmerson is acting as manager during the Stage 1 Farm-in and is receiving a management fee during this period. Exploration expenditure attributable to the Stage 1 Farm-in to date is approximately \$6.5million.

About Evolution Mining

Evolution Mining (ASX:EVN, <u>www.evolutionmining.com.au</u>) is a leading, growth-focused Australian gold miner. Evolution now operates seven wholly-owned mines – Cowal in New South Wales, Cracow, Mt Carlton, Mt Rawdon and Pajingo in Queensland, and Edna May and Mungari in Western Australia.

Group production for FY15 from Evolution's five existing operating assets (prior to completion of the Cowal and Mungari acquisitions) totalled 437,570 ounces gold equivalent at an All-In Sustaining Cost of A\$1,036 per ounce.

Evolution has guided FY16 attributable gold production from all seven operating assets of 730,000 – 810,000 ounces at an AISC of A\$990 – A\$1,060 per ounce.

Regulatory Information

The Company does not suggest that economic mineralisation is contained in the untested areas. Any information relating to historical drilling records have been compiled, reviewed and verified as best as the Company was able. As outlined in this announcement the Company is planning further drilling programs to understand the geology, structure and potential of these untested areas. The Company cautions investors against using this announcement solely as a basis for investment decisions without regard for this disclaimer.

Competency Statement

The information in this report which relates to Exploration Results is based on information compiled by Mr Steve Russell BSc, Applied Geology (Hons), MAIG, MSEG. Mr Russell is a Member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and types of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 edition and the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Russell is a full time employee of the Company and consents to the inclusion in this report of the matters based on his information in the form and context in which it appears (attachments: Figures 1, 2, 3, 4 & 5, and Table 1& Table 2).Mr Russell holds an interest in the following securities in the Company: 500,000 Shares and 112,500 Performance Rights.

The information in this report which relates to Mineral Resources is based upon information compiled by Mr Ian Glacken, who is a Fellow of the Australasian Institute of Mining and Metallurgy. Ian Glacken is an employee of Optiro Pty Ltd and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 edition and the 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Ian Glacken consents to the inclusion in this report of a summary based upon his information in the form and context in which it appears.

Figure 2: Plan view of the Gecko Corridor, showing the location of deep hole GODD032, defined resources and proposed drill holes

Figure 3: Cross section of deep hole GODD032 overlain on seismic geophysical data

		GDA	GDA	GDA	Din	Magnetic	RAB	RC	Rock	Pre Collar	Diamond	Diamond	Final Hole	Tenement	Number of	Drill
Prospect	Hole Number	Easting	Northing	RL	(Deg)	Azimuth (Deg)	Depth (m)	Depth (m)	Roller (m)	Depth (m)	HQ (m)	NQ (m)	Depth (m)	Number	Samples	Туре
Gecko K44 Deeps	GODD031	402105.00	7851250.00	349.31	-85	355.5		92.0					92.0	ML23969	0.0	RC
Mulga Area	MGDD001	426858.00	7831710.31	346.52	-83	14		170.0					170.0	MLC377	0.0	RC
Mauretania	MTRC001	430597.49	7833432.42	341.5	-60	131.4		150.0					150.0	EL28761	55.0	RC
Mauretania	MTRC002	430620.18	7833352.5	335.95	-60	12.6		148.0					148.0	EL28761	54.0	RC
Mauretania	MTRC003	430675.42	7833003.6	329.14 1	-60	45.4		54.0					54.0	EL28761	19.0	RC
Mauretania	MTRC004	430675.42	7833003.6	329.14 1	-70	45.4		244.0					244.0	EL28761	88.0	RC
Mauretania	MTRC005	430637.39	7832971.88	329.03	-70	45.4		322.0					322.0	EL28761	119.0	RC
Mauretania	MTRC006	430714.81	7833037.02	329.28	-70	45.6		136.0					136.0	EL28761	49.0	RC
Black Cat	MTRC007	430772.39	7833758.75	339.98	-60	20.3		160.0					160.0	EL28761	59.0	RC
Black Cat	MTRC008	430809.61	7833743.79	336.4	-60	19.7		100.0					100.0	EL28761	37.0	RC
Sunrise	SNRC001	430942.5	7834734.96	328.32	-60	355.2		100.0					100.0	EL28761	37.0	RC
Sunrise	SNRC002	430620.18	7833352.5	335.95	-62	356.1		154.0					154.0	EL28761	57.0	RC
Regional	KFRC001	447364.00	7841297.00	294.00	-90	0		120.0					120.0	NA	43.0	RC
Chariot East	CHRC298	405415.17	7826625.09	337.88	-63	170.5		150.0					150.0	MLC176	55.0	RC
Gecko K44 Deeps	GODD032	402102.12	7851254.14	349.38	-85	320.4				265.0	1.6	1012.4	1279. 0	ML23969		DDH
Mulga Area	MGDD001	426858.00	7831710.31	346.52	-83	14.0				170.0		91.6	261.6	MLC377		DDH
Mulga Area	MGDD002	426851.00	7831701.00	347.00	-77	30.5				262.0	6.0			MLC377		DDH
Chariot	CHDD287	405239.83	7826765.78	336.61	-75	160.50				280.0			362.5	EL28601		DDH
Mauretania	MTRB001	431300	7835051	327.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB002	431225	7835069	327.0	-60	101.7	45						45	EL28761	13	RAB

Table 1: Quarterly drill holes and collar co-ordinates

		GDA	CDA	GDA	Din	Magnetic	RAB	RC	Rock	Pre	Diamond	Diamond	Final	Tonomont	Number of	Drill
Prospect	Hole Number	Easting	Northing	RL	(Deg)	Azimuth (Deg)	Depth (m)	Depth (m)	Roller (m)	Depth (m)	HQ (m)	NQ (m)	Depth (m)	Number	Samples	Туре
Mauretania	MTRB003	431151	7835093	330.0	-60	101.7	45						45	EL28761	13	RAB
Mauretania	MTRB004	431074	7835116	332.0	-60	101.7	51						51	EL28761	14	RAB
Mauretania	MTRB005	430995	7835137	337.0	-60	101.7	45						45	EL28761	14	RAB
Mauretania	MTRB006	430939	7835152	334.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB007	430860	7835175	335.0	-60	101.7	45						45	EL28761	12	RAB
Mauretania	MTRB008	430792	7835200	338.0	-60	101.7	48						48	EL28761	14	RAB
Mauretania	MTRB009	430715	7835224	337.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB010	431249	7834867	339.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB011	431176	7834893	333.0	-60	101.7	42						42	EL28761	11	RAB
Mauretania	MTRB012	431097	7834911	335.0	-60	101.7	42						42	EL28761	13	RAB
Mauretania	MTRB013	431018	7834932	333.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB014	430948	7834949	336.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB015	430884	7834965	336.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB016	430813	7834991	334.0	-60	101.7	45						45	EL28761	13	RAB
Mauretania	MTRB017	430729	7835016	332.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB018	430660	7835034	332.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB019	431032	7834701	331.0	-60	101.7	39						39	EL28761	11	RAB
Mauretania	MTRB020	430965	7834723	340.0	-60	101.7	51						51	EL28761	14	RAB
Mauretania	MTRB021	430882	7834746	327.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB022	430826	7834760	326.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB023	430745	7834782	333.0	-60	101.7	60						60	EL28761	16	RAB
Mauretania	MTRB024	430674	7834798	336.0	-60	101.7	48						48	EL28761	14	RAB
Mauretania	MTRB025	430593	7834823	333.0	-60	101.7	48						48	EL28761	12	RAB
Mauretania	MTRB026	430755	7834779	336.0	-60	281.7	40						40	EL28761	11	RAB
Mauretania	MTRB027	431112	7834422	349.0	-60	101.7	48						48	EL28761	13	RAB

		GDA	GDA	GDA	Din	Magnetic	RAB	RC	Rock	Pre	Diamond	Diamond	Final	Tenement	Number of	Drill
Prospect	Hole Number	Easting	Northing	RL	(Deg)	Azimuth (Deg)	Depth (m)	Depth (m)	Roller (m)	Depth (m)	HQ (m)	NQ (m)	Depth (m)	Number	Samples	Туре
Mauretania	MTRB028	431039	7834440	347.0	-60	101.7	48						48	EL28761	14	RAB
Mauretania	MTRB029	430966	7834460	342.0	-60	101.7	48						48	EL28761	12	RAB
Mauretania	MTRB030	430883	7834491	344.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB031	430812	7834497	343.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB032	430752	7834520	335.0	-60	101.7	48						48	EL28761	14	RAB
Mauretania	MTRB033	430673	7834541	328.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB034	430597	7834565	326.0	-60	101.7	48						48	EL28761	12	RAB
Mauretania	MTRB035	430515	7834581	326.0	-60	101.7	48						48	EL28761	14	RAB
Mauretania	MTRB036	431188	7834163	326.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB037	431126	7834178	330.0	-60	101.7	60						60	EL28761	16	RAB
Mauretania	MTRB038	431050	7834202	332.0	-60	101.7	51						51	EL28761	14	RAB
Mauretania	MTRB039	430975	7834229	337.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB040	430901	7834256	339.0	-60	101.7	31						31	EL28761	9	RAB
Mauretania	MTRB041	430823	7834274	343.0	-60	101.7	24						24	EL28761	6	RAB
Mauretania	MTRB042	430750	7834298	347.0	-60	101.7	39						39	EL28761	11	RAB
Mauretania	MTRB043	430687	7834312	344.0	-60	101.7	36						36	EL28761	10	RAB
Mauretania	MTRB044	430611	7834326	345.0	-60	101.7	36						36	EL28761	10	RAB
Mauretania	MTRB045	430535	7834350	344.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB046	430459	783480	342.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB047	431132	7833974	340.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB048	431074	7833993	338.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB049	430999	7834018	336.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB050	430924	7834040	337.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB051	430848	7834064	333.0	-60	101.7	42						42	EL28761	12	RAB
Mauretania	MTRB052	430768	7834088	335.0	-60	101.7	48						48	EL28761	13	RAB

		GDA	GDA	GDA	Din	Magnetic	RAB	RC	Rock	Pre	Diamond	Diamond	Final	Tenement	Number of	Drill
Prospect	Hole Number	Easting	Northing	RL	(Deg)	Azimuth (Deg)	Depth (m)	Depth (m)	Roller (m)	Depth (m)	HQ (m)	NQ (m)	Depth (m)	Number	Samples	Туре
Mauretania	MTRB053	430688	7834108	335.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB054	430633	7834124	338.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB055	430557	7834145	339.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB056	430483	7834165	283.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB057	430407	7834197	340.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB058	430347	7834323	342.0	-60	34.5	48						48	EL28761	13	RAB
Mauretania	MTRB059	430317	7834301	343.0	-60	34.5	48						48	EL28761	13	RAB
Mauretania	MTRB060	430282	7834264	343.0	-60	34.5	48						48	EL28761	14	RAB
Mauretania	MTRB061	430255	7834221	335.0	-60	34.5	48						48	EL28761	12	RAB
Mauretania	MTRB062	430232	7834174	342.0	-60	34.5	42						42	EL28761	12	RAB
Mauretania	MTRB063	430656	7834085	338.0	-60	34.5	48						48	EL28761	13	RAB
Mauretania	MTRB064	430625	7834061	342.0	-60	34.5	48						48	EL28761	14	RAB
Mauretania	MTRB065	430592	7834023	343.0	-60	34.5	48						48	EL28761	13	RAB
Mauretania	MTRB066	430566	7833983	340.0	-60	34.5	40						40	EL28761	10	RAB
Mauretania	MTRB067	430539	7833939	336.0	-60	34.5	48						48	EL28761	13	RAB
Mauretania	MTRB068	430633	7833900	342.0	-60	101.7	48						48	EL28761	14	RAB
Mauretania	MTRB069	430570	7833920	339.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB070	430488	7833943	338.0	-60	101.7	45						45	EL28761	12	RAB
Mauretania	MTRB071	430418	7833963	337.0	-60	101.7	42						42	EL28761	13	RAB
Mauretania	MTRB072	430344	7833984	343.0	-60	101.7	30						30	EL28761	8	RAB
Mauretania	MTRB073	431166	7833742	343.0	-60	101.7	43						43	EL28761	12	RAB
Mauretania	MTRB074	431077	7833769	340.0	-60	101.7	42						42	EL28761	12	RAB
Mauretania	MTRB075	431016	7833785	341.0	-60	101.7	42						42	EL28761	12	RAB
Mauretania	MTRB076	430943	7833810	343.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB077	430976	7833796	341.0	-60	34.5	42						42	EL28761	12	RAB

		GDA	GDA	GDA	Din	Magnetic	RAB	RC	Rock	Pre	Diamond	Diamond	Final Hole	Tenement	Number of	Drill
Prospect	Hole Number	Easting	Northing	RL	(Deg)	Azimuth (Deg)	Depth (m)	Depth (m)	Roller (m)	Depth (m)	HQ (m)	NQ (m)	Depth (m)	Number	Samples	Туре
Mauretania	MTRB078	430950	7833769	342.0	-60	34.5	48						48	EL28761	13	RAB
Mauretania	MTRB079	430916	7833728	341.0	-60	34.5	45						45	EL28761	13	RAB
Mauretania	MTRB080	430881	7833682	339.0	-60	34.5	42						42	EL28761	12	RAB
Mauretania	MTRB081	430849	7833648	339.0	-60	34.5	48						48	EL28761	13	RAB
Mauretania	MTRB082	431177	7833532	334.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB083	431097	7833554	316.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB084	431134	7833518	336.0	-60	34.5	48						48	EL28761	13	RAB
Mauretania	MTRB085	431104	7833489	338.0	-60	34.5	48						48	EL28761	12	RAB
Mauretania	MTRB086	431084	7833457	337.0	-60	34.5	48						48	EL28761	13	RAB
Mauretania	MTRB087	431009	7833577	338.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB088	430949	7833593	332.0	-60	101.7	42						42	EL28761	13	RAB
Mauretania	MTRB089	430870	7833618	340.0	-60	101.7	32						32	EL28761	8	RAB
Mauretania	MTRB090	430718	7833664	352.0	-60	101.7	32						32	EL28761	9	RAB
Mauretania	MTRB091	430645	7833685	348.0	-60	101.7	42						42	EL28761	12	RAB
Mauretania	MTRB092	430568	7833704	353.0	-60	101.7	60						60	EL28761	16	RAB
Mauretania	MTRB093	430502	7833726	352.0	-60	101.7	40						40	EL28761	11	RAB
Mauretania	MTRB094	430431	7833741	349.0	-60	101.7	39						39	EL28761	11	RAB
Mauretania	MTRB095	430357	7833769	349.0	-60	101.7	42						42	EL28761	12	RAB
Mauretania	MTRB096	430276	7833788	348.0	-60	101.7	42						42	EL28761	12	RAB
Mauretania	MTRB097	430193	7833805	345.0	-60	34.5	44						44	EL28761	12	RAB
Mauretania	MTRB098	430176	7833779	337.0	-60	34.5	30						30	EL28761	8	RAB
Mauretania	MTRB099	430143	7833741	339.0	-60	34.5	48						48	EL28761	13	RAB
Mauretania	MTRB100	430116	7833702	339.0	-60	34.5	29						29	EL28761	9	RAB
Mauretania	MTRB101	430082	7833657	339.0	-60	34.5	37						37	EL28761	11	RAB
Mauretania	MTRB102	430573	7833479	343.0	-60	101.7	48						48	EL28761	13	RAB

		GDA	GDA	GDA	Din	Magnetic	RAB	RC	Rock	Pre	Diamond	Diamond	Final Hole	Tenement	Number of	Drill
Prospect	Hole Number	Easting	Northing	RL	(Deg)	Azimuth (Deg)	Depth (m)	Depth (m)	Roller (m)	Depth (m)	HQ (m)	NQ (m)	Depth (m)	Number	Samples	Туре
Mauretania	MTRB103	430505	7833494	339.0	-60	101.7	43						43	EL28761	12	RAB
Mauretania	MTRB104	430444	7833515	347.0	-60	101.7	36						36	EL28761	10	RAB
Mauretania	MTRB105	430369	7833532	348.0	-60	101.7	39						39	EL28761	11	RAB
Mauretania	MTRB106	430292	7833553	348.0	-60	101.7	39						39	EL28761	11	RAB
Mauretania	MTRB107	430218	7833583	349.0	-60	101.7	36						36	EL28761	9	RAB
Mauretania	MTRB108	430670	7833448	356.0	-60	34.5	45						45	EL28761	13	RAB
Mauretania	MTRB109	430626	7833426	352.0	-60	34.5	39						39	EL28761	11	RAB
Mauretania	MTRB110	430616	7833390	351.0	-60	34.5	43						43	EL28761	12	RAB
Mauretania	MTRB111	430582	7833347	345.0	-60	34.5	40						40	EL28761	11	RAB
Mauretania	MTRB112	430548	7833300	340.0	-60	34.5	42						42	EL28761	12	RAB
Mauretania	MTRB113	430705	7833232	337.0	-60	101.7	44						44	EL28761	12	RAB
Mauretania	MTRB114	430635	7833251	341.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB115	430556	7833274	339.0	-60	101.7	48						48	EL28761	13	RAB
Mauretania	MTRB116	430485	7833290	341.0	-60	101.7	34						34	EL28761	10	RAB
Mauretania	MTRB117	430423	7833308	349.0	-60	101.7	42						42	EL28761	12	RAB
Mauretania	MTRB118	430341	7833334	351.0	-60	101.7	44						44	EL28761	12	RAB
Mauretania	MTRB119	430268	7833355	354.0	-60	101.7	34						34	EL28761	10	RAB
Mauretania	MTRB120	430198	7833368	349.0	-60	101.7	38						38	EL28761	10	RAB
Mauretania	MTRB121	430989	7833158	337.0	-60	34.5	40						40	EL28761	11	RAB
Mauretania	MTRB122	430964	7833122	341.0	-60	34.5	46						46	EL28761	13	RAB
Mauretania	MTRB123	430927	7833078	343.0	-60	34.5	48						48	EL28761	14	RAB
Mauretania	MTRB124	430892	7833043	335.0	-60	34.5	40						40	EL28761	10	RAB
Mauretania	MTRB125	430860	7832957	334.0	-60	101.7	40						40	EL28761	11	RAB
Mauretania	MTRB126	430801	7832975	328.2	-60	101.7	43						43	EL28761	12	RAB
Mauretania	MTRB127	430570	7833038	331.2	-60	101.7	48						48	EL28761	13	RAB

		GDA	GDA	GDA	Din	Magnetic	RAB	RC	Rock	Pre Collar	Diamond	Diamond	Final Hole	Tenement	Number of	Drill
Prospect	Hole Number	Easting	Northing	RL	(Deg)	Azimuth (Deg)	Depth (m)	Depth (m)	Roller (m)	Depth (m)	HQ (m)	NQ (m)	Depth (m)	Number	Samples	Туре
Mauretania	MTRB128	430494	7833058	331.2	-60	101.7	42						42	EL28761	12	RAB
Mauretania	MTRB129	430401	7833086	333.4	-60	101.7	39						39	EL28761	11	RAB
Mauretania	MTRB130	430358	7833099	334.2	-60	101.7	40						40	EL28761	11	RAB
Mauretania	MTRB131	430280	7833122	336.8	-60	101.7	40						40	EL28761	11	RAB
Mauretania	MTRB132	430206	7833144	336.2	-60	101.7	42						42	EL28761	12	RAB
Mauretania	MTRB133	430130	7833163	335.5	-60	101.7	40						40	EL28761	10	RAB
Mauretania	MTRB134	430891	7832733	326.9	-60	101.7	43						43	EL28761	12	RAB
Mauretania	MTRB135	430800	7832755	327.3	-60	101.7	42						42	EL28761	12	RAB
Mauretania	MTRB136	430743	7832777	327.8	-60	101.7	45						45	EL28761	14	RAB
Mauretania	MTRB137	430664	7832799	328.1	-60	101.7	45						45	EL28761	12	RAB
Mauretania	MTRB138	430585	7832817	327.9	-60	101.7	39						39	EL28761	11	RAB
Mauretania	MTRB139	430512	7832836	327.8	-60	101.7	39						39	EL28761	11	RAB
Mauretania	MTRB140	430430	7832858	329.5	-60	101.7	45						45	EL28761	13	RAB
Mauretania	MTRB141	430343	7832880	331.0	-60	101.7	42						42	EL28761	12	RAB
Mauretania	MTRB142	430296	7832895	333.8	-60	101.7	49						49	EL28761	14	RAB
Mauretania	MTRB143	430215	7832922	335.1	-60	101.7	39						39	EL28761	11	RAB
Mauretania	MTRB144	430146	7832939	334.2	-60	101.7	43						43	EL28761	12	RAB
Mauretania	MTRB145	430069	7832963	334.3	-60	101.7	37						37	EL28761	11	RAB
Mauretania	MTRB146	430830	7832510	324.4	-60	101.7	42						42	EL28761	12	RAB
Mauretania	MTRB147	430745	7832542	324.0	-60	101.7	39						39	EL28761	11	RAB
Mauretania	MTRB148	430684	7832571	325.6	-60	101.7	39						39	EL28761	11	RAB
Mauretania	MTRB149	430609	7832586	326.0	-60	101.7	39						39	EL28761	11	RAB
Mauretania	MTRB150	430527	7832596	326.4	-60	101.7	39						39	EL28761	10	RAB
Mauretania	MTRB151	430450	7832627	326.4	-60	101.7	39						39	EL28761	11	RAB
Mauretania	MTRB152	430371	7832650	327.6	-60	101.7	39						39	EL28761	11	RAB

		GDA	GDA	GDA	Din	Magnetic	RAB	RC	Rock	Pre Collar	Diamond	Diamond	Final Hole	Tenement	Number of	Drill
Prospect	Hole Number	Easting	Northing	RL	(Deg)	Azimuth (Deg)	Depth (m)	Depth (m)	Roller (m)	Depth (m)	HQ (m)	NQ (m)	Depth (m)	Number	Samples	Туре
Mauretania	MTRB153	430297	7832672	328.3	-60	101.7	42						42	EL28761	12	RAB
Mauretania	MTRB154	430243	7832687	328.5	-60	101.7	42						42	EL28761	12	RAB
Mauretania	MTRB155	430163	7832707	329.4	-60	101.7	40						40	EL28761	11	RAB
Mauretania	MTRB156	430084	7832731	329.7	-60	101.7	39						39	EL28761	11	RAB
Mauretania	MTRB157	430008	7832746	330.3	-60	101.7	39						39	EL28761	11	RAB
Mauretania	MTRB158	430732	7833053	329.0	-60	225.5	69						69	EL28761	19	RAB
Mulga	MGRB001	426923	7831870	348.0	-60	40.5	84						84	MLC377	23	RAB
Mulga	MGRB002	426896	7831847	347.9	-60	40.5	57						57	MLC377	17	RAB
Mulga	MGRB003	427731	7831630	338.0	-60	40.5	63						63	MLC381	17	RAB
Mulga	MGRB004	427699	7831606	338.4	-60	40.5	63						63	MLC381	17	RAB
Mulga	MGRB005	427668	7831573	338.0	-60	40.5	55						55	MLC381	16	RAB
Mulga	MGRB006	427646	7831540	338.2	-60	40.5	63						63	MLC381	17	RAB
Mulga	MGRB007	427762	7831539	339.1	-60	40.5	63						63	MLC381	17	RAB
Mulga	MGRB008	427737	7831510	339.8	-60	40.5	55						55	MLC381	16	RAB
Regional	KFRB002	469512	7855367		-90	355.5	63						63	EL30209	16	RAB
Regional	KFRB003	469185	7855230		-90		57						57	EL30209	1	RAB
Regional	KFRB004	469210	7855204		-90		47						47	EL30209	1	RAB
Zinfandel	ZIRB001	406380	7831475	372.0	-60	355.5	70						70	EL30488	19	RAB
Zinfandel	ZIRB002	406203	7831452	371.0	-60	45.5	78						78	EL30488	22	RAB
Zinfandel	ZIRB003	406163	7831424	370.0	-60	45.5	96						96	EL30488	26	RAB
Zinfandel	ZIRB004	406678	7831439	373.0	-60	45.5	49						49	EL30488	14	RAB
Zinfandel	ZIRB005	405168	7831602	358.0	-60	355.5	42						42	EL30488	12	RAB
Zinfandel	ZIRB006	405166	7831548	363.0	-60	355.5	42						42	EL30488	12	RAB
Zinfandel	ZIRB007	405167	7831510	362.0	-60	355.5	40						40	EL30488	11	RAB
Zinfandel	ZIRB008	404401	7831522	355.0	-60	352	28						28	EL30488	8	RAB

Prospect	Hole Number	GDA Easting	GDA Northing	GDA RL	Dip (Deg)	Magnetic Azimuth (Deg)	RAB Depth (m)	RC Depth (m)	Rock Roller (m)	Pre Collar Depth (m)	Diamond HQ (m)	Diamond NQ (m)	Final Hole Depth (m)	Tenement Number	Number of Samples	Drill Type
Zinfandel	ZIRB009	404430	7831522	357.0	-60	337	51						51	EL30488	14	RAB
Zinfandel	ZIRB010	404476	7831567	348.0	-60	345	31						31	EL30488	8	RAB

 Table 2: Gecko Deeps GODD032 drill hole details

Hole ID	East (MGA94_53)	North (MGA94_53)	RL AHD	Dip (deg)	AZI mag (deg)	Drill Type	From (m)	To (m)	Width (m)	Sample Type
						RC Pre Collar	0.00	265.0	265.0	RC chips
GODD032	402102.30	7851253.95	349.4	-85.0	320.4	HQ Diamond	265.0	266.6	1.60	Core
						NQ ² Diamond	266.6	1,279.0	1,012.4	Core

Table 3: Gecko Deeps GODD032 significant drill hole intersections

Hole ID	East (MGA94_53)	North (MGA94_53)	RL AHD	Dip (deg)	AZI mag (deg)	From (m)	To (m)	Width (m)	Au (g/t)	Ag (ppm)	Bi (ppm)	Cu (%)	Fe (%)	Pb (ppm)	Zn (ppm)	Sample Type	Tenement
					320.4	123	130	7	0.03	1.54	4631	5.98	12.3	25.5	73		
					Incl.	124	129	5	0.04	2.10	6388	7.77	13.2	35.0	72		
					Incl.	126	129	3	0.05	3.20	10141	10.37	14.9	55.6	75		
					Incl.	127	128	1	0.06	5.54	11577	15.45	17.2	81.3	45	4	
GODD032	402102.30	7851253.95	349.4	-85	and	134	135	1	0.01	0.32	969	1.00	4.2	2.9	58	1m solits	ML23969
					and	138	139	1	0.01	0.87	1759	2.08	5.5	2.5	45	opiito	
					and	162	165	3	0.03	0.53	694	4.75	8.7	3.0	238		
					Incl.	163	164	1	0.07	0.83	654	10.59	15.1	4.1	22		
					and	221	222	1	0.03	0.19	5	2.37	10.8	1.2	49		

Note: (1) All samples are1m individual riffle split RC samples.

(2) Gold and multi element analysis method by 25g Fire Assay & 4 acid digest and ICP-OES, ICP-MS or ASS finish(3) Intersections are reported as downhole lengths and not true width.

(4) Minimum cut-off of1g/tAu. No maximum cut-off.
(5) Minimum cut-off of 0.5% Cu. No maximum cut-off.
(6) Maximum internal dilution for RC drilling is 2 metres.

Classification	Tonnes ('000)	Gold grade (g/t)	Copper grade (%)	Gold equivalent grade (g/t)	Gold ounces ('000)	Copper metal (t)	Gold equivalent ounces ('000)
Gecko	o - Anomaly	/ 3, L25 a	nd K44 Lowe	er (reported abo	ove a 1.0%	copper cut-o	off)
Indicated	1,400	-	2.5	4.2	-	35,600	190
Inferred	80	-	1.6	2.7	-	1,300	10
Sub-total Gecko	1,480	-	2.5	4.1	-	36,900	200
	(Goanna (r	eported abo	ve a 1.0% copp	er cut-off)		
Inferred	2,920	0.2	1.8	3.2	15	53,700	300
Sub-total Goanna	2,920	0.2	1.8	3.2	15	53,700	300
Orla	ando - Lens	ses 2 and	7 (reported	above a 1.0 g/t	gold equiv	alent cut-off	
Indicated	1,710	1.9	1.5	4.4	100	25,700	240
Inferred	510	1.7	1.1	3.6	30	5,800	60
Sub-total Orlando	2,220	1.8	1.4	4.2	130	31,500	300
TOTAL	6,620	0.7	1.8	3.7	145	122,000	800

Table 4: Gecko - Goanna – Orlando Mineral Resources Estimate October 2013

The gold equivalent calculation assumes a gold price of US\$1363/oz for gold and US\$3.31/lb for total copper and makes no allowance for metallurgical recoveries. The totals may not sum exactly due to rounding.

JORC Code, 2012 Compliance The exploration results contained within the above company release are in accordance with the guidelines of *The Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves* (the JORC Code, 2012).

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 The Deep Gecko exploration target has not been drill tested before and GODD032 is a proof of concept exploration drill hole. GODD032 is the first hole drilled into the target and the final depth was 1279. The RC pre collar (0 – 256m) was sampled and the results are the subject of this release. The RC pre collar chips were riffle split on site to obtain 3m composite samples from which 2.5 – 3.0kg was pulverised (at the laboratory) to produce a 25g charge for analysis by Aqua Regia digestion / ICP-MS/OES (Au,Ag,Bi,Cu,Fe,Pb,Zn). Individual 1m samples were selected from the areas with most potential to host mineralisation and these were also pulverised (at the laboratory) to produce a 25g charge for analysis by four acid digest with an ICP/OES (Cu,Fe,Pb,Zn) ICP/MS (Ag, Bi) & FA/AAS (Au) finish (Fire Assay). RC samples were collected via a fixed splitter that is mounted to the drill rig under a 900cfm cyclone. A reprehensive bottom of hole chip sample was also retained in labelled chip trays for reference and dispatched for ASD analysis in Queensland (Evolution mine site). Diamond core has been logged for lithological, structural, geotechnical, density and other attributes. Sampling was carried out under Emmerson's procedures and QAQC measures as per industry best practice. Diamond core is NQ² size, sampled on geological intervals (0.2 m to 1.4 m), cut into half (NQ²) core to provide sample weights of approximately 3.0kg. Samples were crushed, dried and pulverised (Lab) to produce a 25g sub sample for analysis by four acid digest with an ICP/OES (Cu,Fe,Pb,Zn) ICP/MS (Ag, Bi) & FA/AAS (Au) finish (Fire Assay). Diamond core has been dispatched to the lab results are pending.
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 See Table 1 in the text. GODD032 has a RC pre collar utilizing a 4.5 inch, face sampling bit. 265-266.5m of HQ diamond core has been drilled. HQ core diameter is 63.5mm. 266.6-1,279m of NQ² core has been drilled NQ² core diameter is 47.6mm. The core was oriented using down hole core orientation equipment provided by the drilling company. DDH1 Drilling completed both the RC and diamond drilling using a multipurpose UDR1200 drill rig. Diamond core and RC recoveries are logged and recorded in the database and considered to be of an excellent standard. Standard inner tube has been used for the diamond core drilling. No triple tube has been used on GODD032.

Criteria	JORC Code explanation	Commentary
		Core from GODD032 exploration target is currently stored on core racks in the Emmerson Tennant Creek core shed and is progressively being geologically logged by company geologists.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Recoveries are considered satisfactory for both Diamond and RC drilling. RQD measurements and core loss is recorded on diamond logging sheets, loaded into Emmerson's database and retained for reference. RC chip recoveries are >95% for and there are no reported core loss or significant sample recovery problems identified. Diamond core recovery is considered excellent. Emmerson do not consider that there is evidence for sample bias that may have occurred due to preferential loss/gain of fine/coarse material while drilling the RC pre collar or the diamond tail.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 RC pre collar samples from GODD032 were lithologically logged and have been entered in Emmerson's relational database. One metre RC chip intervals are sieved, washed and stored in standard chip trays for later review. Drill hole logging data is directly entered into field tough book computers via Logchief software. Look up codes and real time validations reduce the risk of data entry mistakes. Field computer data (the drill log) are uploaded to Emmerson's relational database whereby the data undergoes a further set of validations checks prior to final upload. Structural logging of all diamond drill core records orientation of veins, fractures and lithological contacts. Information on diamond core structure type, dip, dip direction, alpha angle, beta angle, texture, shape, roughness and fill material is stored in the structure table of the database. RQD logging records core lengths, recovery, hardness and weathering. Magnetic susceptibility data for all individual 1m RC samples are collected as per ERM procedure. All drill core is photographed.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain 	 The sample preparation for the GODD032 RC pre collar involves oven drying followed by pulverisation of the entire sample (total prep). Forty seven (47) riffle split, individual 1m samples have been dispatched to the laboratory based on visual mineralisation. Intervals are 4-13m (9 samples), 118-141m (23 samples), 160-169m (9 samples) & 220-223m (6 samples). 1m intervals are pulverised (at the laboratory) to produce a 25g charge for analysis by four acid digest with an ICP/OES (Cu,Fe,Pb,Zn) ICP/MS (Ag, Bi) & FA/AAS (Au) finish (Fire Assay). 1m intervals sample assay results are the subject of this release. Diamond core sample assays have been dispatched to the

Criteria	JORC Code explanation	Commentary
	size of the material being sampled.	laboratory and no results have been received as at the time of writing this release.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Field QC procedures involve the use of certified reference material (CRM's) as assay standards, and include ERM include blanks, duplicates. QAQC protocols consist of the insertion of blanks at a rate of approximately one in every 40 samples, insertion of standards at a rate of approximately one in every 20 samples. Insertion of assay blanks is increased when visual mineralisation is encountered and consists of insertion above and below the mineralised zone. GODD032 RC pre collar field duplicates were collected on the 3m composites samples, using a riffle splitter. Individual 1m RC sample duplicates are also collected using the same technique. Core from the Gecko Deep exploration target will be cut in half (NQ²) at Emmerson's Tennant Creek exploration office, using an automatic core saw. All samples are to be collected from the same side of the core. Half core samples are submitted for analysis, unless a field duplicate is required, in which case quarter core samples are submitted. The sample preparation of diamond core for follows industry best practice in sample preparation involving oven drying, coarse crushing of the half core sample (total prep) using LMS grinding mills to a grind size of 85% passing 75 micron. The sample preparation for RC samples is identical, without the coarse crush stage. Pulverised material not required by the laboratory (pulps) including duplicate samples are returned to ERM, logged into a database and stored undercover at the Tennant Creek office. Coarse rejects are disposed of by the Laboratory. Laboratory checks include CRM's and/or in-house controls, blanks, splits, and replicates that are analysed with each batch of samples submitted. These QC results are reported along with sample values in the final analytical report. Barren quartz washes are also routinely used in zones of mineralisation. QAQC database is cr

Criteria	JORC Code explanation	Commentary
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All significant intersections calculated are verified by Emmerson's Exploration Manager. No twin drillholes to Emmerson's knowledge have been completed. Selective sampling and re-assay will be undertaken to confirm key assay results. The geochemical data is managed by ERM using and external database administrator and secured through a relational database (DataShed).
Location of data points	 Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 GODD032 was surveyed (set out) using a differential GPS and by a suitably qualified company employee. Collar survey accuracy is +/- 30 mm for easting, northing and elevation coordinates. Co-ordinate system GDA_94, Zone 53. Topographic measurements are collected from the final survey drill hole pick up. Downhole survey measurements were collected at a minimum of every 18m using an REFLEX EZ-Shot® electronic single shot camera for RC and every 6m-12m for diamond drill section. This survey camera equipment is quoted by the manufacturer to have an accuracy of Azimuth 0-360° ± 0.5° Dip ± 90° ± 0.2°
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 RC sampling is on 1m intervals that may have originally consisted of 3m composites. Diamond core sampling is generally defined by geological characteristics and controlled by alteration and lithological boundaries.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 No previous exploration has been conducted on the Gecko Deep target. Goanna mineralisation located approximately 800m to the east of GODD032 is very similar in visual nature, presence of high grade copper mineralisation and geological control as seen in GODD032 pre collar.
Sample security	The measures taken to ensure sample security.	 Samples are selected, bagged and labelled by site geologists. They are placed in sealed polyweave bags and larger bulka bags for transport to the assay laboratory. The assay laboratory that is to be used will be Genalysis Intertek. Sample preparation occurs in Alice Springs, Northern Territory. Analytical occurs in Perth, Western Australia. The assay laboratory confirms that all samples have been received and that no damage has occurred during transport. Tracking is available through the internet and designed by the Laboratory for ERM to track the progress of batches of samples. Sample receipt is logged into ERM's sample ledger.

Criteria	JORC Code explanation	Commentary
		 While samples are being processed in the Lab they are considered to be secure.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	An internal review of the historical sampling techniques, QAQC protocols and data collection was conducted by Emmerson from January to March 2013 however was not specific to the GODD032 target.

Section 2: Reporting of Exploration Results - Deep Gecko GODD032 Diamond Drill

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 GODD032 was drilled on granted Mineral Lease ML 23969 which forms part of the Gecko Mine Mineral Lease Group and is owned 100% by Emmerson Resources Limited ML 23969 lies within Perpetual Pastor Lease 946which is run as Phillip Creek Station. Land Access to the target is secured through an Indigenous Land Use Agreement with the CLC representing Traditional Owners for the area. There are no Heritage or Indigenous exclusion zones recorded within ML 23969. A recent drill rig visit by approximately 25 Traditional owners on Friday 17th July, 2015 was conducted. The tenements are in good standing and no known impediments exist. Emmerson Resources are in Joint Venture with Evolution Mining. GODD032 is co-funded as part of the Northern Territory's "Creating Opportunities for Resource Exploration (CORE) initiative.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 No exploration has been conducted at this depth. No exploration or drilling targets the Gecko Deep Exploration Target.
Geology	 Deposit type, geological setting and style of mineralisation. 	 Mineralisation within the target area consists of hematite- quartz-magnetite ironstone within talc-chlorite-magnetite- bearing sediments of the Warramunga Formation. Target style for Emmerson is non magnetic ironstone related iron oxide copper gold. GODD032 lies within a defined structural corridor known as the Gecko Shear Zone. Mineralisation (Copper and Gold) in the Gecko Shear Zone is associated with ironstone.
Drillhole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL of the drillhole collar dip and azimuth of the hole downhole length and interception depth hole length. 	 All drill hole information is tabulated in Tables 1 and 2 of the text. GODD032 final drillhole depth was 1,279m.

Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Mineralised intersections are reported as down hole drill intervals and not weighted averages. These results are exploration results only and no allowances have been made for recovery losses that may occur should mining eventually result, nor metallurgical flow sheet considerations. Cut-off grades applied to the results reported in this report are: Minimum cut-off of 1g/t Au. No maximum cut-off Minimum cut-off of 0.5% Cu. No maximum cut-offf. Maximum internal dilution for RC drilling is 2 metres. No metal equivalent values are reported.

Criteria	JORC Code explanation	Commentary
Relationship between mineralization widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the downhole lengths are reported, there should be a clear statement to this effect (eg 'downhole length, true width not known'). 	 GODD032 at the Gecko Deep exploration target is from surface and perpendicular to the interpreted mineralised structure (s). GODD032 is inclined to the North at -85 degrees to allow intersection angles with the mineralised zones approximate to the true width.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported. These should include, but not be limited to a plan view of drillhole collar locations and appropriate sectional views. 	Refer to Figures in body of text.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	All results are reported as Tables 1 & 2.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Previous information on structure type, dip, dip direction, alpha angle, beta angle, texture, shape, roughness and fill material has been reviewed and considered satisfactory to good. Magnetic susceptibility is present for approximately 100% of RC samples. Thin section samples have been collected to assist in the refinement of the geological model.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Further work on the Gecko Deep exploration target will involve: Downhole geophysical surveys including sonic and VSP methods. Collection of physical rock property data to assist with future geophysical modelling. Collection of multi element samples and analysis. Age dating and thin section collection at various intervals down hole. Structural logging of GODD032 Further diamond drilling.

SECTION 1 SAMPLING TECHNIQUES AND DATA- REGIONAL RAB DRILLING

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as downhole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg 	 Rotary Air Blast (RAB) samples were composited at the drill site into 4m samples via spear (tube) sampling. These 4m RAB composite samples from which 2.5 – 3.0kg was pulverised (at the laboratory-Genalysis) to produce a 25g charge for analysis by Aqua Regia digestion (Au, Ag, Bi, Cu, U, Pb, Zn, Mo, Se, Sb and Fe). A 1m bottom of hole RAB sample for each hole was also collected and dispatched for Four-Acid Digest comprehensive multi-element analysis (46 elements plus gold). A reprehensive bottom of hole chip sample was also retained in labelled chip trays for reference and dispatched for ASD analysis in Queensland (Evolution mine site).

Criteria	JORC Code explanation	Commentary
	submarine nodules) may warrant disclosure of	·
Drilling techniques	 detailed information. Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 RAB drilling accounts for 100% of the regional drilling. RAB drill hole spacing was of a regional nature and completed on nominal 80m centres along drill lines spaced 200 – 400m apart and oriented NNE-SSW and also ESE-WNW (see figures in text). 158 angled RAB holes were completed for a total of 6,956 and 1,926 samples dispatched. The deepest RAB hole was 92m and the shallowest 24m with the average hole depth for the program being 44m All RAB holes were angled at 60 degrees to the NNE or ESE. Holes and drill lines were designed to optimally test the mineralised shear zones which typically strike east-west and dip steeply to the south. RAB drilling utilises a 4 inch blade bit. Approximately 20% of drilling was completed using a RAB hammer to obtain a reliable bedrock sample.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Overall recoveries are for the Regional RAB drilling is considered good and there were no obvious sample loss issues. All RAB samples were dry. No voids were experienced during RAB drilling. Emmerson do not consider that there is evidence for sample bias that may have occurred due to preferential loss/gain of fine/coarse material during the regional drill program.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All RAB holes were logged by an Emmerson geologist on site during the 2015 drill program. Logged data was then uploaded to Emmerson's relational database – DataShed. RAB logging intervals are 1m increments and the entire hole was logged. Selected RAB chips are stored in chip trays in 1m intervals, however due to age some are considered to be in poor condition.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 RAB samples were composited at the drill site into 4m samples via spear (tube) sampling. These 4m RAB composite samples typically weighted from which 2.5 - 3.0kg. A 1m bottom of hole RAB sample for each hole was also collected via spear / tube sampling technique. The sample preparation of samples from the regional RAB drill program follow industry best practice. Sample preparation involved oven drying, coarse crushing of sample down to ~10mm followed by dry pulverisation of the entire sample (total prep) using LM5 grinding mills to a grind size of 85% passing 75 micron. Pulverised material not required by the laboratory (pulps) including duplicate samples were returned to Emmerson Resources and are stored in Tennant Creek. Coarse rejects are disposed of by the Laboratory. All RAB samples were dry when submitted to the Laboratory.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Field QC procedures are routinely undertaken by Emmerson and involve the use of representative certified reference materials (CRM's) as assay standards, and include blanks and duplicates. QAQC protocols consisted of the insertion of blanks at a rate of approximately one in every 40 samples, insertion of standards at a rate of approximately one in every 20 samples and duplicate field sample analysis of at a rate of approximately one in every 20 samples. The geologist on the rig is responsible for maintaining the field QC. Insertion of assay blanks was increased when visual mineralisation was encountered and consists of insertion above and below the mineralised zone. Internal Laboratory checks were also included as in-house controls, blanks, splits, and replicates that are analysed with each batch of samples submitted. These QC results are reported along with sample values in the final analytical report. Intertek Genalysis conducted the analytical analysis. Sample preparation occurred in Alice Springs, Northern Territory and analyses were read in Perth, Western Australia.

Criteria	JORC Code explanation	Commentary
		 Review of QC results were conducted through a series of control charts and are considered satisfactory to good. The sample sizes are considered to be appropriate to correctly represent the style of mineralisation - Iron oxide copper gold.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	Due to the early exploration stage of this area no twin drill holes have been completed.
Location of data points	 Accuracy and quality of surveys used to locate drillholes (collar and downhole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 RAB drill hole collars were surveyed (set out) using a hand-held GPS unit by a suitably qualified company employee. Collar survey accuracy is +/- 5 metres for easting, northing and elevation coordinates. Co-ordinate system GDA_94, Zone 53. Topography control is considered as satisfactory. The area is typically very flat. No down hole surveying was conducted on the RAB holes and it is assumed that the hole dip and azimuth remained constant.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Drill spacing is not considered appropriate for the Mineral Resource and Ore Reserve estimation procedure(s). Regional drilling in the Billy Boy project area is considered very broad and infill drilling has been designed to increase our knowledge and number of data points.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The RAB hole traverses are designed to intersect main structures perpendicular to the region stratigraphic strike. Further drill information may be collected should a second phase of RAB drilling occur. This drill information should provide more detail on the orientation of the key mineralised structures.
Sample security	The measures taken to ensure sample security.	 Samples were collected, bagged and labelled by site geologists. They are placed in sealed bags for transport to the assay laboratory. The assay laboratory confirms that all samples have been received and that no damage has occurred during transport. While samples are being processed in the Lab they are considered to be secure.
Audits or reviews	The results of any audits or reviews of sampling techniques and data	Not relevant for the data reported.

SECTION 2 REPORTING OF EXPLORATION RESULTS – EDNA BERYL EXPLORATION TARGET

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Edna Beryl Exploration Target lies wholly within Mineral Lease (ML) C705. The Edna Beryl Exploration Target is located 37kms North of Tennant Creek Township and 3kms east of the Stuart Highway. Edna Beryl is situated on map sheet SE53-14 Tennant Creek 1:250,000 and sheet 5759 Flynn 1:100,000 at GDA coordinate 416500mE 7864700mN. MLC705 is located within Aboriginal Freehold Land held by the Warumungu Aboriginal Land Trust (NT portion 1754). The tenement is 100% held by Emmerson Resources Limited. The mine is on Aboriginal freehold land. An agreement under the Aboriginal Land Rights (Northern Territory) Act 1976 has been entered into between Emmerson Resources and the Central Land Council on behalf of the Aboriginal landowners. The agreement provides for the protection of sites, the payment of compensation and allows the landowners unfettered access to the lease area (other than the immediate mine site where there are restrictions). Emmerson Resources are in Joint Venture with Evolution Mining. Exclusion Zones are identified within MLC 705 however does no impact on the Edna Beryl Exploration Target area.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Edna Beryl was discovered in 1935 and mined in the 1940s and 1950s by excavation of vertical shafts and horizontal drives to a maximum depth of about 50 metres. Production up until 1952 was reportedly 2,700 tonnes of ore at an average grade of 53 grams gold per tonne. Giants Reef Mining conducted all known "modern" exploration in and around the Edna Beryl Exploration Target Area. Giants Reef has carried out exploration on the Edna Beryl area from 1990 to 2005 and during this time identified significant gold mineralisation below the original workings. An existing shaft sunk during the earlier mining was refurbished in 1996. In 2004 – 2005 mining was conducted by the Edna Beryl Mining Company (formally known as Craig's Mining Services) in a Tribute arrangement with Giants Reef Mining. Approximately 410 ounces was produced during this period from the upper mineralised pod from an exploration shaft and drive to current depth of 52m. Influx of underground water plus declining gold price ceased the operation in July 2005.

Geology	 Deposit type, geological setting and style of mineralisation. 	 Gold and copper-gold deposits discovered in the Tennant Creek gold field to date, are hosted in the Lower Proterozoic Warramunga Formation; a metamorphosed (greenschistfacies) greywacke-siltstone-shale sedimentary sequence, that usually displays a pronounced east-west cleavage. Ore occurs adjacent to steeply dipping, lenticular or pipe-like magnetite / haematite / chlorite / quartz bodies ('ironstone') that are found along east-west trending structures. It is generally thought that the magnetite/haematite was hydrothermally formed in dilation zones along the controlling structures, and that the deposition of gold, sulphides and associated alteration minerals was a later event with mineralisation possibly being derived from a different source but following the same structurally controlled path. In plan view, the ironstone bodies tend to be narrowest in the north-south direction and elongated east west, reflecting the regional cleavage and shearing. Edna Beryl clearly follows this pattern. Their vertical dimensions may run to hundreds of metres, beyond the reach of surface drilling. Ore grades may occur over substantial vertical intervals of an ironstone pipe or lens, but are not expected to occur over the entire length. The mineralisation style is considered to be Iron Oxide Copper Gold.
Drillhole information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drillholes: easting and northing of the drillhole collar elevation or RL of the drillhole collar dip and azimuth of the hole downhole length and interception depth hole length. 	 A list of the drill holes, collar detail and intersections has not been provided as no significant or mineralised intersections have been reported in the body of this text or figures.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting 	 Mineralized RC and Diamond intersections are reported as down hole intervals and not weighted averages. The results discussed are exploration results only and no allowance is made for recovery losses that may occur should mining eventually result, nor metallurgical flow sheet considerations.
Relationship between mineralization widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drillhole angle is known, its nature should be reported. If it is not known and only the downhole 	 The holes drilled within the Edna Beryl Exploration Target area are perpendicular the east-west striking mineralised zone. The holes were designed and drilled perpendicular to the steep dipping mineralised zone making the intercepts approximate to true width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should	Refer to Figures in body of text.

Criteria	JORC Code explanation	Commentary
Balanced reporting	 significant discovery being reported. These should include, but not be limited to a plan view of drillhole collar locations and appropriate Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Due to the age of this Resource estimation, Emmerson are cautious and do not believe the historical Resource estimate can be reported in accordance with the current 2012 JORC Code. Emmerson considers the Edna Beryl mineralisation to be an Exploration Target. It is uncertain that following evaluation and/or further exploration work that the historical estimate will be able to be reported as Mineral Resources or Ore Reserves in accordance with the requirements in Appendix 5A (JORC Code).
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 Geotechnical logging was carried out on all diamond drill holes for recovery, RQD and number of defects (per interval). Information on structure type, dip, dip direction, alpha angle, beta angle, texture, shape, roughness and fill material was stored in the structure table of the Micromine database. Density measurements were collected by Giants Reef geologists. Metallurgical testing of selected mineralised Edna Beryl samples was conducted by Metcon Laboratories Pty Ltd in 1996. Metallurgical testing concluded that 70% could be gravity recovered with the remaining gold cyanide soluble so that total gold extraction of >98% could be obtained. Screen Fire Assay of selected samples was conducted by Giants Reef Mining. Geophysical magnetic susceptibility logging is completed at 1m intervals on site (RC drilling) and in the core shed for selected sections of diamond core. Thin section samples were collected by Giants Reef Mining to assist in the refinement of the geological model.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Once the underground development has been established, Emmerson plan to conduct a small underground diamond drilling program searching for lateral and down dip continuance of the known Edna Beryl mineralisation. Several other exploration targets are proximal to the Edna Beryl exploration target. Exploration data is currently being reviewed and evaluated. It is likely that additional surface drilling will occur testing for the similar style of mineralisation as reported.

Mining Tenements Held at 30 September 2015

Tenement	Name	Interest	Tenement	Name	Interest	Tenement	Name	Interest
EL10114	McDougall	100%	ELA30584	Battery Hill	100%	HLDC78	Wiso Basin	100%
EL10124	Speedway	100%	ELA30614	Franc	100%	HLDC79	Wiso Basin	100%
EL10313	Kodiak	100%	ELA30746	Mule	100%	HLDC80	Wiso Basin	100%
EL10406	Montana	100%	ELA30747	Power of Wealth	100%	HLDC81	Wiso Basin	100%
EL23285	Corridor 2	100%	ELA30748	Battery Hill	100%	HLDC82	Wiso Basin	100%
EL23286	Corridor 3	100%	ELA30749	Mary Anne	100%	HLDC83	Wiso Basin	100%
EL23905	Jackie	100%	ELA7809	Mt Samuel	100%	HLDC84	Wiso Basin	100%
EL26594	Bills	100%	HLDC100	Sally No Name	100%	HLDC85	Wiso Basin	100%
EL26595	Russell	100%	HLDC101	Sally No Name	100%	HLDC86	Wiso Basin	100%
EL26787	Rising Ridge	100%	HLDC37	Warrego, No 1	100%	HLDC87	Wiso Basin	100%
EL27011	Snappy Gum	100%	HLDC39	Warrego Min,	100%	HLDC88	Wiso Basin	100%
EL27136	Reservoir	100%	HLDC40	Warrego, No 2	100%	HLDC89	Wiso Basin	100%
EL27164	Hawk	100%	HLDC41	Warrego, No 3	100%	HLDC90	Wiso Basin	100%
EL27408	Grizzly	100%	HLDC42	Warrego, S7	100%	HLDC91	Wiso Basin	100%
EL27537	Chappell	100%	HLDC43	Warrego , S8	100%	HLDC92	Wiso Basin	100%
EL27538	Mercury	100%	HLDC44	Warrego, No.2	100%	HLDC93	Wiso Basin	100%
EL28601	Malbec	100%	HLDC45	Warrego, No.1	100%	HLDC94	Warrego, No.4	100%
EL28602	Red Bluff	100%	HLDC46	Warrego, No.1	100%	HLDC95	Warrego, No.3	100%
EL28603	White Devil	100%	HLDC47	Wiso Basin	100%	HLDC96	Wiso Basin	100%
EL28618	Comstock	100%	HLDC48	Wiso Basin	100%	HLDC97	Wiso Basin	100%
EL28760	Delta	100%	HLDC49	Wiso Basin	100%	HLDC98	Wiso Basin	100%
EL28761	Quartz Hill	100%	HLDC50	Wiso Basin	100%	HLDC99	Wiso, No.3 pipe	100%
EL28775	Trinity	100%	HLDC51	Wiso Basin	100%	MA23236	Udall Road	100%
EL28776	Whippet	100%	HLDC52	Wiso Basin	100%	MA27163	Eagle	100%
EL28777	Bishops Creek	100%	HLDC53	Wiso Basin	100%	MA30798	Little Ben	100%
EL28913	Amstel	100%	HLDC54	Wiso Basin	100%	MCC1032	Metallic Hill	100%
EL29012	Tetley	100%	HLDC55	Warrego, No.4	100%	MCC1033	Metallic Hill	100%
EL29488	Rocky	100%	HLDC56	Warrego, No.5	100%	MCC1038	Rocky Range	100%
EL30167	Dolomite	100%	HLDC58	Wiso Line, No.6	100%	MCC1039	Rocky Range	100%
EL30168	Caroline	100%	HLDC59	Warrego, No.6	100%	MCC1077	Gecko	100%
EL30301	Grey Bluff East	100%	HLDC69	Wiso Basin	100%	MCC1078	Gecko	100%
EL30488	Colombard	100%	HLDC70	Wiso Basin	100%	MCC1079	Gecko	100%
EL9403	Jess	100%	HLDC71	Wiso Basin	100%	MCC1080	Gecko	100%
EL9958	Running Bear	100%	HLDC72	Wiso Basin	100%	MCC1081	Gecko	100%
ELA27539	Telegraph	100%	HLDC73	Wiso Basin	100%	MCC1082	Gecko	100%
ELA27902	Lynx	100%	HLDC74	Wiso Basin	100%	MCC1083	Gecko	100%
ELA30123	Mosquito Creek	100%	HLDC75	Wiso Basin	100%	MCC174	Mt Samuel	100%
ELA30505	Golden East	100%	HLDC76	Wiso Basin	100%	MCC203	Galway	100%
ELA30516	Barkly Highway	100%	HLDC77	Wiso Basin	100%	MCC211	Shamrock	100%

Mining Tenements Held at 30 June 2015

Tenement	Name	Interest	Tenement	Name	Interest	Tenement	Name	Interest
				a				4000/
MCC212	Mt Samuel	85%	ML23216	Charlot	100%	ML30911	Wolseley	100%
MCC239	West Peko	100%	ML23969	GeckoHeadframe	100%	ML30912	Ivanhoe	100%
MCC240	West Peko	100%	ML29917	Havelock	100%	ML30937	Gris	100%
MCC287	Mt Samuel	100%	ML29919	Orlando	100%	ML30938	EXP195	100%
MCC288	Mt Samuel	100%	ML30176	Queen of Sheeba	100%	ML30945	Metallic Hill	100%
MCC308	Mt Samuel	85%	ML30177	North Star	100%	ML30946	Sauvignon	100%
MCC316	The Trump	100%	ML30322	Verdot	100%	ML30947	Warrego East	100%
MCC317	The Trump	100%	ML30620	Kia Ora	100%	MLA29526	Blue Moon	100%
MCC334	Estralita Group	100%	ML30623	Pinnacles South	100%	MLA29527	Wiso	100%
MCC340	The Trump	100%	ML30636	Jacqueline the	100%	MLA29528	Wiso	100%
MCC341	The Trump	100%	ML30712	Battery Hill	100%	MLA29529	Wiso	100%
MCC344	Mt Samuel	100%	ML30713	The Pup	100%	MLA29530	Wiso	100%
MCC364	Estralita	100%	ML30714	Pedro	100%	MLA29531	Wiso	100%
MCC365	Estralita	100%	ML30715	Red Bluff North	100%	MLA29532	Wiso	100%
MCC366	Estralita	100%	ML30716	Comstock	100%	MLA30096	Malbec	100%
MCC461	Gibbet	100%	ML30742	Black Cat	100%	MLC120	Cabernet / Nav 7	100%
MCC522	Gibbet	100%	ML30743	True Blue	100%	MLC121	Cabernet/Nav 7	100%
MCC523	Gibbet	100%	ML30744	Scheurber	100%	MLC122	Cabernet/Nav 7	100%
MCC524	Gibbet	100%	ML30745	Bomber	100%	MLC123	Cabernet/Nav 7	100%
MCC55	Mondeuse	100%	ML30781	Smelter	100%	MLC127	Peko East Ext 4	100%
MCC56	Shiraz	100%	ML30782	Dark	100%	MLC129	Peko Sth- East	100%
MCC57	Mondeuse	100%	ML30783	Semillon	100%	MLC130	Golden Forty	100%
MCC66	Golden Forty	100%	ML30784	Noir	100%	MLC131	Golden Forty	100%
MCC67	Golden Forty	100%	ML30815	Blue Moon	100%	MLC132	Golden Forty	100%
MCC794	Durif	100%	ML30864	Verdelho	100%	MLC133	Golden Forty	100%
MCC795	Durif	100%	ML30865	Dong Dui	100%	MLC134	Golden Forty	100%
MCC796	Durif	100%	ML30867	Thurgau	100%	MLC135	Golden Forty	100%
MCC797	EXP 80	100%	ML30870	Rising Star	100%	MLC136	Golden Forty	100%
MCC805	Jubilee	100%	ML30871	Colombard	100%	MLC137	Golden Forty	100%
MCC806	Jubilee	100%	ML30872	The Extension	100%	MLC138	Golden Forty	100%
MCC807	Merlot	100%	ML30873	Pinot	100%	MLC139	Golden Forty	100%
MCC808	Merlot	100%	ML30874	Merlot	100%	MLC140	Golden Forty	100%
MCC809	The Extension	100%	ML30875	Grenache	100%	MLC141	Golden Forty	100%
MCC9	Eldorado	100%	ML30885	Zinfandel	100%	MLC142	Golden Forty	100%
MCC925	Brolga	100%	ML30886	EXP212	100%	MLC143	Golden Forty	100%
MCC926	Brolga	100%	ML30888	Warrego	100%	MLC144	Golden Forty	100%
MCC981	Franc	100%	ML30893	Troy	100%	MLC146	Golden Forty	100%
MCC982	Franc	100%	ML30909	Archimedes	100%	MLC147	Golden Forty	100%
ML22284	Billy Boy	100%	ML30910	Marsanne	100%	MLC148	Golden Forty	100%
	-						-	

Mining Tenements Held at 30 June 2015

MLC149 Golden Forty 100% MLC260 Mulga 2 100% MLC376 Mulga 1 100% MLC15 Eldorado 4 100% MLC261 Mulga 2 100% MLC377 Mulga 1 100% MLC158 Warrego gravel 100% MLC32 Golden Forty 100% MLC378 Mulga 1 100% MLC16 Eldorado 5 100% MLC323 Gecko 100% MLC378 Mulga 1 100% MLC160 Warrego gravel 100% MLC325 Gecko 100% MLC380 Mulga 1 100% MLC161 Warrego gravel 100% MLC326 Gecko 100% MLC381 Mulga 1 100% MLC163 Warrego gravel 100% MLC324 Tinto 100% MLC383 Mulga 1 100% MLC164 Warrego gravel 100% MLC343 Rocky Range 100% MLC385 Mulga 2 100% MLC165 Warrego gravel 100% MLC346 Rocky Range	Tenement	Name	Interest	Tenement	Name	Interest	Tenement	Name	Interest
MLC149 Golden Forty 100% MLC260 Mulga 2 100% MLC376 Mulga 1 100% MLC15 Eldorado 4 100% MLC261 Mulga 2 100% MLC377 Mulga 1 100% MLC158 Warrego gravel 100% MLC323 Golden Forty 100% MLC378 Mulga 1 100% MLC16 Eldorado 5 100% MLC323 Gecko 100% MLC388 Mernsahib East 100% MLC160 Warrego gravel 100% MLC325 Gecko 100% MLC388 Mulga 1 100% MLC161 Warrego gravel 100% MLC326 Gecko 100% MLC381 Mulga 1 100% MLC163 Warrego gravel 100% MLC327 Gecko 100% MLC383 Mulga 1 100% MLC164 Warrego gravel 100% MLC342 Tinto 100% MLC383 Mulga 2 100% MLC165 Warrego gravel 100% MLC344 Rocky Range									
MLC15 Eldorado 4 100% MLC261 Mulga 2 100% MLC377 Mulga 1 100% MLC158 Warrego gravel 100% MLC32 Golden Forty 100% MLC378 Mulga 1 100% MLC159 Warrego gravel 100% MLC323 Gecko 100% MLC379 Mulga 1 100% MLC16 Eldorado 5 100% MLC324 Gecko 100% MLC388 Mernsahib East 100% MLC161 Warrego gravel 100% MLC325 Gecko 100% MLC381 Mulga 1 100% MLC162 Warrego gravel 100% MLC327 Gecko 100% MLC381 Mulga 1 100% MLC163 Warrego gravel 100% MLC342 Tinto 100% MLC383 Mulga 2 100% MLC164 Warrego gravel 100% MLC343 Rocky Range 100% MLC384 Mulga 2 100% MLC176 Chariot 100% MLC345 Rocky Range	MLC149	Golden Forty	100%	MLC260	Mulga 2	100%	MLC376	Mulga 1	100%
MLC158 Warrego gravel 100% MLC32 Golden Forty 100% MLC378 Mulga 1 100% MLC159 Warrego gravel 100% MLC323 Gecko 100% MLC379 Mulga 1 100% MLC16 Eldorado 5 100% MLC324 Gecko 100% MLC38 Memsahib East 100% MLC160 Warrego gravel 100% MLC325 Gecko 100% MLC380 Mulga 1 100% MLC161 Warrego gravel 100% MLC326 Gecko 100% MLC381 Mulga 1 100% MLC162 Warrego gravel 100% MLC342 Tinto 100% MLC383 Mulga 1 100% MLC163 Warrego gravel 100% MLC343 Rocky Range 100% MLC384 Mulga 2 100% MLC164 Warrego gravel 100% MLC345 Rocky Range 100% MLC385 Mulga 2 100% MLC176 Chariot 100% MLC346 Rocky Range <td>MLC15</td> <td>Eldorado 4</td> <td>100%</td> <td>MLC261</td> <td>Mulga 2</td> <td>100%</td> <td>MLC377</td> <td>Mulga 1</td> <td>100%</td>	MLC15	Eldorado 4	100%	MLC261	Mulga 2	100%	MLC377	Mulga 1	100%
MLC159 Warrego gravel 100% MLC323 Gecko 100% MLC379 Mulga 1 100% MLC16 Eldorado 5 100% MLC324 Gecko 100% MLC38 Memsahib East 100% MLC160 Warrego gravel 100% MLC325 Gecko 100% MLC380 Mulga 1 100% MLC161 Warrego gravel 100% MLC326 Gecko 100% MLC381 Mulga 1 100% MLC162 Warrego gravel 100% MLC327 Gecko 100% MLC383 Mulga 1 100% MLC163 Warrego gravel 100% MLC342 Tinto 100% MLC383 Mulga 2 100% MLC164 Warrego gravel 100% MLC343 Rocky Range 100% MLC385 Mulga 2 100% MLC176 Chariot 100% MLC345 Rocky Range 100% MLC386 Mulga 2 100% MLC177 Chariot 100% MLC346 Rocky Range <t< td=""><td>MLC158</td><td>Warrego gravel</td><td>100%</td><td>MLC32</td><td>Golden Forty</td><td>100%</td><td>MLC378</td><td>Mulga 1</td><td>100%</td></t<>	MLC158	Warrego gravel	100%	MLC32	Golden Forty	100%	MLC378	Mulga 1	100%
MLC16 Eldorado 5 100% MLC324 Gecko 100% MLC38 Memsahib East 100% MLC160 Warrego gravel 100% MLC325 Gecko 100% MLC380 Mulga 1 100% MLC161 Warrego gravel 100% MLC326 Gecko 100% MLC381 Mulga 1 100% MLC162 Warrego gravel 100% MLC327 Gecko 100% MLC382 Mulga 1 100% MLC163 Warrego gravel 100% MLC342 Tinto 100% MLC383 Mulga 1 100% MLC164 Warrego gravel 100% MLC343 Rocky Range 100% MLC385 Mulga 2 100% MLC176 Chariot 100% MLC345 Rocky Range 100% MLC386 Mulga 2 100% MLC183 West Gibbet 100% MLC346 Rocky Range 100% MLC387 Mulga 2 100% MLC184 Riesling 100% MLC348 Brolga <td< td=""><td>MLC159</td><td>Warrego gravel</td><td>100%</td><td>MLC323</td><td>Gecko</td><td>100%</td><td>MLC379</td><td>Mulga 1</td><td>100%</td></td<>	MLC159	Warrego gravel	100%	MLC323	Gecko	100%	MLC379	Mulga 1	100%
MLC160 Warrego gravel 100% MLC325 Gecko 100% MLC380 Mulga 1 100% MLC161 Warrego gravel 100% MLC326 Gecko 100% MLC381 Mulga 1 100% MLC162 Warrego gravel 100% MLC327 Gecko 100% MLC382 Mulga 1 100% MLC163 Warrego gravel 100% MLC342 Tinto 100% MLC383 Mulga 1 100% MLC164 Warrego gravel 100% MLC343 Rocky Range 100% MLC384 Mulga 2 100% MLC165 Warrego gravel 100% MLC344 Rocky Range 100% MLC385 Mulga 2 100% MLC176 Chariot 100% MLC345 Rocky Range 100% MLC386 Mulga 2 100% MLC181 West Gibbet 100% MLC346 Rocky Range 100% MLC387 Mulga 2 100% MLC182 Riesling 100% MLC346 Rocky Range	MLC16	Eldorado 5	100%	MLC324	Gecko	100%	MLC38	Memsahib East	100%
MLC161 Warrego gravel 100% MLC326 Gecko 100% MLC381 Mulga 1 100% MLC162 Warrego gravel 100% MLC327 Gecko 100% MLC382 Mulga 1 100% MLC163 Warrego gravel 100% MLC342 Tinto 100% MLC383 Mulga 1 100% MLC164 Warrego gravel 100% MLC343 Rocky Range 100% MLC384 Mulga 2 100% MLC165 Warrego gravel 100% MLC343 Rocky Range 100% MLC385 Mulga 2 100% MLC176 Chariot 100% MLC346 Rocky Range 100% MLC386 Mulga 2 100% MLC177 Chariot 100% MLC346 Rocky Range 100% MLC4 Peko Extended 100% MLC182 Riesling 100% MLC348 Brolga 100% MLC406 Comet 100% MLC183 Riesling 100% MLC350 Brolga	MLC160	Warrego gravel	100%	MLC325	Gecko	100%	MLC380	Mulga 1	100%
MLC162 Warrego gravel 100% MLC327 Gecko 100% MLC382 Mulga 1 100% MLC163 Warrego gravel 100% MLC342 Tinto 100% MLC383 Mulga 1 100% MLC164 Warrego gravel 100% MLC343 Rocky Range 100% MLC384 Mulga 2 100% MLC165 Warrego gravel 100% MLC344 Rocky Range 100% MLC385 Mulga 2 100% MLC176 Chariot 100% MLC345 Rocky Range 100% MLC386 Mulga 2 100% MLC177 Chariot 100% MLC345 Rocky Range 100% MLC387 Mulga 2 100% MLC182 Riesling 100% MLC347 Tinto 100% MLC406 Cornet 100% MLC183 Riesling 100% MLC353 Golden Forty 100% MLC407 Comet 100% MLC204 Argo West 100% MLC350 Brolga 100%	MLC161	Warrego gravel	100%	MLC326	Gecko	100%	MLC381	Mulga 1	100%
MLC163 Warrego gravel 100% MLC342 Tinto 100% MLC383 Mulga 1 100% MLC164 Warrego gravel 100% MLC343 Rocky Range 100% MLC384 Mulga 2 100% MLC165 Warrego gravel 100% MLC344 Rocky Range 100% MLC385 Mulga 2 100% MLC176 Chariot 100% MLC345 Rocky Range 100% MLC385 Mulga 2 100% MLC177 Chariot 100% MLC346 Rocky Range 100% MLC387 Mulga 2 100% MLC18 West Gibbet 100% MLC347 Tinto 100% MLC44 Peko Extended 100% MLC182 Riesling 100% MLC349 Brolga 100% MLC406 Comet 100% MLC204 Argo West 100% MLC350 Brolga 100% MLC409 Comet 100% MLC205 Argo West 100% MLC351 Brolga 100% <td>MLC162</td> <td>Warrego gravel</td> <td>100%</td> <td>MLC327</td> <td>Gecko</td> <td>100%</td> <td>MLC382</td> <td>Mulga 1</td> <td>100%</td>	MLC162	Warrego gravel	100%	MLC327	Gecko	100%	MLC382	Mulga 1	100%
MLC164 Warrego gravel 100% MLC343 Rocky Range 100% MLC384 Mulga 2 100% MLC165 Warrego gravel 100% MLC344 Rocky Range 100% MLC385 Mulga 2 100% MLC176 Chariot 100% MLC345 Rocky Range 100% MLC386 Mulga 2 100% MLC177 Chariot 100% MLC346 Rocky Range 100% MLC387 Mulga 2 100% MLC182 Riesling 100% MLC348 Brolga 100% MLC406 Comet 100% MLC183 Riesling 100% MLC355 Golden Forty 100% MLC407 Comet 100% MLC204 Argo West 100% MLC350 Brolga 100% MLC408 Comet 100% MLC205 Argo West 100% MLC350 Brolga 100% MLC408 Comet 100% MLC206 Argo West 100% MLC351 Brolga 100%	MLC163	Warrego gravel	100%	MLC342	Tinto	100%	MLC383	Mulga 1	100%
MLC165 Warrego gravel 100% MLC344 Rocky Range 100% MLC385 Mulga 2 100% MLC176 Chariot 100% MLC345 Rocky Range 100% MLC386 Mulga 2 100% MLC177 Chariot 100% MLC346 Rocky Range 100% MLC387 Mulga 2 100% MLC18 West Gibbet 100% MLC347 Tinto 100% MLC4 Peko Extended 100% MLC182 Riesling 100% MLC349 Brolga 100% MLC406 Comet 100% MLC184 Riesling 100% MLC355 Golden Forty 100% MLC407 Comet 100% MLC204 Argo West 100% MLC350 Brolga 100% MLC409 Comet 100% MLC205 Argo West 100% MLC351 Brolga 100% MLC423 Mulga 1 100% MLC206 Argo West 100% MLC352 Golden Forty 100%	MLC164	Warrego gravel	100%	MLC343	Rocky Range	100%	MLC384	Mulga 2	100%
MLC176 Chariot 100% MLC345 Rocky Range 100% MLC386 Mulga 2 100% MLC177 Chariot 100% MLC346 Rocky Range 100% MLC387 Mulga 2 100% MLC18 West Gibbet 100% MLC347 Tinto 100% MLC4 Peko Extended 100% MLC182 Riesling 100% MLC348 Brolga 100% MLC406 Comet 100% MLC183 Riesling 100% MLC349 Brolga 100% MLC407 Comet 100% MLC184 Riesling 100% MLC350 Golden Forty 100% MLC408 Comet 100% MLC204 Argo West 100% MLC351 Brolga 100% MLC409 Comet 100% MLC205 Argo West 100% MLC352 Golden Forty 100% MLC432 Mulga 1 100% MLC206 Argo West 100% MLC353 Golden Forty 100% <td< td=""><td>MLC165</td><td>Warrego gravel</td><td>100%</td><td>MLC344</td><td>Rocky Range</td><td>100%</td><td>MLC385</td><td>Mulga 2</td><td>100%</td></td<>	MLC165	Warrego gravel	100%	MLC344	Rocky Range	100%	MLC385	Mulga 2	100%
MLC177 Chariot 100% MLC346 Rocky Range 100% MLC387 Mulga 2 100% MLC18 West Gibbet 100% MLC347 Tinto 100% MLC4 Peko Extended 100% MLC182 Riesling 100% MLC348 Brolga 100% MLC406 Comet 100% MLC183 Riesling 100% MLC349 Brolga 100% MLC407 Comet 100% MLC184 Riesling 100% MLC35 Golden Forty 100% MLC407 Comet 100% MLC204 Argo West 100% MLC350 Brolga 100% MLC409 Comet 100% MLC205 Argo West 100% MLC351 Brolga 100% MLC432 Mulga 1 100% MLC206 Argo West 100% MLC352 Golden Forty 100% MLC48 Tinto 100% MLC207 Argo West 100% MLC353 Golden Forty 100% MLC498	MLC176	Chariot	100%	MLC345	Rocky Range	100%	MLC386	Mulga 2	100%
MLC18West Gibbet100%MLC347Tinto100%MLC4Peko Extended100%MLC182Riesling100%MLC348Brolga100%MLC406Comet100%MLC183Riesling100%MLC349Brolga100%MLC407Comet100%MLC184Riesling100%MLC35Golden Forty100%MLC408Comet100%MLC204Argo West100%MLC350Brolga100%MLC409Comet100%MLC205Argo West100%MLC351Brolga100%MLC432Mulga 1100%MLC206Argo West100%MLC352Golden Forty100%MLC48Tinto100%MLC207Argo West100%MLC353Golden Forty100%MLC49Mt Samual100%MLC208Argo West100%MLC354Golden Forty100%MLC498Eldorado100%MLC209Argo West100%MLC355Golden Forty100%MLC499Eldorado100%MLC209Argo West100%MLC355Golden Forty100%MLC499Eldorado100%MLC209Argo West100%MLC355Golden Forty100%MLC499Eldorado100%MLC21Gecko100%MLC36Golden Forty100%MLC499Eldorado100%	MLC177	Chariot	100%	MLC346	Rocky Range	100%	MLC387	Mulga 2	100%
MLC182Riesling100%MLC348Brolga100%MLC406Comet100%MLC183Riesling100%MLC349Brolga100%MLC407Comet100%MLC184Riesling100%MLC35Golden Forty100%MLC408Comet100%MLC204Argo West100%MLC350Brolga100%MLC409Comet100%MLC205Argo West100%MLC351Brolga100%MLC422Mulga 1100%MLC206Argo West100%MLC352Golden Forty100%MLC48Tinto100%MLC207Argo West100%MLC353Golden Forty100%MLC49Mt Samual100%MLC208Argo West100%MLC354Golden Forty100%MLC498Eldorado100%MLC209Argo West100%MLC355Golden Forty100%MLC499Eldorado100%MLC209Argo West100%MLC355Golden Forty100%MLC499Eldorado100%MLC21Gecko100%MLC36Golden Forty100%MLC499Eldorado100%	MLC18	West Gibbet	100%	MLC347	Tinto	100%	MLC4	Peko Extended	100%
MLC183Riesling100%MLC349Brolga100%MLC407Comet100%MLC184Riesling100%MLC35Golden Forty100%MLC408Comet100%MLC204Argo West100%MLC350Brolga100%MLC409Comet100%MLC205Argo West100%MLC351Brolga100%MLC422Mulga 1100%MLC206Argo West100%MLC352Golden Forty100%MLC48Tinto100%MLC207Argo West100%MLC353Golden Forty100%MLC49Mt Samual100%MLC208Argo West100%MLC354Golden Forty100%MLC498Eldorado100%MLC209Argo West100%MLC355Golden Forty100%MLC499Eldorado100%MLC21Gecko100%MLC36Golden Forty100%MLC499Eldorado100%	MLC182	Riesling	100%	MLC348	Brolga	100%	MLC406	Comet	100%
MLC184Riesling100%MLC35Golden Forty100%MLC408Comet100%MLC204Argo West100%MLC350Brolga100%MLC409Comet100%MLC205Argo West100%MLC351Brolga100%MLC432Mulga 1100%MLC206Argo West100%MLC352Golden Forty100%MLC48Tinto100%MLC207Argo West100%MLC353Golden Forty100%MLC49Mt Samual100%MLC208Argo West100%MLC354Golden Forty100%MLC498Eldorado100%MLC209Argo West100%MLC355Golden Forty100%MLC499Eldorado100%MLC21Gecko100%MLC36Golden Forty100%MLC499Eldorado100%	MLC183	Riesling	100%	MLC349	Brolga	100%	MLC407	Comet	100%
MLC204Argo West100%MLC350Brolga100%MLC409Comet100%MLC205Argo West100%MLC351Brolga100%MLC432Mulga 1100%MLC206Argo West100%MLC352Golden Forty100%MLC48Tinto100%MLC207Argo West100%MLC353Golden Forty100%MLC49Mt Samual100%MLC208Argo West100%MLC354Golden Forty100%MLC498Eldorado100%MLC209Argo West100%MLC355Golden Forty100%MLC499Eldorado100%MLC21Gecko100%MLC36Golden Forty100%MLC5Peko Extended100%	MLC184	Riesling	100%	MLC35	Golden Forty	100%	MLC408	Comet	100%
MLC205Argo West100%MLC351Brolga100%MLC432Mulga 1100%MLC206Argo West100%MLC352Golden Forty100%MLC48Tinto100%MLC207Argo West100%MLC353Golden Forty100%MLC49Mt Samual100%MLC208Argo West100%MLC354Golden Forty100%MLC498Eldorado100%MLC209Argo West100%MLC355Golden Forty100%MLC499Eldorado100%MLC21Gecko100%MLC36Golden Forty100%MLC5Peko Extended100%	MLC204	Argo West	100%	MLC350	Brolga	100%	MLC409	Comet	100%
MLC206Argo West100%MLC352Golden Forty100%MLC48Tinto100%MLC207Argo West100%MLC353Golden Forty100%MLC49Mt Samual100%MLC208Argo West100%MLC354Golden Forty100%MLC498Eldorado100%MLC209Argo West100%MLC355Golden Forty100%MLC499Eldorado100%MLC21Gecko100%MLC36Golden Forty100%MLC5Peko Extended100%	MLC205	Argo West	100%	MLC351	Brolga	100%	MLC432	Mulga 1	100%
MLC207Argo West100%MLC353Golden Forty100%MLC49Mt Samual100%MLC208Argo West100%MLC354Golden Forty100%MLC498Eldorado100%MLC209Argo West100%MLC355Golden Forty100%MLC499Eldorado100%MLC21Gecko100%MLC36Golden Forty100%MLC5Peko Extended100%	MLC206	Argo West	100%	MLC352	Golden Forty	100%	MLC48	Tinto	100%
MLC208Argo West100%MLC354Golden Forty100%MLC498Eldorado100%MLC209Argo West100%MLC355Golden Forty100%MLC499Eldorado100%MLC21Gecko100%MLC36Golden Forty100%MLC5Peko Extended100%	MLC207	Argo West	100%	MLC353	Golden Forty	100%	MLC49	Mt Samual	100%
MLC209 Argo West 100% MLC355 Golden Forty 100% MLC499 Eldorado 100% MLC21 Gecko 100% MLC36 Golden Forty 100% MLC5 Peko Extended 100%	MLC208	Argo West	100%	MLC354	Golden Forty	100%	MLC498	Eldorado	100%
MLC21 Gecko 100% MLC36 Golden Forty 100% MLC5 Peko Extended 100%	MLC209	Argo West	100%	MLC355	Golden Forty	100%	MLC499	Eldorado	100%
	MLC21	Gecko	100%	MLC36	Golden Forty	100%	MLC5	Peko Extended	100%
MLC217 Perserverance 30% MLC362 Lone Star 100% MLC50 Eldorado Anom 100%	MLC217	Perserverance	30%	MLC362	Lone Star	100%	MLC50	Eldorado Anom	100%
MLC218 Perserverance 30% MLC363 Lone Star 100% MLC500 Eldorado 100%	MLC218	Perserverance	30%	MLC363	Lone Star	100%	MLC500	Eldorado	100%
MLC219 Perserverance 30% MLC364 Lone Star 100% MLC501 Eldorado 100%	MLC219	Perserverance	30%	MLC364	Lone Star	100%	MLC501	Eldorado	100%
MLC220 Perserverance 30% MLC365 Lone Star 100% MLC502 Eldorado 100%	MLC220	Perserverance	30%	MLC365	Lone Star	100%	MLC502	Eldorado	100%
MLC221 Perserverance 30% MLC366 Lone Star 100% MLC503 Eldorado 100%	MLC221	Perserverance	30%	MLC366	Lone Star	100%	MLC503	Eldorado	100%
MLC222 Perserverance 30% MLC367 Lone Star 100% MLC504 Eldorado 100%	MLC222	Perserverance	30%	MLC367	Lone Star	100%	MLC504	Eldorado	100%
MLC223 Perserverance 30% MLC368 Lone Star 100% MLC505 Eldorado 100%	MLC223	Perserverance	30%	MLC368	Lone Star	100%	MLC505	Eldorado	100%
MLC224 Perserverance 30% MLC369 Lone Star 100% MLC506 Marion Ross 100%	MLC224	Perserverance	30%	MLC369	Lone Star	100%	MLC506	Marion Ross	100%
MLC253 Mulga 1 100% MLC37 Golden Forty 100% MLC51 Eldorado Anom 100%	MLC253	Mulga 1	100%	MLC37	Golden Forty	100%	MLC51	Eldorado Anom	100%
MLC254 Mulga 1 100% MLC370 Lone Star 100% MLC518 Ellen, Eldorado 100%	MLC254	Mulga 1	100%	MLC370	Lone Star	100%	MLC518	Ellen, Eldorado	100%
MLC255 Mulga 1 100% MLC371 Lone Star 100% MLC52 Muscadel 100%	MLC255	Mulga 1	100%	MLC371	Lone Star	100%	MLC52	Muscadel	100%
MLC256 Mulga 2 100% MLC372 Lone Star 100% MLC520 Great Northern 100%	MLC256	Mulga 2	100%	MLC372	Lone Star	100%	MLC520	Great Northern	100%
MLC257 Mulga 2 100% MLC373 Lone Star 100% MLC522 Aga Khan 100%	MLC257	Mulga 2	100%	MLC373	Lone Star	100%	MLC522	Aga Khan	100%
MLC258 Mulga 2 100% MLC374 Lone Star 100% MLC523 Eldorado 100%	MLC258	Mulga 2	100%	MLC374	Lone Star	100%	MLC523	Eldorado	100%
MLC259 Mulga 2 100% MLC375 Lone Star 100% MLC524 Susan 100%	MLC259	Mulga 2	100%	MLC375	Lone Star	100%	MLC524	Susan	100%
		-							

Mining Tenements Held at 30 June 2015

Tenement	Name	Interest	Tenement	Name	Interest	Tenement	Name	Interest
MLC527	Mt Samual	100%	MLC607	Lone Star	100%	MLC96	Osprey	100%
MLC528	Dingo Eldorado	100%	MLC608	Lone Star	100%	MLC97	Osprey	100%
MLC529	Cats Whiskers	100%	MLC609	Lone Star	100%			
MLC53	Golden Forty	100%	MLC610	Lone Star	100%			
MLC530	Lone Star	100%	MLC611	Lone Star	100%			
MLC535	Eldorado No 5	100%	MLC612	Lone Star	100%			
MLC54	Golden Forty	100%	MLC613	Lone Star	100%			
MLC546	The Mount	100%	MLC614	Lone Star	100%			
MLC55	Golden Forty	100%	MLC615	Lone Star	100%			
MLC554	White Devil	100%	MLC616	Lone Star	100%			
MLC557	White Devil	100%	MLC617	Mt Samuel	50%			
MLC558	New Hope	100%	MLC619	True Blue	85%			
MLC559	White Devil	100%	MLC626	Caroline	100%			
MLC56	Golden Forty	100%	MLC644	Enterprise	100%			
MLC560	White Devil	100%	MLC645	Estralita	100%			
MLC57	Perserverence	30%	MLC654	TC8 Lease	100%			
MLC576	Golden Forty	100%	MLC66	Traminer	100%			
MLC577	Golden Forty	100%	MLC67	Traminer	100%			
MLC581	Eldorado ABC	100%	MLC675	Black Angel	100%			
MLC582	Eldorado ABC	100%	MLC676	Black Angel	100%			
MLC583	Eldorado ABC	100%	MLC683	Eldorado	100%			
MLC584	Golden Forty	100%	MLC69	Gecko	100%			
MLC585	Golden Forty	100%	MLC692	Warrego Mine	100%			
MLC586	Golden Forty	100%	MLC70	Gecko	100%			
MLC591	TC8 Lease	100%	MLC700	White Devil	100%			
MLC592	TC8 Lease	100%	MLC702		100%			
MLC593	TC8 Lease	100%	MLC705	Apollo 1	100%			
MLC594	TC8 Lease	100%	MLC78	Gecko	100%			
MLC595	TC8 Lease	100%	MLC85	Gecko	100%			
MLC596	TC8 Lease	100%	MLC86	Gecko	100%			
MLC597	TC8 Lease	100%	MLC87	Gecko	100%			
MLC598	Golden Forty	100%	MLC88	Gecko	100%			
MLC599	Mt Samuel	85%	MLC89	Gecko	100%			
MLC601	TC8 Lease	100%	MLC90	Gecko	100%			
MLC602	TC8 Lease	100%	MLC91	Carraman/Klond	100%			
MLC603	TC8 Lease	100%	MLC92	Carraman/Klond	100%			
MLC604	TC8 Lease	100%	MLC93	Carraman/Klond	100%			
MLC605	TC8 Lease	100%	MLC94	Carraman/Klond	100%			
MLC606	Lone Star	100%	MLC95	Carraman/Klond	100%			