ASX ANNOUNCEMENT **16 NOVEMBER 2015** ## NEW HIGH-GRADE COPPER HIT CONFIRMED AT MALLEE BULL - MBRCDD050 returns 62m @ 3.15% Cu, 42 g/t Ag, 0.28 g/t Au from 465m including a high grade zone of 34m @ 4.6% Cu, 63 g/t Ag, 0.44 g/t Au from 475m - Mineralisation returned from northern edge of current mineral resource boundary - Follow-up wedge diamond drillhole MBRCDD050W1 intersects ~13m of pyritepyrrhotite-chalcopyrite massive sulphide from ~406m - Drilling continuing with DHEM planned Peel Mining Limited (ASX: PEX) is pleased to advise that assay results from extensional drilling at its 50%-owned flagship Mallee Bull project near Cobar in Western NSW, have confirmed a significant new copper mineralised intercept on the northern edge of the current mineral resource model. Drilling is currently continuing at Mallee Bull as part of investigations to test for new mineralisation. Four drillholes have now been completed in this most recent round of drilling, whilst a fifth drillhole is continuing (MBRCDD049 to MBRCDD051, MBRCDD050W1 and MBDD026W1). These drillholes have all been designed to test along strike to the north from previously identified mineralisation. Assay results for MBRCDD050 have now been returned whilst results for all other drillholes remain pending. MBRCDD050 was designed to test for mineralisation at between 400-500m below surface and about 80m further north than previous drilling. MBRCDD050 returned 62m (~40m true width) @ 3.15% Cu, 42 g/t Ag, 0.28 g/t Au from 465m including a high grade zone of 34m (~22m true width) @ 4.6% Cu, 63 g/t Ag, 0.44 g/t Au from 475m. The mineralisation occurrs as a broad interval of quartz-sulphide (chalcopyrite-pyrrhotite) stringer/breccia style within structurally deformed turbidite sediments. The true widths of these intervals are significantly wider than the 3m "footwall domain" interval previously modelled for this area, and is likely extensional. Follow-up wedge diamond drillhole MBRCDD050W1 is now complete after targeting ~80m down dip from MBRCDD050. MBRCDD050W1 intersected ~13m of pyrite-pyrrhotite-chalcopyrite massive sulphide mineralisation from ~406m downhole. The true width of this mineralisation is interpreted to be ~9m. This mineralisation correlates with the "hanging-wall domain" present at Mallee Bull and occurs about 50m further north than the current assumed modelled boundary position for this type of mineralisation, and is assumed extensional. No significant stringer mineralisation was intercepted. Diamond drillhole MBDD026W1 (currently underway) is designed to test for mineralisation at ~500m below surface and about 40m further north of drillhole MBRCDD050. Peel is encouraged by the mineralised intervals in MBRCDD050 and MBRCDD050W1 which indicates greater strike continuity of copper mineralisation than previously assumed. DHEM is now planned for several recently completed drillholes to guide further drillhole planning. For further information, please contact Rob Tyson on +61 420 234 020. Mallee Bull Drill Collars | Hole ID | Northing | Easting | Azi (grid) | Dip | Final Depth (m) | |-------------|----------|---------|------------|-----|-----------------| | MBRCDD049 | 6413520 | 415135 | 86 | -68 | 447.1 | | MBRCDD050 | 6413480 | 415095 | 71 | -73 | 600.8 | | MBRC050X | 6413480 | 415095 | 86 | -68 | 15 (abandoned) | | MBRCDD050W1 | 6413480 | 415095 | 71 | -73 | 651.5 | | MBRCDD051 | 6413480 | 415180 | 75 | -75 | 513.4 | | MBDD026W1 | 6413520 | 415185 | 79 | -80 | Underway | ## Mallee Bull MBRCDD050 Significant Assay Results (1m intervals) | Mallee Bull MBR | (1111 Interva | 15) | | | | |-----------------|---------------|--------|----------|----------|--------| | Hole ID | From (m) | To (m) | Au (g/t) | Ag (g/t) | Cu (%) | | MBRCDD050 | 465 | 466 | 0.04 | 6 | 0.51 | | MBRCDD050 | 466 | 467 | 0.02 | 2 | 0.21 | | MBRCDD050 | 467 | 468 | 0.02 | 5 | 0.43 | | MBRCDD050 | 468 | 469 | 0.04 | 9 | 0.91 | | MBRCDD050 | 469 | 470 | 0.08 | 14 | 1.69 | | MBRCDD050 | 470 | 471 | 0.02 | 3 | 0.09 | | MBRCDD050 | 471 | 472 | 0.01 | 1 | 0.10 | | MBRCDD050 | 472 | 473 | 0.07 | 39 | 6.07 | | MBRCDD050 | 473 | 474 | 0.01 | 2 | 0.33 | | MBRCDD050 | 474 | 475 | 0.1 | 4 | 0.29 | | MBRCDD050 | 475 | 476 | 1.16 | 142 | 10.75 | | MBRCDD050 | 476 | 477 | 0.19 | 74 | 6.45 | | MBRCDD050 | 477 | 478 | 0.61 | 110 | 8.39 | | MBRCDD050 | 478 | 479 | 0.23 | 26 | 3.55 | | MBRCDD050 | 479 | 480 | 0.85 | 28 | 3.57 | | MBRCDD050 | 480 | 481 | 0.1 | 16 | 2.36 | | MBRCDD050 | 481 | 482 | 0.27 | 18 | 2.96 | | MBRCDD050 | 482 | 483 | 0.41 | 45 | 7.82 | | MBRCDD050 | 483 | 484 | 0.34 | 18 | 2.85 | | MBRCDD050 | 484 | 485 | 1.01 | 115 | 10.60 | | MBRCDD050 | 485 | 486 | 0.47 | 81 | 14.55 | | MBRCDD050 | 486 | 487 | 0.48 | 71 | 10.45 | | MBRCDD050 | 487 | 488 | 0.54 | 62 | 6.72 | | MBRCDD050 | 488 | 489 | 0.24 | 22 | 4.04 | | MBRCDD050 | 489 | 490 | 0.11 | 12 | 1.70 | | MBRCDD050 | 490 | 491 | 0.02 | 3 | 0.32 | | MBRCDD050 | 491 | 492 | 0.06 | 4 | 0.76 | | MBRCDD050 | 492 | 493 | 0.02 | 3 | 0.44 | | MBRCDD050 | 493 | 494 | 0.01 | 1 | 0.13 | | MBRCDD050 | 494 | 495 | 0.18 | 8 | 1.52 | | MBRCDD050 | 495 | 496 | 0.07 | 5 | 1.00 | | MBRCDD050 | 496 | 497 | 1.98 | 372 | 13.70 | | MBRCDD050 | 497 | 498 | 1.17 | 225 | 5.35 | | MBRCDD050 | 498 | 499 | 0.62 | 113 | 3.14 | | Hole ID | From (m) | To (m) | Au (g/t) | Ag (g/t) | Cu (%) | |-----------|----------|--------|----------|----------|--------| | MBRCDD050 | 499 | 500 | 0.17 | 4 | 0.87 | | MBRCDD050 | 500 | 501 | 1.19 | 191 | 6.04 | | MBRCDD050 | 501 | 502 | 0.57 | 95 | 5.92 | | MBRCDD050 | 502 | 503 | 0.18 | 17 | 2.06 | | MBRCDD050 | 503 | 504 | 0.12 | 22 | 1.73 | | MBRCDD050 | 504 | 505 | 0.25 | 46 | 1.42 | | MBRCDD050 | 505 | 506 | 0.81 | 162 | 3.65 | | MBRCDD050 | 506 | 507 | 0.19 | 23 | 2.91 | | MBRCDD050 | 507 | 508 | 0.36 | 15 | 4.02 | | MBRCDD050 | 508 | 509 | 0.11 | 8 | 4.70 | | MBRCDD050 | 509 | 510 | 0.12 | 5 | 2.48 | | MBRCDD050 | 510 | 511 | 0.08 | 8 | 2.12 | | MBRCDD050 | 511 | 512 | 0.05 | 3 | 1.12 | | MBRCDD050 | 512 | 513 | 0.11 | 33 | 1.12 | | MBRCDD050 | 513 | 514 | 0.11 | 48 | 2.36 | | MBRCDD050 | 514 | 515 | 0.12 | 22 | 1.80 | | MBRCDD050 | 515 | 516 | 0.005 | 4 | 0.21 | | MBRCDD050 | 516 | 517 | 0.01 | 3 | 0.29 | | MBRCDD050 | 517 | 518 | 0.05 | 4 | 0.60 | | MBRCDD050 | 518 | 519 | 0.02 | 10 | 0.78 | | MBRCDD050 | 519 | 520 | 0.03 | 15 | 1.34 | | MBRCDD050 | 520 | 521 | 0.08 | 23 | 2.45 | | MBRCDD050 | 521 | 522 | 0.18 | 71 | 5.56 | | MBRCDD050 | 522 | 523 | 0.08 | 33 | 2.12 | | MBRCDD050 | 523 | 524 | 0.04 | 2 | 0.31 | | MBRCDD050 | 524 | 525 | 0.21 | 5 | 1.30 | | MBRCDD050 | 525 | 526 | 0.19 | 5 | 0.77 | | MBRCDD050 | 526 | 527 | 0.2 | 46 | 1.24 | ## **Competent Persons Statements** The information in this report that relates to Exploration Results is based on information compiled by Rob Tyson who is a fulltime employee of the company. Mr Tyson is a member of the Australasian Institute of Mining and Metallurgy. Mr Tyson has sufficient experience of relevance to the styles of mineralisation and the types of deposits under consideration, and to the activities undertaken, to qualify as Competent Persons as defined in the 2012 Edition of the Joint Ore Reserves Committee (JORC) Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves. Mr Tyson consents to the inclusion in this report of the matters based on information in the form and context in which it appears. Exploration results are based on standard industry practices, including sampling, assay methods, and appropriate quality assurance quality control (QAQC) measures. Figure 2 - Mallee Bull Section 6413480N Figure 3 - Mallee Bull Long Section (looking east) Table 1 - Section 1: Sampling Techniques and Data for Mallee Bull/Cobar Superbasin Project | Criteria | JORC Code explanation | Commentary | |------------------------|---|--| | Sampling
techniques | Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. | Diamond, reverse circulation (RC) and Rotary Air Blast (RAB) drilling were used to obtain samples for geological logging and assaying. Diamond core was cut and sampled at 1m intervals. RC and RAB drill holes were sampled at 1m intervals and split using a cone splitter attached to the cyclone to generate a split of 2-4kg (generally) to ensure sample representivity. Multi-element readings were taken of the RC and RAB drill chips using an Olympus Delta Innov-X portable XRF tool. The portable XRF was calibrated against standards after every 30 readings. | | Drilling
techniques | Drill type (eg core, reverse circulation, open-hole
hammer, rotary air blast, auger, Bangka, sonic, etc)
and details (eg core diameter, triple or standard
tube, depth of diamond tails, face-sampling bit or
other type, whether core is oriented and if so, by
what method, etc). | Drilling to date has been a combination of
diamond, reverse circulation and rotary air
blast. Reverse circulation drilling utilised a
5 1/2 inch diameter hammer. A blade bit
was predominantly used for RAB drilling.
NQ and HQ coring was used for diamond
drilling. | | Drill sample recovery | Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. | Core recoveries are recorded by the drillers in the field at the time of drilling and checked by a geologist or technician. RC and RAB samples are not weighed on a regular basis due to the exploration nature of drilling but no significant sample recovery issues have been encountered in drilling programs to date. Diamond core is reconstructed into continuous runs on an angle iron cradle for orientation marking and depths are checked against the depths recorded on core blocks. Rod counts are routinely undertaken by drillers. When poor sample recovery is encountered during drilling, the geologist and driller have endeavoured to rectify the problem to ensure maximum sample recovery. Sample recoveries to date have generally been high. Insufficient data is available at present to determine if a relationship | | Criteria | JORC Code explanation | Commentary | |--|---|---| | | | exists between recovery and grade. This will be assessed once a statistically valid amount of data is available to make a determination. | | Logging | Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. | All core and drill chip samples are geologically logged. Core samples are orientated and logged for geotechnical information. Drill chip samples are logged at 1m intervals from surface to the bottom of each individual hole to a level that will support appropriate future Mineral Resource studies. Logging of diamond core, RC and RAB samples records lithology, mineralogy, mineralisation, structure (DDH only), weathering, colour and other features of the samples. Core is photographed as both wet and dry. All diamond, RC and RAB drill holes in the current program were geologically logged in full. | | Sub-sampling techniques and sample preparation | If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. | Drill core was cut with a core saw and half core taken. The RC and RAB drilling rigs were equipped with an in-built cyclone and splitting system, which provided one bulk sample of approximately 20kg and a sub-sample of 2-4kg per metre drilled. All samples were split using the system described above to maximise and maintain consistent representivity. The majority of samples were dry. Bulk samples were placed in green plastic bags, with the sub-samples collected placed in calico sample bags. Field duplicates were collected by resplitting the bulk samples from large plastic bags. These duplicates were designed for lab checks. Early stage exploration sees composite sampling completed for Au only analysis, with samples hand speared using a half round piece of pipe with samples collected as 6m composites. Resampling is undertaken using split samples which are stored with the bulk samples at the time of drilling. Where pXRF sampling indicates significant base metals mineralisation, 1m split samples for those intervals are collected and submitted for multi-element analysis. A sample size of 2-4kg was collected and considered appropriate and representative for the grain size and style | | Criteria | JORC Code explanation | Commentary | |--|--|---| | | | of mineralisation. | | Quality of assay data and laboratory tests | The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. | ALS Services was used for Au analysis work carried out on 5m or 6m composite samples and 1m split samples. The laboratory techniques below are for all samples submitted to ALS and are considered appropriate for the style of mineralisation defined at Mundoe, Sandy Creek, Wirlong and Red Shaft: PUL-23 (Sample preparation code) ME-MS61 or ME-ICP41 multi-element Or an appropriate Ore Grade base metal AA finish Au-AA26 Ore Grade Au 50g FA AA Finish Assaying of soil samples in the field was by portable XRF instrument Olympus Delta Innov-X Analyser. Reading time was 20 seconds per filter with a total 3 filters per sample. The QA/QC data includes standards, duplicates and laboratory checks. Duplicates for drill core are collected by the lab every 30 samples after the core sample is pulverised. Duplicates for percussion drilling are collected directly from the drill rig or the metre sample bag using a half round section of pipe. In-house QA/QC tests are conducted by the lab on each batch of samples with standards supplied by the same companies that | | Verification of sampling and assaying | The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. | All geological logging and sampling information is completed in spreadsheets, which are then transferred to a database for validation and compilation at the Peel head office. Electronic copies of all information are backed up periodically. No adjustments of assay data are considered necessary. | | Location of
data points | Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. | A Garmin hand-held GPS is used to define the location of the drillholes and /or samples. Standard practice is for the GPS to be left at the site of the collar for a period of 5 minutes to obtain a steady reading. Collars are picked up at a later date by DGPS. All collars at Mallee Bull have been picked up by DGPS. Down-hole surveys are conducted by the drill contractors using either a Reflex gyroscopic tool with readings every 10m after drill hole completion or a Reflex | | Criteria | JORC Code explanation | Commentary | |---|--|---| | | | electronic multi-shot camera will be used with readings for dip and magnetic azimuth taken every 30m down-hole. QA/QC in the field involves calibration using a test stand. The instrument is positioned with a stainless steel drill rod so as not to affect the magnetic azimuth. • Grid system used is MGA 94 (Zone 55). All down-hole magnetic surveys were converted to MGA94 grid. | | Data spacing
and
distribution | Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. | Data/drill hole spacing is variable and appropriate to the geology and historical drilling. 5m or 6m sample compositing has been applied to RC drilling and RAB drilling for gold assay. | | Orientation of
data in
relation to
geological
structure | Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | Most drillholes are planned to intersect the interpreted mineralised structures/lodes as near to a perpendicular angle as possible (subject to access to the preferred collar position). | | Sample
security | The measures taken to ensure sample security. | The chain of custody is managed by the project geologist who places calico sample bags in polyweave sacks. Up to 5 calico sample bags are placed in each sack. Each sack is clearly labelled with: Peel Mining Ltd Address of Laboratory Sample range Detailed records are kept of all samples that are dispatched, including details of chain of custody. | | Audits or reviews | The results of any audits or reviews of sampling techniques and data. | Data is validated when loading into the
database. No formal external audit has
been conducted. | Table 1 - Section 2 - Reporting of Exploration Results for Mallee Bull/Cobar Superbasin Project | Criteria | JORC Code explanation | Commentary | |--|--|---| | Mineral
tenement and
land tenure
status | Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. | The Mallee Bull prospect is wholly located within Exploration Licence EL7461 "Gilgunnia". The tenement is subject to a 50:50 Joint Venture with CBH Resources Ltd, a wholly owned subsidiary of Toho Zinc Co Ltd. The Wirlong prospect is wholly located within Exploration Licence EL8307 "Sandy Creek", part of the Cobar Supoerbasin Project. The Cobar Superbasin Project is subject to a farm-in agreement with | | Criteria | JORC Code explanation | Commentary | |---|---|--| | | | JOGMEC whereby JOGMEC can earn up to 50%. • The tenements are in good standing and no known impediments exist. | | Exploration
done by other
parties | Acknowledgment and appraisal of exploration by other parties. | Work was completed in the area by several former tenement holders including Triako Resources between 2003 and 2009; it included diamond drilling, IP surveys, geological mapping and reconnaissance geochemical sampling around the historic Four Mile Goldfield area. Prior to Triako Resources, Pasminco Exploration explored the Cobar Basin area for a "Cobar-type" or "Elura-type" zinc-lead-silver or coppergold-lead-zinc deposit. | | Geology | Deposit type, geological setting and style of mineralisation. | • The prospect area lies within the Cobar-Mt Hope Siluro-Devonian sedimentary and volcanic units. The northern Cobar region consists of predominantly sedimentary units with tuffaceous member, whilst the southern Mt Hope region consists of predominantly felsic volcanic rocks; the Mallee Bull prospect seems to be located in an area of overlap between these two regions. Mineralization at the Mallee Bull discovery features the Cobar-style attributes of short strike lengths (<200m), narrow widths (5-20m) and vertical continuity, and occurs as a shoot-like structure dipping moderately to the west. | | Drill hole
Information | A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. | All relevant information material to the understanding of exploration results has been included within the body of the announcement or as appendices. No information has been excluded. | | Data
aggregation
methods | In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical | No length weighting or top-cuts have been applied. No metal equivalent values are used for reporting exploration results. | | Criteria | JORC Code explanation | Commentary | |---|---|--| | | examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. | | | Relationship
between
mineralisation
widths and
intercept
lengths | These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). | True widths are generally estimated to be about 90-100% of the downhole width unless otherwise indicated. | | Diagrams | Appropriate maps and sections (with scales) and
tabulations of intercepts should be included for any
significant discovery being reported These should
include, but not be limited to a plan view of drill hole
collar locations and appropriate sectional views. | Refer to Figures in the body of text. | | Balanced
reporting | Where comprehensive reporting of all Exploration
Results is not practicable, representative reporting
of both low and high grades and/or widths should
be practiced to avoid misleading reporting of
Exploration Results. | All results are reported. | | Other
substantive
exploration
data | Other exploration data, if meaningful and material,
should be reported including (but not limited to):
geological observations; geophysical survey results;
geochemical survey results; bulk samples – size and
method of treatment; metallurgical test results;
bulk density, groundwater, geotechnical and rock
characteristics; potential deleterious or
contaminating substances. | No other substantive exploration data are available. | | Further work | The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. | Future work at Mallee Bull and Cobar Superbasin Project will include geophysical surveying and RC/diamond drilling to further define the extent of mineralization at the prospect. Down hole electromagnetic (DHEM) surveys will be used to identify potential conductive sources that may be related to mineralization. | Figure 1 – Peel Mining Cobar Superbasin tenement map vs TMI