ASX Announcement 18 November 2015

BOARD OF DIRECTORS

Paul Murphy (Non-Executive Chairman) Bryan Dixon (Managing Director) Alan Thom (Executive Director) Greg Miles (Non-Executive Director) Peter Rozenauers (Non-Executive Director)

ASX CODE BLK

CORPORATE INFORMATION 200.5M Ordinary Shares 36.9M Unlisted Options 8.0M Performance Rights

www.blackhamresources.com.au

E: info@blackhamresources.com.au

P: +61 8 9322 6418 F: +61 8 9322 6398

ABN: 18 119 887 606

PRINCIPAL AND

REGISTERED OFFICE Blackham Resources Ltd L2, 38 Richardson Street West Perth WA 6005

POSTAL ADDRESS PO Box 1412 West Perth WA 6872

BLACKHAM DISCOVERS NEW LODE AT WILLIAMSON 2m @ 95g/t

New high-grade footwall zone discovered in Williamson pit
2m @ 95.14g/t from 33m (WMRC0012)
1.45m @ 5.73g/t from 70m (WMDD0002)
New oxide lode is open to north and south and down dip
Intercepts typical of Williamson mineralisation, including:
7.78m @ 2.15 g/t Au from 124m (WMDD0001)
16.65m @ 1.09 g/t Au from 201m (WMDD0002)
5m @ 4.25g/t Au from 153m (WMRC0019)
3.7m @ 7.40g/t from 78m (WMDD0005)

• Diamond drilling for geotechnical and metallurgical samples to support the Definitive Feasibility Study completed.

Blackham Resources Ltd **(ASX: BLK) ("Blackham")** is pleased to announce the results received from Blackham's maiden drilling of the Williamson deposit, part of the Matilda Gold Project in Western Australia. The recently completed programme of 19 RC holes has discovered a new shallow high-grade zone of oxide mineralisation along the western (footwall) flank of Williamson (e.g. 2m @ 95.14g/t Au from 33m). The shallow newly discovered lode extends into the PFS pit design which is likely to improve the pit's economics. The programme has also successfully infilled the southern extensions of the resource to a spacing that is likely to support an Indicated resource classification.

Five diamond core (DD) holes have also been completed to provide geotechnical and metallurgical samples for the current Definitive Feasibility Study (DFS).

These results are expected to expand and add further confidence to the free milling, open pit mining inventory prior to the planned recommissioning of the Wiluna Gold Plant in 2016.

Williamson is a bulk-tonnage gold deposit with geological similarities to Thunderbox (Saracen Mineral Holdings) and Gruyere (Gold Road Resources) elsewhere in the Yilgarn region. At Williamson, gold mineralisation is associated with disseminated pyrite and arsenopyrite and sulphide-bearing quartz veinlets within monzogranite dykes and sheared monzogranite - dolerite contacts. High-grade pods are noted along the monzogranite contacts, and visible gold has been seen in historical drill core. Whilst the overall grade of the Williamson resource is modest, **6.3Mt @ 1.7g/t for 350,000oz**, the relative large tonnage typical of this style of mineralisation is an attractive exploration and development target for ensuring a sustainable base load mine plan for the Wiluna Gold Plant.

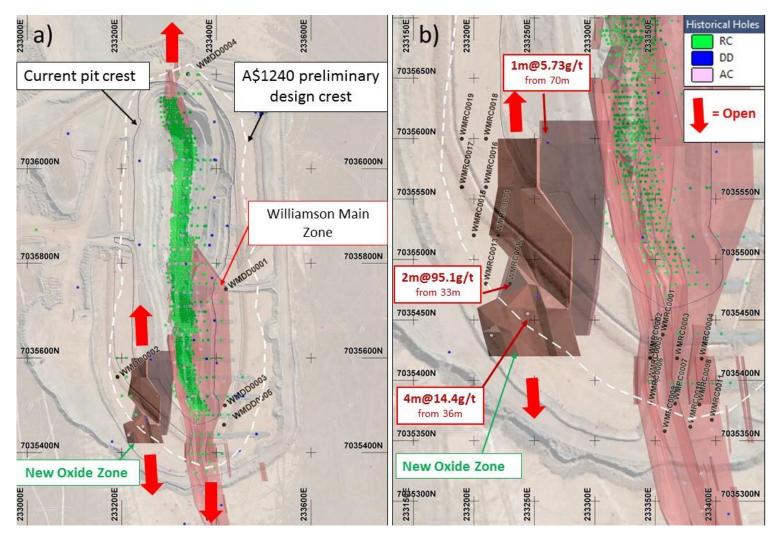


Figure 1 a) Diamond collar plan, and b) RC collar plan.

Oxide Zone Discovery:

A new zone of oxide mineralisation has been discovered along the western flank of Williamson in proximity to the current pit design (Figure 1a).

Intercepts include **2m @ 95.1g/t** from 33m and **1.45m @ 5.73g/t** from 70.55m and a historical aircore hole **4m @ 14.4 g/t from 36m** (LKYA0509), along with moderate tenor intercepts in holes WMRC0012 to WMRC0019 (Table 1). Mineralisation is typical of the Williamson style, comprising pods of high-grade mineralisation close to the sheared monzogranite / mafic rock contacts, along with predominantly 1.5 to 2g/t mineralisation. This new lode is open to the south, north and down dip.

It appears likely this additional shallow high-grade mineralisation will positively affect pit cutback economics, allowing the planned pit to extend further west as well as deeper on the main zone of mineralisation (see Fig 2).

Further drilling is planned to commence shortly to infill this new zone to deliver an Indicated resource classification prior to the DFS.

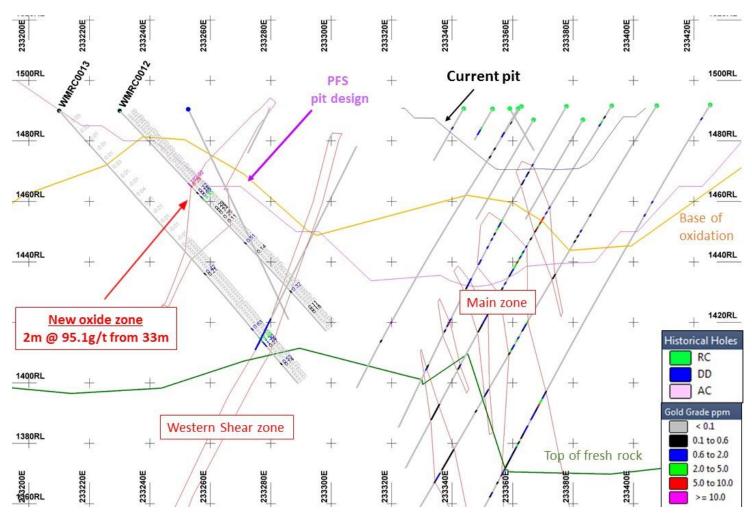


Figure 2 Cross section of newly discovered oxide mineralisation on the west flank of Williamson.

RC Resource Infill:

The sparsely-drilled southern extensions to Williamson (Figure 1b) have been infilled to 20m x 20m spacing (WMRC0001-11). Assay results are mostly moderate tenor and in line with the overall resource model grade (Table 1). The closer drill spacing in this area of the planned pit is expected to support conversion to the Indicated resource category. Currently 85% of the in-pit resource is in the Indicated category.

Metallurgy and Geotechnical Program:

A small diamond core program of 5 holes has been completed to provide metallurgical and geotechnical samples to support the current DFS. Williamson pit was previously mined by Agincourt Resources over 15 months during 2005 and 2006 and a significant body of data is therefore available for use in the recently completed PFS and current DFS. Assays have now been received and results are in line with expectations. Hole WMDD0002 (Figure 3) drilled from the western flank of Williamson pit intersected the new oxide zone (1.45m @ 5.73g/t from 70.55m, the Western shear zone (2m @ 0.94g/t from 134.50m) and typical Williamson-style mineralisation in the Main zone (4m @ 3.53g/t from 166m, and 16.65m @ 1.09g/t from 201m). Mineralisation in the Main zone remains open at depth.

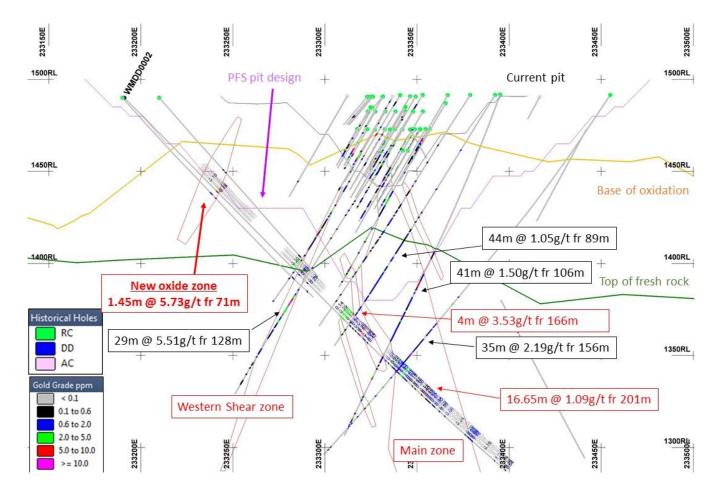


Figure 3 Cross section WMDD0002 showing new intercepts (red) and historical intercepts (black) from the new oxide zone, Western shear, and Main zones.

Future Exploration Opportunities:

Williamson mineralisation extends in excess of 1.3km further south from the current preliminary pit design, with high-grade historical aircore intercepts including 4m @ 12.2g/t from 56m, 19m @ 14.2g/t from 60m, 20m @ 3.2g/t from 16m, 18m @ 2.9g/t from 35m, and 4m @ 7.2g/t from 16m. Blackham intends to follow-up these intercepts as part of a wider exploration program surrounding the Williamson area (Figure 4).

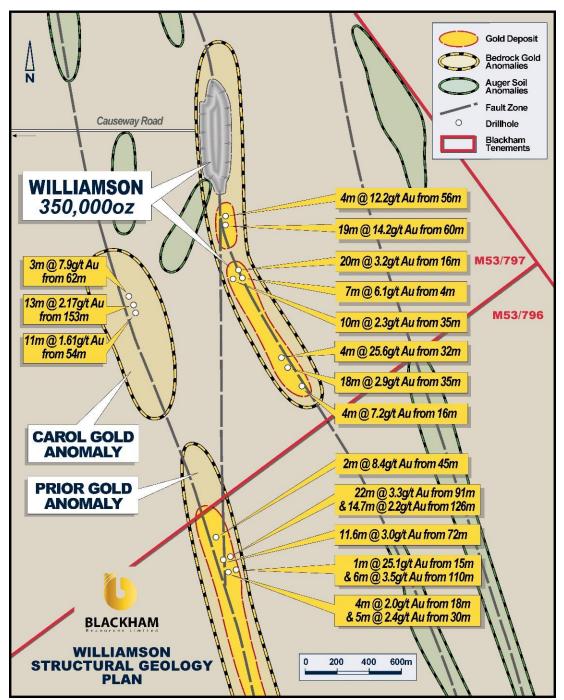


Figure 4 Plan view of Williamson area historical drill intercepts and targets.

Blackham's drilling and mining studies have been focussed on adding further confidence as well as extensions to the Matilda Gold Project resources totalling **44Mt @ 3.3g/t for 4.7Moz**. Williamson is intended as a base load feed of free-milling ore for the 1.3Mtpa Wiluna gold plant.

The metallurgical and geotechnical drilling for the DFS is now complete. Another 2,000m RC programme at Williamson will commence shortly just prior to the resource model being updated. The DFS is expected to be completed by January 2016.

For further information on Blackham please contact:

Bryan Dixon Managing Director Blackham Resources Limited Office: +618 9322 6418 Tony Dawe Professional Public Relations Office: +618 9388 0944

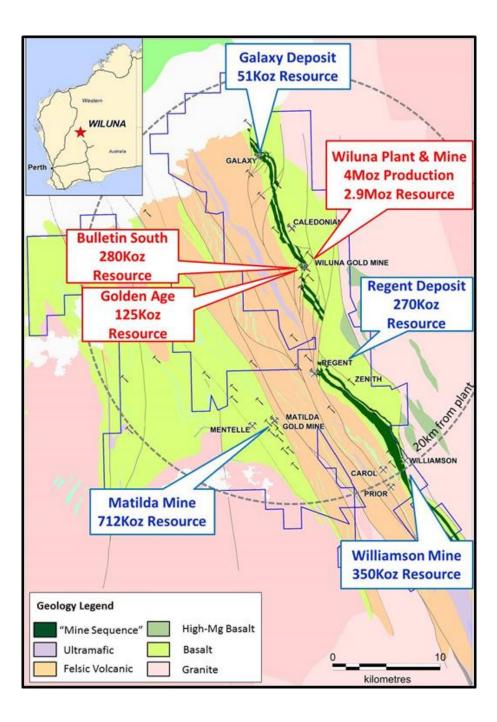
Gold Resources

The Matilda Gold Project now has **44Mt @3.3g/t for 4.7Moz** of resource all within a 20 kilometres radius of Blackham's 100% owned Wiluna Gold Plant capable of 1.3Mtpa for over 100,000ozpa gold production. Measured and indicated resources now total **20Mt @ 3.5g/t for 2.2Moz**.

		I	able 4: N	Aatilda Go	old Projec	ct Resour	ce Summ	ary				
	Μ	easure	ed	Indicated			l	nferred		To	tal 100%	%
Mining Centre	Mt	g/t Au	Koz Au	Mt	g/† Au	Koz Au	Mt	g/t Au	Koz Au	Mt	g/t Au	Koz Au
Matilda Mine	0.2	2.1	13	6.7	1.8	381	5.7	1.7	311	12.5	1.8	705
Williamson Mine				2.7	1.7	150	3.6	1.7	200	6.3	1.7	350
Regent				0.7	2.7	61	3.1	2.1	210	3.9	2.2	270
Galaxy				0.2	3.3	25	0.3	2.6	26	0.6	2.9	51
Golden Age				0.2	8.0	45	0.4	6.1	80	0.6	6.7	125
Bulletin South OP				0.9	3.2	90	1.7	3.5	190	2.6	3.4	280
East Lode				1.0	5.2	170	2.3	4.7	340	3.3	4.8	510
West Lode Calvert				1.4	5.5	240	2.8	5.2	460	4.2	5.3	700
Henry 5 - Woodley - Bulletin Deeps				2.1	5.9	400	0.8	4.6	120	2.9	5.6	520
Burgundy - Calais				1.3	6.0	250	0.3	5.7	60	1.6	6.0	310
Happy Jack - Creek Shear				1.5	5.9	290	1.3	4.8	200	2.9	5.4	490
Other Wiluna Deposits				1.1	3.1	111	1.7	4.2	229	2.8	3.7	340
Total	0.2	2.1	13	20	3.5	2,213	24	3.1	2,426	44	3.3	4,651

Mineral Resource estimates are not precise calculations, being dependent on the interpretation of limited information on the location shape and continuity of the occurrence and on the available sampling results. The figures in the above table are rounded to two significant figures to reflect the relative uncertainty of the estimate.

Competent Persons Statement


The information contained in the report that relates to Exploration Targets and Exploration Results at the Matilda Gold Project is based on information compiled or reviewed by Mr Cain Fogarty, who is a full-time employee of the Company. Mr Fogarty is a Member of the Australian Institute of Geoscientists and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Fogarty has given consent to the inclusion in the report of the matters based on this information in the form and context in which it appears.

The information contained in the report that relates to all other Mineral Resources is based on information compiled or reviewed by Mr Marcus Osiejak, who is a full-time employee of the Company. Mr Osiejak, is a Member of the Australian Institute of Mining and Metallurgy and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which is being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Osiejak has given consent to the inclusion in the report of the matters based on this information in the form and context in which it appears.

With regard to the Matilda Gold Project Mineral Resources, the Company is not aware of any new information or data that materially affects the information included in this report and that all material assumptions and parameters underpinning Mineral Resource Estimates as reported in the market announcements dated 21 October 2015 continue to apply and have not materially changed.

Forward Looking Statements

This announcement includes certain statements that may be deemed 'forward-looking statements'. All statements that refer to any future production, resources or reserves, exploration results and events or production that Blackham Resources Ltd ('Blackham' or 'the Company') expects to occur are forward-looking statements. Although the Company believes that the expectations in those forward-looking statements are based upon reasonable assumptions, such statements are not a guarantee of future performance and actual results or developments may differ materially from the outcomes. This may be due to several factors, including market prices, exploration and exploitation success, and the continued availability of capital and financing, plus general economic, market or business conditions. Investors are cautioned that any such statements are not guarantees of future performance, and actual results or performance may differ materially from those projected in the forward-looking statements. The Company does not assume any obligation to update or revise its forward-looking statements, whether as a result of new information, future events or otherwise.

Table 1. Significant intercepts from latest drilling.

Hole	Hole	East	North	RL	EOH (m)	Azi	Dip	From	То	Interval	Au	True Thickness
	Туре	East	North		. ,					(m)	g/t	
WMRC0001	RC	233358	7035440	1494	55	270	-55	28	29	1	3.29	0.7
WMRC0002	RC	233350	7035420	1492	50	270	-55	NSI			4.40	4.0
WMRC0003	RC	233370	7035420	1492	80	270	-55	21	23	2	1.13	1.3
								38	40	2	1.20	1.3
WMRC0004	RC	233390	7035420	1492	109	270	-55	85	89	4	1.30	2.7
								92	100	8	0.69	5.3
WMRC0005	RC	233350	7035400	1490	40	270	-50	NSI				
WMRC0006	RC	233350	7035380	1492	58	270	-55	NSI				
WMRC0007	RC	233370	7035380	1492	70	270	-55	6	8	2	0.71	1.3
WMRC0008	RC	233390	7035380	1492	102	270	-55	58	59	1	1.55	0.7
								67	68	1	1.24	0.7
								76	78	2	1.00	1.3
WMRC0009	RC	233360	7035360	1490	55	270	-60	NSI				
WMRC0010	RC	233380	7035360	1490	82	270	-55	56	58	2	0.90	1.3
								63	65	2	0.65	1.3
WMRC0011	RC	233400	7035360	1490	100	270	-60	67	68	1	3.82	0.7
WMRC0012	RC	233230	7035480	1490	100	90	-50	33	35	2	95.14	1.3
								39	41	2	2.57	1.3
WMRC0013	RC	233210	7035480	1490	120	90	-50	100	104	4	2.66	2.7
WMRC0014	RC	233220	7035520	1490	115	90	-50	57	58	1	1.42	0.7
								95	98	3	1.90	2.0
WMRC0015	RC	233200	7035520	1490	135	90	-50	56	60	4	1.28	2.7
								115	121	6	0.76	4.0
WMRC0016	RC	233210	7035560	1490	130	90	-50	114	115	1	1.40	0.7
WMRC0017	RC	233190	7035560	1490	150	90	-50	70	75	5	0.54	3.3
								134	136	2	0.91	1.3
WMRC0018	RC	233210	7035600	1490	140	90	-50	132	137	5	0.74	3.3
WMRC0019	RC	233190	7035600	1490	166	90	-50	153	158	5	4.25	3.3
WMDD0001	DD	233420	7035746	1491	155.1	270	-39	115.00	116.00	1	2.97	0.7
								124.00	131.78	7.78	2.15	6.5
							incl.	127.51	127.85	0.34	5.08	0.2
								134.00	138.54	4	3.38	3.0
							incl.	138.00	138.54	0.54	24.00	0.4
WMDD0002	DD	233191	7035560	1490	290	90	-45	70.55	72.00	1.45	5.73	1.1
		200101					incl.	71.00	72.00	1	6.65	0.8
								129.00	130.00	1	2.05	0.8
								129.00	170.00	4	3.53	3.0
								180.00	186.00	6	2.29	4.5
								134.50	136.00	1.5	0.92	1.1
								201.00	217.65	16.65	1.09	12.0
								228.68	229.00	0.32	8.38	0.2
								260.00	266.00	6	0.98	4.5
WMDD0003	DD	233418	7035500	1490	230	270	-40	38.60	39.00	0.4	4.14	0.3
								82.00	83.00	1	2.99	0.8

								87.00	90.00	3	1.50	2.3
								111.00	112.00	1	3.02	0.8
								115.50	116.00	0.5	2.77	0.4
								202.95	205.75	2.8	1.20	2.1
								207.90	212.55	4.65	0.90	3.5
WMDD0004	DD	233416	7035459	1491	120	270	-40	36.00	39.00	3	0.70	2.3
								56.00	57.00	1	10.30	0.8
								72.60	73.00	0.4	2.24	0.3
								87.00	88.40	1.4	1.70	1.1
								96.40	97.00	0.6	2.12	0.5
								107.80	110.60	2.8	0.90	2.1
								115.10	116.00	0.9	4.15	0.7
								119.00	120.44	1.44	1.00	1.1
WMDD0005	DD	233340	7036200	1487	155	203	-40	78.10	81.80	3.7	7.40	2.8
		200040	1000200			200	incl.	81.00	81.80	0.8	31.10	0.6
								87.00	97.00	4	0.60	3.0

Minimum 0.6g/t, 1.2 gram* metres, maximum 2m contiguous internal dilution. *NSI = No significant intercepts. Grid = MGA 94 Zone 51 south.

APPENDIX A - JORC Code, 2012 Edition – Table 1

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Platential of ballpring procedules are in time with ballating industry plattice to ensure sample representivity. Core samples are routinely taken from the right-hand-side of the cut line. For Blackham's RC drilling, the drill rig (and cone splitter) is always jacked up so that it is level with the earth to ensure even splitting of the sample. It is assumed that previous owners of the project had procedures in place in line with standard industry practice to ensure sample representivity. At the laboratory, samples >3kg were 50:50 riffle split to become <3kg. The <3kg splits were crushed to <2mm in a Boyd crusher and pulverized via LM5 to 90% passing 75µm to produce a 50g charge for fire assay. Historical assays were obtained using either aqua regia digest or fire assay, with AAS readings.
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc).	• Blackham data reported herein is RC 5 5/8" and DD PQ and HQ3 diameter holes. Downhole surveys are taken every ~5 or 10m using a gyro tool. Historical drilling data contained in this report includes RC, AC and DD core samples. RC sampling utilized face-sampling hammer of 4.5" to 5.5" diameter, RAB sampling utilized open-hole blade or hammer sampling, and DD sampling utilized NQ2 half core samples. It is unknown if core was orientated, though it is not material to this report. All Blackham RC drilling used a face-sampling bit.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and 	• For Blackham RC drilling, chip sample recovery is visually estimated by volume for each 1m bulk sample bag, and recorded digitally in the sample database. For DD drilling, recovery is measured by the drillers and Blackham geotechnicians and recorded into the digital database. Recoveries were typically 100% except for the non-mineralised upper 3 or 4m. For historical drilling, recovery data for drill holes contained in this report has not been located or assessed, owing to incomplete data records. Database compilation is

Criteria	JORC Code explanation	Commentary
	 ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 ongoing. RC drilling, sample recovery is maximized by pulling back the drill hammer and blowing the entire sample through the rod string at the end of each metre. Where composite samples are taken, the sample spear is inserted diagonally through the sample bag from top to bottom to ensure a full cross-section of the sample is collected. To minimize contamination and ensure an even split, the cone splitter is cleaned with compressed air at the end of each rod, and the cyclone is cleaned every 50m and at the end of hole, and more often when wet samples are encountered. Historical practices are not known, though it is assumed similar industry-standard procedures were adopted by each operator. For historical drilling with dry samples it is unknown what methods were used to ensure sample recovery, though it is assumed that industry-standard protocols were used to maximize the representative nature of the samples, including dust-suppression and rod pull-back after each drilled interval. For wet samples, it is noted these were collected in polyweave bags to allow excess water to escape; this is standard practice though can lead to biased loss of sample material into the suspended fine sample fraction. For DD drilling, sample recovery is maximised by the use of short drill runs (typically 1.5m) and triple tube splits for HQ3 drilling. For Blackham drilling, no such relationship was evaluated as sample recoveries were generally excellent.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 Drill samples have been logged for geology, alteration, mineralisation, weathering, and other features to a level of detail considered appropriate for geological and resource modelling. Logging of geology and colour for example are interpretative and qualitative, whereas logging of mineral percentages is quantitative. All holes were logged in full.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, 	 RC sampling with cone splitting, and either ¼ or ½ cut core. Sampling is RC. Mention is made in historical reports of 1m and 2m or 4m composites for Agincourt drilling. For Blackham drilling, 1m samples were split using a cone splitter. Most samples were dry; the moisture content data was logged and digitally captured. Where it proved impossible to maintain dry samples, at most three consecutive wet samples were obtained before drilling was abandoned, as per procedure. RC sampling with riffle or cone splitting and spear compositing is considered standard industry practice. Boyd <2mm crushing and splitting is considered to be standard industry practice; each sample particle has an equal chance of entering the split chute. At the laboratory, >3kg samples are split so they can fit into a LM5 pulveriser bowl. At the laboratory, >3kg samples are split 50:50 using a riffle splitter so they can fit into a LM5 pulveriser bowl. Field duplicates were collected approximately every 40m down hole for Blackham holes. Analysis of results indicated good correlation between primary and duplicate samples. RC duplicates are taken using

Criteria	JORC Code explanation	Commentary
	 including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 the secondary sample chute on the cone splitter. Core duplicates are taken at the laboratory after coarse crushing using the Boyd crusher / splitter. It is not clear how the historical field duplicates were taken for RC drilling. Sample sizes are considered appropriate for these rock types and style of mineralisation, and are in line with standard industry practice.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Fire assay is a total digestion method. The lower detection limits of 0.01ppm is considered fit for purpose. For Blackham drilling, SGS completed the analyses using industry best-practice protocols. SGS is globally-recognized and highly-regarded in the industry. Historical assaying was undertaken at Amdel, SGS, and KalAssay laboratories, and by the on-site Agincourt laboratory. The predominant assay method was by Fire Assay with AAS finish. The lower detection limit of 0.01ppm Au used is considered fit for purpose. No geophysical tools were required as the assays directly measure gold mineralisation. For Blackham drilling, down-hole survey tools were checked for calibration at the start of the drilling program and every two weeks. Comprehensive programs of QAQC have been adopted since the 1980's. For Blackham drilling certified reference material, blanks and duplicates were submitted at approximately 1:40. Check samples are routinely submitted to an umpire lab at 1:20 ratio. Analysis of results confirms the accuracy and precision of the assay data. It is understood that previous explorers great Central Mines, Normandy and Agincourt employed QAQC sampling, though digital capture of the data is ongoing, and historical QAQC data have not been assessed. Results show good correlation between original and repeat analyses with very few samples plotting outside acceptable ranges (+/- 20%).
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 Blackham's significant intercepts have been verified by several company personnel, including the database manager and exploration manager. Twinned holes are not reported herein, as twinning is not considered routinely necessary. However, historical drilling has been designed at different orientations, to help correctly model the mineralisation orientation. Data is stored in Datashed SQL database. Internal Datashed validations and validations upon importing into Micromine were completed, as were checks on data location, logging and assay data completeness and down-hole survey information. QAQC and data validation protocols are contained within Blackham's manual "BLK Assay QAQC Protocol 2013.doc". Historical procedures are not documented. Assay results were not adjusted.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Blackham's drill collars are routinely surveyed using a DGPS with centimetre accuracy. All historical drill holes at Matilda appear to have been accurately surveyed. MGA Zone 51 South. Height data (Australian height datum) is collected with DGPS and converted to local relative level using a factor. Prior to DGPS surveys, relative levels are estimated based on data for nearby historical holes.

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Blackham's exploration holes are generally drilled 20m apart on east-west sections, on sections spaced 20m apart north-south. Using Blackham's drilling and historical drilling, a spacing of approximately 20m (on section) by 20m (along strike) is considered adequate to establish grade and geological continuity. Areas of broader drill spacing have also been modelled but with lower confidence. Samples have not been composited because discrete assay intervals are considered appropriate for this report.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Drill holes were generally orientated towards the west to intersect predominantly steeply east-dipping mineralisation. For the western footwall mineralisation and Western Shear zone, holes were oriented towards the east to intersect the west-dipping mineralisation. Thus true thickness is approximately 2/3 of drilled thickness. Such a sampling bias is not considered to be a factor as the RC technique utilizes the entire 1m sample.
Sample security	• The measures taken to ensure sample security.	• Drill samples are delivered to Toll Ipec freight yard in Wiluna by Blackham personnel, where they are stored in a gated locked yard (after hours) until transported by truck to the laboratory in Perth. In Perth the samples are likewise held in a secure compound.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• No such audits or reviews have been undertaken as they are not considered routinely required; review will be conducted by external resource consultants when resource estimates are updated.

Section 2 Reporting of Exploration Results (Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a license to operate in the area. 	
Exploration done by other	• Acknowledgment and appraisal of exploration by other parties.	• Exploration activities have been conducted at the Williamson deposit since the mid-1980s. This work has included auger and RAB exploration drilling, regional geophysical surveys and extensive AC, RC

Criteria	JORC Code explanation	Commentary
parties		and DD drilling for exploration, resource definition and grade control purposes. Subsequently, extensive resource definition drilling including AC, RC and DD drilling by Agincourt led to definition of a significant resource base in the late 1990s.
Geology	• Deposit type, geological setting and style of mineralisation.	• The gold deposit is categorized as an orogenic gold deposits, with similarities to many other gold deposits in the Yilgarn region. The deposits are hosted within the Wiluna Domain of the Wiluna greenstone belt. Rocks in the Wiluna Domain have experienced greenschist-grade regional metamorphism. At the location of this drilling, the Wiluna Domain is comprised of 'Mines Sequence' dolerite and basalt, intruded by felsic and intermediate dykes and cross-cut by north-south structures.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	See Table 1 of this report for drill hole details.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Drill hole intercepts are reported as length-weighted averages, above a 1m @ 0.6g/t cut-off, or > 1.2 gram x metre cut off (to include narrow higher-grade zones) using a maximum 2m contiguous internal dilution. High-grade internal zones are reported at a 5g/t envelope, e.g. MADD0018 contains 14.45m @ 6.74g/t from 162.55m including 4.4m @ 15.6g/t from 162.55m. No metal equivalent grades are reported because only Au is of economic interest.
Relationship	 These relationships are particularly important in 	• Drill holes were generally orientated towards the west to intersect predominantly steeply east-dipping

Criteria	JORC Code explanation	Commentary
between mineralisation widths and intercept lengths	 the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	mineralisation. Thus true thickness is approximately 2/3 of drilled thickness.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• See body of this report.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• A full list of significant results from the current drilling program is included with the report. Full reporting of the historical drill hole database of over 40,000 holes is not feasible.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	Other exploration tests are not the subject of this report.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Follow-up resource definition drilling is likely, as mineralisation is interpreted to remain open in various directions. Diagrams are provided in the body of this report.