

DECEMBER 2015 QUARTERLY REPORT

29 JANUARY 2016

Peel Mining Limited ASX code: PEX ACN: 119 343 734

Unit 1, 34 Kings Park Rd West Perth, WA 6005

Ph: (08) 9382 3955 E: <u>info@peelmining.com.au</u> Web: <u>www.peelmining.com.au</u>

Contact:

Rob Tyson Managing Director info@peelmining.com.au

About Peel Mining Limited:

- The Company's five projects cover more than 4,000 km2 of highly prospective tenure in NSW and WA.
- Mallee Bull is an advanced copperpolymetallic deposit that remains open in many directions.
- Cobar Superbasin Project Farm-in Agreement with JOGMEC offers funded, highly-prospective and strategic greenfields exploration potential.
- Apollo Hill hosts a major, protruding, shear-hosted, gold mineralised system that remains open down dip and along strike.
- Attunga Tungsten Deposit is a high grade tungsten deposit.
- 132 million shares on issue for \$20m Market Capitalisation at 29 Jan 2016.

Highlights for December quarter 2015

• RC/diamond drilling at Mallee Bull returns multiple new extensional mineralised intercepts:

- 62m @ 3.15% Cu, 42 g/t Ag, 0.28 g/t Au from 465m, including 34m @ 4.6% Cu, 63 g/t Ag, 0.44 g/t Au from 475m in MBRCDD050
- 5m @ 2.1% Cu, 59 g/t Ag, 0.72 g/t Au from 385m, 4m @ 1.18% Cu, 23 g/t Ag, 0.12 g/t Au from 398m, 4m @ 1.87% Cu, 18 g/t Ag, 0.87% Pb, 0.22% Zn from 403m in MBRCDD051
- 13m @ 0.86% Cu, 33 g/t Ag, 1.39 g/t Au, 0.34% Pb, 0.68% Zn from 407m in MBRCDD050W1
- 4m @ 1.52% Cu, 111 g/t Ag, 0.21 g/t Au,
 2.52% Pb, 4.2% Zn from 197m in MBRC052

• Second stage of exploration activities for the Cobar Superbasin Project under the JOGMEC MoA continued with RC/diamond drilling at Wirlong, Red Shaft and Valvoline prospects.

• New high-grade copper discovery confirmed at Wirlong with multiple significant mineralised intercepts returned including:

- 9m @ 8.0% Cu, 17 g/t Ag, 0.21 g/t Au from 616m (incl. 2.82m @ 21.85% Cu, 46 g/t Ag, 0.62 g/t Au from 619.68m), 38m @ 1.18% Cu, 4 g/t Ag from 450m in WLDD001
- 4.9m @ 4.3% Cu, 13 g/t Ag from 402.1m (incl. 0.9m @ 19.5% Cu, 58 g/t Ag from 402.1m), 22m @ 1.0% Cu, 4 g/t Ag from 332m in WLRCDD015

Plans for March quarter 2016

- RC/diamond drilling and geophysical surveys continuing at Wirlong
- RC drilling and metallurgical testwork at Apollo Hill

Exploration

<u>Mallee Bull Project:</u> Copper, Silver, Gold, Lead, Zinc; Western NSW (PEX 50% and Manager, CBH 50%).

Targets: Cobar-style polymetallic mineralisation; Volcanogenic Massive Sulphide mineralisation.

The Mallee Bull project is a 50:50 Joint Venture with CBH Resources Limited (CBH). A maiden JORC compliant Mineral Resource estimate was completed in May 2014, and comprises 3.9Mt at 2.3% copper, 32 g/t silver and 0.3 g/t gold. Details can be found in the announcement released 27 May 2014; "High Grade Copper Resource at Mallee Bull".

Figure 1: Mallee Bull Drill Plan

Drilling

The December quarter saw the completion of seven drillholes (total 3,405m) and a diamond tail on hole 4MRC021 (initially RC drilled to 270m in 2012) testing for new mineralisation near the northern edge of the current Mallee Bull resource model, where substantial zinc-lead and copper-rich mineralisation has been defined to more than 500m below surface. Assay results have been received for all holes and highly encouraging intercepts returned, indicating greater strike continuity of copper mineralisation than previously assumed.

MBRCDD049, the first hole of this program, was designed to test for mineralisation at between 300-400m below surface and is located ~120m further north than previous deep drilling. Multiple intervals of quartz-sulphide (chalcopyrite-pyrrhotite) stringer/breccia style mineralisation was intersected from ~350m down hole, including 5m @ 1.01% Cu, 12 g/t Ag from 371m, 2m @ 1.91% Cu, 23 g/t Ag, 0.25 g/t Au from 392m and 3m @ 2.42% Cu, 74 g/t Ag, 0.29 g/t Au, 0.87% Pb, 0.22% Zn from 403m.

MBRCDD050 was drilled to test for mineralisation between 400-500m below surface and about 80m further north than previous deep drilling. A very broad interval of significant quartz-sulphide (chalcopyrite-pyrrhotite) stringer/breccia style mineralisation was intercepted; **62m (~40m true width)** @ **3.15% Cu**, **42 g/t Ag**, **0.28 g/t Au from 465m, including 34m (~22m true width)** @ **4.6% Cu**, **63 g/t Ag**, **0.44 g/t Au from 475m.** This broad mineralised interval is significantly wider than the 3m footwall stringer interval previously modelled for this area.

MBRCDD051 was designed to test for mineralisation at between 350-450m below surface and about 80m further north than previous drilling. Multiple strong intervals of the stringer/breccia mineralisation similar to holes MBRCDD049 and MBRCDD050 were again intercepted from about 375m down hole, including 5m @ 2.1% Cu, 59 g/t Ag, 0.72 g/t Au from 385m, 4m @ 1.18% Cu, 23 g/t Ag, 0.12 g/t Au from 398m, 4m @ 1.87% Cu, 18 g/t Ag, 0.87% Pb, 0.22% Zn from 403m.

MBRCDD050W1 was completed to target ~80m down dip from MBRCDD050, and intersected ~13m of pyrite-pyrrhotite-chalcopyrite massive sulphide mineralisation: **13m @ 0.86% Cu, 33 g/t Ag, 1.39 g/t Au, 0.34% Pb, 0.68% Zn from 407m.** The true width of this mineralisation is interpreted to be ~9m. Correlating with the "hanging-wall domain" present at Mallee Bull, this mineralisation occurs about 50m further north than the current modelled boundary position for this type of mineralisation. No significant stringer mineralisation was intercepted.

Holes MBDD026/026W1 were drilled to test for mineralisation at ~500m below surface and about 40m further north of drillhole MBRCDD050. Minor stringer mineralisation was intercepted from ~419m, including **2m @ 2.33% Cu, 46 g/t Ag, 0.62 g/t Au from 422m.**

RC drillhole MBRC052 was also drilled along the northern edge of the Mallee Bull resource, testing beneath the high grade T1 Zn-Pb-Ag-rich mineralisation. Results again were highly encouraging, including a **4m intercept @ 1.52% Cu, 111 g/t Ag, 0.21 g/t Au, 2.52% Pb, 4.2% Zn from 197m.**

RC drillhole 4MRC021, initially drilled by Peel in 2012, was extended by 126.4m with a diamond tail, aiming to target potentially deeper mineralisation however no significant additional mineralisation was intersected.

Geophysics

Downhole EM surveys of holes MBRCDD049 and MBDD026/026W1 were completed in November 2015, with four anomalies evident in the latter holes. Whilst the first anomaly at 360m is considered consistent with Mallee Bull, preliminary interpretation indicates the conductive source(s) of the anomalies between 450-600m are possibly orientated sub-parallel to the hole and highlights the potential for additional mineralisation further north of Mallee Bull.

Additional geophysical activities at Mallee Bull comprised of a Deep Ground Penetrating Radar (DGPR) survey over the deposit, as part of a trial to test the efficacy of the technology at depths far exceeding conventional GPR (which only has a depth range of 10-20m) for a fraction of the cost of seismic surveys. A response was confirmed over the Mallee Bull deposit, although further review of the data will be conducted to determine the effectiveness of the technique for application on Peel's tenure.

Figure 2: Section 6413470N looking North

Cobar Superbasin Project: Copper, Silver, Gold, Lead, Zinc; Western NSW (PEX 100%).

Targets: Cobar-style polymetallic mineralisation; Volcanogenic Massive Sulphide mineralisation.

Figure 3: Cobar Superbasin Project Tenements & Prospects

The Cobar Superbasin Project is subject to a Memorandum of Agreement with Japan Oil, Gas, and Metals National Corporation (JOGMEC), under which JOGMEC may earn up to 50% interest by funding up to \$7 million of exploration. Details of the JOGMEC MoA can be found in Peel's ASX Announcement released on 30 September 2014.

The second phase of activities under the JOGMEC MoA, encompassing at least \$1.5 million expenditure, continued this quarter; activities have comprised moving loop EM (MLEM), downhole EM (DHEM), airborne magnetic surveys, RC and diamond drilling.

Wirlong

During the quarter, a total of 12 RC/diamond drillholes were completed at Wirlong for 4,324.5m. The prospect is defined by historic copper workings, a topographic high, a >2km surface multi-element surface geochemical anomaly, and coincident or semi-coincidental geophysical anomalies including magnetic, radiometric, gravity, IP and more recently electromagnetic. Results indicate that Wirlong represents a very large, mineralised, hydrothermal system with a strike length of more than 2.5km, and recent drilling has confirmed a new and potentially high grade copper discovery.

WLRCDD015 (611.7m) was drilled to target, along with gravity, IP chargeability and magnetic anomalies, the northern end of Wirlong's extensive multi-element geochemical anomaly. Initially drilled as an RC drillhole to 402m, the hole was extended with a diamond tail following the completion of DHEM surveying, which identified a conductor positioned beyond the end of hole. This conductor was explained by a 0.9m wide zone of massive chalcopyrite-dominant sulphide mineralisation. Significant intercepts from WLRCDD015 include:

- 4.9m @ 4.3% Cu, 13 g/t Ag from 402.1m (incl. 0.9m @ 19.5% Cu, 58 g/t Ag from 402.1m)
- 22m @ 1.0% Cu, 4 g/t Ag from 332m
- 3m @ 2.1% Cu, 6 g/t Ag from 451m
- 2m @ 1.8% Cu, 13 g/t Ag, 1.63% Zn from 524m

Diamond hole WLDD001, designed to follow-up WLRCDD015, also returned multiple significant mineralised intercepts including:

- 9m @ 8.0% Cu, 17 g/t Ag, 0.21 g/t Au from 616m (incl. 2.82m @ 21.85% Cu, 46 g/t Ag, 0.62 g/t Au from 619.68m)
- 38m @ 1.18% Cu, 4 g/t Ag from 450m
- 6m @ 1.23% Cu, 5 g/t Ag from 430m
- 4m @ 1.14% Cu, 3 g/t Ag from 643m

Figure 4 – WLDD001 - 2.82m @ 21.85% Cu, 46 g/t Ag, 0.62 g/t Au from 619.68m

Mineralisation in both holes comprises chalcopyrite-pyrrhotite+/-sphalerite+/-galena+/-pyrite and occurs as sulphide disseminations, veins and veinlets, breccia, and massive sulphides within occasionally sheared/deformed and altered (silica-chlorite-sericite) turbidite sediments and/or felsic volcanics (rhyolite/rhyodacite). The true width of mineralisation remains unknown at this stage however is thought to be sub-vertical in geometry.

Initially drilled to a depth of 728.5m, WLDD001 has been extended to 873.2m at the time of reporting following the completion of a DHEM survey, with mineralisation again present as sulphide disseminations throughout in varying concentrations. At the time of reporting, diamond drilling was continuing approximately 400m to the South to test the centre of the large multi-element geochemical anomaly, with additional geophysical surveying to follow.

Holes WLRCDD010 (426.6m) and WLRC011 (402m) were drilled to follow-up strong base metal results from previous RC drilling at Wirlong, testing to the north of holes WLRC005 and WLRC006 which returned intervals of 4m @ 3.04% Cu, 12 g/t Ag, 0.19% Zn from 196m and 2m @ 2.99% Cu, 1.08 g/t Au, 16 g/t Ag, 0.41% Zn from 322m respectively. Encouraging results were returned in WLRC011, with better intercepts including **3m @ 0.89% Cu, 0.16% Zn from 266m, 1m @ 0.74% Zn, 0.26% Pb from 334m and 2m @ 0.87% Zn, 0.41% Pb from 336m.** Drillhole WLRCDD010 encountered a substantial zone of faulted/broken ground to the east of Wirlong and was terminated due to poor drilling conditions.

WLRC012-014, WLRC016 & WLRC017 were drilled to follow-up anomalous Pb, Zn, Cu results from RAB drilling at the northern end of the Wirlong prospect (incl. 9m @ 2.19% Pb, 0.11% Zn from 1m and 6m @ 1.01% Pb from 13m in WLRAB004). Better intercepts include:

- 1m @ 1.11% Zn from 88m, 1m @ 1.35% Zn from 131m and 2m @ 0.84% Zn, 0.43% Pb from 137m in WLRC012
- 2m @ 2.44% Zn, 0.38% Pb, 0.12% Cu from 124m in WLRC013
- 1m @ 0.70% Pb from 247m in WLRC014
- 1m @ 0.96% Zn, 0.42% Pb, 0.77 g/t Au from 80m and 7m @ 2.15% Zn, 0.57% Pb, 0.39 g/t Au from 82m including 3m @ 4.02% Zn, 0.99% Pb, 0.40 g/t Au from 84m in WLRC016

WLRC018 (252m) was drilled north of drillholes WLRC008 and WLRC009 (5m @ 1.64% Zn, 0.82% Pb, 2 g/t Ag from 93m, 1m @ 6.44% Zn, 3.81% Pb, 0.54% Cu, 18 g/t Ag from 113m in WLRC008; 19m @ 2.44% Zn, 0.39% Pb, 4 g/t Ag from 103m including 3m @ 6.90% Zn, 0.88% Pb, 12 g/t Ag from 120m in WLRC009), investigating anomalous historic results from drilling by CRA Exploration Pty Ltd in 1982 which included 9m @ 1.55% Zn, 0.59% Pb from 60m in RC hole PD82WP2. present throughout.

Broad zones of anomalous Pb-Zn-Cu values were also encountered in RC drillhole WLRC019 (252m), located to the south of WLRC008 and WLRC009.

WLRC020 (252m) was drilled approximately 1.2km south of WLRC019, however no significant results were returned.

Figure 5: Wirlong Drill Plan with Gravity

Red Shaft

At the Red Shaft prospect, approximately 4km along strike from Wirlong to the SSE, previous exploration identified significant Au rock chip and As, Pb, Cu pXRF soil anomalies with positive results returned from RAB drilling programs (incl. 6m @ 0.44 g/t Au from 48m in RSRAB043, 1m @ 1.53% Pb, 0.20% Cu from 34m in RSRAB045). Six RC drill holes were completed as follow-up this quarter for a total 970m, with better intercepts including:

- 10m @ 0.84 g/t Au, 0.20% Cu, 0.26% Pb from 60m including 4m @ 1.88 g/t Au, 0.35% Pb from 61m in RSRC003

- 2m @ 0.41% Pb, 6 g/t Ag from 54m in RSRC004

- 2m @ 0.44% Pb from 17m in RSRC005

- 2m @ 0.32% Pb from 42m and 1m @ 0.32% Pb, 0.27% Cu from 91m in RSRC006

- 5m @ 0.76% Cu from 62m in RSRC007

aforementioned, As а detailed gravity survey was completed in October 2015 over both the Wirlong and Red Shaft prospects. The data delineated significant structural features and several positive gravity anomalies along the Wirlong and Red Shaft shear zone, some of which correlate with magnetic

anomalies and trends.

Valvoline

The Valvoline prospect (also known as Woorara), located approximately 5km north of the Sandy Creek prospect, comprises two adjacent dipole magnetic anomalies of 17 and 22nT amplitudes. Two preliminary RAB drillholes (total 153m) were drilled over each magnetic high last quarter, with hole WWB002 returning an anomalous intercept of 1m @ 0.17% Pb from surface. Follow-up RC holes VARC001 and VARC002 (total 616.5m) were completed in November 2015 to target the magnetic anomalies at depth. Although no significant results were returned, it is noted that both holes failed to properly test the modelled magnetic anomalies.

Glenwood & Iris Vale

Airborne magnetic surveys were completed over EL8314 (Glenwood) and EL8113 (Iris Vale) tenements for a total 3,196 line km. The Glenwood tenement is host to a magnetic low anomaly which has the potential to represent pyrrhotite lodes characteristic of Cobar-style deposits as at the Sandy Creek prospect. At Iris Vale, the main prospect 'Peel-11' is defined by a reduced-to-pole magnetic high accompanied by a Bouguer gravity gradient anomaly associated with the basin margin and Erimeran Granite. The magnetic survey defined a number of discrete magnetic anomalies in both tenements, with modelling of the data indicating that the anomalies are basement sourced.

A moving loop EM Survey was also completed at Glenwood over the magnetic low anomaly in November 2015, however, the effectiveness of the survey was reduced by the presence of highly conductive cover, and a preliminary review identified no anomalies consistent with bedrock conductors.

Deep preliminary RAB/RC drilling and down hole EM surveys are warranted in the area to follow-up the magnetic targets, and to gain a better understanding of the geology and potential mineralisation.

Apollo Hill Project: Gold; Northeastern Goldfields WA (PEX 100%).

Targets: Archean gold deposits.

Activities this quarter at the main Apollo Hill deposit comprised of historic core sampling. Drillholes AAHD0002-004, AAHD0010-011, AAHD0014, AAHD0016, AAHD0018-020, AAHD0022 & AAHD0024 were drilled by Apex Minerals NL at the Apollo Hill deposit in 2006, as part of a 24-hole drilling program for a total 5,220.35m, and significant Au values were returned at the time including:

- 2.26m @ 7.41 g/t Au from 192.74m in AAHD0002, including 1.26m @ 21.12 g/t Au from 192.74m
- 1.3m @ 14.46 g/t Au from 96.7m and 0.55m @ 7.81 g/t Au from 133.45m in AAHD0004, including 0.25m @ 14.14 g/t Au from 133.75m
- 2m @ 69.26 g/t Au from 146m, 0.45m @ 21.41 g/t Au from 241.05m and 3.8m @ 13.19 g/t Au from 260.95 in AAHD0010, including 1m @ 32.12 g/t Au from 260.95m

However, numerous interval gaps were present in which no samples were assayed. Core was taken for Au analysis in late 2015 by Peel from selected gaps, many of which were in close proximity to intervals of high Au as well as at the ends of holes. Encouragingly, multiple significant Au values were returned:

- 1m @ 0.65 g/t Au from 223m in AAHD0002
- 1m @ 0.89 g/t Au from 102m and 2m @ 3.41 g/t Au from 104m in AAHD0003
- 1m @ 6.74 g/t Au from 165m in AAHD0004
- 1m @ 0.85 g/t Au from 190m, 1m @ 1.04 g/t Au from 200m, 1m @ 0.50 g/t Au from 222m and 1m @ 2.91 g/t Au from 225m in AAHD0010
- 1m @ 0.56 g/t Au from 187m in AAHD0011
- 2m @ 1.18 g/t Au from 148m, 1m @ 1.23 g/t Au from 169m in AAHD0014
- 1m @ 0.79 g/t Au from 176m in AAHD0018
- 1m @ 1.71 g/t Au from 398m, 1m @ 2.59 g/t Au from 400m, 1m @ 3.60 g/t Au from 417m in AAHD0020

- 1m @ 2.39 g/t Au from 390m in AAHD0022

Over the broader Apollo Hill tenement package, a small soil and rock chip sampling was undertaken on E31/1076 'Mt Remarkable' located approximately 35km SE of the Apollo Hill resource. The main target on the licence is a strong discrete magnetic anomaly (named 'The Eye') in otherwise low-to-moderately responsive basalt. Minor Au values were returned. With NE trending structures at the anomaly cross-cutting the main NW structural trend, further surface sampling is planned to investigate the area in greater detail.

Figure 7: Apollo Hill Tenements & Geology

Other Projects

No fieldwork was undertaken on any other project during the quarter.

Corporate

No corporate activity was completed during the quarter.

For further information, please contact Rob Tyson on mobile 0420 234 020.

Competent Persons Statements

The information in this report that relates to Exploration Results is based on information compiled by Mr Robert Tyson, who is a Member of the Australasian Institute of Mining and Metallurgy. Mr Tyson has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.' Mr Tyson consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

Mallee Bull Drill Collars

Hole ID	Northing	Easting	Azi	Dip	Final Depth (m)
MBRCDD049	6413520	415135	88.14	-67.71	447.1
MBRCDD050X	6413480	415095	86	-68	15
MBRCDD050	6413481	415093	76.85	-72.61	600.8
MBRCDD051	6413481	415180	80.29	-75.03	513.8
MBRCDD050W1	6413481	415093	76.85	-72.61	651.5
MBDD026	6413519	415188	78.41	-79.92	282.4
MBDD026W1	6413519	415188	78.41	-79.92	660.4
MBRC052	6413450	415300	90	-60	249
4MRCDD021*	6413466	415220	92.72	-68.75	396.4

*Hole 4MRCDD021 was initially drilled as RC hole 4MRC021 (270m) in 2012. The diamond tail for 126.4m was drilled this quarter.

Wirlong, Red Shaft & Woorara RC & Diamond Drill Collars

Hole ID	Northing	Easting	Azi	Dip	Final Depth (m)
WLRCDD010	6446380	418827	259.3	-66.5	366.2
WLRC011	6446408	418646	278.3	-66.3	402
WLRC012	6447399	418647	270	-65	252
WLRC013	6447498	418688	270	-65	252
WLRC014	6447600	418643	270	-65	252
WLRCDD015	6446955	418566	255.6	-65.2	611.7
WLRC016	6447486	418589	270	-65	250
WLRC017	6447601	418496	270	-65	249
WLRC018	6445899	418780	270	-65	252
WLRC019	6445411	418713	270	-65	252
WLRC020	6444300	419100	270	-65	252
RSRC003	6441884	419547	90	-60	204
RSRC004	6441945	419569	90	-60	204
RSRC005	6441999	419601	90	-60	190

27 49 45 IS GROUP AND							
Hole ID	Northing	Easting	Azi	Dip	Final Depth (m)		
RSRC006	6441949	419546	91.8	-70	108		
RSRC007	6441763	419525	91.8	-70	114		
RSRC008	6442000	419282	91.8	-70	150		
VARC001	6440445	415675	264	-75	354		
VARC002	6439930	415690	264	-70	344		
WLDD001	6447000	418660	255	-54.9	728.5		

Mallee Bull RC/Diamond Drilling Significant Assay Results (1m intervals)

Hole ID	From (m)	To (m)	Zn (%)	Pb (%)	Cu (%)	Ag (g/t)	Au (g/t)
MBRCDD049	357	358	0.63	0.31	0.09	41	0.26
MBRCDD049	371	372	0.58	0.03	0.06	8	0.09
MBRCDD049	373	374	1.43	0.05	0.05	15	0.02
MBRCDD049	374	375	1.75	0.10	0.29	21	0.17
MBRCDD049	375	376	0.95	0.02	0.08	10	0.05
MBRCDD049	392	393	1.96	0.07	0.07	32	0.27
MBRCDD049	393	394	1.87	0.08	0.05	13	0.22
MBRCDD049	395	396	0.58	0.03	0.02	17	0.24
MBRCDD049	403	404	2.56	1.61	0.25	39	0.14
MBRCDD049	404	405	4.09	0.99	0.39	180	0.68
MBRCDD049	405	406	0.60	0.01	0.03	3	0.06
MBRCDD050	388	389	0.11	1.17	2.67	13	-0.01
MBRCDD050	389	390	0.03	0.27	0.58	3	0.04
MBRCDD050	390	391	0.02	0.81	0.04	11	0.02
MBRCDD050	394	395	0.01	0.27	0.54	2	0.01
MBRCDD050	465	466	0.51	0.01	0.02	6	0.04
MBRCDD050	468	469	0.91	0.00	0.02	9	0.04
MBRCDD050	469	470	1.69	0.02	0.07	14	0.08
MBRCDD050	472	473	6.07	0.03	0.15	39	0.07
MBRCDD050	475	476	10.75	0.54	0.27	142	1.16
MBRCDD050	476	477	6.45	0.32	0.20	74	0.19
MBRCDD050	477	478	8.39	0.58	0.27	110	0.61
MBRCDD050	478	479	3.55	0.09	0.11	26	0.23
MBRCDD050	479	480	3.57	0.20	0.12	28	0.85
MBRCDD050	480	481	2.36	0.04	0.09	16	0.1
MBRCDD050	481	482	2.96	0.03	0.11	18	0.27
MBRCDD050	482	483	7.82	0.13	0.26	45	0.41
MBRCDD050	483	484	2.85	0.05	0.12	18	0.34
MBRCDD050	484	485	10.60	0.30	0.36	115	1.01
MBRCDD050	485	486	14.55	0.26	0.45	81	0.47
MBRCDD050	486	487	10.45	0.37	0.34	71	0.48
MBRCDD050	487	488	6.72	0.47	0.23	62	0.54
MBRCDD050	488	489	4.04	0.13	0.12	22	0.24
MBRCDD050	489	490	1.70	0.09	0.05	12	0.11
MBRCDD050	491	492	0.76	0.02	0.05	4	0.06
MBRCDD050	494	495	1.52	0.04	0.20	8	0.18
MBRCDD050	495	496	1.00	0.01	0.07	5	0.07
MBRCDD050	496	497	13.70	0.37	0.72	372	1.98
MBRCDD050	497	498	5.35	0.18	0.37	225	1.17
MBRCDD050	498	499	3.14	0.04	0.16	113	0.62
MBRCDD050	499	500	0.87	0.00	0.04	4	0.17

Hole ID	From (m)	To (m)	Zn (%)	Pb (%)	Cu (%)	Ag (g/t)	Au (g/t)
MBRCDD050	500	501	6.04	0.05	0.22	191	1.19
MBRCDD050	501	502	5.92	0.01	0.20	95	0.57
MBRCDD050	502	503	2.06	0.00	0.06	17	0.18
MBRCDD050	503	504	1.73	0.06	0.07	22	0.12
MBRCDD050	504	505	1.42	0.09	0.11	46	0.25
MBRCDD050	505	506	3.65	0.01	0.16	162	0.81
MBRCDD050	506	507	2.91	0.03	0.06	23	0.19
MBRCDD050	507	508	4.02	0.01	0.04	15	0.36
MBRCDD050	508	509	4.70	0.01	0.03	8	0.11
MBRCDD050	509	510	2.48	0.00	0.02	5	0.12
MBRCDD050	510	511	2.12	0.00	0.01	8	0.08
MBRCDD050	511	512	1.12	0.01	0.01	3	0.05
MBRCDD050	512	513	1.12	0.09	0.02	33	0.11
MBRCDD050	513	514	2.36	0.22	0.05	48	0.11
MBRCDD050	514	515	1.80	0.12	0.04	22	0.12
MBRCDD050	517	518	0.60	0.05	0.01	4	0.05
MBRCDD050	518	519	0.78	0.14	0.02	10	0.02
MBRCDD050	519	520	1.34	0.01	0.03	15	0.03
MBRCDD050	520	521	2.45	0.06	0.04	23	0.08
MBRCDD050	521	522	5.56	1.05	0.09	71	0.18
MBRCDD050	522	523	2.12	0.40	0.16	33	0.08
MBRCDD050	524	525	1.30	0.01	0.02	5	0.21
MBRCDD050	525	526	0.77	0.04	0.01	5	0.19
MBRCDD050	526	527	1.24	0.01	0.05	46	0.2
MBRCDD050	567	568	0.66	0.01	0.05	10	-0.01
MBRCDD050	569	570	0.53	0.00	0.08	7	-0.01
MBRCDD050	570	571	0.69	0.00	0.12	9	-0.01
MBRCDD050	571	572	0.93	0.00	0.05	11	-0.01
MBRCDD050W1	407	408	0.58	0.08	0.07	13	0.59
MBRCDD050W1	408	409	0.69	0.09	0.11	17	0.63
MBRCDD050W1	409	410	0.87	0.26	0.33	35	1.56
MBRCDD050W1	410	411	0.64	0.26	0.66	28	1.79
MBRCDD050W1	411	412	0.51	0.31	0.51	19	1.11
MBRCDD050W1	412	413	0.55	0.39	0.79	19	1.26
MBRCDD050W1	413	414	1.87	0.20	0.42	33	0.92
MBRCDD050W1	414	415	0.90	0.30	0.51	31	1.08
MBRCDD050W1	415	416	1.47	0.61	1.18	52	1.3
MBRCDD050W1	416	417	1.00	0.57	1.22	53	2.31
MBRCDD050W1	417	418	0.70	0.73	2.05	59	2.61
MBRCDD050W1	418	419	1.05	0.28	0.64	49	2.03
MBRCDD050W1	419	420	0.32	0.32	0.36	20	0.82
MBRCDD050W1	424	425	0.00	0.22	0.59	1	0.01
MBRCDD050W1	436	437	0.30	0.69	1.92	16	0.03
MBRCDD050W1	438	439	0.02	0.06	0.91	1	0.02
MBRCDD050W1	439	440	0.01	0.53	0.20	9	0.22
MBRCDD050W1	468	469	0.36	0.69	0.39	27	0.04
MBRCDD050W1	469	470	0.78	0.43	0.97	19	0.04
MBRCDD050W1	471	472	0.26	0.23	1.24	7	0.02
MBRCDD050W1	472	473	0.02	0.12	0.59	2	0.01
MBRCDD050W1	474	475	0.08	0.66	1.25	18	0.01
MBRCDD050W1	476	477	0.03	0.07	0.93	3	0.01

Hole ID	From (m)	To (m)	Zn (%)	Pb (%)	Cu (%)	Ag (g/t)	Au (g/t)
MBRCDD050W1	481	482	0.41	0.32	0.02	42	0.17
MBRCDD050W1	568	569	0.68	0.00	0.02	11	-0.01
MBRCDD050W1	569	570	0.58	0.01	0.03	15	-0.01
MBRCDD051	289	290	0.01	0.38	0.61	2	0.04
MBRCDD051	290	291	0.01	0.40	0.59	2	0.03
MBRCDD051	291	292	0.01	0.29	0.57	2	0.03
MBRCDD051	295	296	0.01	0.36	0.84	3	0.01
MBRCDD051	296	297	0.04	0.85	0.82	8	0.07
MBRCDD051	297	298	0.04	0.94	0.58	9	0.08
MBRCDD051	298	299	0.03	0.86	1.41	6	0.05
MBRCDD051	299	300	0.01	0.39	0.52	2	0.01
MBRCDD051	308	309	0.13	0.18	1.40	5	0.11
MBRCDD051	309	310	0.40	0.77	2.42	19	1.15
MBRCDD051	382	383	0.04	0.24	0.01	7	1
MBRCDD051	385	386	0.74	0.37	0.06	59	1.11
MBRCDD051	386	387	1.40	0.47	0.06	63	0.61
MBRCDD051	387	388	3.41	0.50	0.11	93	1.16
MBRCDD051	388	389	3.64	0.16	0.16	63	0.65
MBRCDD051	389	390	1.32	0.03	0.04	19	0.08
MBRCDD051	395	396	0.73	0.09	0.03	15	0.07
MBRCDD051	396	397	0.55	0.04	0.02	9	0.05
MBRCDD051	398	399	0.81	0.12	0.03	17	0.07
MBRCDD051	399	400	0.98	0.07	0.05	17	0.05
MBRCDD051	400	401	2.31	0.25	0.17	46	0.34
MBRCDD051	401	402	0.62	0.05	0.03	11	0.01
MBRCDD051	414	415	1.92	0.01	0.07	26	1.64
MBRCDD051	444	445	0.79	0.00	0.03	8	0.05
MBRCDD051	446	447	1.58	0.02	0.03	17	0.11
MBRCDD051	463	464	0.62	0.36	0.04	13	0.03
MBRCDD051	464	465	1.53	0.02	0.09	31	0.13
MBRCDD051	465	466	3.05	0.03	0.04	9	0.06
MBRCDD051	466	467	2.29	0.01	0.03	18	0.15
MBRCDD051	483	484	1.78	0.03	0.05	8	1.61
MBRCDD051	484	485	2.84	0.02	0.05	22	0.45
MBRCDD051	485	486	4.23	0.03	0.07	58	0.89
MBRCDD051	486	487	1.69	0.05	0.06	50	0.13
MBRC052	146	147	0.02	0.71	1.61	12	0.1
MBRC052	147	148	0.03	0.80	1.85	9	0.19
MBRC052	148	149	0.03	1.27	2.60	12	0.16
MBRC052	149	150	0.06	1.76	0.59	14	0.03
MBRC052	151	152	0.04	1.24	2.24	9	0.02
MBRC052	152	153	0.06	1.04	0.33	7	0.01
MBRC052	153	154	0.06	0.99	0.51	7	0.01
MBRC052	154	155	0.04	1.27	0.39	9	0.01
MBRC052	155	156	0.05	0.87	0.11	7	0.01
MBRC052	156	157	0.05	1.67	0.15	13	0.01
MBRC052	158	159	0.07	1.73	0.13	15	0.01
MBRC052	166	167	0.02	0.79	0.14	-1	NA
MBRC052	167	168	0.03	1.39	0.23	-1	
MBRC052	168	169	0.07	3.03	0.06	21	0.03
MBRC052	169	170	0.02	1.43	0.03	8	0.01

Hole ID	From (m)	To (m)	Zn (%)	Pb (%)	Cu (%)	Ag (g/t)	Au (g/t)
MBRC052	170	171	0.02	1.59	2.04	7	0.02
MBRC052	171	172	0.02	1.01	1.09	6	0.02
MBRC052	172	173	0.08	4.30	2.13	18	0.04
MBRC052	173	174	0.04	1.58	0.60	10	0.01
MBRC052	174	175	0.07	1.91	0.70	11	0.01
MBRC052	176	177	0.04	1.44	0.22	8	0.01
MBRC052	177	178	0.02	0.88	0.10	-1	NA
MBRC052	178	179	0.02	0.79	0.10	-1	NA
MBRC052	197	198	1.03	0.46	0.65	33	0.15
MBRC052	198	199	2.43	3.39	3.13	178	0.25
MBRC052	199	200	2.07	4.96	9.50	188	0.34
MBRC052	200	201	0.59	1.29	3.54	47	0.11
MBRC052	201	202	0.17	0.44	0.96	9	NA
MBRC052	203	204	0.08	0.16	1.13	-1	NA
MBRC052	228	229	1.39	0.53	0.49	23	NA
MBDD026W1	421	422	0.11	0.03	0.02	4	0.63
MBDD026W1	422	423	1.37	0.11	0.03	26	0.36
MBDD026W1	423	424	3.29	0.16	0.06	66	0.88
MBDD026W1	556	557	1.62	0.07	0.04	19	0.04
MBDD026W1	558	559	0.61	0.01	0.06	7	0.02

Wirlong & Red Shaft RC/Diamond Drilling Significant Assay Results (1m intervals)

Hole ID	From (m)	To (m)	Zn (%)	Pb (%)	Cu (%)	Ag (g/t)	Au (g/t)
RSRC003	61	62	0.05	0.23	0.01	2	2.45
RSRC003	62	63	0.08	0.37	0.00	3	2.84
RSRC003	63	64	0.11	0.45	0.01	4	1.29
RSRC003	64	65	0.09	0.33	0.01	4	0.95
RSRC004	54	55	0.09	0.57	0.10	-1	NA
RSRC005	17	18	0.06	0.52	0.04	-1	NA
RSRC007	64	65	0.78	0.05	0.19	1	0.01
RSRC007	65	66	0.98	0.03	0.09	0	0.02
RSRC007	66	67	1.38	0.02	0.02	0	-0.01
WLDD001	162	163	0.01	0.27	0.01	56	NA
WLDD001	202	203	0.62	0.00	0.02	-1	NA
WLDD001	430	431	1.19	0.00	0.01	4	0.06
WLDD001	431	432	2.94	0.02	0.04	12	0.06
WLDD001	434	435	1.82	0.00	0.02	7	0.02
WLDD001	435	436	0.79	0.00	0.01	3	0.01
WLDD001	438	439	0.61	0.00	0.01	2	-0.01
WLDD001	444	445	1.20	0.01	0.04	5	0.01
WLDD001	450	451	1.28	0.00	0.02	4	-0.01
WLDD001	452	453	0.73	0.00	0.01	3	-0.01
WLDD001	453	454	1.93	0.00	0.02	7	0.02
WLDD001	457	458	3.37	0.01	0.02	12	-0.01
WLDD001	458	459	4.83	0.01	0.02	15	0.02
WLDD001	459	460	0.89	0.00	0.01	3	0.04
WLDD001	461	462	0.83	0.00	0.01	3	-0.01
WLDD001	462	463	0.98	0.01	0.01	4	0.34
WLDD001	463	464	1.24	0.00	0.02	4	0.04
WLDD001	465	466	1.64	0.00	0.02	5	-0.01

Hole ID	From (m)	To (m)	Zn (%)	Pb (%)	Cu (%)	Ag (g/t)	Au (g/t)
WLDD001	466	467	1.11	0.00	0.01	3	0.13
WLDD001	470	471	0.61	0.00	0.01	2	0.02
WLDD001	473	474	0.84	0.00	0.02	2	-0.01
WLDD001	474	475	2.59	0.00	0.03	7	0.03
WLDD001	475	476	5.02	0.01	0.08	14	0.1
WLDD001	476	477	2.36	0.01	0.07	7	0.04
WLDD001	478	479	0.77	0.00	0.02	2	-0.01
WLDD001	479	480	0.67	0.00	0.02	2	-0.01
WLDD001	480	481	1.03	0.00	0.03	3	-0.01
WLDD001	481	482	1.27	0.00	0.03	4	0.04
WLDD001	483	484	5.42	0.02	0.09	16	0.08
WLDD001	484	485	0.74	0.00	0.02	2	-0.01
WLDD001	485	486	0.71	0.00	0.06	2	-0.01
WLDD001	487	488	1.09	0.02	0.04	4	0.02
WLDD001	500	501	1.73	0.01	0.04	5	-0.01
WLDD001	569	570	0.04	0.31	1.01	-1	NA
WLDD001	585	586	0.67	0.05	0.18	3	0.04
WLDD001	589	590	0.59	0.01	0.03	3	-0.01
WLDD001	616	617	0.61	0.00	0.02	1	-0.01
WLDD001	617	618	3.03	0.00	0.04	6	0.01
WLDD001	618	619	1.23	0.00	0.02	3	-0.01
WLDD001	619	619.68	5.13	0.02	0.04	11	0.16
WLDD001	619.68	620	23.50	0.01	0.16	50	0.61
WLDD001	620	621	19.85	0.02	0.13	42	0.58
WLDD001	621	622	22.90	0.01	0.14	47	0.85
WLDD001	622	622.5	22.70	0.01	0.21	48	0.23
WLDD001	622.5	623	2.09	0.00	0.03	5	0.05
WLDD001	640	641	0.69	0.01	0.03	-1	NA
WLDD001	643	644	0.66	0.01	0.03	1	0.05
WLDD001	644	645	1.58	0.01	0.05	5	0.08
WLDD001	645	646	1.73	0.01	0.04	5	0.06
WLDD001	646	647	0.59	0.00	0.03	2	0.01
WLDD001	706	707	0.00	0.17	1.06	-1	NA
WLDD001	714	715	0.02	0.28	0.76	1	-0.01
WLDD001	715	716	0.07	0.24	0.96	1	-0.01
WLDD001	727	728	0.01	0.06	1.10	0	-0.01
WLRC011	266	267	0.97	0.01	0.19	-1	NA
WLRC011	267	268	0.85	0.00	0.16	-1	NA
WLRC011	268	269	0.84	0.01	0.12	-1	NA
WLRC011	329	330	0.02	0.10	0.70	-1	NA
WLRC011	334	335	0.04	0.26	0.74	-1	NA
WLRC011	336	337	0.03	0.24	0.63	-1	NA
WLRC011	337	338	0.05	0.57	1.10	-1	NA
WLRC012	27	28	0.10	0.60	0.07	-1	NA
WLRC012	88	89	0.04	0.01	1.11	-1	NA
WLRC012	92	93	0.01	0.03	0.55	-1	NA
WLRC012	117	118	0.02	0.02	0.51	-1	NA
WLRC012	131	132	0.06	0.31	1.35	-1	NA
WLRC012	137	138	0.03	0.35	0.59	-1	NA
WLRC012	138	139	0.01	0.51	1.09	-1	NA
WLRC012	162	163	0.03	0.46	0.90	-1	NA

Hole ID	From (m)	To (m)	Zn (%)	Pb (%)	Cu (%)	Ag (g/t)	Au (g/t)
WLRC012	239	240	0.01	0.01	0.62	-1	NA
WLRC013	122	123	0.08	0.63	0.77	11	NA
WLRC013	124	125	0.11	0.21	0.86	3	0.01
WLRC013	125	126	0.13	0.54	4.01	5	-0.01
WLRC014	247	248	0.04	0.08	0.70	-1	NA
WLRC016	68	69	0.01	0.35	0.63	-1	NA
WLRC016	74	75	0.03	0.24	0.52	-1	NA
WLRC016	76	77	0.01	0.37	0.53	-1	NA
WLRC016	77	78	0.01	0.30	0.74	-1	NA
WLRC016	80	81	0.01	0.42	0.96	2	0.77
WLRC016	82	83	0.00	0.19	0.94	1	0.18
WLRC016	83	84	0.00	0.21	0.61	1	0.46
WLRC016	84	85	0.01	0.87	3.60	7	0.91
WLRC016	85	86	0.00	0.42	4.33	3	0.22
WLRC016	86	87	0.01	1.69	4.14	7	0.08
WLRC016	87	88	0.01	0.43	0.89	2	0.81
WLRC016	88	89	0.01	0.17	0.55	1	0.08
WLRC017	84	85	0.12	0.20	0.17	21	NA
WLRC017	85	86	0.44	0.27	0.27	26	0.07
WLRC019	10	11	0.01	0.65	0.09	-1	NA
WLRC019	93	94	0.01	0.03	0.71	-1	NA
WLRCDD015	225	226	0.61	0.00	0.02	3	0.01
WLRCDD015	282	283	1.24	0.00	0.02	5	-0.01
WLRCDD015	290	291	0.63	0.00	0.01	2	-0.01
WLRCDD015	291	292	0.76	0.00	0.01	2	-0.01
WLRCDD015	323	324	0.86	0.00	0.01	2	-0.01
WLRCDD015	328	329	0.54	0.04	0.01	4	-0.01
WLRCDD015	330	331	0.50	0.00	0.02	1	-0.01
WLRCDD015	332	333	0.75	0.00	0.03	2	-0.01
WLRCDD015	333	334	1.71	0.03	0.14	6	-0.01
WLRCDD015	334	335	1.05	0.01	0.04	4	-0.01
WLRCDD015	339	340	0.57	0.08	0.11	6	0.01
WLRCDD015	340	341	1.01	0.01	0.06	3	-0.01
WLRCDD015	341	342	0.61	0.02	0.03	3	-0.01
WLRCDD015	342	343	1.42	0.01	0.09	5	-0.01
WLRCDD015	343	344	2.04	0.05	0.12	9	0.01
WLRCDD015	344	345	1.41	0.03	0.07	6	-0.01
WLRCDD015	345	346	2.49	0.06	0.09	12	0.01
WLRCDD015	346	347	0.90	0.02	0.05	4	0.01
WLRCDD015	347	348	1.72	0.03	0.09	7	-0.01
WLRCDD015	348	349	1.28	0.03	0.13	5	-0.01
WLRCDD015	349	350	0.59	0.02	0.08	2	-0.01
WLRCDD015	350	351	1.13	0.03	0.16	4	-0.01
WLRCDD015	351	352	1.38	0.06	0.21	6	0.01
WLRCDD015	352	353	0.83	0.07	0.21	5	-0.01
WLRCDD015	353	354	0.77	0.05	0.30	4	-0.01
WLRCDD015	402.1	403	19.50	0.09	0.24	58	0.08
WLRCDD015	403	404	1.91	0.01	0.06	6	-0.01
WLRCDD015	406	407	0.90	0.01	0.09	3	-0.01
WLRCDD015	409	410	0.99	0.05	0.62	4	-0.01

				27 - V 175 N GA (175 - 27 - 27 - 27 - 27 - 27 - 27 - 27 -			
Hole ID	From (m)	To (m)	Zn (%)	Pb (%)	Cu (%)	Ag (g/t)	Au (g/t)
WLRCDD015	411	412	0.62	0.00	0.02	1	-0.01
WLRCDD015	417	418	1.93	0.00	0.03	4	-0.01
WLRCDD015	451	452	1.72	0.01	0.06	4	-0.01
WLRCDD015	452	453	3.63	0.03	0.13	10	0.01
WLRCDD015	453	454	0.98	0.01	0.03	3	0.01
WLRCDD015	457	458	0.44	0.02	0.59	2	-0.01
WLRCDD015	470	471	0.71	0.00	0.05	2	-0.01
WLRCDD015	475	476	0.66	0.21	0.37	6	-0.01
WLRCDD015	481	482	0.06	0.17	0.73	2	0.02
WLRCDD015	489	490	0.82	0.00	0.02	3	0.01
WLRCDD015	514	515	0.01	0.09	0.74	1	-0.01
WLRCDD015	524	525	0.99	0.08	0.34	8	0.03
WLRCDD015	525	526	2.60	0.08	2.92	18	0.04
WLRCDD015	527	528	0.66	0.05	1.35	7	0.05
WLRCDD015	540	541	0.02	0.37	0.77	7	-0.01

Apollo Hill Historic Drill Core Sampling Significant Assay Results (1m intervals)

Hole ID	From (m)	To (m)	Au (g/t)
AAHD0002	223	224	0.65
AAHD0003	102	103	0.89
AAHD0003	104	105	0.64
AAHD0003	105	106	6.18
AAHD0004	165	166	6.74
AAHD0010	190	191	0.85
AAHD0010	200	201	1.04
AAHD0010	222	223	0.50
AAHD0010	225	226	2.91
AAHD0011	187	188	0.56
AAHD0014	148	149	1.54
AAHD0014	149	150	0.82
AAHD0014	169	170	1.23
AAHD0018	176	177	0.79
AAHD0020	398	399	1.71
AAHD0020	400	401	2.59
AAHD0020	417	418	3.60
AAHD0022	390	391	2.39

Table 1 - Section 1: Samplina	Techniaues and Data	for Mallee Bull/Cobar Su	perbasin Proiect

o :: ·		
Criteria Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Diamond, reverse circulation (RC) and Rotary Air Blast (RAB) drilling were used to obtain samples for geological logging and assaying. Diamond core was cut and sampled at 1m intervals. RC and RAB drill holes were sampled at 1m intervals and split using a cone splitter attached to the cyclone to generate a split of 2-4kg to ensure sample representivity. Multi-element readings were taken of the RC and RAB drill chips using an Olympus Delta Innov-X portable XRF tool. The portable XRF was calibrated against standards after every 30 readings.
Drilling techniques Drill sample recovery	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 Drilling to date has been a combination of diamond, reverse circulation and rotary air blast. Reverse circulation drilling utilised a 5 1/2 inch diameter hammer. A blade bit was predominantly used for RAB drilling. NQ and HQ coring was used for diamond drilling. Core recoveries are recorded by the drillers in the field at the time of drilling and checked by a geologist or technician RC and RAB samples are not weighed on a regular basis due to the exploration nature of drilling but no significant sample recovery issues have been encountered in a drilling program to date. Diamond core is reconstructed into continuous runs on an angle iron cradle for orientation marking and depths are checked against the depths recorded on core blocks. Rod counts are routinely undertaken by drillers. When poor sample recovery is encountered during drilling, the geologist and driller have endeavoured to rectify the problem to ensure maximum sample recovery. Sample recoveries to date have generally been high. Insufficient data is available at

Criteria	JORC Code explanation	Commentary	
		exists between recovery and grade. This will be assessed once a statistically valid amount of data is available to make a determination.	
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All core and drill chip samples are geologically logged. Core samples are orientated and logged for geotechnical information. Drill chip samples are logged at 1m intervals from surface to the bottom of each individual hole to a level that will support appropriate future Mineral Resource studies. Logging of diamond core, RC and RAB samples records lithology, mineralogy, mineralisation, structure (DDH only), weathering, colour and other features of the samples. Core is photographed as both wet and dry. All diamond, RC and RAB drill holes in the current program were geologically logged in full. 	
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 Drill core was cut with a core saw and half core taken. The RC and RAB drilling rigs were equipped with an in-built cyclone and splitting system, which provided one bulk sample of approximately 20kg and a sub-sample of 2-4kg per metre drilled. All samples were split using the system described above to maximise and maintain consistent representivity. The majority of samples were dry. Bulk samples were placed in green plastic bags, with the sub-samples collected placed in calico sample bags Field duplicates were collected by resplitting the bulk samples from large plastic bags. These duplicates were designed for lab checks. A sample size of 2-4kg was collected and considered appropriate and representative for the grain size and style of mineralisation. 	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy 	 ALS Laboratory (Orange) was used for Au analysis work carried out on the 1m drill chip samples. The laboratory techniques below are for all samples submitted to ALS and are considered appropriate for the style of mineralisation defined at Sandy Creek, Wirlong, Red Shaft and Burthong: PUL-23 (Sample preparation code) Au-AA26 Ore Grade Au 50g FA AA Finish 	

Criteria	JORC Code explanation	Commentary		
	(ie lack of bias) and precision have been established.	 ME-MS61 48 element four acid ICP-MS 		
		 Assaying of soil samples in the field was by portable XRF instrument Olympus Delta Innov-X Analyser. Reading time was 40 seconds per reading with a total 3 readings per sample. The QA/QC data includes standards, duplicates and laboratory checks. Duplicates for drill core are collected by the lab every 30 samples after the core sample is pulverised. Duplicates for percussion drilling are collected directly from the drill rig or the metre sample bag using a half round section of pipe. In- house QA/QC tests are conducted by the lab on each batch of samples with standards supplied by the same companies that supply our own. 		
Verification of sampling	The verification of significant intersections by either independent or alternative company personnel	All geological logging and sampling information is completed in spreadsheets		
and assaying	 The use of twinned holes. 	which are then transferred to a database		
	• Documentation of primary data, data entry procedures, data verification, data storage	for validation and compilation at the Peel head office. Electronic copies of all		
	(physical and electronic) protocols.	information are backed up periodically.		
	Discuss any adjustment to assay data.	No adjustments of assay data are considered necessary.		
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 A Garmin hand-held GPS is used to define the location of the samples. Standard practice is for the GPS to be left at the site of the collar for a period of 10 minutes to obtain a steady reading. Collars are picked up after by DGPS. Down-hole surveys are conducted by the drill contractors using predominantly a Reflex gyroscopic tool with readings every 10m after drill hole completion. On occasion a Reflex electronic multi-shot camera will be used with readings for dip and magnetic azimuth taken every 30m down-hole. QA/QC in the field involves calibration using a test stand. The instrument is positioned with a stainless steel drill rod so as not to affect the magnetic azimuth. Grid system used is MGA 94 (Zone 55). All down-hole magnetic surveys were converted to MGA94 grid. 		
Data spacing	Data spacing for reporting of Exploration Results.	Data/drill hole spacing is variable and		
distribution	• whether the data spacing and distribution is sufficient to establish the degree of geological and	appropriate to the geology and historical drilling.		
	grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedura(c)	 6m sample compositing has been applied to BC and BAB drilling at Sandy Crock 		
	and classifications applied.	Wirlong, Red Shaft and Burthong for gold		
	Whether sample compositing has been applied.	and multi-element assay.		
Orientation	• Whether the orientation of sampling achieves	 Most drillholes are planned to intersect 		

Criteria	JORC Code explanation	Commentary
of data in relation to geological structure	 unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	the interpreted mineralised structures/lodes as near to a perpendicular angle as possible (subject to access to the preferred collar position).
Sample security	• The measures taken to ensure sample security.	 The chain of custody is managed by the project geologist who places calico sample bags in polyweave sacks. Up to 5 calico sample bags are placed in each sack. Each sack is clearly labelled with:
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• Data is validated when loading into the database. No formal external audit has been conducted.

Table 1 - Section 2 - Reporting of Exploration Results for Mallee Bull/Cobar Superbasin Project

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Mallee Bull prospect is wholly located within Exploration Licence EL7461 "Gilgunnia". The tenement is subject to a 50:50 Joint Venture with CBH Resources Ltd, a wholly owned subsidiary of Toho Zinc Co Ltd. The following tenements of the Cobar Superbasin Project reported on in the December 2015 quarter are subject to a Farm-in agreement with Japan Oil, Gas and Metals National Corporation (JOGMEC): EL8307 "Sandy Creek" EL8314 "Glenwood" EL8113 "Iris Vale"
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 Work was completed in the area by former tenement holders Triako Resources between 2003 and 2009; it included diamond drilling, IP surveys, geological mapping and reconnaissance geochemical sampling around the historic Four Mile Goldfield area. Prior to Triako Resources, Pasminco Exploration explored the Cobar Basin area for a "Cobar-type" or "Elura-type" zinc-lead-silver or copper- gold-lead-zinc deposit.
Geology	• Deposit type, aeological setting and style of	• The prospect area lies within the Cobar-

Criteria	JORC Code explanation	Commentary
	mineralisation.	Mt Hope Siluro-Devonian sedimentary and volcanic units. The northern Cobar region consists of predominantly sedimentary units with tuffaceous member, whilst the southern Mt Hope region consists of predominantly felsic volcanic rocks; the Mallee Bull prospect seems to be located in an area of overlap between these two regions. Mineralization at the Mallee Bull discovery features the Cobar-style attributes of short strike lengths (<200m), narrow widths (5-20m) and vertical continuity, and occurs as a shoot-like structure dipping moderately to the west.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 All relevant information material to the understanding of exploration results has been included within the body of the announcement or as appendices. No information has been excluded.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 No length weighting or top-cuts have been applied. No metal equivalent values are used for reporting exploration results.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	• True widths are generally estimated to be about 60% of the downhole width.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should 	• Refer to Figures in the body of text.

Criteria	JORC Code explanation	Commentary
	include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	All results are reported.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	 No other substantive exploration data are available.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	 Future work at Mallee Bull will include diamond and RC drilling to further define the extent of mineralization at the prospect. Down hole electromagnetic (DHEM) surveys will be used to identify potential conductive sources that may be related to mineralization. Future work within the Cobar Superbasin tenements will involve geophysical surveying, geochemical sampling and RC/diamond drilling to target existing anomalies.

Table 1 - Section 1: Sampling Techniques and Data for Apollo Hill

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of 	 Soil samples were taken by scraping off organic material and digging down about 10cm into the soils. Soil Auger samples were taken from the end of hole auger spoils

Criteria	JORC Code explanation	Commentary		
	detailed information.			
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 No drilling was completed in the December quarter. 		
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 No significant sample recovery issues have been encountered to date. When poor sample recovery is encountered, the geologist and driller have endeavoured to rectify the problem to ensure maximum sample recovery. Sample recoveries to date have generally been high. Insufficient data is available at present to determine if a relationship exists between recovery and grade. This will be assessed once a statistically valid amount of data is available to make a determination. 		
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All end of hole soil auger samples were examined by a geologist 		
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all subsampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 All samples dried and reconciled against company submission. 		
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. 	 Intertek Genalysis (Perth) was used for Au analysis work carried out on the samples. The laboratory technique below is for all samples submitted to Intertek and is considered appropriate for the style of mineralisation defined at Apollo Hill FA50/OE Sog Lead collection fire assay. Analysed Intertek Genalysis (Perth) was used for Au analysed 		

Criteria	JORC Code explanation	Commentary		
	 Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	Coupled Plasma Optical (Atomic) Emission Spectrometry. • The QA/QC data includes standards, duplicates and laboratory checks. In- house QA/QC tests are conducted by the lab on each batch of samples with standards supplied by the same companies that supply our own.		
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All geological logging and sampling information is completed in spreadsheets, which are then transferred to a database for validation and compilation at the Peel head office. Electronic copies of all information are backed up periodically. No adjustments of assay data are considered necessary. 		
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 A Garmin hand-held GPS is used to define the location of the samples. Standard practice is for the GPS to be left at the site of the collar for a period of 10 minutes to obtain a steady reading. Collars are picked up after by DGPS. Grid system used is MGA94 (Zone 51). 		
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Sample spacing is variable and appropriate to the geology. Soil samples were taken on a 20m grid. Soil Auger samples were taken at 40-50m spacing at Stockdale and 40m spacing at Mud Hut. No sample compositing has been applied. 		
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Sampling orientation was appropriate for the early stage of exploration. 		
Sample security	• The measures taken to ensure sample security.	 The chain of custody is managed by the project geologist who places calico sample bags in polyweave sacks. Up to 5 calico sample bags are placed in each sack. Each sack is clearly labelled with:		
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Data is validated when loading into the database. No formal external audit has been conducted. 		

Table 1 - Section	2 - Reporting	of Exploration	Results f	or Apollo Hill
	E neporting		nesans j	

Criteria	IOBC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The 100% Peel owned Apollo Hill project is located 60km southeast of Leonora WA, within a package of Exploration and Prospecting Licences (see Tenement Information Table) and Mining Leases M39/296 and M31/486. The tenements are in good standing and no known impediments exist.
exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	 The main Apollo Hill deposit was discovered in 1986 by Fimiston Mining Ltd during a drill program aimed at finding the source of abundant eluvial gold at the base of a prominent hill in the area. Active drilling by Fimiston, Battle Mountain (Australia) Ltd, Homestake Gold of Australia Ltd, Mining Project Investors Pty Ltd and Hampton Hill Mining NL since then has outlined extensive gold mineralisation and alteration over a 1km strike length.
Geology	 Deposit type, geological setting and style of mineralisation. 	The project is located in the Archean aged Norseman-Wiluna Belt, Eastern Goldfields Province of the Yilgarn Craton. The deposit occurs in a mineralised structure associated with the 1km wide Apollo Shear Zone, a component of the Keith- Kilkenny Fault system. Strongly deformed felsic volcanoclastic rocks lie to the west of the Apollo shear, with relatively undeformed pillow basalt and dolerite to the east. Zones of mylonitisation, shearing, brecciation and fracturing caused by the shear is present along the contact, and resulting open space structures are favourable for trapping ore fluids and forming ore deposits. Multiple gold mineralisation events are interpreted to have occurred at Apollo Hill during a complex deformational history. Gold mineralisation is accompanied by quartz veins and carbonate-pyrite alteration associated with a mafic-felsic contact.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth 	 All relevant information material to the understanding of exploration results has been included within the body of the announcement or as appendices. No information has been excluded.

Criteria	JORC Code explanation	Commentary	
	• hole length.		
	• If the exclusion of this information is justified on		
	the basis that the information is not Material and		
	this exclusion does not detract from the		
	understanding of the report, the Competent Person		
	should clearly explain why this is the case.		
Data	• In reporting Exploration Results, weighting	 No length weighting or top-cuts have 	
aggregation	averaging techniques, maximum and/or minimum	been applied.	
methods	grade truncations (eg cutting of high grades) and	No metal equivalent values are used for	
	cut-off grades are usually Material and should be	reporting exploration results.	
	stated.		
	Where aggregate intercepts incorporate short		
	lengths of high grade results and longer lengths of		
	now grade results, the procedure used for such		
	evamples of such agaregations should be shown in		
	detail		
	• The assumptions used for any reporting of metal		
	equivalent values should be clearly stated.		
Relationship	• These relationships are particularly important in	• True widths are generally estimated to be	
between	the reporting of Exploration Results.	about 60% of the down-hole width.	
mineralisation	• If the geometry of the mineralisation with respect		
widths and	to the drill hole angle is known, its nature should		
intercept	be reported.		
lengths	• If it is not known and only the down hole lengths		
	are reported, there should be a clear statement to		
	this effect (eg 'down hole length, true width not		
Discussion	known').		
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intersents should be included for any 	• Refer to Figures in the body of text.	
	significant discovery being reported These should		
	include but not be limited to a plan view of drill		
	hole collar locations and appropriate sectional		
	views.		
Balanced	• Where comprehensive reporting of all Exploration	All results are reported.	
reporting	Results is not practicable, representative reporting		
	of both low and high grades and/or widths should		
	be practiced to avoid misleading reporting of		
	Exploration Results.		
Other	• Other exploration data, if meaningful and	No other substantive exploration data are	
substantive	material, should be reported including (but not	available.	
exploration	limited to): geological observations; geophysical		
uutu	samples - size and method of treatment:		
	metalluraical test results: hulk density		
	aroundwater. aeotechnical and rock		
	characteristics; potential deleterious or		
	contaminating substances.		
Further work	• The nature and scale of planned further work (eg	• Future work at Apollo Hill will include RC	
	tests for lateral extensions or depth extensions or	and diamond drilling and further	
	large-scale step-out drilling).	geochemical sampling.	
	• Diagrams clearly highlighting the areas of possible		
	extensions, including the main geological		
	interpretations and future drilling areas, provided		
	this information is not commercially sensitive.		

TENEMENT INFORMATION AS REQUIRED BY LISTING RULE 5.3.3 Granted tenements

TENEMENT	PROJECT	LOCATION	OWNERSHIP	CHANGE IN
				QUARTER
E39/1198	Apollo Hill	Leonora, WA	100%	
E39/1236	Apollo Hill	Leonora, WA	100%	
P31/1797	Apollo Hill	Leonora, WA	100%	
P39/4586	Apollo Hill	Leonora, WA	100%	
P39/4587	Apollo Hill	Leonora, WA	100%	
P39/4588	Apollo Hill	Leonora, WA	100%	
P39/4589	Apollo Hill	Leonora, WA	100%	
P39/4590	Apollo Hill	Leonora, WA	100%	
P39/4591	Apollo Hill	Leonora, WA	100%	
P39/4592	Apollo Hill	Leonora, WA	100%	
P39/4677	Apollo Hill	Leonora, WA	100%	
P39/4678	Apollo Hill	Leonora, WA	100%	
P39/4679	Apollo Hill	Leonora, WA	100%	
P39/4789	Apollo Hill	Leonora, WA	100%	
E40/0296	27 Well	Leonora, WA	100%	
E40/0303	Bulyairdie	Leonora, WA	100%	
M39/0296	Isis	Leonora, WA	100%	
E40/0337	The Gap	Leonora, WA	100%	
E31/1063	Apollo Hill South	Leonora, WA	100%	
E31/1075	Yerilla	Leonora, WA	100%	
E31/1076	Mt Remarkable	Leonora, WA	100%	
M31/486	Apollo Hill ML	Leonora, WA	100%	
E31/1087	Rise Again	Leonora, WA	100%	
P31/2071	Rise Again	Leonora, WA	100%	
P31/2069	Rise Again	Leonora, WA	100%	
P31/2072	Rise Again	Leonora, WA	100%	
P31/2073	Rise Again	Leonora, WA	100%	
P31/2068	Rise Again	Leonora, WA	100%	
P31/2070	Rise Again	Leonora, WA	100%	
EL8326	Attunga	Attunga,NSW	100%	
ML1361	Mayday	Cobar,NSW	50%	
EL7461	Gilgunnia	Cobar,NSW	50%	
EL7711	Ruby Silver	Armidale,NSW	100%	
EL7519	Gilgunnia South	Cobar,NSW	100%	
EL7976	Mundoe	Cobar,NSW	100%	
EL8070	Tara	Cobar,NSW	100%	
EL8071	Manuka	Cobar,NSW	100%	
EL8105	Mirrabooka	Cobar,NSW	100%	
EL8112	Yackerboon	Cobar,NSW	100%	
EL8113	Iris Vale	Cobar,NSW	100%	
EL8125	Hillview Nth	Cobar,NSW	100%	
EL8126	Norma Vale	Cobar,NSW	100%	
EL8201	Mundoe North	Cobar,NSW	100%	
EL8114	Yara	Cobar,NSW	100%	
EL8115	Burthong	Cobar,NSW	100%	
EL8117	Illewong	Cobar,NSW	100%	
EL8307	Sandy Creek	Cobar, NSW	100%	
EL8216	Orana	Ivanhoe,NSW	100%	
EL8247	Gulf Creek	Barraba,NSW	100%	

EL8314	Glenwood	Cobar, NSW	100%	
EL8336	Brambah	Cobar, NSW	100%	
EL8345	Pine Ridge	Cobar, NSW	100%	
EL8391	Gilgunnia North	Cobar, NSW	100%	Granted
EL8414	Mt Walton	Cobar, NSW	100%	Granted

Tenements under application

TENEMENT	PROJECT	LOCATION	STATUS
E31/1116	Apollo Hill	Leonora, WA	Under application
E39/1887	Apollo Hill	Leonora, WA	Under application
ELA5206	Beanbah	Cobar, NSW	Under application
ELA5204	Michelago	Cooma, NSW	Under application
ELA5229	Marigold	Cobar, NSW	Under application