

LYNAS FIND LITHIUM PROJECT UPDATE

Dakota Minerals Limited ("Dakota" or "Company") is pleased to announce the latest update at its Lynas Find lithium project.

HIGHLIGHTS:

.

- Exceptional grades of up to 5.12% Li₂O returned from comprehensive surface sampling on main Lynas Find pegmatite.
- Extensions to main pegmatite identified. .
 - Three additional mineralised pegmatites discovered, with initial reconnaissance samples grading >1% Li₂O.
- Drilling on schedule for April 2016. .
 - Airborne geophysics under way to identify further drill targets.
 - New tenement application for Dakota's Lynas Find project, covering prospective region between Wodgina and Pilgangoora.

LYNAS FIND LITHIUM PROJECT – MAPPING/SAMPLING PROGRAMME DETAILS

Central Lynas Find Pegmatite Area – Drill Target Definition

The E-W to SE striking Central Lynas Find Pegmatite and surrounding areas were mapped and rock-chip sampled in detail by the Dakota field team during January 2016. Rock chip samples from an approximate 10m grid (dependent on available outcrop) over the main Lynas Find pegmatite yielded values up to 5.12 % Li₂O and an average of 1.7 % Li₂O and 78ppm Ta from 98 rock chip samples.

The Central Lynas Find pegmatite area has a strike of over 500m, and variable width from a few metres to a maximum horizontal width of 80m. It appears to be a roughly tabular body and dips SW to SE at 20° to 40°. It is apparently truncated to the east by a north-south striking shear zone intruded by a late Proterozoic dolerite dyke. The NE part of the Central Lynas Find pegmatite is structurally complex where a steep-dipping synform of high-grade pegmatite, capped by ultramafic rocks, is present adjacent to the N-S shear. The Central Lynas Find pegmatite has intruded a sequence of basalt and ultramafic serpentinite to tremolite talc rock. The stratigraphic contacts are offset 110m across the Central Lynas Find pegmatite, indicating the pegmatite intruded into an E-W trending apparent sinistral fault (possible south-dipping thrust).

CORPORATE DIRECTORY

Non-Executive Chair John Fitzgerald

Chief Executive David J Frances

Executive Technical Director Dr. Francis Wedin

Non-Executive Director Wade Guo

FAST FACTS

Issued Capital: Options Issued:

87.4m 10m

CONTACT DETAILS

25-27 Jewell Parade North Fremantle 6159 info@dakotaminerals.com.au

T: +61 8 9336 6619 F: +61 8 9335 3565

www.dakotaminerals.com.au

ACN: 009 146 794

Apart from a barren fine-grained chill margin on the footwall, the main pegmatite is well-endowed with coarse grained spodumene up to 30cm long and individual crystals up to 8cm wide. The coarse grained pegmatite is comprised of very coarse feldspar, spodumene, quartz and muscovite.

Work is under way to finalise drilling targets for April 2016, based on the mapping and sampling programme.

Reconnaissance Work

Several new spodumene-bearing pegmatite dykes were located in the region, or extended from known outcrops, and reconnaissance-sampled during the January 2016 mapping campaign, including:

- Four separate outcrops over 200m strike to the west of the Central Lynas Find pegmatite yielding average results of 2.55% Li₂O and 170ppm Ta, with spodumene and minor lepidolite. This new discovery increases the strike of the Central Lynas Find pegmatite at >1% Li₂O to over 500m;
- A pegmatite 300m SW of Central Lynas Find, greater than 6m horizontal width, yielding values of up to 3.68% Li₂O and 196ppm Ta. This pegmatite is located under 1m of alluvium, exposed in a washout on the main access track, and is thus known as the "Track Pegmatite". Subcrops through colluvium to the NE give a defined strike of >80m;
- A NE to E-W striking pegmatite immediately east of the Monster Pegmatite (Pilbara Minerals) and 750m SW of Central Lynas Find, striking over 300m, up to several metres thick and yielding rock chip values up to 2.61% Li₂O and 104ppm Ta, now known as "Lynas Find South West"; and
- A pegmatite located 200m NE of the Central Lynas Find pegmatite, now referred to as "Lynas Find North East", crops out over 260m strike and is up to 11m wide (horizontal width), dipping at 35° to the SE. A spodumene zone within the pegmatite assayed 3.03% Li₂O and 50 ppm Ta.

Some further follow-up sampling was conducted, the results of which are outstanding. It is anticipated that some reconnaissance drilling will be conducted in April 2016 to follow-up the newly identified targets, as well as the Central Lynas Find pegmatite.

Figure 1: Rock-chip results from comprehensive surface sampling at Lynas Find pegmatite, and reconnaissance sampling at surrounding pegmatites

Figure 2: Lepidolite-rich sample from the western pegmatite yielding 2.20% Li₂O and 562 ppm Ta.

Figure 3: Exposure of the Track Pegmatite showing spodumene crystals up to 20cm long. The outcrop grades 3.86% Li₂O and 196ppm Ta.

NEW TENEMENT APPLICATION

Dakota has pegged a new tenement application, E45/4689, between the Wodgina mine and the Pilgangoora-Lynas Find district. The tenement area is known from historic records to host pegmatites, and its position relative to the Pilgangoora structural trend means it is considered to be prospective for lithium mineralisation.

Figure 4: E45/4689 (new tenement application) map

GEOPHYSICS PROGRAMME

Dakota has commissioned Magspec Airborne Surveys Pty Ltd to conduct an airborne geophysics survey across its Lynas Find lithium project tenements. The survey will be conducted on 25m line spacing, and aims to use magnetic and radiometric data to assist with drill targeting. The survey had commenced at the time of writing, and is expected to last two weeks.

Lynas Find Lithium Project

Dakota's Lynas Find lithium project, to which Dakota has 100% rights subject to completion of the transaction outlined in an announcement on the 18th of December 2016, is located on and in the vicinity of an extensive lithium-tantalum bearing pegmatitic dyke swarm. Peer activity in the immediate area known as the Pilgangoora, includes Pilbara Minerals Limited (ASX:PLS) and Altura Mining Limited (ASX:AJM), which have both discovered significant lithium and tantalum resources in recent times. Pilbara Minerals has identified a total Indicated and Inferred resource of 80.2Mt @ 1.26% Li₂O and 32.9Mt @ 0.022% Ta₂O5. On a neighbouring property, Altura Mining has identified an Indicated and Inferred resource of 26.1Mt @ 1.20% Li₂O. Following recent exploration activity, the Pilgangoora area has been confirmed to contain one of the world's largest hard-rock lithium deposits, mostly in the form of the mineral spodumene. Tenement E45/4523 within the Lynas Find Project is held by Wildviper Pty Ltd. Dakota has a contractual right to acquire a 100% legal and beneficial interest in E45/4523, subject to Ministerial consent to the transfer under the Mining Act 1978 (WA) if the transfer is to occur before the first anniversary of the grant. Dakota intends to progress its Lynas Find lithium project with reconnaissance RC drilling at the earliest opportunity.

Competent Person Statement

The information in this report that relates to Exploration Results, Mineral Resources or Ore Reserves is based on information compiled by Dr Francis Wedin, who is a member of the Australasian Institute of Mining and Metallurgy. Dr Wedin is a full-time employee of Dakota and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity he is undertaking to qualify as a competent person as defined in the 2012 Edition of the "Australasian Code for reporting of Exploration Results, Exploration Targets, Mineral Resources and Ore Reserves" (JORC Code). Dr Wedin consents to the inclusion in this report of the matters based upon the information in the form and context in which it appears.

CONTACTS:

Dakota Minerals Limited

David Frances, Chief Executive Officer Francis Wedin, Executive Technical Director Tel: +61 (8) 9336 6619

APPENDIX 1: ROCK CHIP RESULTS

SAMPLE_ID	SAMPLE_TYPE	Prospect	TENEMENT	Area Sampled Diameter (m)	Outcrop Quality	Weathering_0_to_5	Li %	Li ₂ 0 %	Ta ppm
123001	Rock Chip	Lynas Find	E45/4523	1	g	0	0.01	0.024	161
123002	Rock Chip	Lynas Find	E45/4523	1	g	3	1.41	3.036	50.1
123003	Rock Chip	Lynas Find	E45/4523	5	р	3	0.02	0.047	121
123004	Rock Chip	Lynas Find	E45/4523	1.5	g	1	0.02	0.045	74.4
123005	Rock Chip	Lynas Find	E45/4523	5.5	g	1	0.04	0.075	106
123006	Rock Chip	Lynas Find	E45/4523	2	g	0	0.03	0.058	47.7
123007	Rock Chip	Lynas Find	E45/4523	0.2	g	1	1.05	2.256	37.9
123008	Rock Chip	Lynas Find	E45/4523	2	m	0	0.94	2.026	562
123009	Rock Chip	Lynas Find	E45/4523	0.2	g	1	1.46	3.150	48.5
123010	Rock Chip	Lynas Find	E45/4523	1	g	1	1.28	2.764	34.9
123011	Rock Chip	Lynas Find	E45/4523	2	g	1	1.21	2.614	104
123012	Rock Chip	Lynas Find	E45/4523	2	vg	1	1.71	3.684	196
123013	Rock Chip	Lynas Find	E45/4523	2	g	1	0.04	0.080	85.7
123014	Rock Chip	Lynas Find	E45/4523	1	g	0	0.01	0.028	234
123015	Rock Chip	Lynas Find	E45/4523	1	р	1	0.32	0.689	60.7
123017	Rock Chip	Lynas Find	E45/4523	3	g	3	0.03	0.071	45.9
123016	Rock Chip	Lynas Find	E45/4523	3	р	1	0.82	1.761	91.7
123018	Rock Chip	Lynas Find	E45/4523	1	g	1	2.21	4.752	57.7
123019	Rock Chip	Lynas Find	E45/4523	1	р	4	1.02	2.196	32
123020	Rock Chip	Lynas Find	E45/4523	4	р	2	1.51	3.242	57.3
123021	Rock Chip	Lynas Find	E45/4523	2	р	2	2.38	5.116	34.9
123022	Rock Chip	Lynas Find	E45/4523	5	g	2	1.48	3.193	80
123023	Rock Chip	Lynas Find	E45/4523	0.6	g	2	1.42	3.046	10.8
123024	Rock Chip	Lynas Find	E45/4523	3	m	2	1.68	3.611	138
123025	Rock Chip	Lynas Find	E45/4523	6	р	3	1.46	3.135	172

SAMPLE_ID	SAMPLE_TYPE	Prospect	TENEMENT	Area Sampled Diameter (m)	Outcrop Quality	Weathering_0_to_5	Ці %	Li20 %	Ta ppm
123026	Rock Chip	Lynas Find	E45/4523	2	р	2	1.88	4.056	88.3
123027	Rock Chip	Lynas Find	E45/4523	3	р	2	1	2.151	50
123028	Rock Chip	Lynas Find	E45/4523	1.5	m	2	1.56	3.354	157
123029	Rock Chip	Lynas Find	E45/4523	2	g	1	0.04	0.075	45.3
123030	Rock Chip	Lynas Find	E45/4523	5	g	1	0.02	0.041	43.7
123031	Rock Chip	Lynas Find	E45/4523	4	g	0	0.04	0.086	63.2
123032	Rock Chip	Lynas Find	E45/4523	6	g	0	0.03	0.067	40.9
123033	Rock Chip	Lynas Find	E45/4523	2	g	0	0.28	0.603	78
123034	Rock Chip	Lynas Find	E45/4523	2	m	0	0.06	0.133	51.4
123035	Rock Chip	Lynas Find	E45/4523	4	g	0	0.01	0.017	63.6
123036	Rock Chip	Lynas Find	E45/4523	1	g	3	0.08	0.170	97.6
123037	Rock Chip	Lynas Find	E45/4523	3	р	4	1.03	2.207	86.7
123039	Rock Chip	Lynas Find	E45/4523	1	р	1	0.01	0.024	185
123038	Rock Chip	Lynas Find	E45/4523	10	g	4	0.33	0.719	99.6
123040	Rock Chip	Lynas Find	E45/4523	2	m	2	0.76	1.643	406
123041	Rock Chip	Lynas Find	E45/4523	5	vg	0	0.02	0.045	117
123042	Rock Chip	Lynas Find	E45/4523	4	vg	1	0.64	1.387	157
123043	Rock Chip	Lynas Find	E45/4523	5	g	1	1.54	3.313	60
123044	Rock Chip	Lynas Find	E45/4523	4	vg	2	1.01	2.168	45.6
123045	Rock Chip	Lynas Find	E45/4523	2	vg	2	1.1	2.360	117
123046	Rock Chip	Lynas Find	E45/4523	4	vg	2	1.16	2.497	51.9
123047	Rock Chip	Lynas Find	E45/4523	5	m	2	0.94	2.030	58.3
123048	Rock Chip	Lynas Find	E45/4523	3	m	4	0.49	1.051	29.4
123049	Rock Chip	Lynas Find	E45/4523	0.5	р	3	1.12	2.403	38.4
123050	Rock Chip	Lynas Find	E45/4523	3	g	2	1.02	2.185	68.6
123051	Rock Chip	Lynas Find	E45/4523	1	g	2	1.41	3.031	326
123052	Rock Chip	Lynas Find	E45/4523	0.7	vg	1	1.37	2.950	149

SAMPLE_ID	SAMPLE_TYPE	Prospect	TENEMENT	Area Sampled Diameter (m)	Outcrop Quality	Weathering_0_to_5	Li %	Li ₂ 0 %	Ta ppm
123053	Rock Chip	Lynas Find	E45/4523	0.3	m	2	1.62	3.494	176
123054	Rock Chip	Lynas Find	E45/4523	0.4	vg	2	1.93	4.157	48.8
123055	Rock Chip	Lynas Find	E45/4523	0.4	m	3	1.27	2.743	127
123056	Rock Chip	Lynas Find	E45/4523	2	g	0	0.02	0.032	108
123057	Rock Chip	Lynas Find	E45/4523	0.4	vp	4	0.78	1.671	95.2
123058	Rock Chip	Lynas Find	E45/4523	0.4	р	3	0.13	0.271	187
123059	Rock Chip	Lynas Find	E45/4523	0.5	m	3	0.95	2.054	64.5
123060	Rock Chip	Lynas Find	E45/4523	1.5	m	3	1.85	3.987	45.2
123061	Rock Chip	Lynas Find	E45/4523	0.5	m	3	0.97	2.086	256
123062	Rock Chip	Lynas Find	E45/4523	1.5	р	4	1.46	3.150	158
123063	Rock Chip	Lynas Find	E45/4523	1	vp	5	0.3	0.652	442
123064	Rock Chip	Lynas Find	E45/4523	1	р	4	1.28	2.749	283
123065	Rock Chip	Lynas Find	E45/4523	2	vp	3	0.3	0.646	21
123066	Rock Chip	Lynas Find	E45/4523	2	m	3	1.13	2.424	81.3
123067	Rock Chip	Lynas Find	E45/4523	1	m	4	0.93	1.996	110
123068	Rock Chip	Lynas Find	E45/4523	2	g	0	0.02	0.047	47
123069	Rock Chip	Lynas Find	E45/4523	4	g	0	0.02	0.034	90.1
123070	Rock Chip	Lynas Find	E45/4523	4	g	0	0.01	0.019	98.9
123071	Rock Chip	Lynas Find	E45/4523	10	g	0	0.02	0.045	181
123072	Rock Chip	Lynas Find	E45/4523	1	g	2	0.51	1.089	54.1
123073	Rock Chip	Lynas Find	E45/4523	1	g	0	1.24	2.663	148
123074	Rock Chip	Lynas Find	E45/4523	2	g	1	0.89	1.912	37.2
123075	Rock Chip	Lynas Find	E45/4523	2	vg	1	0.97	2.086	39.3
123076	Rock Chip	Lynas Find	E45/4523	1.5	g	0	0.01	0.011	34.9
123077	Rock Chip	Lynas Find	E45/4523	1	g	0.5	1.03	2.211	32.3
123078	Rock Chip	Lynas Find	E45/4523	1	g	0	0.02	0.034	89
123079	Rock Chip	Lynas Find	E45/4523	1	g	0.5	0.96	2.071	45.4

www.dakotaminerals.com.au

SAMPLE_ID	SAMPLE_TYPE	Prospect	TENEMENT	Area Sampled Diameter (m)	Outcrop Quality	Weathering_0_to_5	Li %	Li ₂ 0 %	Ta ppm
123080	Rock Chip	Lynas Find	E45/4523	1	g	1	1.51	3.255	65.3
123081	Rock Chip	Lynas Find	E45/4523	0.5	m	0.5	0.12	0.267	42.2
123082	Rock Chip	Lynas Find	E45/4523	3	g	1	0.59	1.264	95.1
123083	Rock Chip	Lynas Find	E45/4523	2	р	2	0.49	1.049	56.5
123084	Rock Chip	Lynas Find	E45/4523	1.5	m	2	0.36	0.775	43.9
123085	Rock Chip	Lynas Find	E45/4523	0.5	р	3	0.37	0.803	58.5
123086	Rock Chip	Lynas Find	E45/4523	1	m	2	0.55	1.180	26
123087	Rock Chip	Lynas Find	E45/4523	2	р	3	1.01	2.175	51.1
123088	Rock Chip	Lynas Find	E45/4523	1	m	0	0.08	0.172	73.3
123089	Rock Chip	Lynas Find	E45/4523	1	р	2	0.26	0.568	19.5
123090	Rock Chip	Lynas Find	E45/4523	4	g	0	0.03	0.058	82.2
123091	Rock Chip	Lynas Find	E45/4523	0.3	m	3	1.06	2.280	78.2
123092	Rock Chip	Lynas Find	E45/4523	1	m	3	1.21	2.612	189
123093	Rock Chip	Lynas Find	E45/4523	1.5	vg	3	1.29	2.777	106
123094	Rock Chip	Lynas Find	E45/4523	1	vg	3	1.116	2.403	66.4
123095	Rock Chip	Lynas Find	E45/4523	1	g	3	0.958	2.063	130
123096	Rock Chip	Lynas Find	E45/4523	2	g	3	0.964	2.075	101
123097	Rock Chip	Lynas Find	E45/4523	1	g	3	0.509	1.096	50.1
123098	Rock Chip	Lynas Find	E45/4523	1	m	3	0.392	0.844	35.4
123099	Rock Chip	Lynas Find	E45/4523	1	m	4	0.859	1.849	57.3
123100	Rock Chip	Lynas Find	E45/4523	0.5	g	3	1.492	3.212	66
123101	Rock Chip	Lynas Find	E45/4523	0.5	g	0	0.036	0.078	43.3
123102	Rock Chip	Lynas Find	E45/4523	0.5	vg	0	0.994	2.140	78.4
123103	Rock Chip	Lynas Find	E45/4523	0.5	vg	0	0.649	1.397	17.5
123104	Rock Chip	Lynas Find	E45/4523	0.5	vg	0.5	1.831	3.942	38.2
123105	Rock Chip	Lynas Find	E45/4523	0.5	vg	0	0.999	2.151	216
123106	Rock Chip	Lynas Find	E45/4523	0.5	vg	0.5	1.064	2.291	132

SAMPLE_ID	SAMPLE_TYPE	Prospect	TENEMENT	Area Sampled Diameter (m)	Outcrop Quality	Weathering_0_to_5	Li %	Li ₂ 0 %	Ta ppm
123107	Rock Chip	Lynas Find	E45/4523	1	vg	0	0.006	0.013	86
123108	Rock Chip	Lynas Find	E45/4523	1	vg	0	1.533	3.301	160
123109	Rock Chip	Lynas Find	E45/4523	1	g	4	0.689	1.483	87
123110	Rock Chip	Lynas Find	E45/4523	1	p/m	4	0.167	0.360	47.2
123111	Rock Chip	Lynas Find	E45/4523	5	m	0	0.059	0.127	81.4
123112	Rock Chip	Lynas Find	E45/4523	5	р	4	0.404	0.870	54.4
123113	Rock Chip	Lynas Find	E45/4523	0.2	m	1	0.057	0.123	140
123114	Rock Chip	Lynas Find	E45/4523	7	g	0	0.046	0.099	226

Outcrop Quality: p – poor; m – medium; g – good; vg – very good

APPENDIX 2: PILGANGOORA - JORC TABLE 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling Techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	Dense gridded (Central Lynas Find) and reconnaissance (neighbouring pegmatites) rock-chip samples collected, from surface rock outcrops and subcrops. Samples submitted for assay typically weigh 3-4kg.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	
	Aspects of the determination of mineralisation that are Material to the Public Report.	
	In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Not applicable.
Drilling Techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc.).	Not applicable.
Drill Sample Recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Not applicable.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support	

	D	AK Ine	D R A	ra Ls
AI	CN: 009	46 794		

tests

Criteria	JORC Code Explanation	Commentary		
	appropriate Mineral Resource estimation, mining studies and metallurgical studies.			
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Not applicable.		
	The total length and percentage of the relevant intersections logged.			
Sub- sampling techniques and sample preparation	If core, whether cut or sawn and whether quarter, half or all core taken.	Sample preparation was conducted at ALS laboratories to industry best practice standards: jaw crushing so that >70% passes -6mm, pulverizing and splitting the samples.		
	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.			
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.			
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples.			
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field			
	Quality control procedures adopted for all sub- sampling stages to maximise representivity of samples			
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Sample size accepted as general industry standard. Every effort is made whilst sampling to provide a representative sample from the chosen sample point.		
	Whether sample sizes are appropriate to the grain size of the material being sampled.			
Quality of assay data and laboratory	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Analytical procedures used included ALS technique ME-MS85 - a lithium borate fusion – for select elements, and by ME-ICP82b, a sodium peroxide		

Criteria	JORC Code Explanation	Commentary
		fusion used to analyse for high grade lithium.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Not applicable.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established	Lab standards and blanks were used, and no external blanks or duplicates were inserted, due to reconnaissance nature of samples. No external laboratory checks have been used.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel.	Not applicable.
	The use of twinned holes.	Not applicable.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols	All field data is manually collected in the field, entered into Excel spread sheets, then validated and stored electronically and in hard copy in the Perth office.
	Discuss any adjustment to assay data.	Li was converted to Li_2O for the purposes of reporting. The conversion used was $Li_2O = Li \times 2.153$
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	All geochemical samples were located using a hand-held GPS.
	Specification of the grid system used	The grid system used is GDA 1994 MGA Zone 50.
	Quality and adequacy of topographic control.	All RL data to date has been collected using a hand-held GPS.
Data spacing and distribution	Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to	Rock-chip sampling completed at Central Lynas Find pegmatite at roughly 10m grid spacing where possible; sample spacing is variable however and based on outcrop location.

	D M	A	K	0 R	T A I	A S
A	CN: 009	146 79	34			

Criteria	JORC Code Explanation	Commentary
	appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Not applicable.
	Whether sample compositing has been applied.	Not applicable.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Sampling completed at right angles to interpreted strike of pegmatite dykes, from selected points along the strike of the pegmatites.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Not applicable.
Sample security	The measures taken to ensure sample security	Contract geologist and field assistant conducted all sampling and subsequent storage in field. Samples were then delivered via road freight to ALS Global laboratories in Perth.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	None completed.

Section 2 Reporting of Exploration Results

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	The Lynas Find Project tenements and interests, which Dakota has entered into an agreement with Asgard Metals Pty Ltd (ASM) and Slipstream Capital (SRI) to acquire, comprise: (a) exploration licence E45/3648 (from ASM); (b) prospecting licence P45/2783 (from ASM); (c) a contractual right to acquire a 100% legal and beneficial interest in E45/4523, subject to Ministerial consent to the transfer under the Mining Act if the transfer is to occur before the first anniversary of grant; and (d) all of the shares in Slipstream, which holds a contractual right, upon the grant of exploration licence applications E45/4624, E45/4633 and E45/4640 to Slipstream Resources Investments Pty Ltd, to acquire a 100% legal and beneficial interest in E45/4624, E45/4633 and E45/4640, subject to Ministerial consent to the transfers under the Mining Act in respect of any transfer that is to occur before the first anniversary of grant.
	with any known impediments to obtaining a licence to operate in the area.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Lithex Resources Ltd. took some rock-chip samples from the Lynas Find pegmatite in 2012, which graded up to 5%Li ₂ O. No drilling is known to have been conducted by any party within the sampling area.
Geology	Deposit type, geological setting and style of mineralisation.	The Lynas Find Project sits within a broad area of pegmatite hosted lithium-tantalum mineralisation. The pegmatites are interpreted to have been intruded into N-S trending faults within the metamorphic greenstone rocks of the Archaean- aged Warrawoona group, close to the contact of a granite of the Carlindi Batholith. The amphibolite-grade

Criteria	JORC Code Explanation	Commentary
		metamorphic rocks are composed of mafic lavas, chert and pyroclastics, some of which are also Au-bearing. The pegmatites are LCT spodumene type with minor cleavelandite replacement units. The cleavelandite units usually contain lepidolite, spodumene, tantalite-columbite, cassiterite and beryl (Guidebook to the Pegmatites of Western Australia, Jacobson et al, 2007).
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	Not applicable.
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	Not applicable. Not applicable.
Relationship between mineralisation widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known')	Not applicable.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a	See Figure 1 in body of report.

Criteria	JORC Code Explanation	Commentary
	plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Results for all rock chip sampling are listed in Appendix 1.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful and material data has been reported.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or largescale step-out drilling).	First pass RC drilling.