

ABN 91 124 752 745

17 February 2016

Significant Gold Mineralisation at COMPANY DIRECTORS

Peter Thompson Managing Director/ Executive Chairman

ASX Code: GBZ

Neil Norris Exploration Director – Executive

Hun Seng Tan Non- Executive Director

CONTACT DETAILS

Principal & Registered Office Suite 8, 7 The Esplanade, Mt Pleasant, WA 6153

Exploration Office 10 Parker Street, Castlemaine, Victoria 3450

Website www.gbmr.com.au

Email info@gbmr.com.au Phone +61 (8) 9316 9100

Fax +61 (8) 9315 5475

Phone (Exploration Office) +61 (3) 5470 5033

Review Identifies Significant Gold Mineralisation at the Conway Prospect, Mount Coolon Qld

- Significant high-grade gold intersections at the Wobegong prospect including:
 - 14 m @ 16.08 g/t Au from surface in drill hole CFS005 (including 1 m @ 208g/t Au from 1 m)
 - 2 m @ 26.6 g/t Au from 40 m in drill hole CON006
 - 8 m @ 4.91 g/t Au from 26 m in drill hole C013.
- High-grade banded epithermal and chalcedony quartz reporting 422ppm Au and 360ppm Ag identified within scree float within the Wobegong prospect.
- Conway Project prospects include; Wobegong, Red Flag Hill, Quartz Reef Hill, Split Hill, Bustard Egg Hill, Mill Hill, Big Sinter Hill and Silica Valley.
- Conway System contains multiple prospects and is considered to hold potential for both bonanza epithermal vein style deposits and bulk tonnage low-grade disseminated gold deposits

Australian resources company **GBM Resources Limited** (ASX: **GBZ**) ("**GBM**" or "**the Company**") is pleased to announce that its ongoing review of available exploration data has confirmed the existence of epithermal gold mineralisation within the Conway Project tenement area.

Ongoing data compilation and assessment has now identified eight major mineralising systems, including the Conway Mineralised System, within the company's 100% owned 770 square kilometre tenement holding at Mount Coolon in Queensland's Drummond Basin, host to a number of multi-million ounce deposits.

The Conway Mineralising System hosts a cluster of highly prospective low sulphidation epithermal gold prospects, with previous explorers noting geological similarities to the nearby high-grade Pajingo Gold Mine and the Waihi Gold Mine in New Zealand.

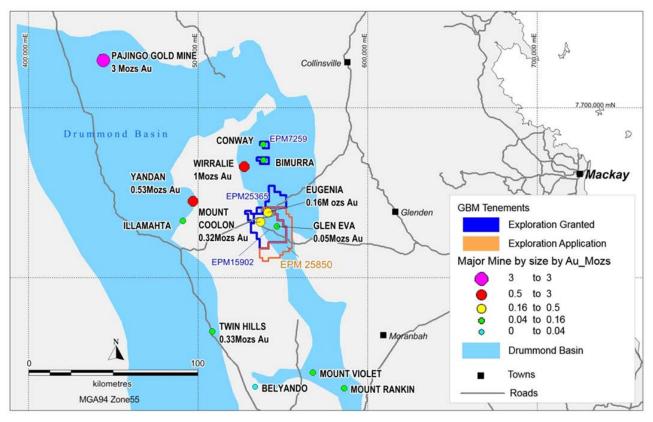


Figure 1: Mt Coolon project tenement group location plan.

The Conway Project

Mineralisation is largely controlled by a broad northeast trending dextral shear system with the majority of outcropping mineralised quartz veins lying along these trends. The highest grade rock chip samples and drill intersections have come from multiphase brecciated type veins, the best examples of which come from the Wobegong prospect.

High-grade drilling results have been intersected by multiple phases of drilling occurring within the Conway area. The highest grade intersects occur within the Wobegong prospect and include 14 m @ 16.08 g/t Au from surface in CFS005 (including 1 m @ 208 g/t Au from 1 m), 2 m @ 26.6 g/t Au from 40 m in CON006 and 8 m @ 4.91 g/t Au from 26 m in C013.

Significant results have also been intercepted within the Red Flag Hill prospect including **4 m @ 7.35 g/t Au** from **28 m** in DDHC081 and **6 m @ 4.13 g/t Au from 26 m** in DDHC082 at Red Flag Hill.

Other less explored prospects have encountered intercepts which including 4 m @ 2.56 g/t Au from 224 m in CON018 at Mill Hill, 4 m @ 2.03 g/t Au from 22 m in CO35 at Quartz Reef Hill and 10 m @ 0.5 g/t Au from surface in DDHC003 at Bustard Egg Hill. (*Refer to page 26 for the Conway Key Intersections Table*).

Previous tenement holders have predominantly tested for shallow mineralisation, leaving significant potential for the discovery of bonanza-style epithermal mineralisation at depth.

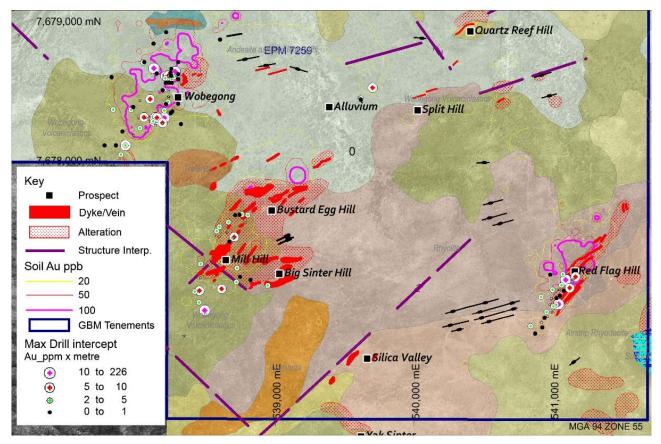


Figure 2: Drillhole Location plan for Conway area showing maximum gram metre intercept (Length weighted Au Average × metre) over geological and alteration mapping.

Mapping and surface geochemical sampling within the Conway region has further established the extent of the individual prospect areas. Extensive soil sampling programmes have been completed and have identified large, high-level anomalies around prospect areas. Defined areas of greater than 20 ppb Au from soil sampling cover 65 hectares at Wobegong while Bustard Egg Hill, Mill Hill and Big Sinter Hill are greater than 40 hectares and greater than 23 hectares at Red Flag Hill. Soil anomalies follow the northeast trend of quartz veins and dykes identified in mapping. Defined areas with very high levels of gold (greater than 100 ppb Au) from soil sampling are greater than 14 hectares at Wobegong and greater than 4 hectares at Red Flag Hill.

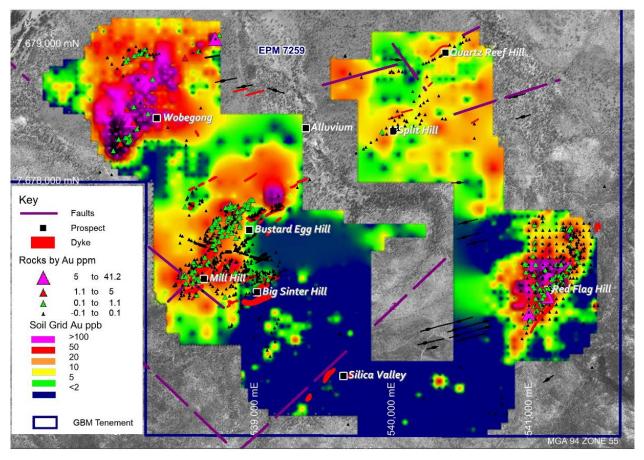


Figure 3: Gridded gold in soil over Conway mineralised prospect with overprinting rock chip samples.

Mapping and sampling of geochemically anomalous areas has identified extensive areas of silica alteration and high tenor gold results in rock samples. Rock sampling in 2002 within the Wobegong prospect identified two separate high-grade banded epithermal quartz sub-crop samples reporting 422 ppm Au and 360 ppm Ag (sample R/85/R) and 35.1 ppm Au and 13.5 ppm Ag (sample R/98/R).

Figure 4: Chalcedonic quartz and minor grey sulphidic silica rock chip sample reporting 422 ppm Au & 360 ppm Ag (sample R/85/R) and 35.1 ppm Au & 13.5 ppm Ag (sample R/98/R).

Forward Programme

The Company will continue its evaluation of the eight mineralising systems which includes Conway and aims to complete in the first half of 2016 a scoping study evaluating the potential benefit of heap leach gold extraction from known oxide Resources at Eugenia Deposit and also potential for heap leach at the Bimurra prospect.

Background to the Mount Coolon Gold Project

In January 2015 GBM announced the signing of a binding Share Sale Agreement ("SSA") with Drummond Gold Limited (ASX: DGO) pursuant to which GBM would acquire a 100% interest in all of the issued capital of Mt Coolon Gold Mines Pty Ltd. This transaction was completed during April (see ASX release dated 13th April 2015).

The project is located 250 km west of Mackay in Queensland in the northern Drummond Basin. The Drummond Basin is an established gold mining region with past production of more than 4.5 Mozs and a total known gold endowment of over 7.5 Mozs of gold. Deposit styles range from bonanza grade epithermal veins (eg. Pajingo 3.0 Mozs) to bulk tonnage intrusive related gold deposits (eg. Mt Leyshon 2.1 Mozs).

Mount Coolon Resources

Resources were previously reported by GBM (see GBM 2015 Annual Report and refer ASX announcement 27 August 2015) and are summarised in Table 1 below. These Resources contain a total of 268,600 ounces of gold. In addition, Bimurra is a separate prospect area to the three main deposits (Eugenia, Koala and Glen Eva) which contribute to the Resources at the Mount Coolon Gold Project.

		Resource Category					Tatal		Cut-off					
Project	Location		Measure	d		Indicate	d		Inferred			Total		Cut-on
		000' t	Au g/t	Au ozs	000' t	Au g/t	Au ozs	000' t	Au g/t	Au ozs	000' t	Au g/t	Au ozs	
Koala	Hecorina Pit				15	2.6	1,300				15	2.6	1,300	None
	Underground Extension				205	5.9	39,600	62	5.3	10,600	267	5.7	49,300	3
	Tailings	305	1.6	15,800	11	1.6	500	6	1.5	300	322	1.6	16,700	None
	Total	305	1.6	15,800	231	5.5	40,400	68	5.0	10,900	604	3.5	67,200	0
Eugenia	Oxide				1,445	0.9	43,300	252	1.2	9,700	1,698	1.0	53,000	0.4
	Sulphide				2,306	0.9	66,100	1,007	1.4	45,200	3,313	1.04	111,300	0.4
	Total				3,751	0.9	109,400	1,260	1.4	54,900	5,011	1.0	164,300	0.4
Glen Eva	Below pit.				132	7.8	33,200	21	5.9	4,000	154	7.5	37,200	3.0
	Total	305	1.6	15,800	4,114	1.4	183,000	1,349	1.6	69,800	5,769	1.4	268,600	

 Table 1: Mount Coolon Gold Mines Global Resource Summary August 2015. Please note rounding (1000's tonnes, 100's ounces, 0.1 g/t) may cause minor variations to totals.

For Further information please contact:

Peter Thompson	Karen Oswald
Managing Director	Marko Communications
GBM Resources Limited	Tel: + 0423 602 353
Tel: 08 9316 9100	Email: Karen.oswald@markocommunications.com.au

About GBM Resources

GBM Resources Ltd (ASX: GBZ) is an Australian resource company that listed on the ASX in 2007, headquartered in Perth WA, with exploration operations in Victoria and Queensland.

The Company's primary focus is in key commodities of gold and copper-gold, assets in Australia. GBM tenements cover an area greater than 4,300 square kilometres in eight major projects areas in Queensland and Victoria. GBM also has a substantial interest in the Lubuk Mandi gold project in Malaysia.

GBM is prioritising the exploration and development of the Mount Coolon Gold Project and Mount Morgan Gold Copper Project along with ongoing exploration conducted under the PPC-Mitsui Farm-In Agreement.

Notes

The information in this report that relates to Exploration Targets and Exploration Results is based on information compiled by Neil Norris, who is a Member of The Australasian Institute of Mining and Metallurgy and The Australasian Institute of Geoscientists. Mr Norris is a full-time employee of the company, and is a holder of shares and options in the company. Mr Norris has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Norris consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The Company confirms that the form and context in which the Competent Persons findings are presented have not been materially modified from the original market announcements.

The Company confirms that it is not aware of any new information or data that materially affects the information included in the respective announcements and all material assumptions and technical parameters underpinning the resource estimate with those announcements continue to apply and have not materially changed.

JORC CODE, 2012 EDITION – TABLE 1: CONWAY PROSPECT, MT COOLON PROJECT

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc.). These examples should not be taken as limiting the broad meaning of sampling.	 Drilling A total of 219 holes for 21,767.8 m have been drilled within the Conway System. 97 holes and 11,368.5 m were drilled at Wobegong, 19 holes for 1471.3 m were drilled at Bustard Egg Hill, 16 holes for 1593.9 m were drilled at Big Sinter Hill, 40 holes for 2,841.4 m were drilled at Red Flag Hill, 27 holes for 1,366 m were drilled at Quartz Reef Hill, 14 holes for 2,169.7 m were drilled at Mill Hill and 6 holes and 957 m were drilled at Alluvium.
		 Surface Geochemistry A total of 30 stream sediment samples, 2,037 soil samples and 1,023 rock chip samples of varying collection and analysis methods have been collected from within the Conway tenement package by previous explorers. Eleven shallow trenches were excavated by bulldozer in the Wobegong area and at the western end of the Quartz Reef Hill area. The bottom of each trench was mapped and channel chip sampled.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	• The sampling techniques used by all previous workers are of a standard sufficient to be reported with confidence. Where methodology is not clear in the database, historical reports and documentation has been reviewed to ensure care and diligence was adhered to.
		 Drilling All diamond core was recovered in a standard wireline core barrel. At all stages of drilling where Reverse Circulation (RC) or Percussion (PERC) drilling methods were employed, samples have been collected via either a rig mounted or standalone riffle splitter via a rig mounted cyclone.
		 Surface Geochemistry Stream sediments samples were collected on high order tributaries and along Rosetta Creek. Samples were collected from active wash zones within the stream

Criteria	JORC Code explanation	Commentary
		 system. All soil samples were collected on predefined grid patterns (either local grid converted to GDA94 or GDA94 grid). Rock chip samples were collected in either a ridge or spur sampling program or during localised geological mapping.
	 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information. 	 Drilling BHP diamond halfcore samples were collected over 2 m intervals in numbered plastic bags with two identical pre-numbered aluminum tags. One tag was enclosed with the sample and the other was attached to the sample bag. BHP chip samples from percussion holes were collected at 1 m intervals and were split to approximately 4 kg using a Jones riffle splitter. Consecutive samples were then mixed and split to provide 2 kg to 4 kg of representative samples over 2 m intervals which were collected and bagged. Initially, where RC samples were saturated from groundwater, the entire wet sample for each 1 m interval was collected in several bins and allowed to settle. The liquid was periodically decanted until a manageable volume of slurry could be poured through the sample splitter (1/2-1/2 split) to obtain 2.4 kg of sediment. Consecutive samples were then mixed and split to obtain a representative sample for each 2 m interval. After a large influx of water in drill hole CO11 onwards 2 m wet samples were collected directly through a three-way splitter (1/4-1/2-1/4 splits) beneath the cyclone on the drill rig allowing the slurry to flow directly through the splitter into collection trays. Excess water and suspended material was allowed to spill out of the trays. Holes were flushed at 2 m intervals to minimise contamination. AOM collected percussion samples on a 1 m basis. MIM collected percussion samples on a 1 m basis. MIM collected percussion samples on a 1 m intervals in potentially mineralised zones and at 2 m intervals in barren looking material using a riffle splitter or by spearing with 2" PVC pipe. Newcrest RG drilling samples were collected at 1 m intervals unless zones of significant veining were encountered (e.g. lode zones). Samples were no less than 0.4m and no greater than 1m, to allow for sufficient sample volume for screen fire assay and other repeat/duplicate sampling, and to allow for pulverisation size restrictions. Irregular sample in

Criteria	JORC Code explanation	Commentary
		Samples were sent to ALS for analysis of Au by fire assay and Ag, Cu, Pb, Zn, As, Bi by AAS.
		Surface Geochemistry
		 Stream Sediment In the first pass BHP helicopter supported programme stream sediment samples were collected from the active parts of streams and comprised 5 kg to 6 kg of -2 mm material.
		 Ross collected regional -2 mm active wash stream sediment samples with a weight of between 3 kg to 5 kg. Sample were collected at 50 m intervals of stream channel. Sample sites were flagged and marked with perma tags. Sample location was marked approximately on aerial photographs. An AMG coordinate was also recorded for each sample site by a GPS unit. Duplicate samples were collected every ten samples (01/02, 11/12 etc). Duplicate samples involved the repetition of the entire sample procedure with sub samples collected from different points to that collected for the original sample.
		 Rock chips BHP collected rock chips samples weighing between 3 kg and 4 kg. Samples were mostly collected from siliceous outcrops within the prospect areas. Sample spacing varied depending on availability of outcrop, but ranged generally from 5 m to 20 m. Sampling procedures consist of collecting a series of small chips across the surface outcrop. Later BHP rock chip samples were analysed for gold only by ALS, Townsville laboratory on a 50 g charge using fire assay with AAS finish. Detection limit for this method (PM209) is 0.01 ppm gold.
		 Ross collected rock chip samples weighing from 1 kg to 3 kg as part of the 1:10,000 scale geological fact mapping. Sample sites were marked with perma tags and flagging tape. The majority of Newcrest rock chip samples come from veins within the Conway epithermal system and are of several phases of quartz. Banded, lattice bladed, chalcedonic, sulphidic and brecciated quartz types were all sampled.
		 Soil All BHP soil samples were collected on a local grid. Ross collected both 100-200 g -80# soil samples and 2 kg - 2 mm BCL soil samples. The -80# fraction Ross soil samples generally returned a more widespread area of +1 ppb anomalism. This is probably due mainly to the higher detection limit of this

Criteria	JORC Code explanation	Commentary
		method (1 ppb Au).
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	 In total 148 PERC holes for 9,273.3 m were drilled, 39 RC holes for 5,875 m were drilled and 32 DD holes for 6,619.5 m were drilled which gives a grand total of 219 holes for 21,767.8 m of drilling within the Conway Hydrothermal System. BHP drilled a total of 143 PERC holes for 8,261.3 m & 21 DD holes for 2,366 m. BHP drilled a total of 143 PERC holes for 8,261.3 m & 21 DD holes for 2,366 m. BHP percussion holes (CO04 to C079, C083 to C129, C136 to C147) were drilled by Leanda Drilling using an IIngersoll Rand T4. A Warman Hydrill 1000 drilling rig was used for the HQ size BHP diamond drill holes (DDHC001 to DDHC003 (plus re-drill DDHC3A), DDHC080 to DDHC082, DDHC130 to DDHC135 & DDHC148 to DDHC152). AOM drilled 12 RC holes for 964 m (AOM001 to AOM006 (including AOM002A) & CFS005, CFS013, CFS022, CFS023 & CFS076) MIM drilled 5 PERC holes for 1,464 m and Delta drilled 2 RC holes for 302 m. Ross used Rowe enterprise as their drilling contractor for all holes, while Delta Utilised Kelly Drilling services. Newcrest drilled 12 RC holes for 2757 m & 12 DD holes for 3937.9 m Drummond drilled 2 DD holes for 602.6 m.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	 Recovery was measured from core block to core block to check core recovery. Recovery is expressed as either a ratio (or percentage) of the total length of core recovered to the length of the run drilled or as a qualitative representation of the recovery (e.g. Good, fair or poor recovery). In all drill phases, good drill recovery was recorded. All RC samples were weighed as a rough indication of sample recovery.
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	 Larger diameter HQ size core was used to provide improved recovery for the majority of drilling. RC samples were riffle split to produce a representative sample on site, and diamond core was split using a core saw.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	• There does not appear to be a correlation between mineralisation and poor core recovery. Near surface samples (within 4 m of the surface) often return poor recoveries due to the clay rich friable material that is easily washed away in the drilling process.

Criteria	JORC Code explanation	Commentary
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	• All core and chips have been suitably logged to an industry standard.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	 1 m interval lithology logs are available for BHP, AOM, MIM, Ross and Delta. Newcrest and Drummond qualitatively logged all holes for lithology, structure, veining and alteration. Structural measurements were taken on orientated core and magnetic susceptibility readings were taken for every 1 m sample. Photographs are available for the majority of the diamond core drill at Conway.
	• The total length and percentage of the relevant intersections logged.	Records show that all relevant intervals for RC and DD have been logged.
Sub- sampling techniques and sample	If core, whether cut or sawn and whether quarter, half or all core taken.	• All diamond core was sub sampled by splitting it in half longitudinally with a diamond saw. Half went for assay and the other was retained for reference and future measurement and checking. BHP, AOM, MIM, Ross and Delta diamond core was cut and sampled according to 2 m intervals. Newcrest and Drummond core was cut according to 1 m intervals.
preparation	If non-core, whether riffled, tube sampled, rotary split, etc. and whether sampled wet or dry.	• At all stages of drilling where Reverse Circulation (RC) or Percussion (PERC) drilling methods were employed, samples have been collected via either a rig mounted or stand-alone riffle splitter via a rig mounted cyclone.
	• For all sample types, the nature, quality and appropriateness of the sample preparation technique.	• Sample preparation for all samples followed the respective laboratories standard methodologies for gold fire assays techniques.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	 BHP submitted duplicate samples every tenth percussion sample. Newcrest included a significant number of standards during both diamond and RC sampling Lab standards and blanks were included with all Ross, Delta, Newcrest and Drummond drilling samples.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	 Drummond submitted blanks and standards every 20 samples. BHP submitted duplicate samples every tenth percussion sample. At the end of the Newcrest RC hole, two to three rig duplicate (check) samples were nominated (usually of the sample intervals expected to be anomalous based on visual observation). These were sampled using the same method as the previous RC samples and submitted in the same batch.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	 Drilling Percussion and RC chip samples were of appropriate size and generally weighed between 2 kg and 4 kg. This is a sufficient sample size for Percussion and RC chip samples. Surface Geochemistry Large stream sediment, rock and soil samples were collected by all companies to ensure samples were representative of the medium they were sampling.

Criteria	JORC Code explanation	Commentary
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 Drilling Early stage BHP core (DDHC001 to DDHC003A) and percussion (CON04 to CON033) holes were fully analysed at Pilbara Labs Townsville for Cu, Pb, Zn and Ag by AAS (detection limits: 2 ppm, 5 ppm, 2 ppm and 1 ppm, respectively), As, Sb, Bi and Te by hydride/AAS (detection limit: 0.005 ppm) and mercury by Jerome gold film (detection limit; 0.005 ppm) and mercury by Jerome gold film (detection limit; 0.005 ppm). Gold was analysed by 50 g Fire assay with AAS finish (detection limit; 0.005 ppm) and mercury by Jerome gold film (detection limit; 0.001 ppm). The drill samples for holes CO22 to C033 were analysed for Au and Ag only, using the procedures described above. Later stage percussion holes (CO34 to CO79, CO83 to C129, C136 to C147, were analysed at ALS, Townsville for gold using 50 g fire assay by method PM209 and Ag by method G001 both with AAS finish. Later stage BHP Diamond core samples from holes DDHC080 to DDHC082, DDHC130 to DDHC135 & DDHC148 to DDHC152 were analysed by ALS, Townsville for Cu, Pb, Zn, Ag & Bi by AAS (detection limits: 5 ppm, 10 ppm and 5 ppm respective1y), Te and Se by hydride generation/AAS (detection Limits: 50 ppb), Sn,, W and As by XRF (detection Limit: 50 ppb) and Au by 50 g fire assay/AAS finish with method PM209 (detection Limit: 0.01 ppm). MIM samples were sent to ALS, Townsville for analysis of Au by fire assay and Ag, Cu, Pb, Zn, As, Bi by AAS. Ross sent typically sent samples to Analabs, Townsville for testing using the 50 gram fire assay with AAS finish (AU-AA26 detection limit of 0.01 ppm Au). Newcrest RC and diamond holes (CON001 to CON024) were analysed by the same methods at ALS Townsville. Gold was analysed by 50 g Fire assay with AAS finish (AU-AA26 with detection limit; 0.01 ppm) in addition to multiement anaylsis for Ag, As, Bi, Cd, Cu, Hg, Mo, Pb, Sb, Se, Te, TI & Zn using ICP-MS method IC588. The two Drummond holes were analysed for gold by 30 g Fire assay with AAS finish (AU-AA25 with AS fin
		 Surface Geochemistry Stream Sediment In the first pass BHP stream sediment samples samples were submitted to Tetchem Laboratories, who first screened out sufficient -80 mesh material to analyse for As and Hg, prior to analysis of the main sample by bulk cyanide leach of gold. BHP completed an orientation stream sediment sampling program where three

Criteria	JORC Code explanation	Commentary
		 samples were collected at each site; one 5 kg of -2 mm, one 2 kg of -2 mm and one 500 gm of -2 mm silt. The 5 kg samples were despatched to Tetchem Laboratories for a static bulk cyanide leach and the 2 kg and 500 gm samples to Australian Laboratory Services for rolled cyanide leach of gold. The bulk of the second pass BHP stream sediment samples were submitted to ALS and analysed only for Au by bulk cyanide leach. Ross Stream sediment samples were dispatched to Analabs Townsville and analysed for Au using an active BCL method (GG342), detection limit of 0.05 ppb Au. Samples were despatched to Analabs, Townsville for analysis. The -2mm fraction samples were assayed for Au by BCL (Technique GG 342). The -80# fraction samples were assayed for Au via fire assay (Technique GG 337).
		Rock chips
		 BHP and Ross rock chip samples were assayed at Analabs in Townsville. Initial BHP rock chip samples were forwarded to Pilbara Laboratories and analysed for Cu, Pb, Zn, Ag, As, Sb, Sn, Bi, Te, Hg and Au. Later BHP rock chip samples were analysed for gold only by ALS, Townsville laboratory. The entire 1 kg to 3 kg sample was pulverised in an LM5, then assayed for Au by 50 g fire assay method GG313, with a detection limit of 0.005 ppm Au. on a 50 g charge using fire assay with AAS finish. Detection limit for this method (PM209) is 0.01 ppm gold. Early stage Ross rock chip samples were dispatched to Analabs Townsville and analysed for Au using a 50gm fire assay technique (GG313), detection limit of 0.005 ppm Au. Additional multi element analysis was also completed at the end of the sampling programme. The elements Cu, Pb, Zn, As, Mo were determined by Analabs method GI 140 (ICP), Bi was determined by Analabs method HA140 (Hydride AAS). Late stage Ross rock chip samples were sent to ALS, Townsville and assayed for Au by fire assay (PM209) with a detection limit of 0.01 ppm and Cu, Pb, Zn, Bi, Mo, Sb (all detection limit 5 ppm), Ag (detection limit 1 ppm) and As (detection limit 2 ppm)
		 (an accellation mint 5 ppm), Ag (accellation mint 1 ppm), and As (accellation mint 2 ppm), by method IC581. The majority of Newcrest rock chip samples were sent to ALS, Brisbane for crushing, preparation and multielement analysis (using ICP method IC 588) and then to Orange for gold fire assay analysis (method AA26). Multielement analysis tested for Cu, Pb, Zn, Ag, As, Bi, Sb, Te, Cd, Mo, Tl, Se and Hg. A small number of Newcrest rock chip samples were sent to SGS Laboratory in Townsville for crushing, preparation and multielement analysis. The samples sent to SGS utilised method M117 for the multielement suite and F650 for the fire assay analysis. Multielement analysis tested for Cu, Pb, Zn, Ag, As, Bi, Sb, Te, Cd, Mo, Tl, Se and Hg (Se and Tl excluded from SGS analysis).

Criteria	JORC Code explanation	Commentary
		 Soil All BHP soil samples were analysed by Pilbara Laboratories for Au, As and Hg. Ross collected both 100-200 g -80# soil samples and 2 kg - 2 mm BCL soil samples. All Ross soil samples were dispatched to ALS, Townsville. The BCL samples were assayed for gold via technique PM226 with a detection limit of 0.1 ppb. The —80# samples were assayed for Cu, Pb, Zn (detection limit 1 ppm), Ag (detection limit 0.1 ppm), As, Mo and Sb (detection limit 0.2 ppm) by method IC588. The -80# fraction Ross soil samples generally returned a more widespread area of +1 ppb anomalism. This is probably due mainly to the higher detection limit of this method (1 ppb Au).
	• For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 No geophysical tools were used to determine any element concentrations used in this release. Grind size checks were performed by the labs and reported as part of their due diligence.
	• Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been establish.	• Laboratory QAQC involves the use of internal lab standards using certified reference material, blanks, splits and replicates as part of the in house procedures.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	 All companies to have drilled at Conway have confirmed the validity and extent of previously discovered mineralisation. GBM has inspected relevant Lab files to verify significant results AOM, in their joint venture with BHP, twinned 5 percussion holes (CFS005 twinned C005, CFS013 twinned C013, CFS022 twinned C022 & CFS023 twinned C0023). Newcrest validated earlier BHP diamond drilling by re-assaying a selection of key intersection core samples from diamond holes DDHC130, DDHC131, DDHC132, DDHC149, DDHC152, DDHC002, DDHC03A, DDHC080, DDHC081 & DDH110.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 All data from BHP, AOM, MIM, Ross & Delta, Newcrest and Drummond drilling and surface sampling is contained within a number of database obtained by GBM from previous explorers. Original laboratory sheets and drill logs have been sighted for the majority of historical drilling and checks confirm the validity of these data sources.
	Discuss any adjustment to assay data.	• There has been no adjustment of assay data.

Criteria	JORC Code explanation	Commentary
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. 	 All, BHP, AOM, MIM, Ross, Delta and Drummond RC and diamond holes were surveyed at the collar only, with no downhole surveys. Newcrest surveyed all holes at a nominal 20 m to 50 m downhole interval in addition to collar and end of hole surveys.
	Specification of the grid system used.	• All data is presented in GDA94 (Zone 55).
	Quality and adequacy of topographic control.	• Almost all drill collars had RL recorded within historic databases. GBM have plotted all collars against a regional topographic survey dataset. Where collar RL was unknown it was arbitrarily set to a RL of 300 RL.
Data	 Data spacing for reporting of Exploration Results. 	• Exploration drill collar spacing is variable over the Conway area.
spacing and distribution	• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	• The highest density of drilling occurs over the Wobegong and Red Flag Hill prospects with drill collar results presented as individual Exploration holes.
	Whether sample compositing has been applied.	• Individual 1 m BHP, AOM, MIM, Ross and Delta percussion samples have been composite to produce a 2 m sample for analysis.
Orientation of data in	• Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Only Newcrest diamond holes have orientated core.
relation to geological structure	• If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	• No orientation based sampling bias has been identified in the data at this point. The most common structural trend within the Conway area is north-northeast with the majority of drilling being drilled perpendicular to this regional trend.
Sample security	The measures taken to ensure sample security.	• All sampling and sample management was managed by the respective exploration company abiding to their industry standard operating procedures.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	• All data from BHP, AOM, MIM, Ross & Delta, Newcrest and Drummond drilling and surface sampling is contained within a number of database obtained by GBM from previous explorers.
		• In the process of data validation and verification, GBM reviewed the majority of historic collar locations, surveys and downhole assays.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 The Conway Hydrothermal System, is located approximately 40 km north of Mt. Coolon. Access is via Rutherfords Road, which links Mount Coolon to the Burdekin Dam. A well maintained gravel road links Conway Homestead, in the centre of the EPM, to Rutherfords Road some 17 km to the southwest. Access to the prospects within the EPM is along station tracks suitable for 4WD vehicles only. Tracks are impassable after heavy rain. There are currently no Encumbrances, Mortgages, Caveats or Third Party Interests in place. Native title on the MLs is classed as No Native Tile. A tenement review carried out by GBM in December 2014 found the lease to be in good standing and compliance. The Conway EPM is held 100% by MT COOLON GOLD MINES PTY LTD, which is in turn owned 100% by GBM Resources LTD.
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	• The tenure is currently secured via direct ownership for mineral exploration (EPM).
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• Work conducted on the Conway system has been extensive and includes high density rock chip and soil sampling, stream sediment sampling, percussion and diamond drilling, fluid inclusion / XRD studies and geophysics (IP/resistivity/helimag). BHP acquired ATP's 3938 and 4114 (Now EPM 7259) in 1985 targeting high grade epithermal gold deposits. BHP identified the Conway prospect area in mid-1980's from regional stream sediment sampling using bulk leach extractable gold (BLEG).
		BHP (1985 and 1990)
		• Between 1985 and 1990, BHP carried out comprehensive exploration programmes at the regional and prospect scale which included an stream sediment sampling, airborne magnetics, IP and radiometric surveys, reconnaissance rock chip sampling and between 1:20,000 and 1:50,000 scale geological mapping. The results of these exploration activities identified a number of regional and local scale prospects including those found within the Conway area (Alluvium, Big Sinter Hill, Bustard Egg Hill, Mill Hill, Quartz Reef Hill, Red Flag Hill and Wobegong).
		• When Newmont Australia Limited merged with BHP Gold Mines Ltd in 1990, the resultant entity, Newcrest Operations Limited, became the title-holder to EPM 7259 and the associated Conway prospects. After the merger, Newcrest joint ventured the EPM with a number of parties who managed exploration of the tenement under the "Rosetta Extended Joint Venture".

Criteria	JORC Code explanation	Commentary
		 Australian Ores and Minerals AOM (a subsidiary of Carr Boyd Minerals Ltd) (May 1990 – October 1990) AOM drilled 12 holes within the Conway Hydrothermal system, primarily focussing on the Wobegong prospect. AOM, in their joint venture with BHP, twinned 5 percussion holes (CFS005 twinned C005, CFS013 twinned C013, CFS022 twinned C022 & CFS023 twinned C0023). AOM also drilled six new percussion holes (AOM001 to AOM006 including AOM002A) totalling 577.5 m. AOM completed 397 RAB holes at Conway for 2,422 m over alluvial flats between Wobegong and Quartz Reef Hill. AOM completed a Ground magnetics surveys (5x50m sampling) and several tria lines of ground radiometrics at Conway. Carpentaria Gold Pty Ltd (a subsidiary of MIM Holdings Limited) (April 1992 – January 1993) MIM drilled five 300 m percussion holes within the Conway Hydrothermal system. MIM work focused on the Big Sinter Hill area. Ross Mining NL (October 1993 – April 2000) and Delta Gold Ltd (April 2000 – April 2001). Ross Mining NL, as the Joint Venture partner, was required to spend \$1,000,000 in five years from October 1993 to earn 51%. The term of the JV was extended in October 1998 by two years without further expenditure. To this date approximately \$750,000 was been spent. In April 2000 Ross Mining NL was taken over by Delta Gold Ltd who continued exploration on EPM 7259 until expiry of the Rosetta Extended JV. Work by both explorers includes prospect scale geochemistry, mapping and airborne geophysics. Stream sediment, rock chip and soil samples have been taken over several of the known prospects. Ross and Delta drilled a combined total of 15 drill holes mostly focussing on the Wobegong and Red Flag Hill prospects.
		 Newcrest (April 2001 - November 2007) Management control of exploration on the EPM 7259 reverted back to Newcrest on the 28th of April 2001. Newcrest drilled a further 24 holes (CON001 - CON024). Newcrest re-sampled and re-assayed a number of key BHP drill core samples. Newcrest completed rock chip sampling and a ground magnetic survey.
		Drummond Gold (November 2007 - March 2015)

Criteria	JORC Code explanation	Commentary
		 Drummond Gold Limited via its 100% subsidiary, Mt Coolon Gold Mines Pty Ltd, acquired EPM 7259 from Newcrest in November 2007. Drummond subsequently conducted an extensive IP survey over the Conway system and drilled an additional two holes.
Geology	Deposit type, geological setting and style of mineralisation.	 The drilling within the Conway Hydrothermal Prospect indicates two styles of gold mineralisation. The first is high-grade mineralisation in near-vertical quartz veins. The second is low-grade bulk mineralisation hosted withed siliceous breccia. The high grade targeted mineralisation is akin to the high-grade epithermal gold style mineralisation identified at the Vera Nancy and Cracow deposits. The Conway system is interpreted to be an exposed shallow level epithermal system. There is strong support for high grade mineralisation at depth however at present shallow holes have not adequately depth tested prospective targets.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. 	• Refer to additional table outlining drill hole details.
	• If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Information is included
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 Key intersection intervals have been calculated using a length weighted average with a minimum grade of 0.2 ppm Au with up to 2 m of internal dilution if average grade is above 0.1 ppm Au. All available assays were included in these calculations, however only intervals with an average grade > 0.2 ppm Au have been presented. No metal equivalents have been used.
Relationship between	These relationships are particularly important in the reporting of Exploration Results.	• The majority of drillholes are oriented as close to normal to the targeted mineralisation at a dip of -60°. The strike and dip of mineralisation has not yet been confirmed.

Criteria	JORC Code explanation	Commentary
mineralisati on widths	 If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. 	• The majority of drillholes are oriented as close to normal to the targeted mineralisation as possible.
and intercept lengths	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	• All drill results reported within this release are down hole lengths only. Down hole true width intersections are not presently known.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to attached Maps and Plans.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 All drill holes have been reported. All significant intersections above a 0.2 ppm cut off with 2 m running average internal dilution of <0.1 ppm Au have been reported.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 At present there is no additional relevant sampling data to include with this release. Geophysical data relating to this prospect is yet to be collated, checked and reviewed to determine if it useful in understanding this prospect.
Further work	• The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	• Once GBM have completed a thorough investigation of all prospects located within the Mount Coolon Project area, GBM aims to explore the most prospective targets with further drilling.
	 Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Refer to attached maps and plans.

Conway Collar Table

All holes are complete and are reported in MGA94 Zone S 55

HOLE_ID	TOTAL DEPTH (m)	EASTING	NORTHING	RL	HOLE TYPE	PROSPECT	DATE COMPLETED	COMPANY	DIP	NAT	MAG
DDHC001	182	537966	7678280	284	DD	Wobegong	15/07/1986	BHP	-49	89	81
DDHC002	199.3	538315	7678478	288	DD	Wobegong	22/07/1986	BHP	-48	268	260
C004	150	537885	7678280	283	PERC	Wobegong	21/06/1986	BHP	-60	89	81
C005	150	538035	7678280	289	PERC	Wobegong	22/06/1986	BHP	-60	90	82
C006	150	538013	7678380	284	PERC	Wobegong	23/06/1986	BHP	-60	90	82
C007	150	538026	7678480	284	PERC	Wobegong	27/06/1986	BHP	-60	270	262
C008	150	538104	7678471	284	PERC	Wobegong	27/06/1986	BHP	-60	270	262
C009	150	538185	7678480	287	PERC	Wobegong	30/06/1986	BHP	-60	271	263
C010	150	538385	7678480	289	PERC	Wobegong	30/06/1986	BHP	-60	269	261
C011	150	538415	7678580	289	PERC	Wobegong	4/09/1986	BHP	-60	270	262
C012	150	538416	7678792	294.5	PERC	Wobegong	10/09/1986	BHP	-60	90	82
C013	150	538342	7678779	292	PERC	Wobegong	12/09/1986	BHP	-60	90	82
C014	150	538261	7678797	296	PERC	Wobegong	14/09/1986	BHP	-60	86	78
C015	150	538176	7678769	286	PERC	Wobegong	16/09/1986	BHP	-60	90	82
C016	157.3	538089	7678782	286	PERC	Wobegong	18/09/1986	BHP	-60	90	82
C017	150	538162	7678876	291	PERC	Wobegong	20/09/1986	BHP	-60	180	172
C018	150	538916	7678943	287.5	PERC	Wobegong	22/09/1986	BHP	-90	360	352
C020	150	538315	7678480	288	PERC	Wobegong	5/10/1986	BHP	-60	90	82
C022	74	538246	7678456	288	PERC	Wobegong	16/11/1986	BHP	-60	90	82
C023	80	538261	7678480	288	PERC	Wobegong	19/11/1986	BHP	-60	90	82
C024	50	538363	7678780	293	PERC	Wobegong	19/11/1986	BHP	-60	90	82
C025	50	538367	7678730	294	PERC	Wobegong	19/11/1986	BHP	-60	90	82
C026	50	538347	7678730	293	PERC	Wobegong	20/11/1986	BHP	-59	90	82
C027	50	538325	7678730	290	PERC	Wobegong	22/11/1986	BHP	-57	90	82
C028	50	538346	7678680	289	PERC	Wobegong	23/11/1986	BHP	-60	90	82
C029	50	538309	7678680	289	PERC	Wobegong	23/11/1986	BHP	-58	90	82
C030	50	538346	7678630	290	PERC	Wobegong	23/11/1986	BHP	-90	360	352
C031	50	538324	7678580	290	PERC	Wobegong	23/11/1986	BHP	-90	360	352
C032	50	538316	7678530	290	PERC	Wobegong	23/11/1986	BHP	-90	360	352
C033	50	538264	7678520	295	PERC	Wobegong	23/11/1986	BHP	-90	360	352
C110	30	538401	7678783	294	PERC	Wobegong	1/01/1987	BHP	-60	139	131
C111	30	538381	7678771	294	PERC	Wobegong	1/01/1987	BHP	-60	138	130
C112	30	538369	7678757	296	PERC	Wobegong	1/01/1987	BHP	-60	148	140
C113	50	538359	7678801	290	PERC	Wobegong	1/01/1987	BHP	-60	138	130
C114	50	538320	7678763	293	PERC	Wobegong	1/01/1987	BHP	-60	137	129
C115	34	538359	7678731	294.5	PERC	Wobegong	1/01/1987	BHP	-60	320	312
C116	30	538346	7678709	290	PERC	Wobegong	1/01/1987	BHP	-60	318	310
C117	30	538329	7678687	289	PERC	Wobegong	1/01/1987	BHP	-60	308	300
C118	30	538303	7678677	289	PERC	Wobegong	1/01/1987	BHP	-60	142	134
C119	30	538346	7678633	290	PERC	Wobegong	1/01/1987	BHP	-60	143	135

HOLE_ID	TOTAL DEPTH (m)	EASTING	NORTHING	RL	HOLE TYPE	PROSPECT	DATE COMPLETED	COMPANY	DIP	NAT	MAG
C120	30	538330	7678607	290	PERC	Wobegong	1/01/1987	BHP	-60	136	128
C121	30	538343	7678592	290	PERC	Wobegong	1/01/1987	BHP	-60	141	133
C122	30	538326	7678577	290	PERC	Wobegong	1/01/1987	BHP	-60	132	124
C123	30	538323	7678513	290	PERC	Wobegong	1/01/1987	BHP	-60	141	133
C124	30	538284	7678562	290	PERC	Wobegong	1/01/1987	BHP	-60	337	329
C125	30	538234	7678452	288	PERC	Wobegong	1/01/1987	BHP	-60	135	127
DDHC133	95	538345	7678779	292	DD	Wobegong	1/01/1987	BHP	-45	131	123
DDHC134	50	538250	7678477	288	DD	Wobegong	1/01/1987	BHP	-46	118	110
DDHC135	50	538361	7678513	290	DD	Wobegong	1/01/1987	BHP	-45	360	352
C143	30	538270	7678479	288	PERC	Wobegong	1/01/1987	BHP	-60	143	135
C144	30	538298	7678483	288	PERC	Wobegong	1/01/1987	BHP	-60	309	301
C145	30	538374	7678525	290	PERC	Wobegong	1/01/1987	BHP	-60	345	337
C146	30	538397	7678545	290	PERC	Wobegong	1/01/1987	BHP	-60	181	173
C147	66	539115	7678990	284	PERC	Wobegong	1/01/1987	BHP	-90	360	352
DDHC148	148	538168	7678483	286	DD	Wobegong	1/01/1988	BHP	-48	85	77
C154	30	537940	7678060	291	PERC	Wobegong	1/01/1988	BHP	-90	360	352
C155	30	537965	7678060	290	PERC	Wobegong	1/01/1988	BHP	-90	360	352
C156	30	537991	7678060	288	PERC	Wobegong	1/01/1988	BHP	-90	360	352
C157	30	538001	7678214	290	PERC	Wobegong	1/01/1988	BHP	-90	360	352
C158	30	538027	7678214	289	PERC	Wobegong	1/01/1988	BHP	-90	360	352
C159	26	537976	7678214	287	PERC	Wobegong	1/01/1988	BHP	-90	360	352
C160	49	538156	7678886	292	PERC	Wobegong	1/01/1988	BHP	-60	360	352
AOM001	50	538297	7678458	288	RC	Wobegong	1/01/1990	AOM	-60	347	339
AOM002	78	538303	7678439	288	RC	Wobegong	1/01/1990	AOM	-60	347	339
AOM002A	50	538300	7678443	288	RC	Wobegong	1/01/1990	AOM	-60	347	339
AOM003	100	538251	7678429	288	RC	Wobegong	1/01/1990	AOM	-60	347	339
AOM004	100	538320	7678780	293	RC	Wobegong	1/01/1990	AOM	-60	68	60
AOM005	100	538393	7678810	294	RC	Wobegong	1/01/1990	AOM	-60	248	240
AOM006	100	538214	7678612	293	RC	Wobegong	1/01/1990	AOM	-60	53	45
CFS005	100	538035	7678279	289	RC	Wobegong	1/01/1990	AOM	-60	90	82
CFS013	50	538342	7678780	292	RC	Wobegong	1/01/1990	AOM	-60	90	82
CFS022	86	538246	7678455	288	RC	Wobegong	1/01/1990	AOM	-60	90	82
CFS023	100	538261	7678480	288	RC	Wobegong	1/01/1990	AOM	-60	90	82
WBRC001	144	538091	7678355	287	RC	Wobegong	22/03/1998	Ross	-60	128	120
WBRC002	150	538141	7678405	284	RC	Wobegong	24/03/1998	Ross	-60	128	120
WBRC003	150	538090	7678555	285	RC	Wobegong	25/03/1998	Ross	-60	128	120
WBRC004	150	538140	7678605	286	RC	Wobegong	26/03/1998	Ross	-60	128	120
WBRC005	138	538415	7678755	291	RC	Wobegong	28/03/1998	Ross	-60	128	120
WBRC006	150	538365	7678830	290	RC	Wobegong	29/03/1998	Ross	-60	128	120
WBRC007	96	538416	7678880	292	RC	Wobegong	30/03/1998	Ross	-60	128	120
WBRC008	126	538716	7679040	288	RC	Wobegong	22/05/1998	Ross	-60	128	120
WBRC009	210	538278	7678391	293	RC	Wobegong	21/09/2000	Delta	-60	360	352
WBRC010	178	538311	7678568	299	RC	Wobegong	31/10/2000	Delta	-60	180	172

HOLE_ID	TOTAL DEPTH (m)	EASTING	NORTHING	RL	HOLE TYPE	PROSPECT	DATE COMPLETED	COMPANY	DIP	NAT	MAG
CON003	387	537960	7678355	285	DD	Wobegong	1/11/2002	Newcrest	-55	127	119
CON006	300	538130	7678652	290	DD	Wobegong	1/11/2002	Newcrest	-53	134	126
CON012	360	538320	7678253	290.5	DD	Wobegong	1/11/2002	Newcrest	-55	320	312
CON014	157.1	538125	7678655	290	DD	Wobegong	1/04/2004	Newcrest	-65	130	122
CON015	292	537735	7677962	285	RC	Wobegong	1/04/2004	Newcrest	-50	117	109
CON016	597.4	537832	7678357	284	DD	Wobegong	1/04/2004	Newcrest	-55	130	122
CON017	210.4	538056	7678700	291	DD	Wobegong	1/04/2004	Newcrest	-49.5	124	116
CON019	125.4	538146	7678701	291	DD	Wobegong	1/09/2004	Newcrest	-49	132	123
CON021	304	538413	7678879	286	RC	Wobegong	1/09/2004	Newcrest	-50	151	143
CON022	304	537820	7678590	285	RC	Wobegong	1/09/2004	Newcrest	-50	148	140
CON023	304	538908	7678822	284	RC	Wobegong	1/09/2004	Newcrest	-50	155	147
CON024	298	538915	7679199	280	RC	Wobegong	1/09/2004	Newcrest	-50	155	147
CON025	300	538212	7678914	300	DD	Wobegong	1/05/2008	Drummond	-60	123	115
CON026	302.6	538121	7678833	300	DD	Wobegong	1/05/2008	Drummond	-60	123	115
C034	92	541091	7677134	346	PERC	Red Flag Hill	1/01/1987	BHP	-60	113	105
C038	50	540987	7676926	350	PERC	Red Flag Hill	1/01/1987	BHP	-60	135	127
C039	60	541038	7676970	350	PERC	Red Flag Hill	1/01/1987	BHP	-60	315	307
C040	50	541031	7677008	348	PERC	Red Flag Hill	1/01/1987	BHP	-60	135	127
C041	50	541054	7677039	349	PERC	Red Flag Hill	1/01/1987	BHP	-60	135	127
C042	50	541073	7677051	350	PERC	Red Flag Hill	1/01/1987	BHP	-60	315	307
C043	40	541109	7677080	350	PERC	Red Flag Hill	1/01/1987	BHP	-60	315	307
C044	50	541118	7677122	350	PERC	Red Flag Hill	1/01/1987	BHP	-60	135	127
C045	50	541104	7677181	340	PERC	Red Flag Hill	1/01/1987	BHP	-60	132	124
C046	50	541138	7677135	346	PERC	Red Flag Hill	1/01/1987	BHP	-60	136	128
C047	53	541155	7677138	343	PERC	Red Flag Hill	1/01/1987	BHP	-60	318	310
C048	32	541138	7677182	341	PERC	Red Flag Hill	1/01/1987	BHP	-60	140	132
C049	30	541128	7677199	338	PERC	Red Flag Hill	1/01/1987	BHP	-60	141	133
C050	30	541193	7677185	345.5	PERC	Red Flag Hill	1/01/1987	BHP	-60	313	305
C051	50	541183	7677195	345	PERC	Red Flag Hill	1/01/1987	BHP	-60	314	306
C052	45	541165	7677199	344.5	PERC	Red Flag Hill	1/01/1987	BHP	-60	274	266
C053	50	541192	7677234	339.5	PERC	Red Flag Hill	1/01/1987	BHP	-60	90	82
C054	52	541158	7677244	338	PERC	Red Flag Hill	1/01/1987	BHP	-60	129	121
C055	40	541175	7677275	338.5	PERC	Red Flag Hill	1/01/1987	BHP	-60	134	126
C056	50	541236	7677255	343	PERC	Red Flag Hill	1/01/1987	BHP	-60	314	306
C057	34	541266	7677290	344	PERC	Red Flag Hill	1/01/1987	BHP	-60	298	290
C058	40	541277	7677334	341.5	PERC	Red Flag Hill	1/01/1987	BHP	-62	138	130
C059	30	541261	7677318	342	PERC	Red Flag Hill	1/01/1987	BHP	-60	139	131
C060	30	541274	7677306	344	PERC	Red Flag Hill	1/01/1987	BHP	-60	141	133
C061	25	541236	7677270	344	PERC	Red Flag Hill	1/01/1987	BHP	-60	133	125
C062	50	541371	7677375	335	PERC	Red Flag Hill	1/01/1987	BHP	-60	323	315
C063	50	541363	7677483	328	PERC	Red Flag Hill	1/01/1987	BHP	-60	124	116
C064	64	541322	7677628	320	PERC	Red Flag Hill	1/01/1987	BHP	-60	139	131
DDHC080	100	541068	7677081	349	DD	Red Flag Hill	1/01/1987	ВНР	-44	132	124

HOLE_ID	TOTAL DEPTH (m)	EASTING	NORTHING	RL	HOLE TYPE	PROSPECT	DATE COMPLETED	COMPANY	DIP	NAT	MAG
DDHC081	100	541206	7677313	342	DD	Red Flag Hill	1/01/1987	BHP	-47	135	127
DDHC082	87	541155	7677137	343	DD	Red Flag Hill	1/01/1987	BHP	-45	324	316
C126	60	541765	7678070	336	PERC	Red Flag Hill	1/01/1987	BHP	-60	360	352
C127	100	541816	7678030	300	PERC	Red Flag Hill	1/01/1987	BHP	-90	360	352
DDHC149	133.5	541185	7677353	334.5	DD	Red Flag Hill	1/01/1988	BHP	-49	142	134
DDHC150	99.7	541111	7677242	336	DD	Red Flag Hill	1/01/1988	BHP	-48	150	142
RFRC001	97	541191	7677405	329	RC	Red Flag Hill	19/05/1998	Ross	-60	128	120
RFRC002	137	541155	7677440	324.5	RC	Red Flag Hill	20/05/1998	Ross	-60	128	120
RFRC003	126	541095	7677350	331	RC	Red Flag Hill	21/05/1998	Ross	-60	128	120
CON004	303.7	540914	7677010	338.5	DD	Red Flag Hill	1/11/2002	Newcrest	-54	130	122
CON013	200.5	540837	7676800	345	DD	Red Flag Hill	1/11/2002	Newcrest	-55	129	121
C035	100	539815	7678694	293	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	360	352
C036	152	539815	7678672	293.5	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	360	352
C037	150	539728	7678621	294	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	309	301
C088	30	539731	7678608	294	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
C089	30	539736	7678592	294	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
C090	30	539740	7678580	294	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
C091	30	539745	7678567	294	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
C092	30	539723	7678627	294	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
C093	30	539717	7678640	294	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
C094	30	539713	7678652	293	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
C095	30	539709	7678663	292	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
C096	30	539704	7678674	292	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
C097	30	539699	7678685	291.5	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
C098	30	539867	7678813	290	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
C099	30	539874	7678802	290	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
C100	30	539878	7678790	291	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
C101	30	539882	7678778	291	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
C102	30	539886	7678766	292	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
C103	30	539892	7678754	292	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
C104	30	539896	7678743	292	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
C105	30	539902	7678731	292	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
C106	34	539906	7678719	292	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
C107	30	539910	7678708	292.5	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
C108	28	539915	7678696	293	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
C109	30	539920	7678685	293	PERC	Quartz Reef Hill	1/01/1987	BHP	-60	338	330
QRRC001	84	540014	7678803	292	RC	Quartz Reef Hill	18/09/2000	Delta	-60	180	172
QRRC002	218	539964	7678408	297	RC	Quartz Reef Hill	20/09/2000	Delta	-60	135	127
C073	50	538602	7677363	328	PERC	Mill Hill	1/01/1987	BHP	-60	326	318
C074	50	538573	7677330	324	PERC	Mill Hill	1/01/1987	BHP	-60	318	310
C075	50	538587	7677284	324	PERC	Mill Hill	1/01/1987	BHP	-60	337	329
C076	50	538567	7677235	325	PERC	Mill Hill	1/01/1987	BHP	-60	343	335
C077	50	538535	7677228	324	PERC	Mill Hill	1/01/1987	BHP	-60	346	338

HOLE_ID	TOTAL DEPTH (m)	EASTING	NORTHING	RL	HOLE TYPE	PROSPECT	DATE COMPLETED	COMPANY	DIP	NAT	MAG
C078	50	538486	7677241	320	PERC	Mill Hill	1/01/1987	BHP	-60	158	150
C079	50	538576	7677427	317	PERC	Mill Hill	1/01/1987	BHP	-60	151	143
DDHC131	100	538594	7677229	325.5	DD	Mill Hill	1/01/1987	BHP	-45	347	339
DDHC152	113.8	538565	7677150	316	DD	Mill Hill	1/01/1988	BHP	-60	360	352
CFS076	50	538567	7677235	325	RC	Mill Hill	1/01/1990	AOM	-60	343	335
C163	300	538727	7677248	330	PERC	Mill Hill	1/01/1992	MIM	-60	322	314
CON011	315.4	538385	7677312	308	DD	Mill Hill	2/11/2002	Newcrest	-54.8	146	138
CON018	298	538489	7676912	313	RC	Mill Hill	1/09/2004	Newcrest	-54	340	332
CON020	642.5	538341	7676731	308	DD	Mill Hill	1/09/2004	Newcrest	-50	6	358
DDHC003	37.3	538817	7677620	321	DD	Bustard Egg Hill	28/07/1986	BHP	-47	359	351
DDHC003A	233.5	538815	7677620	321	DD	Bustard Egg Hill	5/08/1986	BHP	-90	360	352
C021	50	538916	7677778	330	PERC	Bustard Egg Hill	6/10/1986	BHP	-90	360	352
C083	50	538843	7677810	319	PERC	Bustard Egg Hill	1/01/1987	BHP	-60	173	165
C084	50	538777	7677727	321	PERC	Bustard Egg Hill	1/01/1987	BHP	-60	137	129
C085	60	538711	7677694	315	PERC	Bustard Egg Hill	1/01/1987	BHP	-60	138	130
C086	52	538693	7677664	315	PERC	Bustard Egg Hill	1/01/1987	BHP	-60	146	138
C087	50	538959	7677861	309	PERC	Bustard Egg Hill	1/01/1987	BHP	-60	145	137
C128	50	538768	7677654	316	PERC	Bustard Egg Hill	1/01/1987	BHP	-60	146	138
C129	50	538710	7677625	315	PERC	Bustard Egg Hill	1/01/1987	BHP	-60	320	312
DDHC132	100	538840	7677727	326	DD	Bustard Egg Hill	1/01/1987	BHP	-45	144	136
C136	50	538824	7677778	324	PERC	Bustard Egg Hill	1/01/1987	BHP	-60	338	330
C137	50	538782	7677587	320	PERC	Bustard Egg Hill	1/01/1987	BHP	-60	324	316
C138	50	538826	7677695	322	PERC	Bustard Egg Hill	1/01/1987	BHP	-60	321	313
C139	50	538856	7677780	329	PERC	Bustard Egg Hill	1/01/1987	BHP	-60	343	335
C140	50	538896	7677729	328	PERC	Bustard Egg Hill	1/01/1987	BHP	-60	321	313
C141	50	538808	7677615	321	PERC	Bustard Egg Hill	1/01/1987	BHP	-60	323	315
C142	50	538873	7677784	332	PERC	Bustard Egg Hill	1/01/1987	BHP	-60	354	346
CON005	338.5	538850	7677472	320	DD	Bustard Egg Hill	1/11/2002	Newcrest	-54	329	321
C019	150	539076	7677282	342	PERC	Big Sinter Hill	23/09/1986	BHP	-60	233	225
C065	50	539104	7677300	342	PERC	Big Sinter Hill	1/01/1987	BHP	-60	336	328
C066	50	539079	7677288	342	PERC	Big Sinter Hill	1/01/1987	BHP	-60	333	325
C067	64	539061	7677273	342	PERC	Big Sinter Hill	1/01/1987	BHP	-60	338	330
C068	50	538969	7677324	332	PERC	Big Sinter Hill	1/01/1987	BHP	-60	139	131
C069	50	538935	7677313	333	PERC	Big Sinter Hill	1/01/1987	BHP	-60	327	319
C070	50	538909	7677285	334	PERC	Big Sinter Hill	1/01/1987	BHP	-60	318	310
C071	50	538893	7677337	327	PERC	Big Sinter Hill	1/01/1987	BHP	-60	158	150
C072	50	538834	7677298	330	PERC	Big Sinter Hill	1/01/1987	BHP	-60	333	325
DDHC130	100	538861	7677334	328	DD	Big Sinter Hill	1/01/1987	BHP	-45	149	141
DDHC151	149.9	539066	7676930	321	DD	Big Sinter Hill	1/01/1988	BHP	-48	260	252
C153	68	538837	7677396	325	PERC	Big Sinter Hill	1/01/1988	BHP	-90	360	352
C161	200	538899	7677480	316	PERC	Big Sinter Hill	1/01/1992	MIM	-90	360	352
C162	282	538855	7677390	324	PERC	Big Sinter Hill	1/01/1992	MIM	-60	338	330
C164	80	539190	7677336	338	PERC	Big Sinter Hill	1/01/1992	MIM	-60	359	351

HOLE_ID	TOTAL DEPTH (m)	EASTING	NORTHING	RL	HOLE TYPE	PROSPECT	DATE COMPLETED	COMPANY	DIP	NAT	MAG
C165	150	539086	7676920	322	PERC	Big Sinter Hill	1/01/1992	MIM	-60	331	323
CON001	154	539306	7678110	294	RC	Alluvium	1/11/2002	Newcrest	-55	160	152
CON002	154	539249	7678268	292	RC	Alluvium	1/11/2002	Newcrest	-55	160	152
CON007	140	539374	7677946	300	RC	Alluvium	1/11/2002	Newcrest	-54	340	332
CON008	198	539374	7677952	300	RC	Alluvium	1/11/2002	Newcrest	-54	166	158
CON009	155	539279	7678189	294	RC	Alluvium	1/11/2002	Newcrest	-53.5	161	153
CON010	156	539212	7678348	292	RC	Alluvium	1/11/2002	Newcrest	-54	162	154

Conway Key Intersections

Significant length weighted intersections above 0.2 ppm cut off. Internal dilution determined using a 2 m running lenghted weighted average, internal dilution of <0.1 ppm Au up to 2.0m downhole included Down hole intervals > 4 m denoted by **bold underline**. Average Au denoted by **> 1 ppm Au**, **> 2 ppm Au** and **> 10 ppm Au**. Gram metre denoted by **> 1 g.m**, **> 2 g.m** and **> 10 g.m**.

Hole_ID	Location	From (m)	To (m)	Interval (m)	Length weighted Average Au (ppm)	Gram metres (g.m)	Includes
DDHC001	Wobegong	68	70	2	0.21	0.42	
DDHC002	Wobegong	10	16	<u>6</u>	0.74	4.47	
		28	32	<u>4</u>	1.53	6.12	
		46	50	<u>4</u>	6.80	27.19	2 m @ 13.3 ppm Au from 46 m in DDHC002
		56	64	<u>8</u>	1.39	11.14	
		74	76	2	0.28	0.57	2 m @ 13.3 ppm Au from 46 m in DDHC002
		84	86	2	0.27	0.54	2 m @ 13.3 ppm Au from 46 m in DDHC002
DDHC003	Bustard Egg Hill	0	10	<u>10</u>	0.50	5.03	
DDHC003A	Bustard Egg Hill	0	4	<u>4</u>	0.45	1.82	
		8	10	2	0.23	0.47	
		206	208	2	0.33	0.66	
C004	Wobegong	124	126	2	0.22	0.45	
C005	Wobegong	0	10	<u>10</u>	0.37	3.67	
		16	18	2	0.28	0.56	
		28	34	<u>6</u>	0.30	1.82	
C006	Wobegong	0	2	2	0.38	0.76	
C009	Wobegong	0	2	2	0.74	1.47	
C011	Wobegong	0	2	2	0.22	0.43	
C012	Wobegong	0	2	2	0.35	0.69	
		4	6	2	0.21	0.41	
C013	Wobegong	26	34	<u>8</u>	4.91	39.29	2 m @ 18.4 ppm Au from 26 m in C013
C014	Wobegong	6	8	2	0.46	0.92	
C017	Wobegong	16	18	2	0.30	0.61	
		24	26	2	0.59	1.17	
		42	44	2	1.76	3.52	2 m @ 1.76 ppm Au from 42 m in C017
C020	Wobegong	10	12	2	0.27	0.54	
		26	28	2	0.29	0.57	
C021	Bustard Egg Hill	14	22	<u>8</u>	0.33	2.62	
		44	50	<u>6</u>	0.29	1.73	
C022	Wobegong	0	10	<u>10</u>	0.86	8.56	2 m @ 1.47 ppm Au from 22 m in C022, 2 m @ 1.34 ppm Au from 26 m in C022 & 2 m @ 1.44
		20	36	<u>16</u>	0.88	14.04	ppm Au from 28 m in C022
C023	Wobegong	0	10	<u>10</u>	1.84	18.42	2 m @ 4.96 ppm Au from 6 m in C023
		14	22	<u>8</u>	0.82	6.58	
		36	38	2	0.21	0.42	
		44	46	2	0.35	0.70	

Hole_ID	Location	From (m)	To (m)	Interval (m)	Length weighted Average Au (ppm)	Gram metres (g.m)	Includes
		56	58	2	1.23	2.46	
C024	Wobegong	2	4	2	0.26	0.52	
		18	22	<u>4</u>	0.23	0.92	
C025	Wobegong	10	12	2	0.25	0.50	
C026	Wobegong	10	12	2	0.22	0.44	
		20	22	2	0.41	0.82	
		36	38	2	0.29	0.58	
		48	50	2	0.29	0.58	
C027	Wobegong	14	18	4	0.24	0.94	
C028	Wobegong	16	18	2	0.50	1.00	
		20	22	2	0.51	1.02	
C029	Wobegong	4	8	<u>4</u>	1.19	4.76	2 m @ 2.08 ppm Au from 4 m in C029
		10	12	2	0.23	0.46	
C030	Wobegong	4	10	<u>6</u>	0.31	1.84	
		12	16	4	0.39	1.56	
C031	Wobegong	2	8	<u>6</u>	0.29	1.76	
		20	28	<u>8</u>	0.51	4.06	
C032	Wobegong	14	24	<u>10</u>	0.37	3.68	
C034	Red Flag Hill	34	36	2	0.24	0.48	
		40 62	44 64	<u>4</u> 2	0.36 0.56	1.42 1.12	
C035	Quartz Reef Hill	02	2	2	1.94	3.88	
035	Qualtz Reel Hill	22	26	<u>4</u>	2.03	3.88 8.10	2 m @ 2.6 ppm Au from 24 m in C035
C037	Quartz Reef Hill	14	20	<u>+</u> <u>10</u>	0.33	3.26	
C038	Red Flag Hill	10	12	2	0.23	0.46	
C039	Red Flag Hill	52	54	2	0.25	0.72	
C040	Red Flag Hill	6	8	2	0.73	1.46	
C041	Red Flag Hill	4	6	2	0.47	0.94	
C042	Red Flag Hill	22	26	<u>4</u>	0.47	1.86	
C043	Red Flag Hill	30	32	2	0.20	0.40	
		36	40	<u>4</u>	0.42	1.66	
C044	Red Flag Hill	0	2	2	0.22	0.44	
		14	20	<u>6</u>	0.46	2.76	
		22	24	2	0.60	1.20	
		30	32	2	0.32	0.64	
C045	Red Flag Hill	14	18	<u>4</u>	0.26	1.02	
C046	Red Flag Hill	6	12	<u>6</u>	0.60	3.58	
		14	16	2	0.39	0.78	
C048	Red Flag Hill	0	4	<u>4</u>	0.24	0.96	
C052	Red Flag Hill	22	24	2	0.28	0.56	
C053	Red Flag Hill	10	12	2	0.41	0.82	
C054	Red Flag Hill	2	4	2	0.22	0.44	
		28	32	<u>4</u>	0.31	1.22	
		46	48	2	0.26	0.52	

Hole_ID	Location	From (m)	To (m)	Interval (m)	Length weighted Average Au (ppm)	Gram metres (g.m)	Includes
C055	Red Flag Hill	34	38	<u>4</u>	1.22	4.86	2 m @ 2.06 ppm Au from 34 m in C055
C056	Red Flag Hill	4	6	2	1.97	3.94	
		14	18	<u>4</u>	2.16	8.62	2 m @ 3.33 ppm Au from 16 m in C056
		26	28	2	0.20	0.40	
		48	50	2	0.27	0.54	
C058	Red Flag Hill	0	4	<u>4</u>	0.32	1.26	
		16	24	<u>8</u>	1.12	8.94	2 m @ 3.33 ppm Au from 18 m in C058
C059	Red Flag Hill	12	16	<u>4</u>	0.47	1.88	
C067	Big Sinter Hill	22	24	2	1.36	2.72	
C069	Big Sinter Hill	18	20	2	0.32	0.64	
_		48	50	2	0.22	0.44	
C072	Big Sinter Hill	0	4	<u>4</u>	0.56	2.22	
C074	Mill Hill	4	6	2	0.34	0.68	
		18	20	2	0.57	1.14	
		30	32	2	0.35	0.70	
C076	Mill Hill	10	20	<u>10</u>	0.78	7.84	2 m @ 1.6 ppm Au from 16 m in C076
		36	42	<u>6</u>	0.32	1.90	
C077	Mill Hill	6	10	<u>4</u>	0.21	0.84	
		12	16	<u>4</u>	0.87	3.46	2 m @ 1.28 ppm Au from 14 m in C077
C079	Mill Hill	34	38	<u>4</u>	0.31	1.22	
_		42	48	<u>6</u>	0.36	2.14	
DDHC080	Red Flag Hill	4	10	<u>6</u>	0.42	2.50	
		24	28	<u>4</u>	1.21	4.82	2 m @ 2.11 ppm Au from 24 m in DDHC080
		36	38	2	0.43	0.86	
DDHC081	Red Flag Hill	4	6	2	0.38	0.76	
		28	32	<u>4</u>	7.35	29.40	2 m @ 14.4 ppm Au from 28 m in DDHC081
		70	72	2	0.30	0.60	
DDHC082	Red Flag Hill	26	32	<u>6</u>	4.13	24.78	2 m @ 8.32 ppm Au from 28 m in DDHC082
C084	Bustard Egg Hill	14	22	<u>8</u>	0.23	1.84	
		40	50	<u>10</u>	0.25	2.52	
C085	Bustard Egg Hill	18	30	<u>12</u>	0.23	2.74	
		50	52	2	0.20	0.40	
C086	Bustard Egg Hill	46	52	<u>6</u>	0.57	3.44	
C088	Quartz Reef Hill	0	2	2	0.24	0.48	
C092	Quartz Reef Hill	0	2	2	0.23	0.46	
6140	Mahara	8	10	2	0.88	1.76	
C110	Wobegong	2	6	4	0.30	1.18	
C111	Wobegong	4	8	<u>4</u>	0.87	3.48	2 m @ 1.38 ppm Au from 4 m in C111
C112	Wobegong	0	6	<u>6</u>	0.59	3.54	
C113	Wobegong	0	2	2	0.25	0.50	
C114	Wobegong	0	6	<u>6</u>	0.43	2.58	
		12	14	2	0.20	0.40	
044 -		32	34	2	0.45	0.90	
C115	Wobegong	0	4	<u>4</u>	0.31	1.22	

Hole_ID	Location	From (m)	To (m)	Interval (m)	Length weighted Average Au (ppm)	Gram metres (g.m)	Includes
		12	16	<u>4</u>	0.24	0.96	
C118	Wobegong	0	2	2	0.24	0.48	
C119	Wobegong	22	28	<u>6</u>	0.30	1.82	
C121	Wobegong	0	4	<u>4</u>	0.33	1.30	
		20	22	2	1.10	2.20	
C122	Wobegong	0	2	2	0.37	0.74	
		22	24	2	0.21	0.42	
C124	Wobegong	4	8	<u>4</u>	0.32	1.28	
		14	18	<u>4</u>	0.33	1.30	
C125	Wobegong	0	14	<u>14</u>	0.30	4.24	
		18	20	2	0.32	0.64	
C128	Bustard Egg Hill	16	20	<u>4</u>	0.26	1.02	
		26	30	<u>4</u>	0.26	1.02	
		38	40	2	0.59	1.18	
C129	Bustard Egg Hill	0	2	2	0.28	0.56	
		6	8	2	0.59	1.18	
		22	24	2	0.22	0.44	
DDHC130	Big Sinter Hill	0	2	2	0.42	0.84	
		6	8	2	0.48	0.96	
DDHC131	Mill Hill	18	20	2	0.40	0.80	
		24	28	<u>4</u>	0.32	1.26	
DDHC133	Wobegong	24	26	2	0.55	1.10	
		94	95	1	1.21	1.21	
DDHC134	Wobegong	0	4	<u>4</u>	0.25	1.00	
		6	20	<u>14</u>	0.26	3.70	
		22	26	<u>4</u>	3.58	14.30	2 m @ 6.44 ppm Au from 22 m in DDHC134
		32	34	2	0.56	1.12	
DDHC135	Wobegong	16	18	2	0.24	0.48	
C136	Bustard Egg Hill	6	10	<u>4</u>	0.24	0.94	
C137	Bustard Egg Hill	10	14	<u>4</u>	0.22	0.86	
C139	Bustard Egg Hill	16	18	2	0.46	0.92	
C140	Bustard Egg Hill	40	42	2	0.23	0.46	
		44	50	<u>6</u>	0.33	1.98	
C141	Bustard Egg Hill	32	34	2	0.63	1.26	
C142	Bustard Egg Hill	14	18	<u>4</u>	0.54	2.16	
C143	Wobegong	0	2	2	0.30	0.60	
		4	6	2	0.21	0.42	
		8	12	<u>4</u>	1.84	7.36	2 m @ 2.62 ppm Au from 10 m in C143
C145	Wobegong	10	12	2	0.24	0.48	
DDHC148	Wobegong	26	32	<u>6</u>	1.45	8.70	2 m @ 3.21 ppm Au from 26 m in DDHC148
		118	122	<u>4</u>	0.32	1.26	
		130	132	2	0.28	0.56	
DDHC149	Red Flag Hill	6	10	4	0.46	1.82	
		56	58	2	1.49	2.98	

Hole_ID	Location	From (m)	To (m)	Interval (m)	Length weighted Average Au (ppm)	Gram metres (g.m)	Includes
DDHC150	Red Flag Hill	22	26	<u>4</u>	0.75	2.98	2 m @ 1.13 ppm Au from 22 m in DDHC150
DDHC152	Mill Hill	76	84	<u>8</u>	0.27	2.12	
		88	90	2	0.26	0.52	
C153	Big Sinter Hill	44	48	<u>4</u>	0.53	2.10	
		56	58	2	0.29	0.58	
		62	64	2	0.90	1.80	
C157	Wobegong	0	6	<u>6</u>	0.71	4.26	
AOM001	Wobegong	8	9	1	0.26	0.26	
		16	17	1	0.21	0.21	
		35	36	1	0.24	0.24	
AOM002	Wobegong	10	12	2	0.50	1.01	
		22	23	1	0.29	0.29	
AOM002A	Wobegong	40	41	1	2.02	2.02	
		47	49	2	3.05	6.09	1 m @ 5.07 ppm Au from 47 m in AOM002A
AOM003	Wobegong	1	2	1	1.81	1.81	
		9	11	2	0.45	0.90	
		13	14	1	0.37	0.37	
		52	54	2	0.21	0.41	
		73	74	1	1.62	1.62	
		87	88	1	0.30	0.30	
		95	97	2	0.30	0.60	
AOM004	Wobegong	13	14	1	0.21	0.21	
		47	50	3	2.07	6.22	1 m @ 2.66 ppm Au from 48 m in AOM004
		61	62	1	0.22	0.22	
		65	67	2	0.32	0.65	
AOM005	Wobegong	0	1	1	0.20	0.20	
		5	6	1	0.22	0.22	
		45	49	<u>4</u>	2.57	10.27	1 m @ 4.62 ppm Au from 45 m in AOM005
		76	77	1	0.25	0.25	
AOM006	Wobegong	9	10	1	1.15	1.15	
		18	19	1	0.24	0.24	
		21	22	1	0.60	0.60	
		45	48	3	1.77	5.30	
		73	74	1	0.73	0.73	
		81	82	1	8.40	8.40	
		83	84	1	0.20	0.20	
CFS005	Wobegong	0	14	<u>14</u>	16.08	225.08	1 m @ 208 ppm Au from 1 m in CFS005
		29	32	3	0.53	1.59	
CFS013	Wobegong	27	33	<u>6</u>	1.18	7.10	1 m @ 2.32 ppm Au from 29 m in CFS013
CFS022	Wobegong	0	9	<u>9</u>	0.57	5.15	1 m @ 1.46 ppm Au from 4 m in CFS022
		12	13	1	0.51	0.51	
		20	29	<u>9</u>	1.30	11.66	
CFS023	Wobegong	3	8	<u>5</u>	1.47	7.35	1 m @ 2.94 ppm Au from 4 m in CFS023
		11	13	2	0.26	0.53	

Hole_ID	Location	From (m)	To (m)	Interval (m)	Length weighted Average Au (ppm)	Gram metres (g.m)	Includes
		15	18	3	1.23	3.69	
		36	37	1	0.51	0.51	
		42	43	1	0.28	0.28	
CFS076	Mill Hill	9	18	<u>9</u>	0.89	8.04	1 m @ 2.36 ppm Au from 16 m in CFS076
		26	28	2	0.25	0.50	
		35	40	<u>5</u>	0.32	1.62	
		43	44	1	0.26	0.26	
C163	Mill Hill	74	76	2	2.64	5.28	
WBRC001	Wobegong	11	14	3	0.43	1.29	
		39	41	2	0.38	0.76	
		45	46	1	0.21	0.21	
		51	53	2	0.41	0.81	
WBRC002	Wobegong	1	3	2	0.22	0.43	
		4	8	4	0.86	3.42	1 m @ 2.23 ppm Au from 6 m in WBRC002
		9	10	1	0.23	0.23	
		11	12	1	0.33	0.33	
		15	16	1	0.25	0.25	
		18	19	1	0.27	0.27	
		23	24	1	0.20	0.20	
WBRC003	Wobegong	1	2	1	0.20	0.20	
		6	7	1	0.98	0.98	
WBRC004	Wobegong	18	19	1	0.23	0.23	
		63	65	2	0.70	1.39	
		145	146	1	0.40	0.40	
WBRC005	Wobegong	0	1	1	0.20	0.20	
WBRC006	Wobegong	6	7	1	0.33	0.33	
		48	50	2	0.41	0.82	
WBRC007	Wobegong	53	54	1	0.23	0.23	
WBRC008	Wobegong	6	8	2	0.21	0.42	
RFRC003	Red Flag Hill	6	8	2	0.21	0.42	
CON003	Wobegong	87	90	3	1.22	3.65	1 m @ 2 ppm Au from 89 m in CON003
CON004	Red Flag Hill	1	2	1	0.52	0.52	
		53	55	2	0.86	1.72	
		61	66	<u>5</u>	0.42	2.09	
CON006	Wobegong	40	42	2	26.60	53.20	
		66	68	2	0.21	0.42	
CON012	Wobegong	56	58	2	0.21	0.42	
CON013	Red Flag Hill	59	63	<u>4</u>	0.64	2.57	1 m @ 1.78 ppm Au from 59 m in CON013
CON014	Wobegong	57	59.9	2.9	6.61	19.17	1 m @ 12.7 ppm Au from 57 m in CON014
		93	93.4	0.4	1.15	0.46	
CON016	Wobegong	135	135.5	0.5	6.50	3.25	
		359	363	<u>4</u>	0.60	2.38	
CON017	Wobegong	5	6	1	0.22	0.22	
CON018	Mill Hill	37	38	1	0.24	0.24	

Hole_ID	Location	From (m)	To (m)	Interval (m)	Length weighted Average Au (ppm)	Gram metres (g.m)	Includes
		46	47	1	0.20	0.20	
		51	53	2	0.25	0.50	
		56	57	1	0.22	0.22	
		62	63	1	0.22	0.22	
		94	95	1	0.21	0.21	
		98	103	<u>5</u>	0.28	1.41	
		170	172	2	0.20	0.40	
		224	228	<u>4</u>	2.56	10.22	2 m @ 3.24 ppm Au from 226 m in CON018
CON019	Wobegong	23	24	1	0.36	0.36	
		87	87.7	0.7	0.20	0.14	
		117.4	118	0.6	0.64	0.38	
CON020	Mill Hill	12	14	2	0.33	0.66	
		104.4	105	0.6	0.20	0.12	
		106	108	2	0.26	0.51	
		119	119.55	0.55	0.22	0.12	
		130	132	2	0.51	1.01	
		141	141.4	0.4	0.71	0.28	
		455	456	1	0.29	0.29	
		457.4	458	0.6	0.27	0.16	
		458.4	459.2	0.8	0.32	0.26	
		631	632	1	0.48	0.48	
CON022	Wobegong	11	12	1	0.23	0.23	
CON025	Wobegong	139	140	1	0.35	0.35	
		154	155	1	0.23	0.23	
CON026	Wobegong	166	167	1	0.27	0.27	