

On the search for Australia's next major discovery

July 2014

Company overview

Stock Exchange	ASX Code: AON Frankfurt Code: A0M5PT, Symbol: 4AP Berlin Code: A0M5PT, Symbol: 4AP	
Shares on issue	493 million	
Unlisted options*	60 million	
Market cap	\$12.5 million	
Shareholders	High Power Exploration 10%, Jindal Steel & Power 7%, Resource Fund Managers 7%	
Cash**	\$2 million	

*Exercise price of 3c expiry February 2017. Above excludes other out of the money options (see ASX Appendix 5B) ** As at 31 March 2014

Previous Apollo 2013 Drilling at Acacia East Titan Project

1

Exploration team

Directors and Management

Richard Shemesian (Chairman)

- Investment banker and lawyer with over 20 years experience in mineral exploration, corporate strategy and management
- Involved in two successful ASX takeovers valued >\$430m
- Originated over >\$150m in mining financing
- Successful strategic partnerships and investments from multi-nationals CITIC, GIC (Singapore) Jindal Steel, HPX Exploration

Dominic Tisdell (CEO)

- Over 20 years experience in the mining and exploration industry.
- A mining engineer in previous roles with Rio Tinto and Business Development Manager at Mitsubishi and Accenture

Matt Rimes (Director)

- Over 30 years experience in the mining industry, ex Rio Tinto/ North Ltd.
- Previously MD of iron ore developer Iron Ore Holdings Ltd

Tony Ho (Director)

Chartered Accountant with over 40 years experience including various public company boards

Eric Finlayson (Director)

- Over 30 years experience in mining exploration
- Previously Global Head of Exploration for Rio Tinto
- HPX board nominee

Exploration Team

Chris Anderson (Geophysicist)

- A geophysicist with over 35 years experience in Australia and overseas
- Instrumental role in the discovery of Carrapateena IOCG deposit
- Ex Placer Pacific

Derek Pang (Exploration Manager)

 Over 20 years exploration experience in Australia and overseas focusing on base metals

Targeting world-class copper gold deposits in SA using first class technology and experts

• New ore bodies will be deep - will need latest technology and new innovations to discover new mines

World's largest mining companies exploring and mining in the IOCG Belt

Copper and Gold Demand

- Market strength in copper and gold
- Existing mines depleting
- Continued copper demand growth
- China largest consumer of copper and buyer of gold and expected to increase
- Supply deficit forecast
- New discoveries and mines required to meet increasing demand

Copper mine supply/demand outlook (Mt)

Source: Wood Mackenzie (Q1 2014 update),

New technology making discoveries

Old way: Drill ... Drill ... Drill

Cadia Valley: 1.5 billion tonnes resource defined over 20 years

New way: Geophysics Targeting -> Drill

Oyu Tolgoi: 6-8 billion tonnes resource intensive use of IP prior to drilling over 6 years

Latest technology and best skills in industry increase Apollo's discovery chances

APOLLO MINERALS LIMITED

SA IOCG Features

APOLLO MITERALS LIMITED

Key features of major IOCGs in SA :

- Geology indicating Hiltaba granites and near base of GRVs
- Weak to moderately magnetic mafic volcanics or intrusives
- Major structural intersections
- Separation between magnetic and gravity source positions
- Gravity anomalies consistent with vertically extensive, high density hematite

Olympic Dam: formation model (Haynes et al., 1995) (SHOWING POSTULATED LEVEL FOR BUNDI PROJECT)

Source: Skirrow – Geoscience Australia. C Anderson comments

How Carrapateena was discovered

- 1976-83: Targeted ground around the only known South Australian IOCG – Olympic Dam, which was still over 100km away
- Sought magnetic terrain as it was believed to be an important source of Cu and Au but it was tied up by WMC
- MIM searched for discrete gravity highs, ideally coincident with +ve magnetic anomalies
- Drilled the nearby Khamsin (OZL) target no economic mineralisation
 intersected hematite altered conglomerate/breccia/porphyry over
 740m with average Cu<200pm; max Cu 1m at 2000ppm
- 1993-2005: Focused on coincident +ve gravity and +ve magnetic anomalies located along large scale structures
- IP survey showed weak +ve anomalies
- Drilling focused on coincident +ve gravity and +ve magnetic anomaly and separately, coincident +ve gravity and conductive anomaly
- 2005 discovery hole drilled at Carapateena -> Jackpot!
- 2011 sold to Oz Minerals for \$300m

Titan IOCG Project: 3 highly prospective JVs

- Stage 1 HPX \$1m spent on large IP survey and initial follow-up drilling
- □ To earn 51% HPX to spend \$1.7m
- □ Stage 2 Total spend of \$3.4m to earn 80%

Eaglehawk JV with Mincor

- ☑ Min expenditure completed
- To earn 75% AON to further spend \$1.7m

Mars-Aurora JV with Marmota

 Min expenditure completed
 To earn 75% AON to spend further \$750k

Northern Gawler Craton: Key Major Target Areas

Multiple target areas in a project area spanning 1500km2

RALS LIMITED

Apollo HPX Cwth Hill JV Area

HPX Typhoon Survey – Magnetic Intensity

APOLLO MINERALS LIMITED

Apollo HPX Wirrida-Bundi major targets

HPX Typhoon Survey 10 Major Targets Identified (140km2 area)

The Approach:

- 1. Identify best chargeable anomalies
- 2. Identify if these anomalies also show high mag, gravity etc signature of major ore deposits
- 3. Assess all available geo data
- 4. Assess the depth to target and 3D geological setting

APOLLO

Apollo HPX Wirrida-Bundi major targets

Target 5:

- Located within but near the edge of Wirrida complex on major structure
- Very strong chargeable anomaly

Target 5:

- Target not only chargeable but associated with pipe-like density anomaly
- Moderately conductive

Target: Hematite IOCG

APOLI

Bundi IOCG Prospect

Major S.Australian IOCG Deposits vs Apollo Bundi IOCG Prospect

- Bundi similar gravity signature to IOCGs in SA
- Gravity footprint larger than Carrapateena/Prominent Hill ≅ Olympic Dam
- Proximity to ODam Hiltaba Granites and Gawler Range Volcanics

Potential for Bundi to host a major Iron-Ore-Copper-Gold deposit

*Subject to earn in under JVA

Bundi IOCG Prospect

Bundi Ticks the boxes and more!

Features of major IOCGs in SA :

- Geology indicating Hiltaba granites and near base of GRVs
- Weak to moderately magnetic mafic volcanics or intrusives
- Major structural intersections
- Separation between magnetic and gravity source positions
- Gravity anomalies consistent with vertically extensive, high density hematite
- Elevated copper geochem at surface

North Gawler Craton Bundi Prospect and Major Copper Deposits

Hand et al, MESA Journal No.51 2008

APOLLO MINERALS LIMITED

Bundi Prospect v Olympic Dam

pyrit

Hillside

CARRAPATEENA

OLYMPIC DAM BRECCIA COMPLEX

INFERRED INTRUSIVE BASALT (GRVS) ROXBY DOWNS GRANITE (or basement metamorphics)

Exploration Model for Bundi IOCG is a close fit to Olympic Dam

Potentially a complete Olympic Dam type system beneath thin (1-200m) of sediments

Strong and weak magnetic positions

Barren "marr"

sediments

Mars Aurora Tank IOCG Target

Derivative Gravity Contours on Magnetics (Colour)

- Gravity and Magnetic response similar shape and size to those at nearby Prominent Hill type IOCG
- Historically drilling has intersected up to 2g/t Gold, 700ppm Copper, 4g/t Silver
- IP results show chargeability similar to Prominent Hill IOCG
- RAB Drilling completed expected to confirm copper and gold anomalies at surface and near surface

Potential for Prominent Hill Style IOCG at Mars Aurora Tank (AON Earning 75%)

Northern Gawler Craton: Exploration for major IOCG

Apollo aggressively exploring and drilling large copper and IOCG targets from mid 2014 onwards

Apollo Minorolo: Titan IOCC Project Exploration Timoline	2014		2015
Apono winerals: Than IOCG Project Exploration Timeline	H1	H2	
Commonwealth Hill JV (HPX earning 80%)			
High Powered IP survey	✓		
Diamond Drilling (phase 1)	UNDERWAY	-	
Drill Results (phase 1)			
Diamond Drill (phase 2)			?
Eagle Hawk JV (AON earning 75%)			
Preliminary IP Survey	×		
Gravity Survey	✓		
RAB Drilling	~		
Target Survey/Diamond Drilling			?
Mars – Aurora Tank JV (AON earning 75%)			
IP Survey	~		
Gravity	~		
RAB Drilling	~		
Target Survey/Diamond Drilling			?

Note: Above timetable is indicative only and subject to results and regulatory approvals

Gawler Craton IOCG: The opportunity

Australia contains the third largest world economic resource of copper.

67% of Australia's copper resources are located in the Gawler Craton, South Australia.

32% of all copper production is sourced from SA IOCG belt (312,000t Cu metal)

Increased focus on Gawler Craton for future and new copper production by the major and overseas mines eg. BHP, Oz Minerals, Chinese Groups

Disclaimer

This presentation has been prepared by Apollo Minerals Limited ("Apollo" or the "Company"). It should not be considered as an offer or invitation to subscribe for, or purchase any, securities in the Company or as an inducement to make an offer or invitation with respect to those securities. No agreement to subscribe for securities in the Company will be entered into on the basis of this presentation.

This presentation contains forecasts, projections and forward-looking information. Such forecasts, projections and information are not a guarantee of future performance and involve unknown risks and uncertainties, many of which are out of Apollo's control. Actual results and developments will almost certainly differ materially from those expressed or implied. Apollo has not audited or investigated the accuracy or completeness of the information, statements and opinions contained in this presentation. To the maximum extent permitted by applicable laws, Apollo makes no representation and can give no assurance, guarantee or warranty, expressed or implied, as to, and takes no responsibility and assumes no liability for:

- the authenticity, validity, accuracy, suitability or completeness of, or any errors in or omission from, any information, statement . or opinion contained in this presentation, and
- without prejudice to the generality of the foregoing, the achievement or accuracy of any forecasts, projections or other forward-looking information contained or referred to in this presentation.

Throughout this presentation all figures are quoted in A\$ dollars unless otherwise stated. You should not act in reliance on this presentation material. This overview of the Company does not purport to be all inclusive or to contain all information which its recipients may require in order to make an informed assessment of Apollo's prospects. You should conduct your own investigation and perform your own analysis in order to satisfy yourself as to the accuracy and completeness of the information, statements and opinions contained in this presentation before making any investment decision.

COMPETENT PERSON DECLARATION

The information in this Report that relates to Exploration Targets/Exploration Results is based on information compiled by Mr Derek Pang who is a member of the Australasian Institute of Mining and Metallurgy. Derek is a full time employee of Apollo Minerals Ltd. Derek has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertakening to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Derek consents to the inclusion in the report of the matters based on their information in the form and context in which it appears. 19

Follow Apollo Minerals on Twitter: @ApolloMinerals

Appendix:

What is an IOCG?

Definition - very broad

No
Cu

Magnetite-apatite deposits (Kiruna-type)

Carbonatite-Fe-oxide-F-REE deposits

Direct intrusion association

Typical IOCG

Cu-Au-Fe skarn deposits

Ironstone replacement Au-Cu deposits

Fe oxide-Cu-Au breccia deposits

Appendix:

Modern best practice targeting

Component	Ideal characteristics
Mineral System Model	
Sources of Metals and Fluids	Fe, CI and S Sources: Fe-rich basins and metasediments or A-type felsic magmas Cu and Au Sources: Mesoproterozoic (circa 1590Ma) mafic-ultramafic rocks
Heat Sources	Mesoproterozoic (circa 1590Ma) A-type felsic or mafic-ultramafic plutons
Fluid Conduits	Geological domain boundaries and local fault networks
Potential Trap Sites	Iron formations; +ve density anomalies; -ve or +ve magnetic anomalies residing within a +ve density anomaly
Other Target Indicators	
Target Size	Greater than 200Mt of ore
Depth to basement	Within 150m of surface
Chargeability & conductivity	+ve IP chargeability response; moderately to strongly conductive
Rock geochemistry	Potential indicators of IOCG include Light Rare earths Ce, La, and Te±Co-Cd-Mn