

IN-FILL DRILL PROGRAM DELIVERS 29% INCREASE IN CONTAINED GOLD WITHIN INDICATED MINERAL RESOURCE AT KESTANELIK

Highlights

- Infill drilling program at Kestanelik project leads to:
 - Overall gold resource increased to 746,000 ounces and contained silver to 730,000 ounces;
 - Contained gold within Indicated Resources increasing by 29% to 236,000 ounces at an average grade of 2.74 g/t; and
 - Silver increasing 57% to 212,000 ounces at 2.46 g/t.
- 60% of the Total Mineral Resource confirmed to lie within 50 metres of surface, at an average grade of 2.25 g/t gold.

Chesser Resources Limited (**ASX:CHZ**) has upgraded its Mineral Resource Statement to reflect the results of the recently completed drilling campaign at its Kestanelik project in north-west Turkey, which has led to a 6% increase in contained gold and substantial conversion of resources from inferred to indicated category.

Chesser Resources Managing Director Rick Valenta said the updated JORC Mineral Resource reconfirmed the attractive geological characteristics of the Kestanelik project.

"The resource update confirms the potential of the project, now underpinned by an increased resource, with a significantly higher proportion in the indicated category.

"The Project also retains extensive exploration upside, with potential for further substantial increases in resources through extensions of the deposit both laterally and at depth."

The drilling campaign mainly involved infill drilling, and was largely designed to increase overall confidence of the resource by converting inferred resource to indicated category. The campaign included 89 holes for 9,982 metres, as well as 78 surface sawcut sampling traverses across exposed veins. A total of 70,000 metres of drilling has now been completed at Kestanelik.

As a result of the recent drilling program and associated exploration activity contained gold increased 6% to 746,000 ounces. Average gold grade reduced slightly to 1.86 g/t. Contained silver increased 16% to 730,000 ounces at an average grade of 1.82 g/t. Total Mineral Resource increased 22% to 12.47 million tonnes

Resource confidence increased significantly. Contained gold within the Indicated Resource increased 29% to 236,000 ounces at an average grade of 2.74 g/t and silver increased 57% to 212,000 ounces at an average grade of 2.46 g/t. Indicated Mineral Resources increased by 66% to 2.68 million tonnes.

The updated resource has also confirmed the shallow nature of the mineralisation, with more than 120,000 ounces lying within 10 metres of surface.

The new updated Mineral Resource is outlined in the following table:

	Mineralised	Grade (g/t)		Metal (ounces)	
Resource Category	Tonnes	Gold	Silver	Gold	Silver
Indicated	2,680,000	2.74	2.46	236,000	212,000
Inferred	9,789,000	1.62	1.65	510,000	518,000
Total	12,469,000	1.86	1.82	746,000	730,000

Analysis of the resource at different cutoff grades confirms a significant component of near-surface higher grade material:

Cut off	Resource	Mineralised	Mineralised Grade (g/t)		Metal (oz)	
(Au g/t)	Category	Tonnes	Gold	Silver	Gold	Silver
	Indicated	2,680,000	2.74	2.46	236,000	212,400
0.5	Inferred	9,126,000	1.69	1.7	496,800	501,600
	Total	11,806,000	1.93	1.9	732,000	714,000
	Indicated	2,529,000	2.86	2.52	232,000	206,000
0.75	Inferred	7,685,000	1.91	1.88	471,000	465,000
	Total	10,214,000	2.14	2.04	703,000	671,000
	Indicated	2,183,000	3.18	2.8	223,000	194,700
1.0	Inferred	5,092,000	2.41	2.2	394,400	366,600
	Total	7,275,000	2.64	2.4	617,400	561,300
	Indicated	1,124,000	4.82	3.9	174,300	139,200
2.0	Inferred	1,974,000	3.98	3.1	252,300	199,400
	Total	3,098,000	4.28	3.4	426,600	338,600

Kestanelik Mineral Resource reported variable cut off grades (0.5g/t interpretation July 2014*)

*excluding low grade halo

For further details please contact: Rick Valenta – Managing Director and Chief Executive Officer Stephen Kelly – Company Secretary and Chief Financial Officer Telephone: + 61 7 3844 0613

About Chesser Resources Limited

Chesser is an Australian-based ASX-listed exploration company (ASX: CHZ), exploring for gold and base metals in Turkey. The Company is currently conducting an aggressive, but focused, exploration program on its Kestanelik epithermal gold project. The Company's flagship project, Kestanelik, is situated in western Turkey, some 10 kilometres southeast of the Dardanelles, and enjoys good access together with excellent infrastructure. It hosts low sulphidation epithermal quartz veining with identified high-grade gold mineralisation and bonanza grades. Kestanelik has an indicated resource of 236,000 ounces of gold at a grade of 2.74 g/t Au, and total resource of 746,000 ounces of gold at 1.86 g/t Au, 60% of which lies within 50 metres of the surface at an average grade of 2.25 g/t Au. The Company has declared a 303,000 oz gold resource (91,000 oz Indicated and 212,000 oz Inferred) on its Sisorta project in north-eastern Turkey. The Board and management of Chesser, backed by the Company's major shareholders, are committed to unlocking value from this highly prospective portfolio of projects and the Company is committed to advancing its existing portfolio while continuing to seek new advanced opportunities.

Company Directors	& Management	Company Information	Top Shareholders
Rob Reynolds	Chairman	ABN:	Management
Rick Valenta	Managing Director	14 118 619 042	Macquarie MEC
Simon O'Loughlin	Non-Executive Director	Address:	Acorn Capital
Simon Taylor	Non-Executive Director	96 Stephens Road	
Peter Lester	Non-Executive Director	South Brisbane Qld 4101 Australia	Institutions – 30%
Morrice Cordiner	Non-Executive Director	Telephone:	Top 40 ≈ 62%
		+61 7 3844 0613	
Stephen Kelly	CFO/Company Secretary	Contact:	
Nigel Ricketts	Project Director Kestanelik	info@chesserresources.com.au	
Cem Yuceer	Exploration Manager	Chesser Website:	
		www.chesserresources.com.au	

The exploration data and results contained in this report are based on information reviewed by Dr Rick Valenta, a Fellow of the Australian Institute of Mining and Metallurgy. He is Managing Director of the Company and has sufficient experience which is relevant to the styles of mineralisation and types of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the December 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code). Dr Valenta has consented to the inclusion in this release of the matters based on his information in the form and context in which it appears.

The information in this report that relates to Kestanelik in-situ Mineral Resources is based on information compiled by Mr. Ian Taylor of Mining Associates Ltd. Mr. Taylor is the competent person for the Kestanelik resource estimate and takes overall responsibility for it. He is a of the Australian Institute of Geoscientists and a Chartered Professional of the Australasian Institute of Mining and Metallurgy and has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity he is undertaking, to qualify as a "Competent Person" as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code). Mr. Taylor consents to the inclusion of such information in this Report in the form and context in which it appears.

The information in this report that relates to Sisorta in-situ Mineral Resources is based on information compiled by Mr. Gary Giroux of Giroux Consultants Ltd. Mr. Giroux is the competent person for the Sisorta resource estimate and takes overall responsibility for it. He is a Member in good standing of the Association of Professional Engineers and Geoscientists of the Province of British Columbia (a "Recognised Overseas Professional Organisation" under the JORC code) and has sufficient experience, which is relevant to the style of mineralisation and type of deposit under consideration, and to the activity he is undertaking, to qualify as a "Competent Person" as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves' (JORC Code) and has the appropriate relevant qualifications, experience and independence to qualify as a "Qualified Person" under National Instrument 43-101 - "Standards of Disclosure for Mineral Projects" (NI 43-101). Mr. Giroux consents to the inclusion of such information in this Report in the form and context in which it appears. This information was prepared and first disclosed under the JORC Code 2004. It has not been updated since to comply with the JORC Code 2012 on the basis that the information has not materially changed since it was last reported.

ANNEXURE ONE

EXPLANATORY NOTES TO THE MINERAL RESOURCE UPDATE FOR THE KESTANELIK GOLD PROJECT

Kestanelik JORC Mineral Resource Update

The mineral resource estimate for the Kestanelik Project has been carried out in accordance with the guidelines of the JORC code (2012 edition). Approximately 32% of the Total Mineral Resource (August 2013 JORC Mineral Resource 26%) is in the Indicated Mineral Resource category - the category sufficient to use as a basis for estimating a Probable Ore Reserve and undertaking a feasibility study.

Estimation of the mineral resource was carried out by Ian Taylor of Mining Associates Ltd on the basis of a geological model provided by Chesser and reviewed by Mining Associates. The criteria on which the mineral resource update was based are summarised in **Appendix One** *"JORC (2012 edition) Checklist of Assessment and Reporting Criteria"*.

A summary of the information used in the 2014 Kestanelik Mineral Resource Update is as follows:

- Kestanelik is a low sulphidation epithermal vein system hosted within a package of mica schists of reported pre-Permian age in proximity to the western contact of a hornblende dacite porphyry stock of probable Oligocene or Miocene age. Serpentinised ultramafic rock occurs within the schist package along the eastern side of the stock
- The majority of the mineralisation lies within two zones of veining; The Karakovan zone in the NW, which has extents of 550 m (east), 350 m (north) and 200 m (elevation); and the Kestanelik zone, which has extents of 800 m (east), 550 m (north) and 350 m (elevation). Additional zones included in the resource are the Karatepe, Kestaneli Srti and Sedimentary breccia zones.
- A total of 217 RC holes and 288 diamond holes have been drilled on the property by Chesser, for a total of approximately 70,100m. Of these completed holes, 158 RC and 189 diamond holes have intersected mineralised domains in the reported mineral resource. For sample handling core is cut in half using a diamond saw (100% of core recovered) and half of the core is submitted for analysis. The maximum core sample interval is 2.5 m and the minimum sample interval is 0.5 m. All RC drilling was sampled on 1 m intervals. Zones of mineralisation as defined by epithermal veining and brecciation, plus or minus sulphides or iron oxides after sulphides, are logged and sampled separately.
- Most core drilling has been 63.5mm diameter HQ "standard tube" core, although some 85 mm PQ and 47.6 mm diameter NQ has been drilled. All RC drilling has been completed using a 4.5" or 114.3 mm face sampling hammer bit. Most core holes were drilled from surface, with only three RC precollars being used. Downhole surveys have been taken every 50 m down hole. Due to the broken nature of the core in the quartz veins and breccias core orientations are ineffective, and therefore no orientations were conducted at Kestanelik. IDC was the drilling contractor for the 2010 RC and diamond drill programs and the 2011 2012 drill program (30 000 m). Spektra was the drilling contractor for the 2013 and 2014 drill programs (25,000 m).
- Mineralisation is defined within 11 domains (43 trisolations) based on structurally constrained 0.5 g/t grade shells. These domains were created in Leapfrog through manually defining foot wall and hanging wall contacts of interpreted mineralised structures using 0.5g/t as a nominal cut-off grade for the boundaries. Structures defined in this manner comprise the Karakovan zone (KK1, KK2 and KK3); The Karatepe zone (KT) to the north east; Kestanelik (K1 to K4) zone and the eastward extension Kestaneli Srti (KS) zone; To the south east outcrops Topyurt (TY) and the sedimentary breccia (SBx). In addition to the 0.5 g/t grade shells, low grade halo mineralisation was modelled at a 0.2 g/t gold grade shell.

	Mineralised	Gra	de (g/t)	Meta	l (oz)
Resource Category	Tonnes	Gold	Silver	Gold	Silver
Indicated	2,680,000	2.74	2.46	236,000	212,000
Inferred	9,789,000	1.62	1.65	510,000	518,000
Total	12,469,000	1.86	1.82	746,000	730,000

Table 1 Kestanelik Mineral Resource estimate reported including low grade halo (>0.5g/t cut off)

Note: Totals may appear different from the sum of their components because of rounding

Table 2 Kestanelik JORC mineral resource reported at variable cut off grades excluding the low grade halo

Cut off	Resource	Mineralised	Grad	le (g/t)	Metal (oz)	
(Au g/t)	Category	Tonnes	Gold	Silver	Gold	Silver
	Indicated	2,680,000	2.74	2.46	236,000	212,400
0.5	Inferred	9,126,000	1.69	1.7	496,800	501,600
	Total	11,806,000	1.93	1.9	732,000	714,000
	Indicated	2,529,000	2.86	2.52	232,000	206,000
0.75	Inferred	7,685,000	1.91	1.88	471,000	465,000
	Total	10,214,000	2.14	2.04	703,000	671,000
	Indicated	2,183,000	3.18	2.8	223,000	194,700
1.0	Inferred	5,092,000	2.41	2.2	394,400	366,600
	Total	7,275,000	2.64	2.4	617,400	561,300
	Indicated	1,124,000	4.82	3.9	174,300	139,200
2.0	Inferred	1,974,000	3.98	3.1	252,300	199,400
	Total	3,098,000	4.28	3.4	426,600	338,600

Kestanelik Mineral Resource reported variable cut off grades (0.5g/t interpretation July 2014)

Note: Totals may appear different from the sum of their components because of rounding

Figure 1 – Plan view showing distribution of mineralized bodies and locations of cross sections in figures 2 and 3.

Figure 2 – NW-SE Section A-A through K-zone. See Figure 1 for section location.

Figure 3 – NW-SE Section B-B through southwest end of Karakovan zone. See Figure 1 for section location.

Ounces Au

Appendix 1: JORC TABLE 1. CHECKLIST OF ASSESSMENT AND REPORTING CRITERIA

15 JORC Code, 2012 Edition – Table 1

15.1 Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

15.2 Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The Kestanelik property is located on Operating licences: 58380 & 58467, which are held in the name of Batı Anadolu Madencilik Sanayi ve Ticaret A.Ş., a wholly-owned Turkish subsidiary of Chesser Resources Ltd. A 2.5% Net Smelter Return Royalty is payable to the group from whom Chesser originally optioned the property, Eldorado Gold Corporation (ELD:TSX). Chesser Resources, through its 100% owned Turkish Subsidiary, has vested 100% ownership in the Kestanelik tenements
done by other parties	exploration by other parties.	Iuprag (the 100% owned Turkish subsidary of Eldorado) was the previous owner of the Kestanelik tenements and they conducted mapping, rockchip sampling and shallow RC drilling
		□ Tuprag intersected some high grade gold intercepts but due to some poor results at depth in Karakovan and Kara Tepe areas they decided that the system was deeply eroded and the exposure was below the high grade gold zone.
		There are historical workings of unknown age with open stopes and inclined shafts and drives in and around the mineralised quartz veins. The workings do not exceed a depth of ~20m.
Geology	Deposit type, geological setting and style of mineralisation.	The gold deposit type is low sulphidation epithermal vein system hosted within a package of mica schists of reported pre-Permian age in proximity to the western contact of a hornblende dacite porphyry stock of probable Oligocene or Miocene age. Serpentinised ultramafic rock occurs within the schist package along the eastern side of the stock
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole 	Refer to drill hole tabulation in main report

Criteria	JORC Code explanation	Commentary
	 o down hole length and interception depth o hole length. 	
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 In all previous ASX press releases the assays are given ,un- cut" unless otherwise stated & weighted averaging of results is used: in which the average grade is the sum of the products of length and grade for each sample in the interval, divided by the total length of the interval. A nominal cutoff of0.2g/t is used for identification of potentially significant intercepts for reporting purposes, though a 0,5g/t cutoff has been used in resource modelling. Most of the reported intercepts are shown in sufficient detail, including gold maxima and subintervals, to allow the reader to make an assessment of the balance of high and low grades in the intercept Informing Samples have been composited to two metre lengths honouring the geological boundaries and adjusted where necessary to ensure that no residual sample lengths have been excluded (best fit). Metal equivalents are not used.
Relationship between mineralisatio n widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg "down hole length, true width not known"). 	 Mineralised structures at Kestanelik are variable in orientation, and therefore drill orientations have been adjusted from place to place in order to allow intersection angles as close as possible to true widths Exploration results have been reported as an interval with ,from" and ,to" stated in tables of significant economic intercepts. Tables clearly indicate that true widths will generally be narrower than those reported. An estimate of true width can be made based on the known strike of mineralised quartz veins or quartz breccias, although it should be noted that these features are not absolutely planar and anastomosing does occur, with variable strike and dip.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. Where comprehensive reporting of 	 See Figure 24, Figure 25 and Figure 26 of the main report Tabulated mineralised drill hole intercepts in are stored in the database.
reporting	vinere comprenensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Every drill hole completed on the property has been reported, regardless of whether it has returned high or low grades. Higher grade drill holes are reported with significant detail, while lower grade drill holes generally have fewer reported intercepts. Holes with no economically significant intercepts are reported as such in each release of results, with the label "No Significant Intercept".
Other substantive	Other exploration data, if meaningful and material, should be reported including (but not	Geophysical survey results and surface geochemistry results have been reported.

Criteria	JORC Code explanation	Commentary
exploration data	limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 All samples are measured for bulk density, which at Kestanelik ranges from 2.1 g/cm³ to 2.85 g/cm³. Multi element assaying is conducted routinely on all samples for a suite of potentially deleterious elements including Arsenic, Sulphur, Zinc and Magnesium Some geotechnical study has been undertaken on the project, with the aim of determining rock strength and planning pit wall angles Metallurgical testing has been carried out on bulk samples of drillcore and RC chips Tests of the ground water have been made
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Future drilling will continue to test known mineralisation along strike and down dip at close spacing (20 x 40 m approx) and will also target untested zones of potential mineralisation (based on surface geochemistry, geology or resistive targets from IP).

15.3 Section 3 Estimation and Reporting of Mineral Resources

Criteria JC	RC Code explanation	Commentary
Database integrity	Measures taken to ensure that data has not been corrupted by, for example, transcription or keying errors, between its initial collection and its use for Mineral	An audit of the "Datashed" database has been undertaken by Neil Fordyce (GIS & data management specialist of Minffordd Pty Ltd)
Site visits	 Comment on any site visits undertaken by the Competent Person and the outcome of those visits. If no site visits have been undertaken indicate why this is the case. 	□ Ian Taylor (AusIMM(CP)) of Mining Associates visited the property in February of 2013. Field exposures and numerous drill hole s were examined during this visit, and an assessment was made of the procedures for logging, sample preparation, quality control and SG measurement. No field visit was conducted for the 2014 resource estimate.
Geological interpretation	 Confidence in (or conversely, the uncertainty of) the geological interpretation of the mineral deposit. Nature of the data used and of any assumptions made. The effect, if any, of alternative interpretations on Mineral Resource estimation. The use of geology in guiding and controlling Mineral Resource estimation. The factors affecting continuity both of grade and geology. 	 The Kestanelik deposit consists of a number of zones of low sulphidation epithermal quartz veins and spatially associated stockworks. Most of the main veins are well-exposed and therefore have a well-understood geometry. The veins are variable in orientation both along strike and down dip, The main data used to interpret the geometry of mineralised structures has been surface mapping and drilling, aided in some places by gradient array IP Geophysics The extensive low grade mineralisation halo surrounding the mineralised structures would allow the interpretation of a larger, lower grade body on the property. However, the additional metal associated with this interpretation would be offset by a lower grade. Structural observation of exposed mineralised veins has provided key constraints on formulation of the interpreted mineralised solids in the resource model Mineralisation at Kestanelik occurs in multiple structures which can be discontinuous along strike and down dip. High grade shoots are controlled by intersecting structures and geological boundaries

Criteria	JORC Code explanation	Commentary
Dimensions	The extent and variability of the Mineral Resource expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	The majority of the mineralisation lies within two zones of veining; The Karakovan zone in the NW, which has extends of 550 m (east), 350 m (north)and 200 m (elevation); and the K-zone, which has extents of 800 m(east), 550 m (north) and 350 m (elevation). The Karatepe, A3cand SBX zones lie outside these two main zones
Estimation	The nature and appropriateness of the	Estimation undertaken in Surpac 6.6.1.
techniques	estimation technique(s) applied and key assumptions.	Kriging of 20 m x 10 m x 5 m blocks (XYZ local grid)
applied and key assumptions, including treatment of extreme grade values, domaining interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer	Experimental Variograms were generated in Supervisor. Experimental Variograms were poorly formed, due to the grade distribution expected in a narrow epithermal gold silver deposit. Variogram sills were standardized to 1. Nuggets were generally moderate to low, ranging from 0.2 to 0.6, and the range of the variogram ranged from 30 m to 80m. Geometric Anisotropy was adopted and ellipsoid ratios applied to reflect directional variograms.	
	used. The availability of check	Estimation parameters: Dominant veins min samples5 and max 15 first pass, minor veins min samples 5 and max 12. Second Pass Min Samples 3 and max samples 6 or 12, search distances reflect variogram ranges
	estimates, previous estimates and/or mine production	(30 – 80 m 1 st pass and doubled on 2 nd pass). Informing composites were limited per drill hole
records and whether the Mineral Resource estimate takes appropriate account of such data.	Silver is considered a by-product and has been estimated using the same parameters as the gold estimate. Generally each gold assay has an associated silver assay.	
	 The assumptions made regarding recovery of by- products. 	No other variables were considered in this resource estimate. Sufficient additional data is available however concentration levels do not warrant estimation.
	 Estimation of deleterious elements or other non-grade variables of economic significance (eg sulphur for acid mine drainage 	Block size was 20 m x 10 m x 5 m (XYZ local grid)which considers vein orientation and drill pattern. (approximately $\frac{1}{2}$ the drill spacing)
	characterisation).	Sub-blocking of 5 m x 2.5 m x 1.25 m approximating the selective mining unit. No ore loss or dilution has been applied to the resource.
	In the case of block model interpolation, the block size in relation to the average sample spacing and the search employed.	Vein wireframes were constructed based on surface mapping, channel sampling and drill hole intercepts greater than at 0.2g/t Au and 0.5g/t Au. Wireframes were used to constrain the individual veins estimates.
	 Any assumptions behind modelling of selective mining units. 	High grade outliers within the two metre composite data were capped. Veins were individually assessed for outliers; grade caps were applied as appropriate and ranged from 97.5 percentilte to the 99 percentilte. Gold
 Any assumptions about correlation between variables. 	domains were capped at appropriate levels, ranging from the lowest cap of1.2 g/t to a high cap of 78g/t in the high grade domains, silver caps ranged from a low of 2.3 g/t to a high of 61.3 g/t.	
	Description of how the geological interpretation was used to control the resource	Global mean grades for estimated blocks and drill hole samples compared well.
	 Discussion of basis for using or not using grade cutting or 	Ordinary krige estimates were compared to nearest neighbour and inverse distance estimates, to assess the impact of data clustering and semi variograms.
	capping. □ The process of validation, the checking process used, the comparison of model data to	Swath plots along strike were constructed and showed a good correlation between sample data and estimated block grades, especially in well informed areas.
	drill hole data, and use of reconciliation data if available.	No reconciliation data is available for the Kestanelik project as no official production has taken place.

Criteria	JORC Code explanation	Commentary
Moisture	Whether the tonnages are estimated on a dry basis or with natural moisture, and the method of determination of the moisture content.	Tonnages are based on dry tonnes. Density samples were oven dried for 12 hours and wax coated prior to using the immersion method to determine the dry density of the host rock.
Cut-off parameters	The basis of the adopted cut-off grade(s) or quality parameters applied.	☐ The mineral resource is reported above 0.5g/t. The resource includes inferred and indicated material, assumed mining, processing and administration costs, gold and silver price and recovery factors have been considered in determining reasonable prospects for economic extraction at a 0.5g/t cut off.
Mining factors or assumptions	Assumptions made regarding possible mining methods, minimum mining dimensions and internal (or, if applicable, external) mining dilution. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider potential mining methods, but the assumptions made regarding mining methods and parameters when estimating Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the mining assumptions made.	 Mineralisation is enriched close to surface. Chesser foresees mining via open pit and CIL processing plant. MA notes that this is a reasonable assumption but should not be regarded as rigorous at this stage of the project. The current mineral resource does not include any dilution or ore loss associated with practical mining constraints.
Metallurgical factors or assumptions	□ The basis for assumptions or predictions regarding metallurgical amenability. It is always necessary as part of the process of determining reasonable prospects foreventual economic extraction to consider potential metallurgical methods, but the assumptions regarding metallurgical treatment processes and parameters made when reporting Mineral Resources may not always be rigorous. Where this is the case, this should be reported with an explanation of the basis of the metallurgical assumptions made.	Multiple programs of metallurgical testing have been carried out at Kestanelik and results to date have confirmed gold recoveries in the 92% to 96% range in cyanidation tests as particle sizes between 53 and120 microns. Reagent consumptions are low. These results suggest that the mineralization would be amenable to gold recovery through a standard CIL treatment facility
Environmen- tal factors or assumptions	Assumptions made regarding possible waste and process residue disposal options. It is always necessary as part of the process of determining reasonable prospects for eventual economic extraction to consider the potential environmental impacts of the mining and processing operation. While at this stage the determination of potential environmental impacts, particularly for a greenfields project, may not always be well advanced, the status of early consideration of these potential environmental impacts should be reported. Where these aspects have not been considered this should be reported with an explanation of the environmental assumptions made.	 Preliminary investigations have identified a number of potentially suitable locations for storage of waste and tailings. Acid rock drainage testing has revealed a low potential of acid rock drainage issues on the property. It is assumed that due to known mining activity in the proximity to the Kestanelik project that environmental impacts will be addressed with due process but should not preclude the project from progressing to potential economic extraction. Flora and fauna assessments of the site are on- going and have raised no particularly sensitive issues. The mine site sits within a re-growth forestry area.

Criteria	JORC Code explanation	Commentary
Criteria Bulk Density	 Whether assumed or determined. If assumed, the basis for the assumptions. If determined, the method used, whether wet or dry, the frequency of the measurements, the nature, size and representativeness of the samples. The bulk density for bulk material must thave been measured by methods that adequately account for void spaces (vugs, porosity, etc), moisture and differences between rock and alteration zones within the deposit. Discuss assumptions for bulk density estimates used in the evaluation process of the different materials. 	 Commentary For the specific gravity of rocks, an SG sample of split core is taken from each assay sample interval within mineralised and non-mineralised zones. Each sample is a minimum of 5 cm long and up to 25 cm. The samples are dried in a 105-110°C oven for 16hours, and then allowed to cool to room temperature. The sample is then weighed dry on a scale with 0.01 gram accuracy.(First Measurement) The sample is dipped quickly in a container of warm paraffin wax to give a thin coating of paraffin wax and allowed to set. The sample is then weighed with dry wax coating on a scale with 0.01 gram accuracy.(Second Measurement) The sample is attached to a harness connected to the scale and lowered into a bucket of water in order to determine its mass in water.(Third Measurement) Volume of the sample = mass of dry sample in air – mass of uncoated dry sample / density of wax Density of wax is taken as 0.89 g/cm³ (the paraffin waxes used is commercially available and have density values in the range 0.87 to 0.91 g/cm³).
Classification	 The basis for the classification of the Mineral Resources into varying confidence categories. Whether appropriate account has been taken of all relevant factors (ie relative confidence in tonnage/grade estimations, reliability of input data, confidence in continuity of geology and metal values, quality, quantity and distribution of the data). Whether the result appropriately reflects the Competent Person's view of the deposit. The results of any audits or reviews of Mineral Resource estimates. 	 Resource classification is based data quality, drill density, number of informing samples, kriging efficiency, conditional bias slope, average distance to informing samples and vein consistency (geological continuity). High confidence in the quality of the data justified the classification of inferred and indicated resources; the data quality does not preclude measured resources. Geological continuity has been demonstrated at 50 m grid spacing over the entire strike of Kestanelik project. The veins commonly outcrop their known strike lengths. Indicated resources required the distance to nearest sample to be less than 40m, the minimum informing samples be greater than 8, Kriging efficiency greater than 40% and conditional bias slope be greater than 0.6 for the majority of blocks. These parameters were then manually refined to better reflect the competent person's view of the resource classification within each domain. No external audits or reviews of the resource estimate have been carried out to date.

Criteria	JORC Code explanation	Commentary
Discussion of relative accuracy/ confidence	 Where appropriate a statement of the relative accuracy and confidence level in the Mineral Resource estimate using an approach or procedure deemed appropriate by the Competent Person. For example, the application of statistical or geostatistical procedures to quantify the relative accuracy of the resource within stated confidence limits, or, if such an approach is not deemed appropriate, a qualitative discussion of the factors that could affect the relative accuracy and confidence of the estimate. The statement should specify whether it relates to global or local estimates, and, if local, state the relevant to technical and economic evaluation. Documentation should include assumptions made and the procedures used. These statements of relative accuracy and confidence of the estimate should be compared with production data, where available. 	 The resource estimate has been developed from "first principals" based on a review and re- interpretation of the geological controls and drill data using leapfrog. Several iterations of leap frog models were reviewed; generally leapfrog models are accurate to 15cm compared to the drill hole intercepts, well within the accuracy required for open pit mining. The ordinary kriging result, due to the high level of smoothing, should only be regarded as a global estimate, and is suitable as a life of mine planning tool. Should local estimates be required for detailed mine scheduling techniques such as Uniform conditioning or conditional simulation would be required. Using the slope of regression as a guide to classification of mineral resource takes the quality and hence accuracy of the block estimates into consideration. Production data is not available for the Kestanelik project which precludes comparison of the mineral resource with production data.

Section 4 Estimation and Reporting of Ore Reserves

(Criteria listed in section 1, and where relevant in sections 2 and 3, also apply to this section.)

Section 4 does not pertain to this resource report

Appendix Two

Drill hole collar locations and drilling results

Drill hole collar locations and drilling results (drill hole data and results have been reported in prior releases to the ASX).

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	TYPE	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
SC-07	481,609	4,462,560	368	360	-65	127.10	DD	33.5	38.4	4.9	2.2		
		AN	ID					46.1	51.2	3.7	0.7		
		AN	ID					76.0	83.7	7.7	0.9		KARA
SC-08	481,716	4,462,565	392	360	-65	111.90	DD	63.9	67.2	3.3	0.4		TEPE
		AN	ND					75.0	83.0	8.0	0.5		(КТ)
SC-09	481,881	4,462,595	391	350	-75	117.70	DD	73.2	80.5	7.3	0.2		
		AN	١D					97.0	103.0	6.1	0.3		
SC-10	481,385	4,462,535	322	320	-50	139.90	DD	17.1	22.3	5.2	0.5		
		AN	ND					34.1	41.1	7.0	0.9		
		INCLU	JDING					34.1	38.1	4.0	1.3		
		AN	١D					55.8	66.4	10.6	0.8		KK1 / KK2
		INCLU	JDING					63.1	66.4	3.4	2.0		
SC-11	SC-11 481,385 4,462,534 322 320 -80 117.70							17.7	22.6	4.9	3.0		
		AN	١D					47.5	50.6	3.1	2.0		
SC-13	481,507	4,462,595	357	360	-60	74.3	DD	5.0	28.9	23.4	0.6		
		INCLU	JDING					5.0	9.5	4.5	1.1		
SC-14	481,608	4,462,573	373	360	-50	69.8	DD	24.8	33.8	9.0	1.0		
		AN	ND					44.3	52.2	9.9	1.7		кт
SC-16	481,714	4,462,593	396	360	-70	74.3	DD	48.8	67.8	19.0	1.1		
		INCLU	JDING					48.8	55.8	7.0	1.7		
SC-17	481,987	4,462,685	412	340	-50	72.8	DD	3.8	11.5	7.7	0.5		
KED-001	481,320	4,462,611	344	312	-60	40	DD	9.0	29.0	20.0	5.8	5.5	
		INCLU	JDING					10.0	14.0	4.0	2.5	5.3	
		INCLU	JDING					21.5	29.0	7.5	13.3	10.5	
		INCLU	JDING					22.5	27.0	4.5	20.8	14.3	
KED-002	481,334	4,462,599	343	0	-90	70	DD	8.0	33.5	25.5	1.0	0.8	KK2
		INCLU	JDING					16.0	19.3	2.2	1.4	1.3	
		INCLU	JDING					24.0	30.5	6.5	1.3	0.9	
		AN	١D					38.7	49.2	10.5	1.8	3.7	
		INCLU	JDING					46.2	49.2	3.0	3.7	8.5	
KED-003	481,578	4,461,979	300	194	-70	63.3	DD	0.0	10.0	10.0	7.8	4.2	
		INCLU	JDING					4.0	10.0	6.0	10.6	5.8	
		INCLU	JDING					4.0	7.0	3.0	13.6	6.8	
KED-004	481,586	4,461,997	301	222	-60	101.5	DD	5.2	6.4	1.2	2.1	1.4	
		AN	ND					9.0	24.0	15.0	6.3	5.0	
		INCLU	JDING					14.7	24.0	9.3	9.6	7.7	K0
		INCLU	JDING					14.7	22.5	7.8	11.1	8.7	R2
		INCLU	JDING					17.5	22.5	5.0	14.9	11.5	
		AN	ND					31.5	42.0	10.5	3.0	4.0	
		INCLU	JDING					31.5	35.5	4.0	3.1	3.1	
		INCLU	JDING					36.5	39.7	3.2	5.4	5.7	
		AN	ND					78.4	83.2	4.8	1.3	1.0	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		INCLU	JDING					80.5	83.2	2.7	1.8	1.6	
KED-005	481,641	4,462,136	304	315	-60	91	DD	22.5	26.6	4.1	2.0	1.4	K1
		AN	١D					34.5	37.7	3.2	1.8	1.8	KI
KED-006	481,646	4,462,134	304	15	-45	126.5	DD	13.5	48.5	35.0	2.9	1.3	
		INCLU	JDING					16.0	29.3	13.3	6.7	2.6	
		INCLU	JDING					16.0	18.5	2.5	26.9	8.3	K1
		INCLU	JDING					27.0	29.3	2.3	7.1	5.0	
		INCLU	JDING					25	29.3	4.3	4.05	2.28	
		AN	١D					103.5	111.0	7.5	0.9	0.9	K2
		INCLU	JDING					106.0	110.0	4.0	1.4	0.6	112
KED-007	KED-007 481,301 4,462,509 310 315 -70 72.5 I								18.0	8.0	2.9	2.2	
	INCLUDING								18.0	4.0	4.8	3.2	KK1
	AND								72.5	2.7	0.5	1.2	
KED-007A	481,299	4,462,511	310	311	-70	97.3	DD	71.0	76.4	5.4	0.4	0.9	
KED-008	481,774	4,462,213	319	315	-60	136	DD	13.9	15.7	1.8	0.7	0.8	KA
		AN	١D					82.9	87.5	4.6	0.3	0.6	K1
KED-009	481,258	4,462,574	326	315	-70	82.5	DD	7.5	16.9	9.4	1.4	1.5	K2
KED-010	481,397	4,462,485	296	25	-60	119.5	DD	36.6	37.8	1.2	2.0	1.9	KK1 E
KED-011	481,202	4,462,562	306	116	-55	105	DD	2.0	24.0	22.0	0.4	0.6	KK2
		INCLU	JDING					2.0	5.4	3.4	1.5	2.0	nnz
KED-012	481,469	4,462,457	298	178	-67	140	DD	7.5	12.0	4.5	0.4	0.6	B2
KED-013	481,963	4,461,997	388	220	-60	137.5	DD	69.5	73.9	4.4	1.7	1.6	KARA
		AN	١D					80.0	80.8	0.8	2.0	5.3	(KS)
KED-014	481,745	4,461,911	339	190	-60	123	DD	1.5	19.8	18.3	1.9	0.5	
		INCLU	JDING					1.5	10.5	9.0	3.2	1.0	K3 HW
		INCLU	JDING					6.6	10.5	3.9	5.8	1.5	
		AN	١D					68.0	81.0	13.0	6.8	5.7	
		INCLU	JDING					73.5	77.3	3.8	20.9	17.0	K3
		INCLU	JDING					76.2	77.3	1.1	51.6	41.1	
		AN	١D					114.0	117.3	3.3	21.3	8.3	K3 FW
		INCLU	JDING					114.0	116.0	2.0	34.4	13.2	
KED-015	481,746	4,461,912	339	0	-90	163.5	DD	8.5	9.5	1.0	1.6	0.7	K3 HW
		AN	١D					32.0	35.0	3.0	0.8	0.2	
		AN	١D					110.0	129.0	19.0	2.4	2.9	
		INCLU	JDING					120.5	125.0	4.5	7.9	6.4	K3
		INCLU	JDING					121.6	124.0	2.4	12.1	7.9	
		INCLU	JDING					123.0	124.0	1.0	18.9	15.8	
		AN	١D					130.0	130.9	0.9	1.8	5.7	K3 FW
		AN	ND.					140.0	141.6	1.6	2.1	2.4	
KED-016	481,599	4,462,474	348	0	-60	220.5	DD	21.5	26.0	4.5	1.1	0.6	кт
		INCLU	JDING					22.3	24.8	2.5	1.2	0.7	
KED-017	481,749	4,461,911	339	135	-60	129	DD	8.2	15.0	6.8	7.1	2.7	K3 HW
		INCLU	JDING					13.5	15.0	1.5	28.2	8.9	
		AN	1D					67.2	81.0	13.8	11.3	4.1	К3

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		INCLU	IDING					69.1	78.7	9.6	16.0	5.8	
		INCLU	IDING					70.0	71.0	1.0	35.0	11.1	
		INCLU	IDING					75.7	77.3	1.6	56.3	17.5	
		INCLU	IDING					76.5	77.3	0.8	108.0	30.9	
KED-018	481,696	4,462,492	377	360	-60	166	DD	3.5	8.9	5.4	0.3	0.7	
		AN	1D					81.0	88.0	7.0	0.4	0.6	кт
		AN	١D					121.3	133.6	12.3	0.3	0.3	
KED-019	481,728	4,461,869	323	150	-50	45.5	DD	0	28.5	28.5	1.0	0.8	
		INCLU	IDING					11.9	26.6	14.7	1.7	1.2	
		INCLU	IDING					13.1	20.0	6.9	2.0	1.1	K3
		INCLU	IDING					13.1	14.7	1.1	7.1	3.1	
		INCLU	IDING					21.0	26.6	5.6	1.7	1.3	
KED-020	481,727	4,461,870	323	150	-75	110	DD	0.8	2.4	1.6	0.9	0.9	K3 HW
		AN	١D					13.5	21.0	7.5	1.1	0.7	
		AN	1D					22.5	31.5	9.0	2.1	1.1	
		INCLU	IDING					27.0	29.2	2.2	4.8	2.4	K3
		AN	1D					69.0	70.5	1.5	3.8	1.2	
		AN	١D					93.7	95.0	1.3	1.1	1.5	
KED-021	481,791	4,462,564	381	0	-60	110.5	DD	80.5	84.5	4.0	1.0	1.0	КТ
KED-022	481,633	4,461,819	276	150	-52	68.5	DD	11.5	17.0	5.5	11.0		
		INCLU	IDING					13.2	17.0	3.8	15.1	11.7	
		INCLU	IDING					15.9	17.0	1.1	35.0	31.1	
		AN	1D					17.0	19.2	2.2	Intersected v	vorkings	
		AN	1D					19.2	22.0	2.8	13.4	9.7	К3
		INCLU	IDING					19.2	20.5	1.3	27.4	19.9	
		AN	ID					22.0	23.4	1.4	Intersected v		
		AN	١D					23.4	30.5	7.1	8.6	9.9	
		INCLU	IDING					23.5	26.6	3.1	14.7	16.5	
KED-023	481,632	4,461,820	276	150	-75	60	DD	18.4	18.8	0.4	1.2	0.8	
		AN	1D					22.5	22.7	0.2	10.1	5.0	
		AN	1D					24.0	24.2	0.2	7.5	3.3	
		AN	1D					25.5	26.1	0.6	1.5	0.6	K3
		AN	1D					33.0	45.0	12.0	4.2	3.8	
	INCLUDING							34.2	40.3	6.1	7.7	6.8	
		INCLU	IDING					35.1	36.0	0.9	40.7	26.6	
KED-024	481,676	4,462,258	347	360	-60	149	DD	133.7	138.5	4.8	0.7	0.9	SCOUT
KED-025	481,600	4,462,014	303	0	-90	114	DD	0.0	2.3	2.3	2.7	1.3	
		INCLU	IDING					0.0	1.4	1.4	3.2	1.5	
		AN	1D					30.5	33.9	3.4	2.6	2.3	K2
		INCLU	IDING					31.5	33.9	2.4	3.3	2.9	
		INCLU	IDING					31.5	32.5	1.0	5.4	4.3	
KED-026	481,698	4,462,085	316	0	-90	164	DD	5.0	6.0	1.0	1.3	0.2	K2 / K1
		AN	1D					42.0	47.4	5.4	1.2	2.5	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		AN	١D					49.3	49.9	0.6	1.4	3.9	
KED-027	481,676	4,462,252	347	180	-60	159	DD	51.0	60.3	9.3	1.3	0.8	
		INCLU	JDING					51.0	52.5	1.5	2.1	0.5	K1
		INCLU	JDING					54.0	58.5	4.5	1.8	1.3	
KED-028	481,812	4,461,920	358	150	-50	157.5	DD	21.4	43.3	21.9	1.4	1.0	
		INCLU	JDING					33.2	41.5	8.3	2.9	2.1	K3 HW
		INCLU	JDING					38.1	41.5	3.4	6.4	4.6	
KED-029	481,675	4,461,917	331	135	-50	165	DD	6.0	10.0	4.0	2.0	0.6	K3 HW
		INCLU	JDING					6.0	7.0	1.0	2.8	1.4	NJ HW
		AN	١D					45.0	46.5	1.5	1.0	0.8	
		AN					85.0	85.7	0.7	1.3	0.6	K2	
		AN	١D					87.1	91.0	3.9	2.1	3.7	NЭ
				88.5	89.9	1.4	3.2	7.1					
				163.0	165.0	2.0	1.9	2.3	K2 EW				
	INCLUDING								165.0	1.0	3.6	3.4	NJ FVV
KED-030	481,672	4,461,917	331	150	-65	154.5	DD	93.0	103.0	10.0	1.6	1.8	
		INCLU	JDING					94.9	103.0	8.1	1.9	2.1	
		INCLU	JDING					96.5	100.0	3.5	2.0	1.1	К3
		INCLU	JDING					98.1	99.0	0.9	4.5	0.8	
		INCLU	JDING					100.9	103.0	2.1	2.8	5.1	
		AN	٧D					129.5	130.7	1.2	0.9	1.2	K3 FW
KED-031	481,673	4,461,918	331	150	-80	204.9	DD	119.0	120.0	1.0	2.2	1.9	
		AN	١D					136.2	143.1	6.9	2.5	2.4	
		INCLU	JDING					136.2	138.5	2.3	6.7	4.2	Ka
		INCLU	JDING					137.3	138.5	1.2	10.9	6.0	NЭ
		AN	١D					151.5	154.5	3.0	1.8	2.3	
		INCLU	JDING					151.5	153.0	1.5	3.2	3.6	
		AN	١D					174.0	178.7	4.7	1.2	4.7	
		INCLU	JDING					176.7	178.7	2.0	1.4	4.3	NJ FVV
KED-032	481,706	4,461,967	352	120	-45	176.5	DD	5.5	7.9	2.4	1.1	0.5	
		INCLU	JDING					7.5	7.9	0.4	3.3	1.3	
		AN	١D					10.0	43.3	33.3	1.1	0.5	
		INCLU	JDING					16.5	17.4	0.9	3.2	0.9	K3 HW
		INCLU	JDING					32.5	37.6	5.1	2.4	0.5	
		INCLU	JDING					34.0	36.2	2.2	4.6	0.7	
		INCLU	JDING					35.4	36.2	0.8	10.5	0.8	
KED-033	481,707	4,461,967	352	120	-60	238	DD		No	Significant	Values		K3
KED-034	481,749	4,461,916	339	105	-45	112.20	DD	0.0	12.8	12.8	9.3	2.9	
		INCLU	JDING					0.5	7.5	7.0	14.4	3.9	
		INCLU	JDING					0.5	4.5	4.0	24.2	5.2	
		INCLU	JDING					0.5	3.0	2.5	37.4	7.6	K3 HW
		INCLU	JDING				10.5	12.8	2.3	6.9	4.0		
		AN	١D					41.3	51.2	9.9	1.3	1.0	
		INCLU	JDING					43.0	44.5	1.5	5.2	2.7	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
KED-035	481,746	4,461,916	339	120	-77	149.5	DD	16.5	59.8	43.3	1.2	0.6	
		INCLU	JDING			I		26.5	54.2	27.7	1.9	0.7	
		INCLL	JDING					31.7	40.5	8.9	4.5	1.9	
		INCLU	JDING					31.7	33.9	2.3	13.9	7.5	
		AN	١D					66.0	75.0	9.0	0.7	0.8	
		INCLU	JDING					69.7	71.8	2.1	1.1	1.1	K3
		AN	١D					79.5	112.6	33.1	2.8	1.5	
		INCLU	JDING					91.4	107.6	16.2	5.3	2.6	
		INCLU	JDING					101.0	107.6	6.6	11.5	5.2	
		INCLU	JDING					101.0	103.1	2.1	13.7	5.9	
				104.1	107.6	3.5	13.4	5.9					
KED-036	481,885	175	-45	DD	0.0	46.8	46.8	0.6	0.8				
		INCLU	JDING					5.5	23.0	17.5	1.0	1.4	
	INCLUDING								15.9	7.4	1.5	2.2	
		INCLU	JDING					13.0	14.8	1.8	2.3	2.7	
		INCLU	JDING					19.9	23.0	3.1	1.2	1.2	KS E
		INCLU	JDING					20.8	21.7	0.9	2.4	1.2	
		INCLU	JDING					27.3	29.8	2.5	1.0	1.6	
		INCLU	JDING					28.7	29.8	1.1	1.4	0.8	
		AN	ND					120.7	121.9	1.2	0.9	2.4	K3
KED-037	481,886	4,461,997	387	215	-50	172	DD	0.0	41.5	41.5	1.1	1.9	
		INCLU	JDING					1.5	4.5	3.0	1.5	1.2	
		INCLU	JDING					3.0	8.6	5.6	5.9	4.2	
		INCLU	JDING					5.5	14.8	9.3	2.8	2.3	
		INCLU	JDING					6.5	8.6	2.1	8.6	5.7	KS E
		INCLU	JDING					13.7	14.8	1.1	1.1	1.0	
		INCLU	JDING					22.4	23.4	1.0	1.5	0.9	
		INCLU	JDING					37.2	41.5	4.3	1.0	0.9	
		INCLU	JDING					38.3	40.4	2.1	1.7	1.5	
KED-038	481,964	4,461,995	387	195	-65	208.5	DD	71.7	81.0	9.3	0.7	2.1	
		INCLU	JDING					73.4	74.3	0.9	1.1	2.9	
		INCLU	JDING					76.1	77.0	0.9	1.4	8.6	KS E
		INCLU	JDING					78.1	79.1	1.0	1.1	2.7	
KED-039	481,671	4,461,918	331	150	-75	192	DD	117.0	118.7	1.7	1.0	2.9	
		AN	١D					136.1	145.1	9.0	0.6	2.4	K3
	INCLUDING									0.5	1.5	2.3	
KED-040	481,704	4,461,972	352	150	-75	254.6	DD	121.2	122.2	1.0	1.2	0.6	
	-	AN	ND	1	1	1		160.1	179.8	19.7	2.6	2.2	
		INCLU	JDING					166.6	179.8	13.2	3.5	2.7	
		INCLL	JDING					168.8	170.5	1.7	1.2	3.0	K3
		INCL	JDING					173.4	176.1	2.7	15.1	7.1	
		INCLU	JDING					173.4	175.6	2.2	17.3	8.1	
		AN	ND					196.3	203.3	7.0	0.8	1.2	
KED-041	481,704	4,461,971	-	0	-90	362.8	סס	171 0	173.9	2.9	0.7	1.1	K3 HW
		1, 101,011	502	Ŭ		002.0	50			2.5	0.1		

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		AN	ND					261.1	269.0	7.9			K3 FW
		INCLU	JDING					264.4	266.2	1.8	1.4	0.9	NJ FW
KED-042	481,579	4,461,981	300	125	-65	290.5	DD	0.0	10.9	10.9	4.0	3.0	
		INCLU	JDING					0.0	4.6	4.6	4.1	3.1	
		INCLU	JDING					3.5	4.6	1.1	6.6	4.8	K2
		INCLU	JDING					5.6	9.4	3.8	5.4	3.6	NZ
		INCLU	JDING					7.6	9.4	1.8	9.2	5.4	
		AN	١D					17.6	18.1	0.5	12.5	20.9	
		AN	١D					149.2	155.0	5.8	3.4	2.3	K3 UW
		AN	١D					168.6	170.3	1.7	2.1	1.3	NJ HW
KED-043	481,801	4,462,644	402	0	-90	51	DD	6.0	23.0	17.0	1.0	1.5	
		INCLU	JDING					18.5	21.5	3.0	2.6	3.3	кт
	INCLUDING								20.0	1.5	3.3	5.4	RI.
		AN	١D					44.0	47.0	3.0	0.5	0.3	
KED-044	481,706	4,461,973	353	323	-45	106	DD	64.6	106.0	41.4	2.4	1.4	
		INCLU	JDING					64.6	66.6	2.0	1.1	0.7	K2
		INCLU	JDING					68.6	74.0	5.4	15.7	7.3	
KED-045	481,707	4,461,972	352	323	-57	273.5	DD	92.6	145.0	52.4	0.8	0.6	
		INCLU	JDING					109.3	122.5	13.2	1.4	0.6	KO
		INCLU	JDING					120.2	122.5	2.3	2.3	1.1	Π2
		INCLU	JDING					120.2	121.5	1.3	3.2	1.5	
		AN	١D					233.2	236.2	3.0	1.6	1.3	K1
KED-046	481,579	4,461,977	301	165	-45	364	DD	0.0	9.0	9.0	2.3	1.9	
		INCLU	JDING					0.0	5.9	5.9	3.1	2.5	KO
		AN	١D					26.1	38.0	11.9	2.0	2.3	Π2
		INCLU	JDING					27.5	33.5	6.0	3.4	3.9	
		AN	١D					61.0	62.5	1.5	1.9	4.8	
		AN	١D					94.0	95.5	1.5	2.1	4.8	Un- named
		AN	١D					125.5	127.0	1.5	0.5	7.5	
		AN	١D					164.0	175.5	11.5	2.7	2.9	
		INCLU	JDING					166.0	167.5	1.5	4.8	1.9	K3
		INCLU	JDING					169.0	172.6	3.6	5.3	7.3	
		AN	1D					318.8	319.8	1.0	1.1	3.8	Un- named
KED-047	481,578	4,461,978	301	165	-60	305	DD	0.0	8.5	8.5	2.5	1.4	
		INCLU	JDING					4.5	7.0	2.5	4.0	1.9	
KED-048	481,577	4,461,976	301	180	-55	244.5	DD	0.0	13.5	13.5	4.6	35.6	
-	L	INCLU	JDING			L		0.0	9.5	9.5	6.4	3.1	K2
		INCLU	JDING					1.0	1.5	0.5	10.8	4.5	
		INCLU	JDING					2.9	4.0	1.1	12.8	5.1	
		INCLU	JDING					6.1	6.4	0.3	35.6	15.0	
		AN	١D					215.5	228.2	12.7	0.7	0.8	
		INCLU	JDING					215.5	219.0	3.5	1.8	1.2	КЗ
		INCLU	JDING					215.5	216.5	1.0	5.6	2.5	
KED-049	481,963	4,461,995	388	160	-60	388.5	DD	77.8	117.0	39.2	1.3	2.5	KS E

INCLUDING 82.0 84.5 2.5 2.0 8.7 INCLUDING 100.2 103.5 3.3 4.3 3.0	
INCLUDING 100.2 103.5 3.3 4.3 3.0	
INCLUDING 111.2 117.0 5.8 1.9 2.4	
AND 225.0 231.2 6.2 0.6 0.8	Un-
INCLUDING 227.5 229.7 2.2 1.2 1.3	named
AND 270.5 324.0 53.5 0.8 0.7	
INCLUDING 273.0 284.0 11.0 1.1 0.9	KA
INCLUDING 287.6 297.8 10.2 1.1 0.6	N4
INCLUDING 305.0 312.5 7.5 1.0 0.8	
KED-050 482,022 4,461,821 316 340 -70 325.5 DD 135.0 136.5 1.5 1.3 0.5	Un-
AND 171.0 172.5 1.5 1.4 3.4	named
KED-051 481,893 4,462,075 367 315 -60 493.5 DD 438.0 478.6 40.6 0.3 0.4	
INCLUDING 438.0 451.5 13.5 0.3 0.3	144
INCLUDING 453.6 456.3 2.7 0.8 0.4	N 1
INCLUDING 455.5 456.3 0.8 1.8 0.7	
KED-052 481,707 4,461,975 353 350 -60 355.5 DD 81.0 122.6 41.6 0.6 0.5	
INCLUDING 107.3 113.7 6.4 2.3 1.4	K2
AND 163.3 164.4 1.1 2.2 2.4	
AND 269.6 345.3 75.7 0.4 0.5	
INCLUDING 285.9 289.0 3.1 1.1 0.7	K1
KED-053 481,708 4,461,975 353 20 -60 292.5 DD 65.6 90.6 25.0 0.6 0.5	
INCLUDING 72.4 76.8 4.4 1.0 0.6	K2
AND 228.9 236.0 7.1 0.3 2.4	Un- named
KED-054 481,705 4,461,975 353 325 -48 309 DD 75.0 111.0 36.0 0.8 0.5	
INCLUDING 75.0 83.4 8.4 2.3 1.3	KS
INCLUDING 94.3 96.5 2.2 NO CORE	
AND 133.5 152.7 19.2 1.3 1.9	
INCLUDING 133.5 134.5 1.0 11.4 3.2	
INCLUDING 145.5 152.7 7.2 0.9 3.1	Un-
INCLUDING 145.5 147.0 1.5 1.9 4.9	named
AND 160.0 175.0 15.0 0.3 1.5	
INCLUDING 168.0 169.4 1.4 1.0 1.7	
AND 178.0 198.9 20.9 0.2 2.4	K1
AND 257.5 272.5 15.0 0.3 0.8	Un- named
KED-055 482,308 4,462,072 395 0 -60 183 DD 20.5 23.0 2.5 1.1 1.2	SBX
KED-056 481,396 4,462,484 296 310 -60 330 DD 44.7 50.4 5.7 0.9 1.2	KK1
KED-057 481,705 4,461,972 353 300 -60 364.5 DD 126.4 161.2 34.8 1.5 1.7	Ka
INCLUDING 142.4 145.5 3.1 5.9 3.6	h 2
AND 166.5 171.8 5.3 0.7 2.3	Un- named
KED-058 481,882 4,462,000 387 182 -58 144 DD 2.0 41.2 39.2 1.4 1.7	
INCLUDING 6.0 10.8 4.8 5.5 2.8	
INCLUDING 8.5 10.8 2.3 10.1 4.8	KSE
INCLUDING 16.6 18.3 1.7 3.6 8.8	1

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		INCLU	JDING					22.4	24.5	2.1	4.7	3.6	
KED-058A	481,883	4,462,002	388	182	-58	200	DD	0.0	37.5	37.5	0.7	1.2	
		INCLU	JDING					8.0	18.0	10.0	1.1	2.9	
KED-059	481,884	4,461,999	388	205	-65	247.5	DD	8.0	55.4	47.4	0.8	1.2	
		INCLU	JDING					10.0	16.2	6.2	3.5	6.6	
		INCLU	JDING					15.5	16.2	0.7	9.2	3.5	NO E
		INCLU	JDING					28.7	30.1	1.4	1.7	1.7	
KED-060	481,608	4,462,114	301	330	-75	184.5	DD	19.7	22.2	2.5	2.2	1.7	
		INCLU	JDING					21.1	22.2	1.1	4.5	3.0	K1
		AN	١D					23.6	36.0	12.4	1.1	1.8	
		AN	١D					87.1	91.3	4.2	7.4	3.4	K0 / K4
		INCLU	JDING					88.9	91.3	2.4	12.6	5.4	K2/K1
KED-061	481,521	4,462,398	333	0	-60	228	DD	39.0	45.7	6.7	0.5	0.6	
		INCLU	JDING					39.0	40.5	1.5	1.0	1.0	
		INCLU	JDING					44.2	45.7	1.5	0.7	0.8	
		AN	١D					112.6	159.0	46.4	0.3	0.7	
		INCLU	JDING					112.6	119.3	6.7	0.4	0.6	SCOUT /
		INCLU	JDING					129.5	134.7	5.2	0.5	0.7	
		INCLU	JDING					131.5	132.4	0.9	1.0	0.7	
		INCLU	JDING					150.0	156.2	6.2	0.5	0.9	
		INCLU	JDING					152.7	156.2	3.5	0.6	0.8	
KED-062	481,609	4,462,111	301	178	-63	165	DD	35.8	36.8	1.0	1.6	0.5	
		AN	١D					137.5	147.5	10.0	0.3	0.8	K2/K1
		INCLU	JDING					137.5	139.5	2.0	0.8	1.2	
KED-063	481,576	4,461,978	301	298	-63	175	DD	1.5	49.5	48.0	9.1	6.9	1/0
		INCLU	JDING					1.5	33.0	31.5	13.6	10.2	K2
KED-064	481,518	4,462,397	333	305	-60	249	DD	171.0	177.5	6.5	1.0	1.3	
		INCLU	JDING					171.0	172.6	1.6	1.5	1.4	CCOUT
		INCLU	JDING					174.0	177.5	3.5	1.1	1.7	50001
		INCLU	JDING					174.0	175.0	1.0	2.3	3.3	
KED-065	481,576	4,461,979	301	310	-50	165.8	DD	0.0	45.7	45.7	3.7	2.7	
		INCLU	JDING					0.0	27.2	27.2	5.9	4.1	K2
		INCLU	JDING					0.0	12.0	12.0	11.4	6.1	
KED-066	481,915	4,462,005	388	180	-52	183.5	DD	41.4	67.8	26.4	0.3	0.4	
		INCLU	JDING					41.4	47.0	5.6	0.5	0.7	KS
AND								112.1	120.5	8.4	0.3	0.2	
		AN	١D					125.2	130.9	5.7	0.5	0.5	1/0
		AN	١D					164.7	167.8	3.1	0.3	0.3	K3
KED-067	481,522	4,462,397	333	45	-60	261	DD	25.5	33.2	7.7	3.1	3.8	
	-	INCLU	JDING			-		25.5	27.2	1.7	12.6	15.5	
		AN	١D					74.6	92.3	17.7	0.4	0.7	SCOUT
		INCLU					78.6	80.0	1.4	1.8	1.4		
		AN	ND					187.1	217.2	30.1	0.5	0.5	
		INCLU	JDING					198.9	201.3	2.4	1.0	0.3	KI

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		INCLU	JDING					202.7	208.8	6.1	0.9	0.6	
KED-068	481,577	4,461,980	301	335	-63	143.5	DD	1.5	40.4	38.9	3.1	2.4	
		INCLU	JDING					5.0	9.5	4.5	8.2	4.4	K2
		INCLU	JDING					17.5	22.5	5.0	5.3	3.7	112
		INCLU	JDING					23.5	26.8	3.3	5.0	3.9	
		AN	١D					77.0	83.0	6.0	0.6	0.6	
		INCLU	JDING					79.5	81.0	1.5	1.0	1.0	K1
		AN	ND.					98.7	100.5	1.8	0.7	2.2	
KED-069	481,917	4,462,007	388	165	-61	239	DD	83.0	99.5	16.5	0.4	0.3	
		INCLU	JDING					90.2	95.8	5.6	0.6	0.5	K3
		AN	ND.					231.0	239.0	8.0	0.4	0.7	
KED-070	481,632	4,461,820	277	215	-60	117	DD	0.0	64.5	64.5	4.5	5.0	
		INCLU	JDING					40.2	62.6	22.4	11.6	13.5	
		INCLU	JDING					46.0	62.6	16.6	15.3	17.9	K3
		INCLU	JDING					46.0	53.0	7.0	30.7	31.8	110
		INCLU	JDING					48.5	54.3	5.8	34.0	34.4	
		INCLU	JDING					48.5	51.6	3.1	59.6	58.2	
KED-071	481,469	4,462,458	298	110	-60	274	DD	65.0	73.8	8.8	0.4	0.8	
		AN	١D					206.6	217.0	10.4	0.5	0.7	SCOUT
		AN	ND.					245.5	259.5	14.0	0.5	0.8	00001
KED-071A	481,465	4,462,461	298	110	-60	294	DD	66.0	74.2	8.2	0.4	0.9	
KED-072	481,627	4,461,822	277	286	-72	130.5	DD	0.0	28.8	28.8	0.6	0.6	K3 HW
		AN	١D					82.9	106.3	23.4	0.6	1.7	K3
		INCLU	JDING					92.3	96.1	3.8	1.7	1.4	
KED-073	481,961	4,461,809	313	296	-70	359	DD	48.5	51.4	2.9	0.5	0.2	
		AN	١D					55.0	56.0	1.0	0.7	4.6	SCOUT
		AN	١D					189.7	191.1	1.4	0.4	0.4	00001
		AN	١D					219.7	221.5	1.8	0.4	0.5	
		AN	١D					236.6	260.9	24.3	0.6	0.7	K4
		AN	ND					287.2	288.5	1.3	0.4	1.1	
KED-074	481,629	4,461,823	277	0	-59	277.5	DD	0.0	1.0	1.0	1.6	4.5	
		AN	١D					6.5	17.0	10.5	0.5	0.5	K3 HW
		INCLU	JDING					12.0	13.5	1.5	1.1	0.5	
		AN	١D					140.6	143.7	3.1	0.5	1.1	
		AN	١D					147.0	148.5	1.5	0.4	1.1	
	AND								171.9	20.0	0.7	1.3	K3
		INCLL	JDING					156.0	158.0	2.0	1.9	1.6	
		INCLU	JDING					167.4	171.9	4.5	1.4	2.4	
		AN	ND.			1	[229.5	245.5	16.0	0.4	0.4	K3 FW
KED-075	481,811	4,461,922	358	85	-48	131.5	DD	108.6	113.0	4.4	0.4	0.6	SCOUT
KED-076	481,810	4,461,922	358	273	-75	203	DD	75.5	92.0	16.5	0.4	0.3	
		AN	1D					133.4	142.0	8.6	0.6	3.7	КЗ
		INCLU	JDING					138.1	142.0	3.9	1.1	4.9	NJ
		AN	١D					146.6	148.1	1.5	0.8	1.4	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		AN	١D					154.8	162.5	7.7	0.4	1.5	
KED-077	481,815	4,461,924	358	320	-60	216	DD	47.0	48.2	1.2	0.9	0.3	
		AN	١D					145.8	147.5	1.7	0.4	0.5	KS
		AN	١D		-			149.2	150.9	1.7	0.4	0.9	
KED-078	481,962	4,461,809	313	310	-76	363.5	DD	58.0	59.5	1.5	0.5	0.5	
		AN	١D					180.3	181.7	1.4	0.5	0.4	
		AN	١D					215.7	232.3	16.6	0.7	0.5	
		INCLU	JDING					224.4	229.3	4.9	0.9	0.6	SCOUT
		INCLU	JDING					230.3	231.3	1.0	1.2	1.1	
		AN	١D					274.6	276.3	1.7	0.6	0.5	
		AN	١D					300.5	306.7	6.2	0.6	0.5	
KED-079	481,627	4,461,820	277	225	-52	185.5	DD	8.2	22.6	14.4	0.5	0.5	
		AN	١D					24.4	25.5	1.1	0.5	0.4	
	AND								74.7	37.9	1.1	1.0	
		INCLU	JDING					66.4	74.7	8.3	3.2	2.7	K3
		INCLU	JDING					66.4	68.3	1.9	9.1	5.8	NJ
		INCLU	JDING					71.8	74.7	2.9	2.4	1.8	
	AND								164.8	3.2	4.0	5.7	
	INCLUDING								164.8	1.3	8.2	9.9	
KED-080	481,627	4,461,821	277	242	-62	181.5	DD	0.0	18.0	18.0	0.8	0.7	
		INCLU	JDING					2.0	4.5	2.5	1.3	1.2	
		INCLU	JDING					14.3	15.4	1.1	1.2	0.7	
		AN	١D					22.5	25.5	3.0	0.5	0.3	K3
		AN	١D					47.5	53.5	6.0	0.4	0.4	NJ
		AN	١D					57.5	58.9	1.4	0.7	0.6	
		AN	١D					69.6	82.5	12.9	1.5	1.4	
		INCLU	JDING					72.9	76.8	3.9	3.8	2.3	
KED-081	481,963	4,461,811	313	341	-80	344	DD	205.9	213.2	7.3	0.5	0.4	
		INCLU	JDING					205.9	208.5	2.6	0.7	0.5	K4
		AN	١D		-			231.3	232.3	1.0	1.1	1.2	
KED-082	481,808	4,461,922	358	340	-60	201.5	DD		No	significant	assays		K2
KED-083	481,627	4,461,822	277	253	-70	145.5	DD	0.0	10.6	10.6	0.6	0.6	
		INCLU	JDING					1.5	4.5	3.0	1.0	0.8	
		AN	١D					12.2	16.6	4.4	0.9	0.7	K3 HW
		INCLU	JDING					13.9	15.3	1.4	1.2	0.9	
	AND								25.0	3.5	0.6	0.6	
		AN	١D					35.0	39.0	4.0	0.5	0.4	
		AN	1D					66.8	71.1	4.3	0.6	0.7	
		INCLU	JDING					69.6	71.1	1.5	1.4	1.1	K3
		AN	1D					72.6	89.1	16.5	0.7	3.7	NJ
		INCLU	JDING					80.5	87.8	7.3	1.0	6.2	
		INCLU	JDING					80.5	81.5	1.0	3.0	4.7	
KED-084	481,964	4,461,812	314	16	-77	308	DD	197.7	208.1	10.4	0.5	0.5	K A
		INCLU	JDING					202.0	203.4	1.4	1.5	0.9	1/14

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		INCLU	JDING					205.7	208.1	2.4	0.7	0.6	
		AN	١D					249.3	251.9	2.6	0.7	0.7	
KED-085	481,598	4,462,011	303	310	-63	232.5	DD	0.0	4.8	4.8	1.0	0.6	
		INCLU	JDING					0.0	3.3	3.3	1.4	0.8	
		AN	١D					78.6	84.7	6.1	1.6	2.0	K1
		INCLU	JDING					81.9	84.7	2.8	3.3	3.1	
		AN	١D					94.0	96.0	2.0	2.1	1.4	
KED-086	482,310	4,462,072	395	30	-60	48.5	DD	22.8	26.8	4.0	0.5	0.6	
		INCLU	JDING					23.8	24.8	1.0	1.3	0.8	EASTERN
		AN	١D					28.8	30.8	2.0	4.4	1.3	CONTAC T ZONE
		INCLU	JDING					28.8	29.8	1.0	7.7	1.5	(ECZ)
	AND								37.5	1.0	6.0	2.4	
KED-087	481,965	4,461,813	314	42	-73	251	DD	135.9	142.0	6.1	0.7	0.7	
		AN	١D					203.7	214.2	10.5	0.6	0.4	COULT
		INCLU	JDING					207.9	209.0	1.1	1.2	0.5	SCOUT
		AN	١D					216.4	218.6	2.2	0.7	0.4	
KED-088	481,599	4,462,012	304	318	-55	196.5	DD	46.7	48.9	2.2	0.5	0.7	
		AN	١D			I		82.5	87.0	4.5	0.8	0.9	К1
-		INCLU	JDING					84.0	85.5	1.5	1.4	1.3	
KED-089	481,641	4,462,556	371	0	-90	286.5	DD	22.0	26.9	4.9	1.1	1.5	
		INCLU	JDING					23.5	26.9	3.4	1.4	1.8	
		AN	١D					194.4	196.5	2.1	6.2	1.2	
		AN	١D					239.3	246.2	6.9	0.8	0.4	KI
-		INCLU	JDING					240.6	243.4	2.8	0.6	0.3	
		INCLU	JDING					244.8	246.2	1.4	1.9	0.6	
KED-090	482,034	4,462,003	391	180	-60	303.5	DD	125.0	128.2	3.2	0.7	0.4	
		AN	١D			I		132.5	136.2	3.7	0.6	0.6	
		AN	١D					164.8	189.2	24.4	0.8	0.8	K0 F
		INCLU	JDING					171.4	174.5	3.1	2.9	2.3	KSE
		INCLU	JDING					171.4	173.4	2.0	3.9	2.5	
		INCLU	JDING					175.9	184.4	8.5	0.7	0.7	
		AN	١D					203.2	229.8	26.6	0.7	0.9	
		INCLU	JDING					210.9	219.1	8.2	1.2	0.9	
		INCLU	JDING					211.9	215.1	3.2	2.2	1.6	K4
	INCLUDING								222.8	1.5	1.4	1.5	
		AN	١D					260.0	263.0	3.0	0.5	0.3	
KED-091	481,600	4,462,014	303	344	-53	216.5	DD	0.0	5.8	5.8	0.6	0.2	
		INCLU	JDING					0.0	2.7	2.7	0.9	0.1	Ko
		AN	١D					36.6	39.5	2.9	1.2	0.7	ns
		INCLU	JDING					37.8	39.5	1.7	1.8	0.9	
		AN	١D					81.4	82.9	1.5	1.2	1.5	174
		AN	١D					183.1	184.9	1.8	1.5	1.1	K1
KED-092	482,131	4,461,829	320	115	-70	148.5	DD	3.5	5.0	1.5	1.3	0.1	TOPYURT

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
KED-093	481,602	4,462,010	304	135	-60	265.5	DD	11.2	21.6	10.4	0.8	2.7	
		INCLU	IDING		1			13.2	20.6	7.4	1.0	3.8	K2
		INCLU	IDING					19.5	20.6	1.1	2.2	2.6	
		AN	١D					125.4	128.7	3.3	0.9	0.8	
		INCLU	IDING					125.4	127.1	1.7	1.6	1.0	
		AN	1D					135.5	139.5	4.0	1.8	1.2	
		INCLU	IDING					137.5	139.5	2.0	3.2	1.8	
		AN	١D					141.5	143.5	2.0	0.6	0.5	K3 HW
		AN	١D					165.5	167.5	2.0	1.4	1.2	
		AN	١D					237.5	240.9	3.4	1.1	0.5	1/0
		INCLU	IDING					239.3	240.9	1.6	1.9	0.7	К3
KED-094	482,131	4,461,825	321	180	-70	140	DD	0.0	1.6	1.6	1.5	8.5	TOPYUR T
KED-095	482,095	4,462,018	392	315	-70	150.4	DD	146.0	150.4	4.4	0.6	0.6	000UT
		INCLU	IDING					146.0	148.2	2.2	0.7	0.6	SCOUT
KED-096	481,321	4,462,476	296	299	-71	206	DD	44.0	49.5	5.5	4.0	4.3	
		INCLU	IDING					44.0	46.4	2.4	8.7	7.1	KK1
KED-097	481,628	4,461,820	277	219	-53	97.5	DD	6.9	9.3	2.4	0.6	0.5	
		AN	1D					25.3	27.3	2.0	0.5	0.5	
		AN	١D					35.3	67.9	32.6	1.4	1.9	K3 HW
		INCLU	IDING					35.3	37.3	2.0	1.4	1.1	
		INCLU	IDING					39.3	42.8	3.5	1.0	0.7	
		INCLU	IDING					41.3	42.8	1.5	1.1	0.6	
		INCLU	IDING					46.5	49.5	3.0	0.8	0.6	
		INCLU	IDING					54.2	57.0	2.8	1.0	5.6	K2
		INCLU	IDING					58.7	67.9	9.2	3.0	3.4	NJ
		INCLU	IDING					60.3	65.7	5.4	4.4	4.8	
		INCLU	IDING					62.3	64.7	2.4	8.8	6.8	
		INCLU	IDING		1	[]		66.7	67.9	1.2	1.7	2.1	
KED-098	482,037	4,462,076	375	135	-60	200	DD		No	significant	assays		SCOUT
KED-099	481,791	4,462,562	381	0	-90	169.5	DD		No	significant	assays	•	КТ
KED-100	481,602	4,462,011	303	146	-76	60.5	DD	16.4	41.9	25.5	1.2	1.4	
		INCLU	IDING					16.4	30.7	14.3	1.6	1.6	
		INCLU	IDING					17.4	26.3	8.9	2.1	1.9	
		INCLU	IDING					22.2	23.7	1.5	2.7	2.4	
		AN	1D					33.5	40.9	7.4	1.0	1.2	
		INCLU	IDING					36.2	37.6	1.4	1.3	1.2	K2
		INCLU	IDING					38.3	40.9	2.6	1.5	1.5	
		INCLU	IDING					39.8	40.9	1.1	2.5	2.3	
		AN	1D					46.5	53.5	7.0	0.5	1.6	
		INCLU	IDING					50.3	51.5	1.2	1.1	1.9	
		AN	1D		1	[56.6	60.5	3.9	0.5	1.0	
KED-101	481,601	4,462,011	303	149	-79	187.5	DD	16.2	30.0	13.8	0.7	1.3	
		INCLU	IDING					18.7	25.8	7.1	0.9	1.5	K2
		INCLU	IDING					18.7	21.2	2.5	1.3	2.2	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		INCLU	IDING		•			27.2	30.0	2.8	0.7	1.4	
		AN	1D					32.7	42.4	9.7	0.7	0.9	
		INCLU	IDING					38.6	42.4	3.8	1.2	0.9	
		INCLU	IDING					40.0	42.4	2.4	1.5	1.0	
		AN	١D					45.6	53.2	7.6	0.8	2.2	
		INCLU	IDING					46.9	49.8	2.9	1.6	2.7	
		AN	١D					60.6	71.5	10.9	1.5	1.5	
		INCLU	IDING					65.9	71.5	5.6	2.6	2.2	
		INCLU	IDING					65.9	70.1	4.2	3.3	2.7	
		INCLU	IDING					69.0	70.1	1.1	5.5	3.8	
		AN	١D					83.8	97.2	13.4	0.5	4.6	
		INCLU	IDING					83.8	85.4	1.6	1.3	7.1	
		INCLU	IDING					88.8	91.7	2.9	0.6	3.0	
		AN	١D					151.4	157.4	6.0	0.5	0.7	
		AN	١D					161.9	173.7	11.8	0.5	0.8	K3 HW
					164.8	167.7	2.9	0.9	0.9				
KED-102	481,322	-85	114	DD	45.5	46.0	0.5	10.2	29.0				
		AN	1D					58.2	59.0	0.8	0.7	0.8	KK1
		AN	1D					87.6	89.0	1.4	0.4	0.5	
KED-103	481,565	4,462,070	287	233	-60	248	DD	20.2	22.4	2.2	0.8	0.9	K 1
		AN	1D					32.0	33.0	1.0	1.0	1.0	κı
		AN	1D					238.0	240.0	2.0	3.1	0.5	K2
KED-104	481,598	4,462,008	303	240	-70	119	DD	104.5	107.9	3.4	0.6	0.7	K2
		INCLU	IDING					104.5	106.5	2.0	0.7	0.7	112
KED-105	481,643	4,462,131	305	28	-72	132.5	DD	3.5	17.0	13.5	0.9	0.4	
		INCLU	IDING					5.0	17.0	12.0	0.9	0.4	
		INCLU	IDING					12.0	13.8	1.8	1.5	0.4	
		AN	١D					19.0	20.5	1.5	1.6	0.8	
		AN	١D					27.5	34.0	6.5	0.8	0.4	
		INCLU	IDING					27.5	29.2	1.7	1.5	0.7	K1 / K2
		INCLU	IDING					32.0	34.0	2.0	0.8	0.3	,
		AN	1D					44.0	48.4	4.4	0.8	0.5	
		INCLU	IDING					44.0	45.1	1.1	2.0	1.0	
		AN	1D					75.6	78.7	3.1	0.5	1.6	
		AN	1D					101.5	110.6	9.1	0.6	3.1	
		INCLU	IDING		1			107.4	110.6	3.2	0.7	4.9	
KED-106	481,322	4,462,475	296	26	-52	96	DD	27.7	29.8	2.1	8.7	8.2	КК1
		INCLU	IDING					28.8	29.8	1.0	17.9	16.5	
		AN	1D		1			77.1	79.1	2.0	1.4	1.4	KK2
KED-107	481,724	4,461,869	323	264	-72	231	DD	6.0	8.0	2.0	0.5	0.4	
		AN	1D					48.9	60.5	11.6	1.2	0.8	
		INCLU	IDING					52.4	55.5	3.1	1.9	0.9	К3
		INCLU	IDING					52.4	54.0	1.6	2.4	0.7	
		INCLU	IDING					57.5	58.7	1.2	2.1	1.5	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
KED-108	481,641	4,462,129	305	240	-56	99	DD	27.6	30.8	3.2	0.6	0.6	
		AN	ID					37.3	41.3	4.0	0.6	0.4	
		INCLU	IDING					37.3	39.3	2.0	1.1	0.4	144
		AN	ID					53.0	68.9	15.9	0.6	1.2	К1
		INCLU	IDING					54.6	62.8	8.2	0.8	1.6	
		INCLU	IDING					57.7	59.5	1.8	1.0	1.6	
		AN	ID					76.8	85.0	8.2	7.1	3.4	
		INCLU	IDING					81.5	85.0	3.5	15.9	7.3	K2 / K1
KED-109	482,405	4,461,749	365	260	-60	88.5	DD	0.0	3.2	3.2	2.8	1.1	
		INCLU	IDING		1			0.0	1.5	1.5	5.1	1.9	SBX
KED-110	481,334	4,462,599	344	227	-53	141.5	DD	7.0	11.8	4.8	0.6	0.7	
		INCLU	DING		1			7.0	8.8	1.8	1.0	0.6	
		AN	ID					20.2	27.5	7.3	1.1	1.1	
		INCLU	DING					21.5	22.7	1.2	2.5	2.8	
		INCLU	DING					26.2	27.5	1.3	1.1	0.8	
		AN	ID					33.5	49.3	15.8	0.9	0.7	
		INCLU	DING					38.2	44.5	6.3	1.4	0.8	
		INCLU	DING					38.2	39.6	1.4	2.0	0.7	
		INCLU	DING					42.1	47.0	4.9	1.6	1.2	KK2
		INCLU	DING					43.3	44.5	1.2	2.6	1.5	
		INCLU	DING					45.5	48.0	2.5	1.3	1.3	
		AN	ID					68.2	80.0	11.8	0.6	0.8	
		INCLU	IDING					69.4	70.6	1.2	1.6	1.4	
		INCLU	DING					75.1	77.0	1.9	1.4	1.0	
		AN	ID					86.0	90.2	4.2	4.0	4.8	
		INCLU	IDING					87.0	89.1	2.1	7.4	7.9	
KED-111	481,727	4,461,870	323	77	-52	186	DD	0.0	6.1	6.1	0.5	0.3	
		AN	ID					10.9	19.0	8.1	1.7	1.1	
		INCLU	IDING					12.5	17.5	5.0	2.5	1.5	
		INCLU	IDING					14.1	17.5	3.4	3.2	2.0	
		AN	ID					20.7	34.2	13.5	0.5	0.4	
		INCLU	IDING					30.7	34.2	3.5	1.1	0.7	КЗ
		INCLU	IDING					32.0	33.1	1.1	1.4	0.8	
		AN	ID					37.5	52.7	15.2	0.6	0.6	
		INCLU	IDING					37.5	39.0	1.5	1.2	0.4	
		INCLU	IDING					46.0	52.7	6.7	0.8	0.8	
		AN	ID					154.5	156.5	2.0	0.5	0.9	
KED-112	481,707	4,461,972	353	26	-79	172	DD	31.5	33.5	2.0	0.6	0.1	
	-	AN	ID		•			55.2	57.2	2.0	0.5	0.1	
		AN	ID					61.2	66.9	5.7	0.8	0.6	nə/K2
		INCLU	IDING					61.2	63.1	1.9	1.2	0.4	
		AN	ID					81.9	94.7	12.8	3.7	2.3	
		INCLU	IDING					83.6	92.0	8.4	5.4	3.3	кз нw
		INCLU	DING					87.2	88.4	1.2	8.1	5.7	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		INCLU	JDING					90.5	92.0	1.5	13.7	5.7	
		AN	١D					99.5	102.5	3.0	1.0	0.6	
		INCLU	JDING					101.0	102.5	1.5	1.0	0.4	
		AN	١D					123.0	131.0	8.0	1.2	1.2	
		INCLU	JDING					123.0	125.0	2.0	3.3	2.2	
		INCLU	JDING					129.1	131.0	1.9	1.1	1.1	
		AN	١D					132.4	134.0	1.6	1.6	1.0	
		AN	١D					139.4	148.2	8.8	1.4	2.8	
		INCLU	JDING					141.1	148.2	7.1	1.6	3.2	
		INCLU	JDING					143.5	148.2	4.7	2.0	4.2	
		INCLU	JDING					145.0	146.6	1.6	2.4	5.6	
KED-113	482,404	4,461,749	365	260	-45	59	DD	0.5	4.3	3.8	0.8	0.8	CDV
		INCLU	JDING					0.5	1.5	1.0	2.0	1.0	307
KED-114	482,406	4,461,746	365	215	-60	79	DD	0.0	25.1	25.1	0.2	0.2	SBX
KED-115	481,673	122	-61	160.5	DD	90.3	108.9	18.6	2.1	1.8			
		INCLU	JDING					95.1	108.9	13.8	2.6	2.2	
		INCLU	JDING					103.1	106.3	3.2	6.9	4.0	
		INCLU	JDING					104.1	105.2	1.1	11.4	5.2	К3
		AN	١D					118.5	120.5	2.0	1.4	1.1	
		AN	١D					129.8	134.2	4.4	0.6	0.6	
		INCLU	JDING					132.5	134.2	1.7	1.1	0.8	
KED-116	482,406	4,461,752	365	305	-60	69	DD	10.7	12.4	1.7	0.6	0.4	SBX
KED-117	481,705	4,461,972	353	355	-56	360.5	DD	0.0	1.5	1.5	0.7	0.3	
		AN	١D					84.1	85.0	0.9	0.7	0.6	
		AN	١D					86.8	87.7	0.9	0.6	0.6	
		AN	١D					95.2	97.0	1.8	0.6	0.3	
		AN	١D					110.6	112.0	1.4	0.8	0.4	
		AN	١D					160.8	163.8	3.0	1.1	1.6	
		INCLU	JDING					160.8	162.0	1.2	2.3	2.7	140
		AN	١D					239.9	240.9	1.0	0.5	0.7	K2
		AN	١D					249.6	250.6	1.0	0.5	0.5	
		AN	١D					293.5	296.5	3.0	1.2	0.9	
		AN	١D					299.9	301.8	1.9	0.6	0.3	
		INCLU	JDING					293.5	295.0	1.5	1.7	1.2	
		AN	١D					330.6	332.3	1.7	0.8	0.4	
		AN	١D					335.8	337.5	1.7	0.6	0.6	
KED-118	482,337	4,461,809	360	260	-60	91.5	DD	22.1	26.1	4.0	0.8	0.9	ECZ
KED-119	481,244	4,462,517	302	18	-45	90.00	DD	30.8	42.9	12.1	0.8	0.8	
		INCLU	JDING					30.8	41.5	10.7	0.9	0.8	
		INCLU	JDING					37.3	38.2	0.9	1.3	1.0	KK2
		INCLU	JDING					32.1	33.4	1.3	2.8	1.3	
KED-120	481,672	4,461,918	332	116	-68	222.5	DD	32.0	34.0	2.0	0.8	0.2	
		AN	ND.			I		103.5	104.8	1.3	0.6	0.6	К3
		AN	١D					107.3	108.8	1.5	0.5	0.6	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		AN	١D					116.8	145.0	28.2	1.0	3.1	
		INCLU	JDING					129.2	133.5	4.3	1.0	2.5	
		INCLU	JDING					130.7	132.1	1.4	1.7	2.1	
		INCLU	JDING					135.9	145.0	9.1	2.1	5.4	
		INCLU	JDING					135.9	137.3	1.4	2.4	5.3	
		INCLU	JDING		-			142.5	145.0	2.5	5.3	2.4	
KED-121	482,380	4,461,899	375	0	-60	88.5	DD	12.0	21.9	9.9	0.5	0.5	FC7
		INCLU	JDING					15.2	16.8	1.6	2.1	0.5	202
KED-122	481,241	4,462,515	302	335	-60	95	DD	1.3	2.7	1.4	0.7	0.6	
		AN	١D					27.2	30.0	2.8	0.7	0.6	KK2
		AN	١D					35.0	38.0	3.0	0.6	0.4	
		AN	١D					84.9	85.9	1.0	0.7	0.2	KS
KED-123	481,884	4,462,003	388	267	-80	180	DD		No	significant	assays		KS
KED-124	481,746	4,461,916	340	147	-54	150	DD	0.0	58.8	58.8	0.6	0.4	
		INCLU	JDING					2.4	23.8	21.4	0.9	0.5	
		INCLU	JDING					2.4	5.0	2.6	1.3	0.5	
		INCLU	JDING					17.0	18.2	1.2	6.3	3.3	
		INCLU	JDING					26.3	28.5	2.2	0.9	0.6	K3 HW
		INCLU	JDING					26.3	27.2	0.9	1.0	0.6	
		INCLU	JDING					31.3	33.3	2.0	1.1	0.8	
		INCLU	JDING					32.3	33.3	1.0	1.3	0.9	
		INCLU	JDING					36.0	48.6	12.6	0.6	0.3	
		INCLU	JDING					57.3	58.8	1.5	0.7	1.1	
		AN	١D					61.8	77.4	15.6	16.2	6.4	
		INCLU	JDING					63.6	65.4	1.8	1.1	0.7	
		INCLU	JDING					67.2	68.6	1.4	2.7	1.4	K3
		INCLU	JDING					70.2	77.4	7.2	33.8	12.8	
		INCLU	JDING					71.6	75.6	4.0	59.5	22.6	
		INCLU	JDING					73.0	75.6	2.6	82.4	31.3	
		INCLU	JDING					73.0	74.3	1.3	117.5	41.1	
		AN	1D					106.5	109.7	3.2	0.8	0.8	K3 FW
KED-125	481,264	4,462,376	251	340	-45	141.5	DD	54.5	56.3	1.8	1.6	0.9	KK1
KED-126	481,347	4,462,500	308	260	-65	104	DD	15.5	18.5	3.0	0.5	0.7	
		INCLU	JDING					15.5	17.0	1.5	0.8	0.7	
		AN	١D					48.5	53.5	5.0	4.6	4.9	КК1
		INCLU	JDING					50.5	53.5	3.0	7.3	7.4	
		AN	١D					83.0	85.6	2.6	0.9	1.5	
		INCLU	JDING					83.0	84.5	1.5	1.3	2.0	
KED-127	481,884	4,462,004	387	279	-74	97.5	DD		No	significant	assays	1	KS
KED-128	481,747	4,461,916	340	124	-48	100	DD	0.0	20.5	20.5	4.6	2.1	K3 HW
		INCLU	JDING					0.0	18.6	18.6	5.0	2.2	
		INCLU	JDING					1.8	7.4	5.6	14.9	6.1	
		INCLU	JDING					1.8	5.4	3.6	22.3	8.9	
		INCLU	JDING					1.8	3.6	1.8	41.5	15.3	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		INCLU	IDING					17.6	18.6	1.0	3.5	1.9	
		AN	١D					24.9	42.6	17.7	1.4	0.7	
		INCLU	IDING					27.9	42.6	14.7	1.7	0.8	
		INCLU	IDING					29.8	34.0	4.2	4.4	2.1	
		INCLU	IDING					29.8	33.3	3.5	5.0	2.0	
KED-129	481,884	4,462,002	388	260	-65	157.5	DD	54.3	56.0	1.7	0.7	0.2	
		AN	١D					101.6	104.5	2.9	0.8	4.5	KG
		AN	١D					112.1	114.8	2.7	0.6	1.3	NO
		AN	١D					121.1	123.8	2.7	0.8	0.8	
KED-130	481,347	4,462,501	308	285	-60	111.5	DD	48.5	51.6	3.1	1.8	2.8	
		INCLU	IDING					50.0	51.6	1.6	3.2	2.7	KK 1
		AN	1D					88.0	89.7	1.7	0.6	1.3	14140
		AN	١D					98.0	100.0	2.0	0.7	2.1	KK3
KED-131	481,705	4,461,972	353	350	-64	246.5	DD	57.3	59.0	1.7	0.9	0.5	
		AN	١D			I		96.9	98.6	1.7	0.5	0.5	
		AN	١D					103.9	106.9	3.0	0.7	0.6	
	AND								125.0	8.9	0.8	0.6	
		INCLU	IDING					117.3	122.8	5.5	1.1	0.7	
		INCLU	IDING					121.2	121.9	0.7	4.4	2.1	K2
		AN	١D					127.7	134.8	7.1	1.4	0.8	
		INCLU	IDING					127.7	133.8	6.1	1.5	0.9	
		INCLU	IDING					129.1	130.8	1.7	4.2	1.8	
KED-132	481,744	4,461,918	340	119	-54	113.5	DD	15.2	16.7	1.5	0.9	1.0	
		AN	١D					33.7	37.5	3.8	0.6	0.7	K3 HW
		AN	١D					52.5	54.3	1.8	0.7	0.2	
		AN	1D					108.0	109.8	1.8	0.5	0.1	K3
KED-133	481,810	4,461,920	358	212	-45	138.5	DD	30.0	41.5	11.5	0.7	0.3	
		INCLU	IDING			I		40.0	41.5	1.5	2.5	1.1	
		AN	1D					44.5	49.8	5.3	6.4	2.7	K3 HW
		INCLU	IDING					44.5	47.2	2.7	11.9	4.7	
		INCLU	IDING					45.7	47.2	1.5	19.9	7.0	
		AN	١D					99.2	105.7	6.5	1.0	0.8	
		INCLU	IDING					99.2	100.9	1.7	2.4	1.9	
		AN	١D					109.0	110.7	1.7	0.6	0.5	K3 FW
		AN	1D					131.5	134.7	3.2	4.9	2.9	
		INCLU	IDING					133.2	134.7	1.5	10.0	5.9	
KED-134	481,294	4,462,419	270	340	-46	131	DD	86.0	86.9	0.9	0.7	1.0	KK1
KED-135	481,743	4,461,918	340	130	-68	178.5	DD	14.0	57.6	43.6	0.9	0.3	
		INCLU	IDING					28.0	55.0	27.0	1.2	0.4	K3 HW
		INCLU	IDING					32.7	34.4	1.7	8.7	3.5	
		AN	1D					60.5	101.6	41.1	7.2	3.3	
		INCLU	IDING					83.4	100.1	16.7	17.0	7.4	K0
		INCLU	IDING					89.8	99.0	9.2	29.1	12.8	ћJ
		INCLU	IDING					89.8	90.7	0.9	43.1	19.7	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		INCLU	IDING					95.0	99.0	4.0	52.4	21.6	
		AN	١D					106.2	108.8	2.6	3.3	0.9	
KED-136	481,808	4,461,922	358	305	-68	131	DD	0.0	1.5	1.5	0.6	4.8	K3
KED-137	481,746	4,461,913	340	178	-76	159.5	DD	6.0	13.9	7.9	1.0	0.6	K3 HW
		INCLU	IDING					6.0	10.0	4.0	1.2	0.8	
		INCLU	IDING					9.0	10.0	1.0	2.3	1.3	
		INCLU	IDING					12.8	13.9	1.1	1.2	0.4	
		AN	١D					16.1	17.9	1.8	0.5	0.4	
		AN	1D					27.0	29.5	2.5	0.9	0.7	
		AN	١D					37.5	39.0	1.5	0.9	1.1	
		AN	١D					77.3	93.5	16.2	3.4	2.0	
		INCLU	IDING					86.3	93.5	7.2	6.8	3.5	Ka
		INCLU	IDING					91.5	93.5	2.0	17.0	9.2	NЭ
		AN	١D					118.9	119.4	0.5	0.8	0.4	
KED-138	481,293	4,462,417	270	27	-78	150	DD		No	significant	assays		KK1
KED-139	481,704	4,461,972	353	333	-54	329	DD	74.2	83.6	9.4	0.7	0.7	
		INCLU	IDING					74.2	75.9	1.7	1.1	1.8	
		AN	1D					88.0	89.5	1.5	0.8	0.3	
		AN	1D					95.7	98.7	3.0	0.5	0.4	
		AN	1D					101.7	103.2	1.5	0.6	0.3	
		AN	1D					108.7	112.7	4.0	0.6	1.0	Ko
		INCLU	IDING					111.7	112.7	1.0	1.0	0.6	n2
		AN	١D					121.7	123.0	1.3	0.6	0.4	
		AN	١D					159.8	177.2	17.4	3.8	2.1	
		INCLU	IDING					172.7	174.4	1.7	2.0	2.6	
		INCLU	IDING					162.7	166.5	3.8	15.6	6.5	
		INCLU	IDING					165.5	166.5	1.0	52.5	19.6	
		AN	١D					197.7	200.7	3.0	0.7	1.1	
		INCLU	IDING					200.0	200.7	0.7	1.1	1.6	K1
		AN	1D					212.7	214.2	1.5	0.8	1.0	R1
		AN	1D					229.8	231.4	1.6	0.9	1.6	
KED-140	481,811	4,461,923	358	345	-76	214	DD	64.0	65.7	1.7	1.0	0.1	
		AN	١D					118.5	120.0	1.5	0.9	1.1	ĸs
		AN	١D					159.9	161.4	1.5	0.6	0.5	No
		AN	1D					175.0	176.2	1.2	1.3	0.8	
KED-141	481,747	4,461,913	340	163	-62	186	DD	3.5	35.0	31.5	1.2	0.7	
		INCLU	IDING					11.6	19.5	7.9	2.5	1.2	K3 HW
		INCLU	IDING					11.6	16.0	4.4	3.4	1,4	
		AN	1D					51.7	75.1	23.4	4.7	2.3	
		INCLU	IDING					51.7	55.3	3.6	6.8	2.7	К3
		INCLU	IDING					71.0	73.6	2.6	28.1	13.5	
		AN	1D					160.8	162.0	1.2	1.9	1.4	
KED-142	481,231	4,462,395	255	320	-60	75.5	DD	37.6	44.5	6.9	9.2	4.7	KK4
		INCLU	IDING					37.6	41.3	3.7	15.8	8.1	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
KED-143	481,480	4,462,030	257	190	-61	141.5	DD	6.0	12.0	6.0	0.8	0.6	K1
KED-144	481,630	4,461,818	277	180	-47	36	DD	0.0	3.0	3.0	2.7	2.1	K3 HW
		AN	ID		•			15.3	36.0	20.7	8.5	6.8	
		INCLU	IDING					15.3	22.5	7.2	14.0	8.7	
		INCLU	IDING					23.5	29.5	6.0	5.5	3.6	
		INCLL	IDING					16.8	22.5	5.7	17.6	10.8	
		INCLU	IDING					23.5	25.0	1.5	17.6	11.0	КЗ
		INCLU	IDING					18.8	22.5	3.7	26.2	16.4	
		INCLU	IDING					20.2	22.5	2.3	39.1	23.5	
		INCLU	IDING					33.0	36.0	3.0	13.8	19.1	
		INCLU	IDING					33.0	35.0	2.0	19.9	23.4	
KED-145	481,809	4,461,920	358	183	-51	171.5	DD	34.2	35.5	1.3	0.6	0.2	
		AN	1D					41.1	46.8	5.7	4.6	2.3	K3 HW
		INCLU	IDING					41.1	42.0	0.9	21.1	7.8	1.5 1100
		INCLU	IDING					45.1	46.8	1.7	3.2	2.8	
		AN	1D		n			110.5	112.5	2.0	1.7	0.4	K3 FW
KED-146	481,896	4,462,072	367	159	-45	239	DD	30.0	34.0	4.0	0.6	0.9	KS / K3 /
		AN	ID					152.0	181.8	29.8	0.3	0.2	TOPYUR T
		AN	۱D		1			191.8	204.2	12.4	0.4	0.6	
KED-147	481,606	4,461,924	305	75	-68	347	DD	143.8	150.8	7.0	2.3	1.3	-
		INCLU	IDING					145.5	149.1	3.6	4.2	2.1	K3 HW
		INCLU	IDING					148.2	149.1	0.9	15.5	5.1	
		AN	ID					254.2	276.7	22.5	0.7	0.7	-
		INCLU	IDING					255.8	265.6	9.8	0.7	0.8	K3
		INCLU	IDING		1			268.0	275.3	7.3	1.0	0.9	
KED-148	481,578	4,461,979	301	140	-80	271	DD	0.0	14.3	14.3	5.7	3.4	-
		INCLU	IDING					0.0	10.9	10.9	7.4	4.3	K2
		INCLU	IDING					4.5	10.9	6.4	11.7	6.7	-
		INCLU	IDING			[]		8.4	9.7	1.3	41.5	17.7	
KED-149	481,483	4,462,030	257	155	-60	134	DD	0.0	11.2	11.2	2.2	1.3	
		INCLU						6.5	11.2	4.7	4.7	2.5	K1
	404.004	AN			07	005		21.5	23.0	1.5	41.4	12.5	
KED-150	481,691	4,462,164	310	332	-67	96.5	שט	0.0	27.5	27.5	0.3	0.2	
		INCLU						7.8	9.1	1.3	1.2	0.1	KA / K1
	404 007	AN		07		000	20	42.8	46.0	3.2	0.5	1.0	
KED-151	481,607	4,461,923	305	87	-63	262		128.3	141.5	13.2	0.8	1.8	K3 HW
NED-152	481,965	4,461,996	388	189	-73	311	טט	246.7	204.7	18.0	0.6	0.6	ĸs
	101 007			06	FC	007		201.3	∠00.0	5.3	1.1	0.7	
NED-153	401,007	4,401,923	CUC	90	-30	221	טט	124.0	139.4	15.4	0.2	3.5	
		INCLU						126.9	131.3	4.4	2.1	1.6	r3 MVV
		INCLU						134.5	139.4	4.9	17.2	8.1	
								157.5	191.2	33.7	0.7	1.4	1/2
		INCLU						1/6.4	188.7	12.3	1.3	1.8	K3
		INCLU	IDING					174.7	182.6	7.9	1.3	1.9	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	TYPE	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		INCLU	IDING					176.4	180.9	4.5	1.7	1.7	
KED-154	481,541	4,461,987	283	180	-55	92.5	DD	0.0	27.5	27.5	4.9	3.5	
		INCLU	IDING					0.0	8.4	8.4	3.6	2.0	
		INCLU	IDING					14.0	22.3	8.3	12.1	8.3	
		INCLU	IDING					17.0	22.3	5.3	18.3	12.0	K2
		INCLU	IDING					17.0	20.0	3.0	26.9	17.9	
		AN	١D					37.3	53.0	15.7	0.8	0.7	
		INCLU	IDING					46.8	51.5	4.7	1.9	1.4	
KED-155	481,965	4,461,998	388	226	-66	191	DD	87.4	99.5	12.1	0.8	0.7	
		INCLU	IDING					90.0	93.4	3.4	1.3	0.9	
		AN	١D					102.5	119.0	16.5	0.6	0.5	
		INCLU	IDING					105.2	106.6	1.4	1.1	0.4	KS
		AN	١D					140.0	143.0	3.0	0.6	1.1	
		AN	١D					170.5	173.7	3.2	0.6	1.5	
		AN	1D					179.9	181.4	1.5	0.5	1.0	
KED-156	481,541	4,461,988	283	180	-90	125	DD	0.0	1.5	1.5	1.9	1.0	
		AN	١D					7.5	21.5	14.0	1.7	1.4	
		INCLU	IDING					10.5	12.0	1.5	1.3	0.7	
		INCLU	IDING					14.5	20.0	5.5	3.1	2.4	Ka
		INCLU	IDING					16.4	20.0	3.6	4.0	3.1	N 2
		AN	١D					38.0	38.8	0.8	0.7	4.1	
		AN	١D					114.2	115.8	1.6	1.6	1.6	
		AN	1D					120.5	122.0	1.5	0.8	1.2	
KED-157	481,541	4,461,988	283	180	-70	75.7	DD	57.9	65.1	7.2	0.9	0.8	
		INCLU	IDING					57.9	59.5	1.6	1.5	1.2	K2
		\INCLU	JDING					60.9	62.3	1.4	1.2	1.3	
KED-158	481,544	4,461,988	283	142	-65	57	DD	1.5	28.0	26.5	2.9	2.0	
		INCLU	IDING					2.9	6.8	3.9	4.2	2.1	
		INCLU	IDING					3.9	6.8	2.9	5.0	2.5	
		INCLU	IDING					3.9	4.6	0.7	9.1	4.8	
		INCLU	IDING					18.3	19.4	1.1	2.5	3.5	
		INCLU	IDING					22.7	26.9	4.2	10.3	5.2	
		INCLU	IDING					22.7	24.8	2.1	7.6	4.3	K2
		INCLU	IDING					25.8	26.9	1.1	23.6	10.6	
		AN	1D					31.7	37.5	5.8	6.1	3.0	
		INCLU	IDING					31.7	32.7	1.0	1.3	1.2	
		INCLU	IDING					34.6	37.5	2.9	11.3	4.9	
		INCLU	IDING					35.5	37.5	2.0	15.7	6.8	
		INCLU	IDING					36.5	37.5	1.0	29.1	11.0	
KED-159	482,032	4,462,004	391	228	-61	251	DD	197.2	199.0	1.8	1.3	0.9	
		AN	1D					218.5	220.5	1.5	0.8	1.0	
		AN	1D					228.2	231.0	2.8	0.8	0.9	KS
		INCLU	IDING					228.2	229.4	1.2	1.1	0.8	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
KED-160	481,539	4,461,982	283	210	-70	66.5	DD	0.0	46.9	46.9	4.6	3.9	
		INCLU	JDING					4.2	5.5	1.3	1.2	0.8	
		INCLU	JDING					5.5	6.8	1.3	17.3	10.4	
		INCLU	JDING					6.5	10.5	1.0	6.4	3.6	
		INCLU	JDING					6.5	6.8	0.3	26.3	13.8	
		INCLU	JDING					12.0	16.8	4.8	4.0	3.3	
		INCLU	JDING					13.5	14.5	1.0	6.1	4.3	
		INCLU	JDING					18.3	30.6	12.3	8.7	6.2	Ka
		INCLU	JDING					21.2	22.3	1.1	13.2	8.0	π2
		INCLU	JDING					23.6	29.6	6.0	14.2	9.6	
		INCLU	JDING					23.6	24.6	1.0	40.5	20.6	
		INCLU	JDING					32.6	34.8	2.2	3.2	3.7	
		INCLU	JDING					35.8	39.7	3.9	2.2	2.1	
		INCLU	JDING					36.8	38.7	1.9	2.7	2.5	
		INCLU	JDING					41.6	46.9	5.3	6.5	8.7	
		INCLU	JDING					42.5	43.5	1.0	13.8	13.0	
KED-161	481,540	4,461,984	283	40	-60	77	DD	0.0	3.1	3.1	13.0	6.5	
		INCLU	JDING					0.0	1.5	1.5	26.2	12.8	
		INCLU	JDING					0.5	1.5	1.0	33.0	16.3	
		AN	١D					6.1	21.7	15.6	2.7	2.0	
		INCLU	JDING					6.1	16.0	9.9	3.7	2.6	К2
		INCLU	JDING					7.5	8.5	1.0	9.6	5.6	
		INCLU	JDING					9.5	13.8	4.3	3.8	2.7	
		INCLU	JDING					14.9	16.0	1.1	5.4	3.5	
		AN	١D					19.3	21.7	2.4	1.2	2.4	
		AN	١D					53.5	54.5	1.0	0.7	0.6	
KED-162	481,478	4,462,032	256	305	-60	54.5	DD		No	significant	assays	I	K1 FW / K1
KED-163	482,036	4,462,005	391	165	-50	192.5	DD	52.1	53.9	1.8	1.2	0.1	
		AN	١D					76.2	81.2	5.0	0.9	0.2	
		INCLU	JDING					76.2	79.5	3.3	1.1	0.2	
		AN	1D					88.6	99.5	10.9	0.9	0.6	
		INCLU	JDING					92.9	99.5	6.6	1.3	0.9	
		INCLU	JDING					98.0	99.5	1.5	2.4	0.3	KS E
		AN	ND					107.8	127.0	19.2	0.9	0.6	
		INCLU	JDING					107.8	119.2	11.4	1.2	0.9	
		INCLU	JDING					107.8	113.2	5.4	2.0	1.4	
		INCLU	JDING					107.8	109.3	1.5	4.2	1.9	
		AN						170.9	174.3	3.4	3.6	5.8	
	101	INCLU		ac-		(a		170.9	173.5	2.6	4.5	7.2	
KED-164	481,858	4,462,225	325	295	-49	124.5	DD	0.0	2.0	2.0	0.6	0.8	
KED-165	481,859	4,462,224	325	347	-78	180	DD	10.8	13.8	3.0	0.6	0.8	
		AN	1D					51.7	53.5	1.8	0.6	17.9	KA / K1
	I	AN	1D	l	1	1		117.5	121.5	4.0	0.7	0.2	
KED-166	481,860	4,462,226	325	15	-60	150	DD	50.5	57.0	6.5	0.3	0.8	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
KED-167	482,375	4,461,677	356	180	-60	608	DD	0.0	6.0	6.0	0.8	2.4	
		INCLU	JDING			I		3.5	4.4	0.9	2.2	4.4	
		AN	١D					96.8	98.4	1.6	0.9	0.2	MEYDA N
		AN	١D					102.6	104.4	1.8	2.0	2.0	
		AN	١D					130.3	135.0	4.7	1.0	0.9	
KED-168	481,230	4,462,397	256	270	-60	134	DD	0.0	11.8	11.8	0.4	0.5	
		INCLU	JDING					1.9	4.8	2.9	0.9	0.8	KK1
		INCLU	JDING					1.9	3.1	1.2	1.3	1.2	
KED-169	481,266	4,462,375	251	135	-50	168	DD		No	significant	assays		
KED-170	481,899	4,462,267	327	315	-70	58	DD		No	significant	assays	-	KA
KED-171	481,312	4,462,327	255	0	-60	187.9	DD	26.6	30.6	4.0	0.0	752.9	KK1
		INCLU	JDING					26.6	28.6	2.0	0.1	1480.0	
		AN	ND.		-			186.9	187.9	1.0	0.7	0.3	KK2
KED-172	481,775	4,462,212	320	310	-60	38	DD	15.0	16.2	1.2	0.9	0.5	KA
KED-173	481,691	4,462,165	310	310	-60	87.9	DD		No	significant	assays		KA
KED-174	481,101	4,462,544	268	350	-60	98.8	DD	14.5	19.9	5.4	2.1	1.9	
		INCLU	JDING					14.5	16.5	2.0	3.0	2.4	ккз
		AN	١D					39.6	47.4	7.8	2.5	3.1	1113
		INCLU	JDING					39.6	41.7	2.1	4.4	3.6	
KED-175	481,481	4,462,031	257	305	-60	154.5	DD		No	significant	assays		K1 FW
KED-175A	481,482	4,462,032	256	305	-60	101	DD	95.5	97.5	2.0	0.1	141.0	K1 FW
KED-176	483,411	4,461,923	389	60	-60	215	DD		No	significant	assays		SCOUT
KED-177	484,956	4,461,248	455	0	-60	101	DD		No	significant	assays		SCOUT
KED-178	481,060	4,462,516	249	340	-60	140.8	DD	25.4	42.3	16.9	6.4	5.6	ккз
		INCLU	JDING					25.4	34.0	8.6	11.0	9.3	
KED-179	483,409	4,461,924	389	30	-60	212	DD		No	significant	assays		SCOUT
KED-180	484,956	4,461,247	455	180	-60	197.9	DD		No	significant	assays		SCOUT
KED-181	481,483	4,462,029	256	165	-45	174.8	DD	0.0	12.1	12.1	1.0	0.7	-
		INCLU	JDING					9.6	12.1	2.5	2.4	1.3	K1 / K2
		AN	١D		1	r		25.5	27.3	1.8	0.8	1.1	
KED-182	482,298	4,461,940	385	225	-60	152	DD	0.0	21.2	21.2	1.0	1.0	-
		INCLU	JDING					10.5	11.8	1.3	3.0	1.9	KS/K3/ TOPYUR
		AN	١D					47.0	56.4	9.4	1.0	0.6	Т
		INCLU	JDING		1			52.2	53.6	1.4	6.0	1.3	1/1/0 /
KED-183	481,112	4,462,467	246	315	-60	145.9	DD		No	significant	assays		KK27 KK3
KED-183A	481,113	4,462,465	246	315	-60	65.9	DD		No	significant	assays		KK2
KED-184	482,299	4,461,938	385	190	-60	89	DD	0.0	35.0	35.0	0.9	1.3	
		INCLU	JDING					9.5	11.0	1.5	2.7	5.9	KS/K3/
		INCLU	JDING					12.5	14.0	1.5	2.0	5.8	T
		AN	1D					38.9	40.6	1.7	4.7	1.7	
KED-185	481,482	4,462,031	257	340	-60	90.4	DD		No	significant	assays		K1 FW
KED-186	484,960	4,461,250	455	230	-60	151.2	DD	0.0	11.9	11.9	0.0	24.3	
		INCLU	JDING					0.0	8.9	8.9	0.0	32.3	SCOUT
		INCLU	JDING					0.0	3.9	3.9	0.0	66.9	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
KED-187	482,116	4,461,926	364	10	-50	90	DD	37.6	45.6	8.0	0.3	0.2	KS
KED-188	481,482	4,462,030	257	180	-60	164	DD		No	significant	assays	•	K1 / K2
KED-189	482,115	4,461,924	364	180	-60	193.2	DD	33.3	38.3	5.0	7.2	5.1	
		INCLU	JDING					33.3	36.3	3.0	11.6	8.1	KSE
		AN	١D					110.0	118.8	8.8	0.7	1.7	NO E
		INCLU	JDING					110.0	112.0	2.0	1.1	4.1	
KED-190	481,113	4,462,463	246	0	-60	171.4	DD		No	significant	assays		KK2/ KK3
KED-191	484,958	4,461,251	455	250	-45	134	DD	0.0	16.8	16.8	0.1	17.6	
		INCLU	JDING					0.0	10.7	10.7	0.1	27.9	SCOUT
		INCLU	JDING					5.7	7.2	1.5	0.1	84.7	
KED-192	481,599	4,462,008	303	180	-60	281	DD	12.5	23.7	11.2	1.9	2.8	
		INCLU	JDING					14.0	22.2	8.2	2.4	3.7	K2/K3
		INCLU	JDING					19.9	22.2	2.3	7.0	5.0	1127113
		INCLU	JDING					19.9	20.9	1.0	14.5	9.7	
KED-193	481,059	4,462,515	249	305	-70	156.8	DD	7.9	9.3	1.4	3.5	3.3	
		AN	١D					27.6	41.8	14.2	10.2	7.9	ккз
		INCLU	JDING					27.6	34.1	6.5	18.6	13.8	
		INCLU	JDING	r	n	r	[27.6	31.7	4.1	26.5	18.8	
KED-194	482,195	4,461,888	349	45	-50	224.6	DD	125.3	126.6	1.3	0.8	0.7	K3 /KS / TOPYUR T
KED-195	484,933	4,461,769	468	310	-60	121.1	DD		No	significant	assays		SCOUT
KED-196	481,059	4,462,515	249	305	-90	187.7	DD	14.4	15.7	1.3	2.9	2.9	
		AN	١D					50.5	56.0	5.5	3.6	2.5	ККЗ
		INCLU	JDING					50.5	52.9	2.4	5.9	3.6	nn <u>s</u>
		AN	ND.	-	-			76.1	77.2	1.1	1.3	1.4	
KED-197	481,871	4,462,359	331	0	-60	120.3	DD		No	significant	assays		SCOUT
KED-198	482,195	4,461,887	349	0	-50	174.8	DD	133.4	134.9	1.5	1.0	0.5	K3 / KS/ TOPYUR T
KED-199	484,934	4,461,772	468	350	-60	111.8	DD		No	significant	assays		
KED-200	481,098	4,462,545	268	20	-80	200.1	DD	20.2	23.0	2.8	3.4	2.3	
		INCLU	JDING					20.2	21.6	1.4	6.5	4.3	
		AN	١D					30.3	34.2	3.9	0.9	0.5	
		INCLU	JDING					33.6	34.2	0.6	3.2	1.9	ККЗ
		AN	١D					52.4	53.1	0.7	3.4	3.5	nn5
		AN	١D					59.2	62.1	2.9	1.2	1.3	
		AN	١D					69.5	71.8	2.3	1.2	1.7	
		INCLU	JDING	-	-			69.5	70.1	0.6	2.3	2.0	
KED-201	481,870	4,462,357	331	315	-60	133.8	DD	23.5	32.2	8.7	0.4	0.3	
		INCLU	JDING					23.5	25.8	2.3	0.8	0.3	
		AN	1D					41.7	43.2	1.5	0.2	0.1	
		AN	1D					73.4	74.4	1.0	1.3	0.3	SCOUT
		AN	1D					92.2	93.7	1.5	0.2	0.7	
		AN	١D					118.4	121.2	2.8	0.3	0.3	
		AN	١D					124.0	125.3	1.3	0.4	0.9	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	TYPE	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
KED-202	482,259	4,461,910	377	0	-50	119	DD	0.9	5.1	4.2	0.6	0.8	
		INCLU	JDING		•			2.1	5.1	3.0	0.7	0.9	K3 / KS/
		AN	١D					102.8	117.2	14.4	0.5	0.5	T
		INCLU	JDING					102.8	107.1	4.3	0.8	0.5	
KED-203	481,619	4,462,326	334	330	-60	59	DD	9.5	16.6	7.1	0.5	0.4	SCOUT
		AN	١D					41.0	44.2	3.2	0.7	0.7	30001
KED-204	482,260	4,461,907	377	130	-60	92.5	DD	0.0	20.8	20.8	1.7	2.4	
		INCLU	JDING					0.0	6.1	6.1	1.1	2.3	
		INCLU	JDING					1.5	6.1	4.6	1.3	2.9	CDV
		INCLU	JDING					1.5	3.0	1.5	2.1	0.7	387
		INCLU	JDING					8.3	15.4	7.1	3.6	4.2	
		INCLU	JDING					17.5	19.7	2.2	0.7	1.5	
		INCLU	JDING					12.7	14.1	1.4	15.6	17.8	
KED-205	481,680	4,462,337	360	330	-60	140	DD		No	significant	assays		SCOUT
KED-206	481,179	4,462,421	253	10	-60	109.6	DD		No	significant	assays		KK2
KED-207	482,252	4,461,978	385	180	-60	163	DD	0.0	13.0	13.0	1.5	1.1	
		INCLU	JDING		•			0.0	3.1	3.1	5.4	2.9	
		INCLU	JDING					0.0	1.6	1.6	9.0	4.5	
		AN	١D					83.0	89.6	6.6	0.6	0.5	ECZ
		AN	١D					110.0	116.4	6.4	0.6	0.4	
		INCLU	JDING					111.6	115.5	3.9	0.8	0.4	
		INCLU	JDING					113.1	114.6	1.5	1.1	0.4	
KED-208	484,934	4,461,767	468	240	-50	127.20	DD		No	significant	assays		SCOUT
KED-209	482,295	4,461,677	331	0	-60	93.80	DD		No	significant	assays		SCOUT
KED-210	481,229	4,462,359	242	315	-60	262.50	DD		No	significant	assays		KK1
KED-211	481,775	4,462,210	320	335	-60	221	DD	0.0	3.0	3.0	0.4	0.4	
		AN	١D					7.4	8.7	1.3	0.3	0.1	
		AN	١D					11.8	21.1	9.3	0.5	0.5	
		INCLU	JDING					11.8	13.2	1.4	0.6	0.2	
		INCLU	JDING					17.8	19.4	1.6	1.3	1.4	KA / K1
		AN	١D					75.1	76.7	1.6	0.3	0.4	
		AN	١D					86.4	91.5	5.1	0.3	0.6	
		AN	١D					98.6	99.9	1.3	0.4	0.6	
		AN	١D					102.1	106.8	4.7	0.4	0.8	
		INCLU	JDING					104.0	105.3	1.3	0.6	0.8	
KED-212	482,036	4,462,288	340	0	-60	97.4	DD	42.0	45.1	3.1	0.3	0.5	KA
		AN	ND.		-			48.2	49.9	1.7	0.4	0.4	154
KED-213	484,856	4,461,371	430	165	-50	190.80	DD		No	significant	assays		SCOUT
KED-214	482,214	4,462,326	373	330	-60	136.5	DD	9.6	11.0	1.4	0.8	0.5	
		AN	1D					19.2	20.7	1.5	0.3	1.0	KA/ SCOUT
		AN	١D					114.2	115.9	1.7	0.6	0.4	
KED-215	481,597	4,462,208	336	315	-60	234.1	DD	0.0	3.2	3.2	0.7	0.2	
		AN	1D					11.9	13.4	1.5	0.5	0.4	SCOUT
		AN	1D					126.7	128.5	1.8	0.9	1.4	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		AN	١D					155.9	157.5	1.6	0.4	0.7	
		AN	١D					183.4	185.2	1.8	2.3	1.8	
KED-216	482,830	4,462,105	395	20	-60	137.60	DD		No	significant	assays		SCOUT
KED-217	484,768	4,461,878	426	45	-60	101.00	DD		No	significant	assays		SCOUT
KED-218	481,544	4,462,597	362	0	-90	102	DD	41.8	49.3	7.5	0.8	1.2	
		INCLU	JDING					48.1	49.3	1.2	1.4	1.6	КТ
		AN	١D					73.7	75.2	1.5	0.7	0.3	
KED-219	481,229	4,462,358	242	135	-60	132.00	DD		No	significant	assays		KK1
KED-220	482,827	4,462,109	395	330	-60	154.60	DD		No	significant	assays		SCOUT
KED-221	481,374	4,462,542	324	10	-60	160	DD	12.6	16.1	3.5	2.9	4.2	
		INCLU	JDING					14.6	16.1	1.5	6.5	8.8	
		AN	١D					20.9	22.6	1.7	0.4	0.8	KK 1
		AN	١D					32.6	41.9	9.3	0.6	1.1	
		INCLU	JDING					32.6	38.7	6.1	0.8	1.2	
		INCLU	JDING					33.9	35.6	1.7	1.4	2.0	
KED-222	484,743	4,461,938	414	170	-60	137.00	DD		No	significant	assays		SCOUT
KED-223	481,095	4,462,547	268	267	-45	111.2	DD	12.0	13.6	1.6	1.0	1.4	
		AN	١D					40.9	65.3	24.4	1.3	1.7	
		INCLU	JDING					42.6	62.7	20.1	1.5	1.9	
		INCLU	JDING					52.6	61.5	8.9	1.6	1.9	
		INCLU	JDING					42.6	45.4	2.8	3.6	4.8	KK3
		INCLU	JDING					48.2	49.1	0.9	3.2	2.6	
		INCLU	JDING					59.3	60.7	1.4	3.6	2.7	
		INCLU	JDING					44.5	45.4	0.9	7.8	11.1	
		AN	١D					95.4	96.4	1.0	3.1	3.4	
KED-224	482,947	4,462,132	390	10	-60	110.00	DD		No	significant	assays		SCOUT
KED-225	481,498	4,462,506	321	0	-50	131	DD	5.3	6.6	1.3	0.8	1.3	
		AN	١D					22.8	38.4	15.6	0.4	0.4	SCOUT /
		INCLU	JDING					26.6	29.6	3.0	1.0	0.9	КТ
		INCLU	JDING				1	27.6	28.6	1.0	1.8	1.2	
KED-226	485,149	4,461,232	470	180	-60	104.00	DD		No	significant	assays		SCOUT
KED-227	481,097	4,462,546	268	250	-62	125.9	DD	17.3	20.5	3.2	3.7	4.2	
		INCLU	JDING					17.3	19.5	2.2	5.2	5.9	
		INCLU	JDING					17.3	18.4	1.1	6.7	6.2	
		AN	١D					23.7	28.3	4.6	6.4	2.4	
		INCLU	JDING					25.4	26.9	1.5	19.0	6.9	
		AN	1D					52.8	55.7	2.9	5.0	5.5	
		INCLU	JDING					53.8	55.7	1.9	5.7	7.1	ККЗ
		AN	١D					61.0	71.8	10.8	2.6	1.9	
		INCLU	JDING					61.0	65.5	4.5	2.0	2.8	
		INCLU	JDING					61.0	64.2	3.2	2.5	3.8	
		INCLU	JDING					68.5	70.6	2.1	8.6	3.6	
		INCLU	JDING					68.5	70.1	1.6	11.1	4.6	
		AN	١D					87.8	90.7	2.9	0.7	0.9	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		INCLU	JDING					87.8	89.5	1.7	1.0	1.2	
KED-228	481,498	4,462,504	321	180	-60	320	DD	27.2	28.4	1.2	0.3	1.3	
		AN	١D					34.5	36.1	1.6	0.9	2.5	
		AN	١D					43.0	64.0	21.0	0.4	1.1	
		INCLU	JDING					44.0	48.8	4.8	0.6	1.1	
		INCLU	JDING					55.2	57.8	2.6	0.7	1.5	
		INCLU	JDING					63.1	64.0	0.9	0.6	1.0	
		AN	١D					67.3	85.4	18.1	0.5	1.3	
		INCLU	JDING					69.0	72.5	3.5	1.1	1.2	
		INCLU	JDING					71.7	72.5	0.8	2.2	1.6	COULT
		AN	١D					89.1	90.6	1.5	0.8	0.7	50001
		AN	١D					106.5	108.2	1.7	0.3	0.6	
		AN	١D					139.0	146.0	7.0	0.4	0.7	
		INCLU	JDING					139.0	140.0	1.0	0.9	1.0	
		AN	١D					178.9	180.3	1.4	0.4	0.3	
		AN	١D					216.7	241.6	24.9	0.3	0.7	
		INCLU	JDING					235.5	237.0	1.5	0.7	0.7	
		AN	١D					245.0	258.7	13.7	0.5	0.4	
		INCLU	JDING					246.4	252.1	5.7	0.6	0.4	
KED-229	483,494	4,462,072	378	230	-60	230.00	DD		No	significant	assays	•	SCOUT
KED-230	481,102	4,462,544	268	204	-71	148.5	DD	3.0	6.0	3.0	0.3	0.5	
		AN	١D					10.5	13.7	3.2	0.7	0.8	
		INCLU	JDING					12.0	13.7	1.7	1.0	1.2	
		INCLU	JDING					12.0	12.4	0.4	2.3	1.2	KK2
		AN	١D					38.3	43.3	5.0	0.8	0.6	nnj
		AN	١D					85.6	95.1	9.5	0.7	2.4	
		INCLU	JDING					85.6	87.5	1.9	2.0	9.6	
		INCLU	JDING					93.6	95.1	1.5	1.1	0.9	
KED-231	482,992	4,461,334	372	165	-60	152.00	DD		No	significant	assays		SCOUT
KED-232	482,821	4,461,231	373	25	-50	251.00	DD		No	significant	assays		SCOUT
KED-233	483,496	4,462,072	378	200	-60	209.00	DD		No	significant	assays		SCOUT
KED-234	481,160	4,462,093	198	360	-50	128	DD	7.6	9.0	1.4	3.6	4.5	SCOUT
		AN	١D					117.0	119.0	2.0	0.8	0.7	30001
KED-235	481,658	4,461,844	293	150	-75	188	DD	38.0	46.5	8.5	1.5	2.8	K3
		AN	١D					74.2	75.8	1.6	1.28	0.60	K3 EW
		AN	١D					127.2	135.2	8.0	0.51	0.58	NJ I W
KED-236	481,161	4,462,094	198	25	-50	130	DD		No	significant	assays		A3C
KED-236A	481,161	4,462,093	197	25	-50	120.4	DD	10.5	11.9	1.4	10.2	12.6	AJC
KED-237	482,206	4,462,422	358	0	-45	175.6	DD	9.8	13.0	3.2	1.1	0.8	
		AN	١D					46.9	55.0	8.1	0.6	0.8	SCOUT
		AN	ND					173.6	175.6	2.0	0.6	0.4	
KED-238	482,097	4,461,208	338	30	-65	240	DD	143.9	147.3	3.4	0.5	0.4	
		AN	ND					197.0	200.7	3.7	3.1	1.5	SCOUT
		INCLU	JDING					199.2	200.7	1.5	5.6	2.4	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
KED-239	481,608	4,461,924	305	0	-50	200	DD	75.2	76.0	0.8	1.1	1.4	
		AN	١D					121.7	131.6	9.9	3.5	2.8	
		INCLU	JDING					130.5	131.6	1.1	29.5	7.4	n2/ n3
		AN	١D					138.5	139.2	0.7	0.5	0.7	
KED-240	482,115	4,461,926	364	0	-90	197.6	DD	6.5	8.4	1.9	0.5	0.3	
		AN	١D					155.3	172.1	16.8	0.5	0.6	K3 / K4
		AN	١D					175.3	179.8	4.5	0.4	1.0	
KED-241	481,605	4,461,920	304	212	-50	154.60	DD		No	significant	assays		SCOUT
KED-242	481,607	4,461,922	304	255	-50	176	DD	93.3	94.8	1.5	2.9	0.2	SCOUT
KED-243	482,118	4,461,926	364	140	-60	100.9	DD	49.8	52.4	2.6	6.3	3.1	
		INCLU	JDING					50.9	52.4	1.5	8.7	3.9	KS E
		AN	١D					65.0	67.5	2.5	0.5	1.0	
KED-244	481,357	4,461,307	314	140	-65	299.00	DD		No	significant	assays		SCOUT
KED-245	481,222	4,462,031	207	0	-60	150.4	DD	39.2	43.4	4.2	0.3	0.2	
		AN	١D					125.6	131.9	6.3	3.8	7.8	420
		INCLU	JDING					127.0	127.7	0.7	10.9	14.4	ASC
		INCLL	JDING					129.6	130.7	1.1	11.1	10.3	
KED-246	482,115	4,461,923	364	220	-60	DD		No	significant	assays		K3 / K4	
KED-247	481,608	4,461,923	305	310	-60	340.8	DD	31.5	32.5	1.0	0.5	3.2	
		AN	١D					98.1	99.7	1.6	0.4	0.2	
		AN	١D					155.3	161.0	5.7	0.4	0.8	
		AN	١D					279.1	284.0	4.9	0.4	0.7	K2/KS
		INCLU	JDING					279.1	280.6	1.5	0.9	0.9	N2 / N3
		AN	١D					300.5	306.9	6.4	0.7	1.2	
		AN	١D					311.6	323.5	11.9	0.5	0.6	
		AN	١D					327.2	329.0	1.8	0.4	0.6	
KED-248	481,747	4,462,101	325	180	-60	281	DD	27.3	28.3	1.0	1.1	0.6	
		AN	١D					88.7	90.1	1.4	0.9	5.0	KS
		AN	١D					245.7	247.8	2.1	0.4	0.3	
KED-249	481,170	4,461,396	315	150	-65	329	DD		No	significant	assays		SCOUT
KED-250	481,748	4,462,102	325	150	-60	337.2	DD	60.7	62.3	1.6	0.5	0.2	KS
KED-251A	481,545	4,461,828	252	165	-60	74	DD	7.0	9.0	2.0	0.5	0.3	
		AN	١D					32.4	38.6	6.2	0.7	0.5	К3
		AN	ND.		-			60.2	64.8	4.6	0.9	1.1	
KED-251	481,546	4,461,827	252	165	-60	111.6	DD	8.3	10.3	2.0	0.4	0.3	
		AN	١D					47.9	62.0	14.1	1.0	3.0	К3
		INCLU	JDING					55.0	55.8	0.8	2.3	2.3	
KED-252	481,606	4,461,923	304	8	-60	362.7	DD	90.2	91.9	1.7	0.6	1.6	
		AN	1D					198.5	203.2	4.7	0.6	0.7	ĸ¢
		AN	١D					224.3	237.5	13.2	0.7	0.5	NJ
		AN	1D					313.8	320.9	7.1	0.4	0.5	
KED-253	481,483	4,461,837	232	180	-45	186.5	DD	56.8	75.9	19.1	0.7	0.7	
		INCLU	JDING					69.7	73.4	3.7	1.2	1.1	K3 HW
		AN	1D					102.1	102.8	0.7	0.6	0.8	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		AN	١D					114.5	124.0	9.5	0.9	1.9	
		INCLU	IDING					114.5	119.6	5.1	1.1	2.3	К3
		INCLU	IDING					114.5	117.6	3.1	1.4	3.2	
KED-254	481,225	4,462,032	208	23	-45	169.1	DD	68.0	71.8	3.8	0.7	0.4	A3C
		AN	١D					149.7	151.2	1.5	0.6	6.6	ASC
KED-255	481,606	4,461,924	305	318	-42	125	DD	88.6	92.3	3.7	1.50	1.38	
		INCLU	IDING					89.2	91.1	1.9	2.13	1.89	K2
		INCLU	IDING					89.2	90.1	0.9	2.95	2.10	
KED-256	481,657	4,462,054	307	159	-66	185	DD	12.0	16.7	4.7	0.82	0.48	KO
		INCLU	IDING					12.0	13.8	1.8	1.47	0.80	N2
		AN	١D					27.3	51.0	23.7	1.04	0.8	
		INCLU	IDING					33.4	35.8	2.4	5.26	3.40	
		INCLU	IDING					33.4	34.6	1.2	7.87	4.90	K2K1
		INCLU	IDING					39.8	41.3	1.5	1.28	0.60	
		INCLU	IDING					48.2	49.4	1.2	1.05	1.10	
		AN	١D					57.0	96.4	39.4	0.68	0.57	
		INCLL	IDING					68.7	70.0	1.3	1.48	1.20	
		INCLU	IDING					74.7	76.0	1.3	3.03	1.30	K2
		INCLL	IDING					78.2	79.3	1.1	1.62	0.70	
		INCLL	IDING					88.9	91.1	2.2	2.77	1.35	
		AN	١D					112.7	114.3	1.6	1.03	1.90	
KED-257	481661	4462053	311	167	-50	182.0	DD	24.0	26.0	2.0	0.51	0.3	
		AN	1D					31.9	42.0	10.1	0.88	0.9	K2m
		INCLU	IDING					36.0	40.0	4.0	1.70	1.0	
		AN	1D					55.1	55.7	0.6	1.61	0.5	
		AN	1D					180.0	182.0	2.0	20.95	7.6	K3-HW
		INCLU	IDING			[181.0	182.0	1.0	39.90	13.8	
KED-258	481376	4462541	324	305	-43	100	DD	20	37.7	17.7	5.80	6.62	
		INCLUD	ING24.	1				24.1	32.2	8.1	12.00	13.38	
		INCLU	IDING					25.1	26.1	1.0	11.30	15.60	KK1
		INCLU	IDING					27.1	31.2	4.1	18.48	19.88	
		INCLU	IDING					28.1	29.1	1.0	28.30	26.30	
		INCLU	IDING					35.7	37.7	2.0	1.72	1.80	
		AN	1D					45.7	51.0	5.3	0.75	0.97	
		INCLU	IDING					49.7	51.0	1.3	1.99	1.50	
		AN	1D					55.0	57.0	2.0	5.07	2.90	KK1
		AN	1D					65.1	70.7	5.6	0.56	1.05	
		AN	1D					74.5	78.3	3.8	1.02	2.74	
		INCLU	IDING					76.5	78.3	1.8	1.76	3.73	
KED-259	481301	4462509	310	350	-42	87	DD	11.0	14.0	3.0	1.35	0.87	KK1
KED-260	481660	4462055	311	157	-75	186.0	DD	47.3	51.3	4.0	1.13	0.9	
		INCLU	IDING					47.3	49.3	2.0	2.03	1.4	K3-HW
		AN	1D					77.2	86.5	9.3	1.09	4.0	
		INCLU	IDING					77.2	78.3	1.1	7.38	2.8	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
KED-261	481199	4462566	306	287	-42	131.0	DD	13.1	31.5	18.4	0.57	1.1	
		INCLU	JDING		•			17.9	22.2	4.3	1.25	1.7	KK2
		INCLU	JDING					20.3	22.2	1.9	2.00	1.7	
		AN	١D					104.9	115.3	10.4	1.79	1.3	
		INCLU	JDING					104.9	112.0	7.1	2.3	1.7	ККЗ
		INCLU	JDING					104.9	107.9	3.0	3.12	2.4	
KED-262	481660	4462053	311	164	-58	185.0	DD	33.0	46.7	13.7	0.54	1.6	
		AN	١D					49.7	74.1	24.4	0.70	0.4	
		INCLU	JDING					64.4	74.1	9.7	1.21	0.6	K2m
		INCLU	JDING					70.1	72.6	2.5	2.65	1.3	
		AN	١D					85.6	88.6	3.0	0.52	0.8	
		AN	١D					170.0	175.2	5.2	0.62	1.1	
		INCLU	JDING					170.0	171.8	1.8	1.15	1.8	K3-HW
KED-262A	481660	4462054	311	164	-58	78.0	DD	17.0	24.5	7.5	0.66	0.3	
		INCLU	JDING		•			18.5	20.5	2.0	1.48	0.5	
		AN	١D					31.5	68.6	37.1	1.24	0.6	
		INCLU	JDING					34.3	36.0	1.7	8.58	1.4	Kam
		INCLU	JDING					61.4	67.6	6.2	3.16	2.0	K2 /11
		INCLU	JDING					61.4	63.0	1.6	9.95	6.4	
		INCLU	JDING					61.4	62.2	0.8	17.00	10.7	
KED-263	481410	4461929	225	341	-45	90.0	DD	39.6	41.6	2.0	1.72	1.9	
		AN	١D		•			47.6	53.6	6.0	1.10	3.3	K1-FW
		INCLU	JDING					47.6	51.6	4.0	1.54	4.7	
KED-264	481407	4461929	225	267	-50	110.0	DD	58.5	89.7	31.2	1.96	2.1	
		INCLU	JDING					64.5	68.5	4.0	8.90	8.5	
		INCLU	JDING					64.5	66.5	2.0	17.00	16.0	K1-FVV
		INCLU	JDING					79.5	81.8	2.3	3.18	5.1	
KED-264A	481407	4461929	225	267	-50	110.00	DD	60.4	95.4	35.0	2.07	3.7	
		INCLU	JDING					63.9	65.4	1.5	16.50	43.3	
		INCLU	JDING					77.5	90.5	13.0	3.21	4.1	N1-FVV
		INCLU	JDING					79.6	85.0	5.4	6.19	7.9	
KED-265	481111	4462465	246	277	-43	160.2	DD	34.4	35.7	1.3	0.82	0.2	ККЗ
KED-266	481746	4461912	340	242	-83	166.0	DD	0.0	2.6	2.6	0.81	0.4	K3-HW
		AN	١D					24.3	27.1	2.8	0.62	0.4	N3-11W
		AN	١D					111.5	153.2	41.7	4.36	8.2	
		INCLU	JDING					128.2	148.4	20.2	7.92	15.8	
		INCLU	JDING					136.3	147.4	11.1	13.51	11.2	К3
		INCLU	JDING					137.3	138.3	1.0	34.50	18.0	
		INCLU	JDING					143.4	144.4	1.0	76.5	38.6	
KED-267	481748	4461914	340	317	-82	218.2	DD	0.0	8.0	8.0	0.53	0.3	
		INCLU	<u>JDIN</u> G					4.6	5.6	1.0	1.56	0.3	
		AN	ND					15.1	36.8	21.7	0.51	0.2	K3-HW
		AN	1D					113.5	115.0	1.5	0.82	0.6	
		AN						149.0	169.1	20.1	4.73	3.3	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		INCLU	JDING					158.5	167.5	9.0	9.30	5.3	
		INCLU	JDING					158.5	161.9	3.4	23.08	11.2	
		A	ND					198.0	207.3	9.3	0.96	1.4	
		INCLU	JDING					201.5	204.5	3.0	2.36	2.5	
		INCLU	JDING					201.5	203.5	2.0	3.21	3.2	
KED-268	481568	4462070	287	174	-64	177.0	DD	62.0	63.5	1.5	0.65	2.4	К1
		AN	ND		n	r	[133.7	135.7	2.0	0.56	0.9	
KED-269	481597	4462208	336	188	-65	154.0	DD	15.0	16.5	1.5	0.53	0.3	
		AN	ND					19.5	21.0	1.5	0.75	0.3	
		AN	ND					57.2	58.7	1.5	0.64	0.7	K2K1
		AN	ND					83.0	84.5	1.5	0.57	1.4	
		AN	ND		n	r	[124.0	128.0	4.0	0.55	0.8	
KED-270	481748	4461912	340	339	-75	190.1	DD	36.1	37.6	1.5	0.67	0.1	
		AN	ND					40.7	43.0	2.3	1.20	0.3	
		AN	ND					44.0	46.0	2.0	0.67	0.1	K3-HW
		AN	ND					138.7	153.8	15.1	0.51	1.2	
		INCLU	JDING		n	r	[140.3	142.0	1.7	2.02	3.2	
KED-271	481601	4462012	303	146	-68	236	DD	16.30	52.10	35.80	1.11	1.98	
		INCLU	JDING					17.60	22.10	4.50	3.65	4.70	K2M
		INCLU	JDING					19.10	20.60	1.50	8.72	5.00	
		AN	ND					154.50	169.40	14.90	0.79	1.04	K3-HW
		INCLU	JDING		Γ	r		160.50	162.00	1.50	5.28	3.40	
KED-272	481746	4462101	325	191	-56	220	DD	201.00	205.00	4.00	1.45	1.10	K3-HW
		INCLU	JDING		n	r	[203.00	205.00	2.00	2.65	1.40	
KED-273	481747	4462102	325	168	-54	212.4	DD	19.30	30.20	10.90	0.37	0.14	K3-HW
		INCLU	JDING		n	r	[24.40	27.60	3.20	0.54	0.25	
KEM-001	481,895	4,462,073	366	215	-60	277.5	DD	184.5	188.4	3.9	0.6	1.6	
		AN	١D					250.1	251.5	1.4	0.4	0.4	KS
		AN	ND					265.6	274.0	8.4	0.4	0.6	
KEM-002	481,579	4,461,978	300	180	-45	252.5	DD	0.0	23.0	23.0	2.0	0.8	
		INCLU	JDING					2.0	8.0	6.0	6.5	2.4	K2
		AN	ND					26.0	27.0	1.0	1.0	0.5	
		AN	ND					60.0	61.0	1.0	0.5	0.4	
		AN	ND					191.9	200.7	8.8	0.3	3.8	K3W
		AN	ND					216.1	219.6	3.5	0.6	0.8	
KEM-003	481,578	4,461,975	300	150	-60	258.6	DD	0.0	11.0	11.0	8.3	4.0	
		INCLU	JDING					1.0	8.0	7.0	12.7	6.0	K2
		INCLU	JDING					3.0	4.0	1.0	17.8	8.4	
		INCLU	JDING					7.0	8.0	1.0	26.5	9.9	
		AN	ND	[1	r	54.0	55.0	1.0	3.0	1.6	K2 FW
SS-01	481,307	4,462,620	345	312	-40	7.5	RC	0.0	7.5	7.5	2.5		KK2
SS-02	481,354	4,462,570	337	305	-40	4.2	RC	0.0	4.0	4.0	14.6		
SS-03	481,319	4,462,536	324	300	-30	12.2	RC	0.0	7.2	7.2	1.3		КК1
SS-04	481,282	4,462,495	304	300	-30	9.2	RC	0.0	3.2	3.2	1.8		

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
SS-05	481,743	4,461,862	327	155	-30	8	RC	0.0	8.0	8.0	6.1		K3W
	L	INCLU	JDING			L		0.0	3.0	3.0	12.8		
SS-06	481,661	4,461,818	286	150	-30	6.4	RC	0.8	6.4	5.6	10.2		
SS-07	481,752	4,461,835	320	355	-40	56.4	RC	16.4	20.4	4.0	0.2		
SS-08	481,593	4,462,130	315	315	-30	10.6	RC	0.0	8.5	8.5	3.5		K1
SS-09	481,737	4,461,659	231	125	-45	23.4	RC	0.0	10.4	10.4	0.7		K4
		INCLU	JDING					7.4	10.4	3.0	1.3		
		AN	١D					18.4	22.4	4.0	1.4		
SS-10	481,407	4,462,008	233	295	-60	18.3	RC	0.0	18.3	18.3	0.9		K1FW
		INCLU	JDING		-			0.0	4.3	4.3	2.5		
SS-11	481,406	4,462,009	233	310	-75	15.3	RC	0.0	13.3	13.3	1.2		
		INCLU	JDING		-			0.0	4.3	4.3	2.9		
SS-12	481,844	4,462,024	373	180	-60	40.4	RC	28.4	39.4	11.4	1.2		
		INCLU	JDING					28.4	33.4	5.0	2.1		
SS-13	481,844	4,462,024	373	180	-45	49.3	RC	21.3	39.3	18.0	2.9		
	1	INCLU	JDING		n	r	[21.3	27.3	6.0	5.9		
SS-14	481,990	4,461,978	387	180	-55	32.3	RC	3.2	11.2	8.0	0.7		
SS-15	481,988	4,461,978	387	180	-45	42.3	RC	21.3	31.3	10.0	0.3		KS
SS-16	481,988	4,461,959	382	180	-70	54.5	RC	43.5	51.5	8.0	0.8		
		INCLU	JDING					47.5	51.5	4.0	1.2		
SS-17	481,309	4,462,611	345	310	-65	23.6	RC	0.0	23.6	23.6	2.3		KK2
		INCLU	JDING					10.6	23.6	13.0	3.8		
		INCLU	JDING					10.6	14.6	4.0	5.2		
	Γ	INCLU	JDING			[19.6	23.6	4.0	5.8		
SS-18	481,309	4,462,612	345	310	-60	35.6	RC	8.6	24.6	16.0	2.1		
		INCLU	JDING					8.6	11.6	3.0	2.3		
		INCLU	JDING					18.6	24.6	6.0	3.9		
SS-19	481,264	4,462,586	335	310	-60	33.3	RC	5.3	15.3	10.0	1.1		
SS-20	481,116	4,462,658	318	360	-60	42.3	RC	3.3	25.3	22.0	1.1		KK1
	101.000	INCLU	JDING					10.3	16.3	6.0	2.4		14140
KERC-01	481,663	4,461,843	292	96	-45	23	RC	3.0	33.0	30.0	4.4	4.3	KK2
		INCLU						20.0	32.0	12.0	8.9	7.5	
	404 040			200	50	50	DO	20.0	30.0	10.0	10.3	8.7	
NERU-002	401,310	4,402,610		290	-52	50	RU	11.0	29.0	22.0	3.5	4.9 E E	
		INCLU						11.0	19.0	8.0	4.1	5.5	
								12.0	20.0	5.U 7.0	5.7	3.3 7 7	
								22.0	29.0	7.U 5.0	0.0	0.0	
								22.0	27.0	5.0 4.0	۲.۲ ۹.۸	9.0 11 7	
KEBC-002	181 226	1 462 500	242	125	_50	104	PC	20.0	21.0	+.∪ 1/1 ∩	2.4	- 1./ 20	KKO
	401,330			130	-50	104	κυ	14.0 23.0	20.U 28 0	5.0	7 1	2.0 5.1	1/1/2
								23.0	20.0 28 0	0.0 4 0	8.6	5.4 6.5	
								2 4 .0	28.0	- 1 .0 2.0	14.8	10.3	
KERC-004	481 602	4 462 115	201	310	-50	80	RC	20.0	25.0	2.0 4 0	0.8	1.6	K1
11-110-004	401,002	4,402,113	501	510	-00	00	ΝŪ	21.0	20.0	4.0	0.0	1.0	N1

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
KERC-005	481,604	4,462,116	301	335	-45	40	RC	20.0	25.0	5.0	1.8	3.5	
		INCLU	JDING					21.0	25.0	4.0	2.1	4.0	
		INCLU	JDING					21.0	24.0	3.0	2.4	4.5	
KERC-006	481,604	4,462,115	301	335	-60	44	RC	25.0	30.0	5.0	1.6	1.9	
		INCLU	JDING					26.0	29.0	3.0	2.1	2.0	
		INCLU	JDING					27.0	29.0	2.0	2.3	2.1	
KERC-007	481,659	4,461,842	292	150	-66	50	RC	12.0	18.0	6.0	0.6	0.5	K3 HW
		AN	١D					26.0	38.0	12.0	1.9	1.5	
		INCLU	JDING					30.0	32.0	2.0	2.5	1.9	
		INCLU	JDING					26.0	28.0	2.0	2.1	1.0	K3W
		INCLU	JDING					34.0	38.0	4.0	2.9	2.3	
		INCLU	JDING					35.0	37.0	2.0	4.4	2.4	
KERC-008	481,658	4,461,841	292	150	-75	50	RC	1.0	3.0	2.0	1.0	0.4	K3 HW
		AN	١D					33.0	43.0	10.0	3.0	2.9	
		INCLU	JDING					37.0	41.0	4.0	6.1	5.4	K3
		INCLU	JDING					34.0	36.0	2.0	1.5	1.3	
KERC-009	481,663	4,461,843	292	96	-45	23	RC	10.0	11.0	1.0	4.5	6.4	
		AN	ND					17.0	20.0	3.0	1.6	0.8	
KERC-010	481,661	4,461,843	292	100	-55	70	RC	8.0	9.0	1.0	2.8	1.6	
		AN	ND					21.0	24.0	3.0	1.0	0.8	
		AN	١D					27.0	36.0	9.0	6.3	3.6	
		INCLU	JDING					32.0	35.0	3.0	9.8	4.7	
		AN	١D					60.0	62.0	2.0	1.4	1.6	K3 FW
KERC-011	481,659	4,461,844	292	100	-75	40	RC	19.0	21.0	2.0	0.5	0.3	К3
		AN	ND					35.0	40.0	5.0	2.2	1.7	
		INCLU	JDING					37.0	40.0	3.0	2.6	1.9	
KERC-012	481,656	4,461,842	292	180	-70	56	RC	0.0	6.0	6.0	0.5	0.4	K3 HW
		AN	١D					26.0	30.0	4.0	0.8	0.5	
		AN	١D					38.0	50.0	12.0	3.5	3.3	
		INCLU	JDING					42.0	50.0	8.0	4.7	4.2	
		INCLU	JDING					42.0	46.0	4.0	6.9	5.1	К3
		INCLU	JDING					43.0	46.0	3.0	8.2	5.7	
		INCLU	JDING					47.0	49.0	2.0	3.5	4.7	
KERC-013	481,649	4,461,857	299	150	-74	79	RC	0.0	7.0	7.0	0.5	0.5	K3 HW
		AN	ND					52.0	53.0	1.0	3.8	3.7	
		AN	ND					59.0	62.0	3.0	2.3	1.4	
		AN	ND					65.0	73.0	8.0	3.4	4.1	
		INCLU	JDING					67.0	72.0	5.0	5.0	5.7	К3
		INCLU	JDING					67.0	71.0	4.0	5.9	6.4	
		INCLU	JDING					68.0	70.0	2.0	8.3	8.7	
KERC-014	481,649	4,461,857	299	0	-90	104	RC	78.0	88.0	10.0	0.6	1.1	K3
KERC-015	481,648	4,461,861	299	82	-56	80	RC	47.0	68.0	21.0	1.0	1.0	113
		INCLU	JDING					56.0	62.0	6.0	1.7	1.3	
		INCLU	JDING					56.0	61.0	5.0	2.0	1.3	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		INCLU	JDING					57.0	59.0	2.0	2.9	1.3	
		INCLU	JDING					64.0	68.0	4.0	1.7	1.5	
		INCLU	JDING					66.0	68.0	2.0	2.8	2.0	
KERC-016	481,645	4,461,856	298	190	-80	130	RC	11.0	15.0	4.0	0.7	0.4	K3 HW
		AN	١D					25.0	28.0	3.0	0.6	0.3	
		AN	١D					76.0	78.0	2.0	0.8	2.1	К3
KERC-017	481,330	4,462,603	343	315	-60	72	RC	12.0	36.0	24.0	2.3	3.0	KK2
		INCLU	JDING					15.0	18.0	3.0	5.9	5.3	
		INCLU	JDING					22.0	27.0	6.0	3.3	4.8	
		INCLU	JDING					29.0	35.0	6.0	2.2	2.8	
KERC-018	481,329	4,462,601	343	280	-52	50	RC	5.0	39.0	34.0	1.2	1.2	
		INCLU	JDING					18.0	22.0	4.0	1.7	2.2	
		INCLU	JDING					24.0	30.0	6.0	2.3	2.0	
		INCLU	JDING					34.0	38.0	4.0	1.8	1.6	
KERC-019	481,333	4,462,602	343	350	-52	56	RC	6.0	14.0	8.0	1.3	2.8	
		INCLU	JDING					7.0	9.0	2.0	2.0	7.4	
KERC-020	481,325	4,462,605	344	135	-55	89	RC	24.0	29.0	5.0	1.1	1.1	KK2
		INCLU	JDING					24.0	25.0	1.0	2.3	1.6	
		INCLU	JDING					27.0	29.0	2.0	1.3	1.3	
		AN	١D					72.0	83.0	11.0	0.5	1.2	
KERC-021	481,320	4,462,605	344	100	-50	84	RC	3.0	4.0	1.0	2.4	5.4	
		AN	١D					15.0	18.0	3.0	1.0	1.7	
KERC-022	481,332	4,462,604	343	170	-50	124	RC	1.0	2.0	1.0	1.2	1.5	KK2
		AN	١D					8.0	14.0	6.0	0.6	0.6	
		AN	١D					25.0	40.0	15.0	0.8	0.8	
		INCLU	JDING					32.0	36.0	4.0	1.4	1.6	
		AN	١D					61.0	69.0	8.0	0.8	0.4	
		INCLU	JDING					63.0	65.0	2.0	1.5	0.4	
		AN	١D					87.0	96.0	9.0	2.2	1.8	
		INCLU	JDING					92.0	96.0	4.0	3.5	2.6	
KERC-023	481,373	4,462,546	324	315	-60	120	RC	37.0	39.0	2.0	1.2	1.3	KK1
		AN	١D					52.0	54.0	2.0	1.0	1.5	
		AN	١D					68.0	70.0	2.0	0.9	1.4	KKO
		AN	ND.					96.0	101.0	5.0	0.4	1.3	1112
KERC-024	481,376	4,462,541	324	110	-55	108	RC		No	significant	assays		KK1 E
KERC-025	481,373	4,462,540	324	260	-55	122	RC	27.0	29.0	2.0	1.1	2.4	KK1
		AN	١D					58.0	59.0	1.0	1.6	1.3	
		AN	1D					86.0	91.0	5.0	0.5	1.3	KK2
		AN	1D					105.0	107.0	2.0	0.9	3.1	1112
KERC-026	481,376	4,462,539	324	170	-57	97	RC	7.0	9.0	2.0	1.1	1.2	KK1 E
		AN	1D					42.0	45.0	3.0	0.5	0.5	
		AN	1D					66.0	69.0	3.0	1.4	1.2	
KERC-027	481,545	4,462,601	362	360	-70	64	RC	8.0	17.0	9.0	0.6	0.9	кт
		AN	1D					25.0	28.0	3.0	0.7	0.9	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
KERC-028	481,640	4,462,558	371	340	-52	52	RC	30.0	31.0	1.0	1.2	2.3	
KERC- 028A	481,640	4,462,559	371	360	-60	7	RC		No	significant a	assays		
KERC-029	481,797	4,462,664	405	130	-52	76	RC	47.0	51.0	4.0	0.5	0.5	-
KERC-030	481,797	4,462,639	403	320	-60	32	RC	8.0	12.0	4.0	0.5	1.0	
KERC-031	481,802	4,462,638	403	50	-60	40	RC	2.0	3.0	1.0	1.6	0.9	
		AN	١D		•			7.0	21.0	14.0	0.7	0.7	
		INCLU	JDING					13.0	17.0	4.0	1.3	1.4	
KERC-032	483,461	4,461,899	400	66	-66	66	RC		No	significant a	assays		
KERC-033	482,817	4,462,265	405	162	-55	110	RC		No	significant a	assays		SCOUT
KERC-034	482,250	4,461,826	367	306	-60	124	RC	92.0	94.0	2.0	1.0	0.4	
KERC-035	482,133	4,461,824	320	148	-60	100	RC	0.0	2.0	2.0	2.3	1.5	TOPYUR T
		AN	١D					82.0	85.0	3.0	1.0	0.8	
KERC-036	482,023	4,461,824	316	360	-60	100	RC		No	significant a	assays		K4
KERC-037	481,964	4,461,813	313	350	-65	64	RC		No	significant a	assays	-	114
KERC-038	482,381	4,461,893	374	190	-60	115	RC	17	19	2	1.1	0.9	K3 / K4
		AN	١D					24.0	27.0	3.0	6.5	2.9	
		INCLU	JDING					24.0	25.0	1.0	18.5	7.3	
		AN	ND.					105.0	108.0	3.0	2.7	1.1	
KERC-039	482,385	4,461,895	374	135	-60	96	RC	24.0	25.0	1.0	3.1	1.4	
		AN	١D		1	r		33.0	34.0	1.0	1.4	5.4	
KERC-040	482,509	4,461,775	377	250	-60	108	RC		No	significant a	assays		-
KERC-041	482,518	4,461,774	377	135	-60	33	RC		No	significant a	assays	1	-
KERC-042	482,461	4,461,647	377	315	-60	88	RC	31.0	32.0	1.0	1.0	0.6	ECZ
KERC-043	482,512	4,461,602	380	135	-60	66	RC		No	significant a	assays		-
KERC-044	482,310	4,462,071	394	30	-60	68	RC	39.0	42.0	3.0	92.5	37.8	
KERC-045	482,037	4,462,005	391	145	-60	103	RC		No	significant a	assays		кs
KERC-046	482,096	4,462,014	391	180	-55	140	RC	42.0	43.0	1.0	0.9	0.1	
		AN	1D					91.0	92.0	1.0	0.8	0.1	
		AN I	1D					113.0	115.0	2.0	0.4	0.4	
KERC-047	481,236	4,462,499	295	315	-60	136	RC	15.0	16.0	1.0	0.5	0.7	KK2
	40.4.400	AN		045		07	50	38.0	44.0	6.0	0.9	0.8	
KERC-048	481,196	4,462,518	284	315	-60	97	RC	20.0	23.0	3.0	1.7	1.0	
	404 004			<u></u>	50	405	DO	21.0	22.0	1.0	4.6	2.2	KKO
KERC-049	401,201	4,402,516		03	-30	125	ĸu	23.0	29.0	0.0	1.2	1.0	<u>nn</u> 2
	491 009	INCLU		217	60	00	PC	20.0	20.0	2.0	2.0	1.5	KK2
KERC-030	401,090	4,402,540		317	-00	90	ĸĊ	14.0	16.0	3.0	1.9	2.2	nn <u>s</u>
								24.0	26.0	2.0	2.5	2.0	
								24.U 30.0	20.0 52.0	2.0 13.0	1.0	1.5	
								40 0	J∠.U 46.0	60	22	26	
								41.0	42 0	1.0	5.6	4.6	
KERC-051	481 156	4.462.535	280	95	-50	70	RC	50	7.0	2.0	0.9	0.8	KK2
1.2.1.0-031	-01,100	<u>, το</u> 2,000 ΔΝ		55	50	10	10	9.0	18.0	9.0	3.9	2.5	
		Al						3.0	10.0	5.0	5.5	2.5	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		INCLU	JDING					12.0	16.0	4.0	8.0	4.6	
KERC-052	481,149	4,462,538	280	315	-60	107	RC	0.0	4.0	4.0	4.2	4.3	ККЗ
		INCLU	JDING					2.0	4.0	2.0	7.5	7.6	
		INCLU	JDING					2.0	3.0	1.0	13.8	12.1	
KERC-053	481,251	4,462,469	285	315	-55	100	RC	4.0	11.0	7.0	1.4	1.2	KK2
		INCLU	JDING					5.0	9.0	4.0	2.0	1.8	
KERC-054	481,255	4,462,464	285	102	-50	44	RC	0.0	21.0	21.0	3.2	2.3	KK1
		INCLU	JDING					0.0	7.0	7.0	5.0	2.9	
		INCLU	JDING					2.0	6.0	4.0	7.4	4.0	
		INCLU	JDING					4.0	5.0	1.0	8.1	5.1	
		INCLU	JDING					11.0	17.0	6.0	4.3	3.4	
		INCLU	JDING					12.0	16.0	4.0	5.2	4.0	
KERC-055	481,058	4,462,512	249	190	-66	97	RC	88.0	92.0	4.0	1.2	1.9	KK2
KERC-056	481,110	4,462,466	245	280	-60	112	RC		No	significant	assays		NN2
KERC-057	481,112	4,462,461	245	180	-65	100	RC	7.0	8.0	1.0	2.1	2.8	KK2
		AN	١D					33.0	34.0	1.0	0.4	0.9	
		AN	١D					36.0	37.0	1.0	0.5	0.5	
		AN	١D					50.0	51.0	1.0	3.0	1.4	
KERC-058	481,295	4,462,266	247	315	-60	104	RC		No	significant	assays		SCOUT
KERC-059	481,153	4,462,223	220	15	-53	100	RC		No	significant	assays		30001
KERC-060	481,226	4,462,034	207	360	-60	100	RC	29.0	31.0	2.0	0.8	0.9	A3C
		AN	١D					39.0	40.0	1.0	1.3	1.0	
		AN	١D					84.0	85.0	1.0	0.2	32.5	
		AN	١D					93.0	97.0	4.0	2.5	10.0	
KERC-061	481,484	4,462,030	257	90	-60	80	RC		No	significant	assays		
KERC-062	481,484	4,462,030	256	90	-50	80	RC	12.0	13.0	1.0	1.7	0.5	KI/KA
		AN	١D					17.0	18.0	1.0	1.0	1.4	
KERC-063	481,493	4,462,054	273	125	-55	92	RC	19.0	20.0	1.0	2.3	1.4	
		AN	١D					32.0	33.0	1.0	1.4	0.9	
		AN	١D					38.0	43.0	5.0	2.5	3.1	
KERC-064	481,562	4,462,074	287	275	-55	100	RC	11.0	12.0	1.0	2.0	0.9	
		AN	١D					23.0	29.0	6.0	0.9	1.5	
KERC-065	481,564	4,462,074	287	327	-60	68	RC	10.0	13.0	3.0	1.6	0.9	
		AN	١D					15.0	17.0	2.0	1.1	1.0	
		AN	١D					23.0	25.0	2.0	1.3	3.3	
		AN	١D					45.0	46.0	1.0	4.4	2.3	
KERC-066	481,606	4,462,114	301	0	-90	96	RC	40.0	50.0	10.0	1.0	1.6	K1 / K2
		AN	1D					59.0	73.0	14.0	9.9	3.7	
		INCLU	JDING					68.0	73.0	5.0	26.5	8.8	
		AN	1D					76.0	80.0	4.0	0.8	2.3	
		AN	١D					84.0	88.0	4.0	1.4	4.7	
KERC-067	481,778	4,462,209	319	135	-65	112	RC	0.0	2.0	2.0	0.5	0.2	1/ 4
KERC-068	481,900	4,462,268	326	340	-70	50	RC		No	significant	assays		KA
KERC-069	482,104	4,462,279	351	340	-50	120	RC	61.0	62.0	1.0	0.6	0.6	KA/

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
KERC-070	482,200	4,462,415	359	180	-60	128	RC		No	significant a	assays		D2A
KERC-071	482,247	4,462,149	388	180	-60	108	RC	66.0	76.0	10.0	1.3	1.5	ECZ
		AN	١D					85.0	86.0	1.0	0.9	1.0	
		AN	١D					88.0	97.0	9.0	0.4	0.8	
KERC-072	482,249	4,462,158	388	360	-60	124	RC	7.0	21.0	14.0	0.7	0.6	SBX
		INCLU	JDING					19.0	20.0	1.0	3.8	2.3	
		AN	١D					100.0	101.0	1.0	2.5	1.9	
KERC-073	482,039	4,462,080	375	20	-60	120	RC	56.0	58.0	2.0	1.1	0.9	SCOUT (D3A)
		AN	١D		n		[104.0	105.0	1.0	2.1	0.2	
KERC-074	482,037	4,462,140	361	200	-60	132	RC	5.0	6.0	1.0	2.9	1.2	
		AN	١D					12.0	13.0	1.0	0.6	0.9	
		AN	1D	1	r		[64.0	65.0	1.0	0.6	1.0	
KERC-075	482,090	4,461,508	299	180	-65	128	RC	10.0	11.0	1.0	0.7	0.3	MEYDA N
		AN	١D		•			53.0	59.0	6.0	1.1	1.0	
		AN	١D					67.0	72.0	5.0	0.5	0.7	
KERC-076	482,087	4,461,511	299	215	-60	127	RC	3.0	4.0	1.0	0.6	2.5	
		AN	١D					14.0	21.0	7.0	0.7	1.1	
		INCLU	JDING					18.0	21.0	3.0	1.2	1.4	
		AN	١D					33.0	34.0	1.0	0.7	0.5	
		AN	١D					43.0	46.0	3.0	0.8	0.6	
		AN	١D		-			61.0	63.0	2.0	0.9	0.2	
KERC-077	482,185	4,461,538	314	180	-70	118	RC		No	significant a	assays		
KERC-078	482,463	4,461,519	368	200	-60	153	RC	45.0	47.0	2.0	0.5	0.7	
KERC-079	482,338	4,461,810	360	180	-55	153.00	RC	44.0	49.0	5.0	0.5	1.4	
		AN	1D	1	r		[81.0	82.0	1.0	1.1	0.9	
KERC-080	482,339	4,461,816	360	0	-50	192	RC		No	significant a	assays	ſ	ECZ / SBX
KERC-081	481,727	4,461,674	227	130	-70	26	RC	1.0	19.0	18.0	1.1	0.7	K4
		INCLU	JDING					1.0	6.0	5.0	1.8	0.7	
		AN	١D		1			23.0	26.0	3.0	0.9	1.6	
KERC- 081A	481,725	4,461,673	227	130	-70	23	RC	0.0	18.0	18.0	1.4	2.0	K4
		INCLU	JDING					0.0	5.0	5.0	3.2	4.7	
		INCLU	JDING					0.0	1.0	1.0	8.3	19.1	
KERC-082	482,117	4,462,578	375	330	-60	150	RC		No	significant a	assays		SCOUT
KERC-083	482,123	4,462,577	375	70	-55	120	RC		No	significant a	assays		
KERC-084	482,200	4,462,416	360	270	-60	156	RC	20.0	24.0	4.0	0.8	1.0	SBX
KERC-085	482,206	4,462,416	359	90	-60	152	RC	10.0	14.0	4.0	0.8	0.9	
		AN	1D					36.0	37.0	1.0	1.0	0.8	
		AN	1D					47.0	51.0	4.0	2.6	1.3	
	INCLUDING								51.0	1.0	7.5	2.4	EC7 /
		AN	1D					87.0	91.0	4.0	0.6	0.6	SBX
		AN	1D					127.0	137.0	10.0	0.7	1.1	ECZ
KERC-086	482,241	4,462,160	388	270	-60	152	RC	3.0	8.0	5.0	0.7	0.4	SBX
KERC-087	482,304	4,462,068	395	270	-60	94	RC	14.0	15.0	1.0	2.5	0.3	527

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		AN	1D					22.0	23.0	1.0	0.8	3.6	
KERC-088	482,305	4,462,068	395	0	-90	123	RC	25.0	27.0	2.0	2.0	1.3	
KERC-089	482,202	4,462,055	395	90	-60	164	RC	40.0	48.0	8.0	0.5	0.4	ECZ
KERC-090	482,378	4,461,895	375	270	-60	105	RC	7.0	9.0	2.0	0.7	0.6	SBX
		AN	١D					16.0	20.0	4.0	2.2	1.3	
KERC-091	482,384	4,461,899	375	45	-60	145	RC	13.0	16.0	3.0	0.8	0.7	
		INCLU	JDING					13.0	14.0	1.0	1.7	1.6	
		AN	١D					33.0	34.0	1.0	1.5	1.7	SBX
		AN	١D					103.0	105.0	2.0	1.2	1.1	
		INCLU	JDING					104.0	105.0	1.0	1.9	1.2	EC7
		AN	١D					116.0	118.0	2.0	2.2	1.2	ECZ
		INCLU	JDING					117.0	118.0	1.0	3.6	1.8	
KERC-092	482,382	4,461,900	375	0	-60	152	RC	12.0	21.0	9.0	3.1	1.2	SBX
		INCLU	JDING					12.0	14.0	2.0	12.6	3.5	
		AN	١D					29.0	30.0	1.0	1.7	37.6	
		AN	١D					136.0	137.0	1.0	0.8	0.4	ECZ
KERC-093	482,256	4,461,823	368	80	-60	164	RC		No	significant a	issays		
KERC-094	482,342	4,461,811	360	80	-60	156	RC	100.0	101.0	1.0	1.2	1.1	
KERC-095	482,337	4,461,811	360	260	-60	152	RC	27.0	29.0	2.0	1.2	1.5	
		AN	١D					49.0	59.0	10.0	1.7	0.8	
		INCLU	JDING					53.0	56.0	3.0	4.4	1.5	
KERC-096	482,409	4,461,755	365	80	-60	152	RC	2.0	8.0	6.0	0.7	0.5	SBX
		AN	١D					17.0	18.0	1.0	1.1	0.4	
		AN	١D					28.0	29.0	1.0	5.2	2.6	
KERC-097	482,406	4,461,750	365	260	-60	152	RC	23.0	28.0	5.0	14.5	4.4	
		INCLU	JDING					23.0	25.0	2.0	31.2	9.4	
		INCLU	JDING					23.0	24.0	1.0	60.5	17.6	
		AN	١D					38.0	39.0	1.0	2.1	0.8	EC7
		AN	١D					43.0	46.0	3.0	0.7	0.3	ECZ
KERC-098	482,379	4,461,679	356	80	-60	127	RC	0.0	6.0	6.0	0.8	0.6	CDV
KERC-099	482,373	4,461,678	356	240	-60	152	RC	5.0	7.0	2.0	0.7	1.9	367
		AN	١D					84.0	90.0	6.0	0.6	0.7	ECZ
KERC-100	482,512	4,461,781	378	0	-60	144	RC		No	significant a	issays		CDV
KERC-101	482,513	4,461,776	378	180	-60	68	RC		No	significant a	issays		JDA
KERC-102	483,289	4,461,701	413	0	-60	137	RC		No	significant a	issays		
KERC-103	483,150	4,461,781	402	180	-60	148	RC	98.0	99.0	1.0	1.4	0.1	SCOUT
KERC-104	483,194	4,462,142	358	160	-60	80	RC	55.0	58.0	3.0	0.5	1.2	
KERC-105	KERC-105 481,924 4,462,320 324 180 -60 149								No	significant a	issays		K1 / KA
KERC-106	481,927	4,462,321	324	135	-60	138	RC	28.0	29.0	1.0	3.6	1.0	
KERC-107	481,598	4,462,207	180	-60	RC	0.0	5.0	5.0	2.1	1.5	K1 FW		
		INCLU	JDING					2.0	4.0	2.0	4.0	3.0	
		AN	1D					34.0	43.0	9.0	1.2	0.9	
		INCLU	JDING					34.0	36.0	2.0	3.7	2.0	
		AN	1D					121.0	122.0	1.0	1.1	1.0	K1 / K2

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		AN	ID					124.0	128.0	4.0	0.4	1.3	
KERC-108	481,593	4,462,212	336	250	-60	140	RC	2.0	5.0	3.0	0.6	0.2	SCOUT
		AN	ID	-	-			17.0	18.0	1.0	0.8	0.3	
KERC-109	481,598	4,462,215	336	0	-70	96	RC	63.0	70.0	7.0	0.7	0.7	
		AN	ID					80.0	88.0	8.0	0.3	1.1	
KERC-110	481,569	4,462,077	288	0	-45	73	RC	14.0	17.0	3.0	0.8	0.5	К1
		AN	ID					24.0	26.0	2.0	0.7	0.5	
		AN	ID	-	-			30.0	33.0	5.0	1.4	2.0	
KERC-111	481,570	4,462,074	288	61	-70	120	RC	17.0	20.0	3.0	0.6	0.4	
		AN	ID					38.0	41.0	3.0	1.1	1.0	
		AN	ID					115.0	116.0	1.0	0.7	2.0	
KERC-112	481,570	4,462,070	288	108	-66	108	RC	54.0	55.0	1.0	0.4	1.2	KA
		AN	ID					63.0	64.0	1.0	1.4	1.4	
		AN	ID					95.0	96.0	1.0	11.0	4.5	
KERC-113	481,607	4,462,110	301	187	-65	68	RC	34.0	37.0	3.0	1.4	0.6	
KERC-114	481,605	4,462,109	301	233	-54	60	RC	19.0	20.0	1.0	0.6	0.4	
KERC-115	481,642	4,462,135	305	0	-90	80	RC	0.0	2.0	2.0	1.3	0.4	KA
		AN	ID					8.0	11.0	3.0	0.8	0.3	
		AN	ID					17.0	38.0	21.0	2.2	0.7	
		INCLU	IDING					21.0	22.0	1.0	7.2	1.4	
		INCLU	IDING					33.0	35.0	2.0	11.3	2.1	K1
		AN	ID					45.0	57.0	12.0	0.7	0.6	
		AN	ID					68.0	80.0	12.0	0.7	3.2	
		INCLU	IDING					79.0	80.0	1.0	4.5	10.6	
KERC-116	481,645	4,462,134	305	64	-68	100	RC	0.0	41.0	41.0	0.8	0.4	K1 / KA
		INCLU	IDING					11.0	17.0	6.0	1.6	0.6	
		INCLU	DING					27.0	34.0	7.0	1.4	0.6	
		AN	ID					58.0	78.0	20.0	0.6	0.9	K2/K1
		AN	ID					88.0	92.0	4.0	0.4	1.9	1127111
KERC-117	481,645	4,462,131	305	136	-73	88	RC	0.0	88.0	88.0	0.7	1.8	KA / K1 / K2
		INCLU	IDING					12.0	28.0	16.0	1.2	0.5	КА
		INCLU	IDING					18.0	20.0	2.0	5.4	1.3	
KERC-118	481,641	4,462,128	304	225	-69	76	RC	25.0	71.0	46.0	3.4	1.3	K1
		INCLU	IDING					45.0	46.0	1.0	23.4	7.0	
		INCLU	IDING					60.0	70.0	10.0	10.5	3.9	
		INCLU	IDING					62.0	66.0	4.0	23.6	8.4	K1 / K2
		AN	ID	-	-			75.0	76.0	1.0	1.6	2.5	
KERC-119	481,057	4,462,509	249	225	-65	120	RC	43.0	44.0	1.0	1.5	1.4	ККЗ
		AN	ID					49.0	53.0	4.0	2.0	1.0	
		INCLU	IDING					50.0	51.0	1.0	5.2	2.0	
		AN	ID					90.0	91.0	1.0	0.6	0.6	ļ
		AN	ID					104.0	112.0	8.0	0.6	0.8	
KERC-120	481,054	4,462,520	249	310	-45	60	RC	9.0	23.0	14.0	1.6	2.5	
		INCLU	DING					17.0	22.0	5.0	2.7	4.6	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		AN	١D					37.0	45.0	8.0	0.9	0.9	
KERC-121	481,055	4,462,513	249	250	-47	90	RC	44.0	49.0	5.0	6.5	5.2	
		AN	١D					78.0	90.0	12.0	1.2	1.4	
		INCLU	JDING					87.0	90.0	3.0	1.2	1.4	
KERC-122	481,179	4,462,423	253	330	-60	110	RC	38.0	42.0	4.0	0.6	1.0	KK2
KERC-123	481,227	4,462,401	255	317	-80	90	RC	1.0	4.0	3.0	2.2	1.1	KK1
KERC-124	481,223	4,462,400	255	295	-45	90	RC	4.0	7.0	3.0	1.1	0.6	
		AN	١D					49.0	55.0	6.0	5.1	3.0	
		INCLU	JDING					49.0	52.0	3.0	9.6	4.7	
		INCLU	JDING					49.0	51.0	2.0	12.9	6.3	
KERC-125	481,292	4,462,006	214	25	-50	156	RC		No	significant a	assays		
KERC-126	481,233	4,462,399	256	15	-45	70	RC	4.0	7.0	3.0	1.1	1.2	
		AN	1D	1	n	r	[50.0	54.0	4.0	0.5	0.6	
KERC-127	481,230	4,462,361	242	320	-70	110	RC	62.0	66.0	4.0	0.7	0.9	
KERC-128	481,097	4,462,296	212	325	-45	85	RC	3.0	6.0	3.0	1.2	0.9	
KERC-129	481,097	4,462,294	212	315	-60	108	RC		No	significant a	assays		
KERC-130	481,099	4,462,289	212	180	-60	150	RC		No	significant a	assays		SCOUT
KERC-131	481,410	4,462,011	224	307	-45	54	RC	0.0	5.0	5.0	0.7	1.4	K1 FW
		AN	1D	1	n	r	[9.0	11.0	2.0	1.5	2.2	
KERC-132	481,412	4,461,991	218	180	-45	65	RC	3.0	7.0	4.0	5.3	3.6	K1 FW
		INCLU	JDING					4.0	6.0	2.0	9.4	5.9	
		AN	١D					16.0	32.0	16.0	1.6	2.2	
		INCLU	JDING					24.0	27.0	3.0	7.1	9.5	
		AN	١D					40.0	50.0	10.0	1.1	0.9	К2
		INCLU	JDING					41.0	43.0	2.0	3.8	3.0	
		AN	١D					54.0	65.0	11.0	1.4	0.5	
		INCLU	JDING		1	r		55.0	56.0	1.0	5.8	2.5	
KERC-133	481,409	4,461,999	220	310	-45	66	RC	0.0	12.0	12.0	5.4	6.2	K1 FW
		INCLU	JDING					0.0	7.0	7.0	8.9	10.2	
		AN	١D					15.0	42.0	27.0	0.5	0.6	
		INCLU	JDING					30.0	33.0	3.0	1.8	0.8	
KERC-134	481,412	4,461,998	219	355	-70	102	RC	0.0	13.0	13.0	2.0	2.1	
		INCLU	JDING					0.0	10.0	10.0	2.4	2.6	
		INCLU	JDING					5.0	6.0	1.0	5.3	7.3	
		INCLU	JDING			[8.0	9.0	1.0	5.9	5.3	KO / KA
KERC-135	481,412	4,461,934	225	360	-45	126	RC	27.0	61.0	34.0	1.9	1.5	FW
		INCLU	JDING					43.0	61.0	18.0	2.9	1.3	
		INCLU	JDING					48.0	53.0	5.0	9.0	4.1	
		-			65.0	69.0	4.0	0.6	0.5				
KERC-136	481,406	4,461,931	224	310	-45	108	RC	28.0	29.0	1.0	0.6	2.4	K1 FW / K2
		AN	1D					44.0	80.0	36.0	1.9	5.2	
		INCLU	JDING					45.0	67.0	22.0	2.9	8.2	
		INCLU	JDING					59.0	64.0	5.0	8.8	24.4	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		AN	1D					84.0	85.0	1.0	1.1	0.1	
KERC-137	481,413	4,461,933	225	32	-45	80	RC	0.0	1.0	1.0	1.0	3.4	
		AN	1D			L		19.0	27.0	8.0	0.9	2.6	
		INCLU	JDING					19.0	21.0	2.0	2.0	2.1	
		AN	١D					35.0	40.0	5.0	0.7	0.8	
KERC-138	481,330	4,461,984	213	125	-45	100	RC	21.0	25.0	4.0	0.7	1.2	
		AN	١D					42.0	45.0	3.0	2.7	7.0	
		AN	١D					50.0	53.0	3.0	1.3	2.4	
		AN	١D					61.0	66.0	5.0	0.8	1.1	
		AN	١D					89.0	98.0	9.0	3.7	1.4	
		INCLU	JDING					89.0	94.0	5.0	6.4	2.4	
KERC-139	481,296	4462000	216	25	-50	156.0	RC		No s	significant	assays		A3C
KERC-140	481,569	4,462,073	288	69	-79	84	RC	40.0	43.0	3.0	6.61	3.07	K1
		INCLU	JDING				1	41.0	42.0	1.0	15.10	5.00	
KERC-141	481,642	4,462,136	305	334	-81	96	RC	4.0	7.0	3.0	0.60	0.27	
		AN	١D					10.0	13.0	3.0	0.95	0.37	
		INCLU	JDING					11.0	13.0	2.0	1.18	0.40	
		AN	١D					17.0	19.0	2.0	0.82	0.50	
		AN	١D					26.0	30.0	4.0	0.59	0.38	
		INCLU	JDING					26.0	27.0	1.0	1.00	0.40	K1
		AN	١D					36.0	39.0	3.0	0.88	0.70	
		INCLU	JDING					36.0	37.0	1.0	1.73	1.30	
		AN	1D					45.0	49.0	4.0	0.57	0.70	
		AN	1D					62.0	69.0	7.0	0.68	3.73	
		INCLU	JDING					62.0	63.0	1.0	1.33	0.70	K2K1
		AN	1D					70.0	92.0	22	0.91	2.64	
		INCLU	JDING					77.0	83.0	6.0	1.56	2.32	
		INCLU	JDING					78.0	80.0	2.0	3.26	3.10	
		INCLU	JDING					85.0	88.0	3.0	2.12	4.16	K2K1
I		INCLU	JDING					85.0	87.0	2.0	2.69	5.15	
KERC-142	481646	4462133	305	107	-54	78.0	RC	0.0	48.0	48.0	0.73	0.2	K2K1
		INCLU	JDING					24.0	31.0	7.0	1.10	0.2	
KERC-143	481642	4462130	304	231	-80	84.0	RC	32.0	83.0	51.0	1.11	1.0	K2K1
		INCLU						34.0	35.0	1.0	3.01	0.6	
		INCLU						77.0	83.0	6.0	3.46	4.2	
		INCLU	DING					78.0	79.0	1.0	5.51	5.0	
		INCLU	JDING					82.0	δ3.U	1.0	0.22	5.1	K4
KERC-144	481688	4462160	309	208	-70	78.0	RC	0.0	1.0	1.0	0.69	0.2	K1
		AN	1D					2.0	3.0	1.0	0.80	0.3	KOKA
KERC-145	481602	4462209	336 ID	132	-65	137.0	RC	10.0	11.0	1.0	1.59	0.1	<u>n2n</u> 1
								43.0	40.0	0.0	1.03	0.0	
		AN	NU L					99.0	101.0	2.0	1.84	1.3	KOKA
KERC-146	481599	4462208	336	189	-75	150.0	RC	0.0	4.0	4.0	0.85	0.5	n2N 1

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		INCLU	JDING	•				0.0	1.0	1.0	2.30	0.9	
		AN	١D					44.0	46.0	2.0	1.43	0.5	
		INCLU	JDING					44.0	45.0	1.0	2.11	0.4	
		AN	١D					103.0	107.0	4.0	1.00	1.2	
KERC-147	481350	4462505	308	39	-70	65.0	RC	23.0	28.0	5.0	0.69	1.0	KK1
		INCLU	JDING					23.0	25.0	2.0	1.31	1.9	
KERC-148	481347	4462505	308	345	-60	50.0	RC	30.0	33.0	3.0	1.09	1.5	KK1
		INCLU	JDING					30.0	32.0	2.0	1.35	1.8	
KERC-149	481346	4462505	308	301	-64	110.0	RC	38.0	40.0	2.0	0.85	2.9	KK2
		INCLU	JDING					39.0	40.0	1.0	1.03	3.6	
KERC-150	481349	4462500	308	183	-82	81.0	RC	35.0	42.0	7.0	2.24	1.9	K1
		INCLU	JDING					38.0	42.0	4.0	3.76	3.0	
		INCLU	JDING					38.0	39.0	1.0	8.36	5.6	
		AN	١D					58.0	59.0	1.0	1.06	0.6	
KERC-151	481344	4462501	308	279	-80	90.0	RC	27.0	31.0	4.0	0.94	0.9	KK1
		INCLU	JDING					27.0	29.0	2.0	1.54	1.2	
KERC-152	481351	4462505	308	37	-45	70.0	RC	19.0	26.0	7.0	2.10	1.7	KK2
		INCLU	JDING					19.0	22.0	3.0	4.56	3.1	
		INCLU	JDING					20.0	21.0	1.0	8.44	5.4	
KERC-153	481345	4462503	308	308	-45	110.0	RC	34.0	39.0	5.0	4.2	6.2	KK1
		INCLU	JDING					34.0	38.0	4.0	5.19	7.3	
		INCLU	JDING					36.0	37.0	1.0	10.80	.0 15	
KERC-154	481394	4462486	296	333	-55	120.0	RC	37.0	44.0	7.0	2 28	19	KK1
ILLING TOP	401004	INCLU	JDING	000	00	120.0	Ro	38.0	40.0	2.0	6.37	4.5	
		INCLU	JDING					38.0	39.0	1.0	10.35	6.7	
KERC-155	481318	4462477	296	292	-54	110.0	RC	36.0	38.0	2.0	0.82	6.4	KK1
KERC-156	481321	4462475	296	65	-80	84.0	RC	22.0	27.0	5.0	1.31	1.0	KK1
112110 100					00	0.10		25.0	26.0	1.0	3.65	2.1	1
		AN						38.0	42.0	4.0	3.77	3.8	
		INCL						40.0	41.0	1.0	14.05	12.9	
KERC-157	481318	4462475	296	277	-70	88.0	RC	45.0	49.0	4.0	2.48	3.0	KK1
		INCLU	JDING					45.0	48.0	3.0	3.20	3.1	1
KERC-158	481249	4462467	286	270	-78	90.0	RC	4.0	12.0	8.0	1.77	1.4	KK1
		INCLU	JDING					9.0	10.0	1.0	6.10	3.7	1
KERC-159	481257	4462469	286	18	-45	82.0	RC	38.0	39.0	1.0	0.62	0.3	KK2
		AN	ND				-	42.0	43.0	1.0	0.68	0.4	1
		AN	ND					56.0	57.0	1.0	0.61	0.2	
KERC-160	481148	4462538	280	282	-48	120.0	RC	0.0	12.0	12.0	5.03	3.7	KK2
		INCLU	JDING			0.0		2.0	6.0	4.0	14.02	9.0	1
		INCLU	JDING					3.0	4.0	1.0	25.10	12.8	
		AN	١D					79.0	89.0	10.0	1.04	0.9	
		INCLU	JDING					79.0	80.0	1.0	1.59	1.8	
		INCLU	JDING					81.0	87.0	6.0	1.33	1.1	KK3
		INCLU	JDING					83.0	86.0	3.0	1.80	1.2	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		INCLU	JDING					83.0	84.0	1.0	3.20	1.8	
KERC-161	481152	4462535	280	282	-75	125.0	RC	0.0	4.0	4.0	2.87	3.7	KK2
		INCLU	JDING					2.0	3.0	1.0	7.29	11.0	
		AN	١D					13.0	19.0	6.0	1.47	1.7	KKO
		INCLU	JDING					14.0	15.0	1.0	6.17	7.1	nnz
KERC-162	481244	4462520	302	25	-75	65.0	RC	27.0	38.0	11.0	1.04	0.8	KK2
		INCLU	JDING		•		•	33.0	34.0	1.0	5.23	1.1	
KERC-163	481197	4462566	306	288	-53	140	RC	8.00	28.00	20.00	0.66	0.53	KK2
								20.00	24.00	4.00	1.02	0.60	nnz
KERC-164	481205	4462565	306	89	-50	46.0	RC	0.0	2.0	2.0	1.17	0.7	KK2
		INCLU	JDING		•		•	1.0	2.0	1.0	1.49	0.9	
		AN	١D					4.0	5.0	2.0	0.74	0.4	
		AN	١D					6.0	10.0	4.0	0.55	0.3	
		INCLU	JDING					6.0	8.0	2.0	0.77	0.5	
KERC-165	481290	4462421	270	355	-60	67.0	RC	29.0	37.0	8.0	1.52	1.1	KK1
		INCLU	JDING		•		•	32.0	33.0	1.0	6.07	4.0	
KERC-166	481097	4462547	268	289	-55	80	RC	9.00	11.00	2.00	1.66	1.90	ККЗ
		AN	١D					35.00	53.00	18.00	1.89	1.59	
-		INCLU	JDING					36.00	40.00	4.00	4.80	3.35	
		INCLU	JDING					38.00	39.00	1.00	9.80	4.30	
KERC-167	481111	4462467	246	319	-53	106.0	RC	25.0	27.0	2.0	5.00	0.6	KK2
	-	INCLU	JDING					26.0	27.0	1.0	7.95	1.0	
		AN	ND					91.0	97.0	6.0	0.79	3.7	
		INCLU	JDING					94.0	95.0	1.0	3.05	0.6	ККЗ
KERC-168	481236	4462397	256	13	-53	45.0	RC	28.0	35.0	7.0	1.16	0.6	KK1
		INCLU	JDING		•	•		30.0	33.0	3.0	2.10	1.1	
-		AN	١D					39.0	45.0	6.0	0.70	1.0	
-		INCLU	JDING					40.0	42.0	2.0	1.39	1.1	
KERC-169	481707	4461972	353	299	-46	160.0	RC	21.0	61.0	40.0	0.61	0.2	K3-HW
		INCLU	JDING		•	•		26.0	28.0	2.0	1.75	0.9	
		INCLU	JDING					31.0	35.0	4.0	1.04	0.5	
-		INCLU	JDING					34.0	35.0	1.0	2.28	1.2	
-		AN	١D					81.0	92.0	11.0	1.15	1.0	
-		INCLU	JDING					81.0	89.0	8.0	1.47	1.1	
		INCLU	JDING					85.0	88.0	3.0	2.64	1.6	
		INCLU	JDING					85.0	86.0	1.0	4.53	3.1	
-		AN	١D					95.0	118.0	23.0	0.73	0.5	
		INCLU	JDING					95.0	96.0	1.0	5.86	1.2	K2M
KERC-170	482288	4462030	390	0	-90	30.0	RC	14.00	15.00	1.00	0.56	0.60	SED-BX
		AN						22.00	23.00	1.00	0.53	0.30	
KERC-171	481744	4462105	325	308	-60	70	RC		No sig	nificant in	tercepts		K2K1
KERC-172	482198	4461977	385	0	-90	20	RC	0.00	13.00	13.00	0.57	0.36	SED-BX
		INCLU	JDING	~				0.00	1.00	1.00	1.27	0.60	
		INCLU	JDING					4.00	5.00	1.00	1.32	0.40	
								1	1	1	1	1	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
KERC-173	481741	4462105	324	259	-56	65	RC		No sig	nificant in	tercepts		K2K1
KERC-174	482300	4461971	388	0	-90	40	RC	0.00	31.00	31.00	1.02	0.85	SED-BX
		INCLU	JDING		•			6.00	7.00	1.00	4.55	2.20	
		INCLU	JDING					12.00	14.00	2.00	2.44	0.45	
KERC-175	481744	4462098	325	197	-47	171	RC	98.00	116.00	18.00	1.39	0.42	K3-HW
		INCLU	JDING					109.00	110.00	1.00	15.95	3.50	
KERC-177	482379	4461898	375	0	-90	50	RC	11.00	19.00	8.00	1.07	0.49	SED-BX
		INCLU	JDING					12.00	14.00	2.00	2.66	1.05	
KERC-178	482453	4461928	382	0	-90	40	RC		No sig	nificant in	tercepts		SED-BX
KERC-179	482306	4462068	395	0	-90	60	RC	19.00	20.00	1.00	10.20	4.60	SED-BX
		AN	١D					35.00	37.00	2.00	0.70	2.10	
		INCLU	JDING					35.00	36.00	1.00	1.01	2.50	
KERC-180	481703	4462085	319	299	-50	127	RC	52.00	68.00	16.00	1.40	0.49	K1
		A	١D					80.00	84.00	4.00	0.90	0.38	
		AN	١D					109.00	127.00	18.00	1.05	2.56	K1FW
		INCLU	JDING		-			121.00	127.00	6.00	2.10	2.73	
KERC-181	482281	4461866	375	0	-90	40	RC	0.00	2.00	2.00	0.72	0.45	SED-BX
		INCLUDIN	G		-			0.00	1.00	1.00	1.22	0.60	
KERC-182	481962	4461993	388	156	-48	77	RC		No sig	nificant in	tercepts		KS
KERC-183	481704	4462087	319	302	-65	135	RC	52.00	53.00	1.00	1.08	1.70	K2K1
		AND			-			87.00	106.00	19.00	0.43	3.26	KA
KERC- 184A	481705	4462078	319	208	-47	61	RC	0.00	61.00	61.00	0.50	0.43	K2K1
		INCLUDIN	G					4.00	5.00	1.00	2.36	0.70	
KERC-184	481703	4462082	319	208	-47	145	RC	0.00	23.00	23.00	0.68	0.36	K2K1
		INCLUDIN	G			I		18.00	19.00	1.00	6.55	2.70	
		AND						39.00	54.00	15.00	0.58	0.33	
		INCLUDIN	G					43.00	45.00	2.00	1.47	0.60	
		AND						57.00	68.00	11.00	0.98	0.39	
		INCLUDIN	G					60.00	62.00	2.00	3.58	0.65	K2M
		AND						70.00	75.00	5.00	0.88	0.64	
		AND						93.00	136.00	43.00	0.42	1.36	
		INCLUDIN	G					107.00	109.00	2.00	2.50	0.80	
KERC-185	481377	4462544	324	40	-75	91	RC	11.00	13.00	2.00	2.96	2.90	KK1
KERC-186	481705	4462084	318	203	-59	160	RC	30.00	91.00	61.00	0.53	0.19	K2M
		INCLUDIN	G					46.00	48.00	2.00	3.04	0.25	
		INCLUDIN	G					64.00	67.00	3.00	1.65	0.87	
		INCLUDIN	G					66.00	67.00	1.00	2.78	1.60	
KERC-187	481708	4462080	319	128	-45	50	RC	32.00	37.00	5.00	0.82	0.82	K2K1
KERC-188	481349	4462506	308	17	-45	85	RC	17.00	20.00	3.00	0.76	1.23	KK1
KERC-189	481351	4462504	308	42	-56	80	RC	29.00	33.00	4.00	1.54	1.55	KK1
		INCLUDIN	G					31.00	32.00	1.00	3.80	2.80	
KERC-190	481329	4461983	213	179	-45	100	RC	35.00	57.00	22.00	1.51	1.31	K1FW
		INCLUDIN	G					46.00	52.00	6.00	4.26	3.13	
		INCLUDIN	G					4900	51.00	2.00	8.58	4.70	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		AND						74.00	99.00	25.00	2.00	2.51	KOM
		INCLUDING	3					76.00	79.00	3.00	9.10	8.00	r \∠IVI
KERC-191	481661	4462052	311	112	-70	50	RC	28.00	35.00	7.00	2.05	1.06	K2M
		INCLUDING	3		-			30.00	31.00	1.00	11.65	6.30	
KERC-192	481441	4461893	231	2	-52	150	RC	0.00	7.00	7.00	0.73	0.88	K2M
KERC-193	481660	4462058	311	38	-60	60	RC	2.00	14.00	12.00	0.52	0.40	K2K1
		INCLUDING	3					10.00	14.00	4.00	1.09	0.45	
		AND						27.00	36.00	9.00	0.70	0.42	
		INCLUDING	G					27.00	28.00	1.00	3.35	1.30	
		AND						39.00	59.00	20.00	0.45	0.35	
		INCLUDING	3					48.00	49.00	1.00	1.42	0.60	
KERC- 193A	481661	4462056	311	38	-60	25	RC		No sig	nificant in	tercepts		K2K1
KERC-194	481415	4462007	225	126	-50	90	RC	0.00	18.00	18.00	1.39	1.20	K1FW
		INCLUDING	G					0.00	4.00	4.00	3.96	3.90	
-		INCLUDING	G					0.00	2.00	2.00	6.08	5.40	
KERC-195	481328	4461985	213	198	-62	115	RC	23.00	37.00	14.00	1.17	1.09	K2M
		INCLUDING	G					31.00	36.00	5.00	2.45	2.02	
-		INCLUDING	G					31.00	32.00	1.00	7.13	5.90	
		AND						45.00	54.00	9.00	1.08	2.03	K2M
		INCLUDING	G					47.00	49.00	2.00	2.72	6.15	
KERC-196	481325	4461985	213	216	-45	100	RC	48.00	57.00	9.00	0.82	1.01	K2M
		INCLUDING	G		•			52.00	56.00	4.00	1.40	1.45	
KERC-197	481656	4462052	311	245	-58	72	RC		No sig	nificant in	tercepts		K2M
KERC-198	481656	4462054	311	296	-64	75	RC		No sig	nificant in	tercepts		K2K1
KERC-199	481438	4461890	231	354	-45	135	RC	0.00	10.00	10.00	0.62	2.30	K2M
		AND						62.00	65.00	3.00	2.00	0.63	
		INCLUDING	G					64.00	65.00	1.00	4.38	1.30	
KERC-200	481611	4461920	305	137	-53	157	RC	112.00	113.00	1.00	3.61	1.90	КЗНЖ
		AND						138.00	157.00	19.00	0.53	2.05	
		INCLUDING	G					142.00	144.00	2.00	1.52	2.30	
KERC-201	481641	4462137	305	344	-45	50	RC	10.00	37.00	27.00	0.72	0.68	K1
		INCLUDING	3		-			28.00	37.00	9.00	1.18	1.14	
KERC-202	481481	4462029	257	183	-50	133	RC	0.00	2.00	2.00	1.84	1.05	K1
		INCLUDING	3					1.00	2.00	1.00	3.27	1.90	
		AND						17.00	20.00	3.00	1.26	0.50	
		INCLUDING	3					18.00	20.00	2.00	1.80	0.65	
		AND						61.00	65.00	4.00	2.07	1.13	
		INCLUDING	3					64.00	65.00	1.00	7.60	3.30	
KERC-203	481611	4461921	305	102	-75	130	RC	6.00	7.00	1.00	1.07	.070	кзнw
		AND						50.00	51.00	1.00	1.66	0.10	
KERC-204	481606	4461927	305	353	-45	111	RC		No sig	nificant in	tercepts		K2M
KERC-205	481606	4461926	305	333	-59	170	RC		No sig	nificant in	tercepts		K2M
KERC-206	481482	4462030	257	193	-45	133	RC	7.00	14.00	7.00	1.14	1.00	K2K1
		INCLUDING	G					9.00	11.00	2.00	2.88	2.75	

DRILL HOLE	EASTING	NORTHING	RL	AZ	DIP	DEPTH	ТҮРЕ	FROM	то	INT	Au (ppm)	Ag (ppm)	VEIN
		AND						57.00	66.00	9.00	0.84	0.44	
		INCLUDIN	G					60.00	62.00	2.00	2.03	1.20	
		AND						68.00	69.00	1.00	1.16	0.40	
KERC-207	481604	4461927	304	325	-51	135	RC		No significant intercepts				K2M
KERC-208	480972	4462414	211	316	-62	90	RC	86.00	90.00	4.00	1.22	0.85	KK3
KERC-209	481495	4462055	273	163	-46	150	RC	21.00	22.00	1.00	2.76	2.80	K1
		AND						28.00	30.00	2.00	1.92	1.90	
		AND						32.00	40.00	8.00	1.54	1.25	
		INCLUDIN	G					34.00	37.00	3.00	3.09	2.47	

LINE	EASTING	NORTHING	AZIMUTH	LENGTH	Au (ppm)	Ag (ppm)	VEIN
L1N	481308	4462638	325	8.85	2.39	2.90	
INCLUDING	ì			1.6	9.89	8.80	
L1S	481312	4462631	325	6.4	1.82	3.07	
INCLUDING	ì			1.6	4.49	7.40	KKO
L2	481302	4462625	328	12.35	8.07	15.19	nnz
INCLUDING	ì			6.1	15.03	28.42	
L3	481247	4462594	325	3.1	1.24	3.26	
L4	481351	4462572	325	6.6	29.02	27.15	
INCLUDING	ì			1.8	63.90	40.40	
L5	481301	4462521	325	10.75	1.96	2.15	
INCLUDING	ì			5.8	3.42	3.52	KK4
L6	481329	4462551	325	1.6	5.16	6.40	
L7	481289	4462507	325	5.4	2.58	2.66	
L8	481248	4462481	325	4.6	4.38	2.92	
L14	481506	4462040	298	12.20	7.7	4.3	
INCLUDING	ì			1.70	16.6	9.1	К1
L15	481504	4462304	298	3.70	2.6	1.3	
L16	481551	4461972	0	3.17	18.7	12.8	K2

LINE	EASTING	NORTHING	AZIMUTH	LENGTH	Au (ppm)	Ag (ppm)	VEIN
L17a	481543	4461970	0	6.20	14.3	21.1	
INCLUDING	i			0.90	32.4	23.8	К2
L17b	481540	4461963	0	1.8	14.2	9.0	
L18	481530	4461970	0	5.70	10.7	8.3	Ka
INCLUDING	ì			2.2	16.8	11.0	κz
L19	481742	4461857	146	4.4	14.2	10.9	
INCLUDING	ì			2.1	18.6	16.4	
L20	481733	4461854	146	3.3	19.5	16.1	
INCLUDING	ì			1.7	28.1	20.1	
L21	481715	4461838	146	7.20	20.4	17.5	
INCLUDING	ì			5.5	26.1	22.4	
L22	481704	4461835	146	4.7	8.0	5.2	
L24	481686	4461827	146	3.0	9.1	8.0	
INCLUDING	ì			1.4	17.6	15.3	K3
L25	481677	4461824	146	4.7	12.3	7.3	K5
INCLUDING	ì			2.9	19.2	10.5	
L26	481666	4461815	146	3.5	18.9	20.3	
INCLUDING	ì			1.9	34.0	33.3	
L27	481652	4461807	146	4.95	13.3	15.4	
INCLUDING	ì			2.2	22.2	20.5	
L28	481629	4461794	146	10.45	8.0	6.6	
L29	481611	4461781	146	5.75	10.9	10.5	
INCLUDING	1			2.75	17.65	13.3	
L30	481969	4461820	196	2.3	0.3	1.8	
L31	481927	4461809	196	4.7	0.3	0.3	K4
L32	481903	4461811	196	19.9	0.1	0.1	

LINE	EASTING	NORTHING	AZIMUTH	LENGTH	Au (ppm)	Ag (ppm)	VEIN			
L33	481788	4461623	18	3.6	0.2	1.3				
L34	481760	4461648	18	12.2	1.8	2.0	К4			
INCLUDING				1.1	14.8	6.6				
L35	481726	4461628	18	11.1	0.3	1.1				
L36	481723	4461644	18	10.2	2.7	2.0				
INCLUDING				2.1	10.2	6.5				
L37	481730	4461616	18	6.9	1.0	5.9				
INCLUDING	INCLUDING 1.3 4.8 2.6					К4				
L38	481769	4461640	260	8.9	12.9	7.7				
INCLUDING	i	·		3.6	19.6	11.4				
INCLUDING	i			1.3	10.5	8.2				
L39	481821	4461480	124	3.7	0.6	0.4	Topyurt S			
L40	481809	4461483	124	1.5	0.8	2.6				
L41	481803	4461475	124	3.1	9.5	19.3				
L42	481836.8	4461548	300	8.8	1.07	0.99				
INCLUDING				1.9	2.79	1.10				
L43	481842.6	4461584	300	2.5	11.25	5.40				
L44	481862.6	4461535	300	26.3	1.13	3.69				
INCLUDING				3.4	7.88	23.76				
INCLUDING				1.9	10.05	29.10	Topygyrt			
L45	481875.3	4461568	300	10.6	NSI		iopyuit			
L46	481889.3	4461592	300	12.5	NSI					
L47	481868.8	4461507	300	5.5	2.46	27.39				
L48	482005.4	4461725	152	3.6	0.55	0.24				
INCLUDING				1.7	1.02	0.40				
L49	482033.4	4461738	152	1.6	NSI					

LINE	EASTING	NORTHING	AZIMUTH	LENGTH	Au (ppm)	Ag (ppm)	VEIN
L50	482065	4461755	152	5.4	0.89	1.59	
INCLUDING				1.7	1.84	0.70	
L51	482095.3	4461767	152	5.2	NSI		Topyurt
L52	482100.7	4461773	152	6.5	NSI		
L53	482124.2	4461781	152	5.1	NSI		
L54	482191.4	4461818	152	2.2	NSI		
L55	482203.8	4461833	152	4	NSI		
L56	482214.7	4461844	152	4.3	1.07	0.34	
L57	481934.2	4461682	152	3.8	NSI		
L58	482084.9	4461481	60	13.9	0.54	0.37	
INCLUDING	ì			7	0.82		
L59	482069.6	4461463	60	11.4	1.36	6.02	
INCLUDING			4.4	2.18	5.26		
L60	482079.8	4461502	60	2	NSI		
L61	482065.7	4461493	60	4.7	0.62	0.49	
INCLUDING				1.3	1.39	0.50	Meydan
L62	482037.3	4461463	60	2.3	NSI		
L63	482054.9	4461520	60	8.7	NSI		
L64	482012.5	4461564	60	5.1	NSI		
L65	481984.5	4461590	60	4.7	1.82	1.08	
INCLUDING	ì			1.3	6.04 2.00		
L66	481996.7	4461472	60	5.5	NSI		
L67	481421	4462516	26	5.1	NSI		
L68	481426	4462529	26	5.0	0.6	1.2	_
L69	481419	4462529	26	7.8	0.6	0.7	E-20116
INCLUDING				5.1	0.9	0.9	

LINE	EASTING	NORTHING	AZIMUTH	LENGTH	Au (ppm)	Ag (ppm)	VEIN
L70	481430	4462513	118	4.6	NSI		E-zone
L71	481629	4462172	298	9.1	1.3	0.6	
L72	481601	4462152	298	9.1	3.3	1.7	
INCLUDING				2	8.5	4.2	
L73	481590	4462133	298	5.5	14.2	6.5	K 1
L74	481567	4462118	298	3.6	2.8	1.5	
L75	481516	4462083	298	3.4	5.6	2.9	
INCLUDING				1.2	10.4	4.8	
L76	481842	4462003	177	2.4	2.8	4.1	KS
L77	481761	4462214	168	1.3	NSI		KA
L78	481705	4462183	168	1.4	NSI		KA