

QUARTERLY ACTIVITIES REPORT

For the period ending 31 Dec 2014.

The Board of Zeus Resources Limited is pleased to release its first Quarterly Activities Report covering the period ending 31 December 2014.

<u>Highlights</u>

- A total of 27 aircore drillholes for a total of 1,685m were completed on Zeus' combined tenements within the Wiluna region during December 2014. Almost all drillholes intersected variably developed Tertiary palaeochannel sediments. The majority of Tertiary sediments intersected were lacustrine clays, however, palaeochannel sandstones potentially suitable for In Situ Recovery (ISR) were developed within the Kukububba (Lake Way) and Yeelirrie South Palaeochannels.
- After reviewing the company's strategy, it is agreed that long term projections indicate increased demand for uranium in the future although market conditions and uranium prices are still quite depressed. Hence the company will still focus on uranium exploration and looking at other metals prospects.
- Re-elect Zhang Yong as director.

Corporate and Financial

- Drilling cost in Wiluna within budget.
- Quarterly administrative expenditure within the budget.
- Preparing for the half year review by William Buck.
- Keep studying and researching several exploration and mining projects

Tenement Status

No changes to Zeus' granted tenement holding (Figure 1) during the reporting period. Current tenement details are listed in Table 1.

Figure 1 – Zeus Resources Tenement Location Map.

Region	Project	Sub-Project	Tenement	Status	Holder	Operator	Comments
	Lake Way	Kukububba Palaeochannel	E 53/1601	Granted	Zeus Resources Ltd	Zeus Resources Ltd	
			E 53/1602	Granted	Zeus Resources Ltd	Zeus Resources Ltd	
			E 53/1603	Granted	Zeus Resources Ltd	Zeus Resources Ltd	
14/11/100		Lake Gregory Palaeochannel	E 53/1604	Granted	Zeus Resources Ltd	Zeus Resources Ltd	
wiiuna			E 53/1600	Granted	Zeus Resources Ltd	Zeus Resources Ltd	
	Hinkler Well	Hinkler Well	E 53/1247	Granted	Sammy Resources Pty Ltd	Zeus Resources Ltd	Transfer to 100% Zeus in progress.
	Yeelirrie South	Yeelirrie South	E 36/733	Granted	Sammy Resources Pty Ltd	Zeus Resources Ltd	Transfer to 100% Zeus in progress.
			E 36/735	Granted	Sammy Resources Pty Ltd	Zeus Resources Ltd	Transfer to 100% Zeus in progress.
Narnoo	Narnoo	Narnoo North	E 39/1401	Granted	Zeus Resources Ltd	Zeus Resources Ltd	
			E 39/1683	Granted	Zeus Resources Ltd	Zeus Resources Ltd	
			E 39/1687	Granted	Zeus Resources Ltd	Zeus Resources Ltd	
			E 39/1689	Granted	Zeus Resources Ltd	Zeus Resources Ltd	
		Nowee Couth	E 28/2096	Granted	Zeus Resources Ltd	Zeus Resources Ltd	
		Namoo South	E 28/2097	Granted	Zeus Resources Ltd	Zeus Resources Ltd	
Casaayina	Mortimer Hills	-	E 09/1618	Granted	FEC II PTY LTD	Zeus Resources Ltd	Transfer to 100% Zeus in progress.
Gascoyne	Red Rock	-	E 52/2122	Granted	FEC II PTY LTD	Zeus Resources Ltd	Transfer to 100% Zeus in progress.
North Musgrave	North Musgrave	-	E 69/2362	Granted	Sammy Resources Pty Ltd	Zeus Resources Ltd	Transfer to 100% Zeus in progress.
Table 1 - Zeus Resources Tenement Details.							

Exploration Program

Exploration efforts during the Quarter have focussed on aircore drilling on the Wiluna Project.

Wiluna Project

Aboriginal heritage clearances were conducted over proposed drilling locations on its Lake Way tenements prior to commencing drilling.

A total of twenty seven aircore drillholes for a total of 1,685m targeting four separate palaeochannels were completed on Zeus' combined tenements within the Wiluna region during December 2014.

Drilling aimed to assess the validity of geophysical data (ground gravity) obtained over the Yeelirrie South and Hinkler Well tenements and determine the validity of Zeus' exploration model prior to conducting further work.

Drilling targeted sandstone-hosted peneconcordant uranium mineralisation developed at the base of the Tertiary palaeochannels with surficial calcrete-hosted mineralisation forming a secondary target.

Almost all drillholes intersected variably developed Tertiary palaeochannel sediments. The majority of Tertiary sediments intersected were lacustrine clays, however, palaeochannel sandstones potentially suitable for In Situ Recovery (ISR) were developed within the Kukububba (Lake Way) and Yeelirrie South Palaeochannels.

Drilling confirmed the presence of reduced sediments at depth and defined two regionally extensive target sand horizons. Previously acquired ground gravity data proved very effective in defining the main palaeovalley axes with target sand horizons restricted to the centre of these palaeovalleys.

Anomalous gamma associated with near-surface calcrete development was intersected within several drillholes, most notably on the Hinkler Well tenement. A prospective redox boundary was encountered within basal palaeochannel sandstones at Yeelirrie South whilst anomalous gamma was detected within palaeochannel sandstones within the Lake Way region.

A total of 111 samples were also submitted to ALS laboratories for confirmatory assay with results pending at the time of writing.

All drillholes were logged by Borehole Geophysical Services through the drill rods with a calibrated gamma probe and, wherever possible open hole gamma, conductivity and magnetic susceptibility was run in the open hole. Processing of raw downhole data to convert raw gamma data to eU_3O_8 values is yet be conducted and will be compared with assay results when received.

Drilling results have confirmed the validity of Zeus' exploration model and validated the effectiveness of ground gravity to define the palaeochannels. Zeus considers the results obtained from drilling, particularly the regionally extensive target sand horizons containing redox boundaries and anomalous gamma, to be sufficiently prospective to warrant follow up drilling. Pending acquisition and review of proprietary data, follow up drilling is planned for the Lake Way and Yeelirrie South Projects with proposed future drilling likely for Q2 2015.

Hole_ID	Tenement	GDA94_E	GDA94_N	Zone	Dip	Azi	RL	Hole Type	EOH	Depth to Basement	Anomalous Gamma	Comments
Yeelirri	Yeelirrie South Project								•			
ZYS001	E36/733	241,542	6,964,803	51	-90	0	478.0	AC	94	94	N/A	Mid-Sequence Sand (Miocene?), fining upwards: 54-63m. Basal sands (Eocene?): fining upwards: 82-94m.
ZYS002	E36/733	237,564	6,966,232	51	-90	0	477.0	AC	95	88	N/A	Basal sands (Eocene?), fining upwards: 71-88m. Haematite oxidation at hase of Tertiary
ZYS003	E36/733	234,400	6,967,075	51	-90	0	477.0	AC	65	40	Surface	Surface calcrete. Miocene clays overlying heavily
ZYS004	E36/733	237,633	6,973,009	51	-90	0	486.0	AC	76	57	N/A	Miocene clays overlying heavily weathered granite.
ZYS005	E36/733	234,219	6,977,923	51	-90	0	483.0	AC	84	56	N/A	Miocene clays overlying heavily weathered granite.
ZYS006	E36/733	232,793	6,977,790	51	-90	0	482.0	AC	70	57	N/A	Miocene clays overlying heavily weathered granite.
ZYS007	E36/735	215,749	6,972,520	51	-90	0	489.0	AC	65	61	N/A	Surface calcrete. Basal Channel Sands (Eocene?): 56-61m.
ZYS008	E36/735	217,400	6,972,557	51	-90	0	487.0	AC	66	62	N/A	Surface calcrete. Basal Channel Sands (Eocene?): 54-62m.
Hinkler	Well Pro	ject			•							•
ZHW001	E53/1247	227,207	7,025,297	51	-90	0	504.0	AC	80	78	Surface calcrete.	Basal Channel Sands (Eocene?): 73-78m.
ZHW002	E53/1247	228,004	7,024,886	51	-90	0	504.0	AC	74	73	N/A	Mid-Sequence Sand (Miocene?): 44-47m. Basal Channel Sands (Eocene?): 71-73m.
ZHW003	E53/1247	228,804	7,025,202	51	-90	0	503.0	AC	72	69.5	Surface calcrete.	Mid-Sequence Sand (Miocene?): 42-47m. Basal Channel Sands (Eocene?): 69-69.5m.
ZHW004	E53/1247	226,406	7,025,568	51	-90	0	506.0	AC	75	72	Surface calcrete.	Mid-Sequence Sand (Miocene?): 44-47m. Basal Channel Sands (Eocene?): 71-72m.
ZHW005	E53/1247	229,559	7,023,057	51	-90	0	508.0	AC	60	46	Surface calcrete.	Mid-Sequence Sand (Miocene?): 41-45m. No Basal Channel Sands due to shallower basement on channel margin.
ZHW006	E53/1247	232,197	7,026,097	51	-90	0	500.0	AC	28	28	Surface calcrete.	Hole targeting surface calcrete anomaly. Drilled to blade refusal.
ZHW007	E53/1247	232,200	7,026,306	51	-90	0	500.0	AC	29	27	Surface calcrete.	Hole targeting surface calcrete anomaly.
ZHW008	E53/1247	232,190	7,026,506	51	-90	0	501.0	AC	41	27	Surface calcrete.	Hole targeting surface calcrete anomaly. Drilled to blade refusal (in saprock)
ZHW009	E53/1247	232,193	7,026,700	51	-90	0	499.0	AC	29	26	Surface calcrete.	Hole targeting surface calcrete anomaly. Ferruginised saprolite at EOH.
Lake Gr	regory Pr	oject										
ZLG001	E53/1602	211,144	7,118,577	51	-90	0	569.0	AC	49	14	Surface calcrete.	Shallow basement, heavily weathered clay profile.
ZLG002	E53/1602	210,962	7,122,400	51	-90	0	567.0	AC	50	9	N/A	Shallow basement, heavily weathered clay profile.
ZLG003	E53/1602	210,019	7,125,614	51	-90	0	565.0	AC	68	38	N/A	Minor lacustrine clays (Miocene?) overlying heavily weathered saprolite.
Lake W	ay Projec	ct		1				T				
ZKB001	E53/1601	228,179	7,082,002	51	-90	0	557.0	AC	89	9	N/A	Shallow basement. Very heavily weathered to clay. Drilled to blade refusal.
ZKB002	E53/1601	228,862	7,083,522	51	-90	0	555.0	AC	32	6	N/A	Massive, fine-grained cream limestone overlying ferruginised saprolite.
ZLW001	E53/1603	234,446	7,049,463	51	-90	0	498.0	AC	32	6	N/A	Pyritic greenstone saprolite + vein quartz. Drilled to blade refusal.
ZLW002	E53/1603	235,762	7,049,256	51	-90	0	497.0	AC	51	3	N/A	Pyritic greenstone saprolite + vein quartz. Drilled to blade refusal.
ZLW003	E53/1603	236,207	7,049,198	51	-90	0	498.0	AC	65	33	N/A	Thin Miocene clays overlying weathered basement saprolite.
ZLW004	E53/1603	236,655	7,049,264	51	-90	0	500.0	AC	52	38	N/A	Thin Miocene clays overlying weathered basement saprolite.
ZLW005	E53/1603	237,611	7,049,479	51	-90	0	500.0	AC	94	92	Anomalous gamma 45- 60m. Max. peak @ 51m	Intersected main palaeochannel. Mid-Sequence Sands (Miocene?): 48-52m, Basal Channel Sands (Eocene?): 83-92m. Anomalous gamma associated with Mid-Sequence Sands.
	Table 2. Zeus Resources Ltd, Wiluna Region drillhole details.											

Figure 2. Ground gravity survey results, selected surface geology and Zeus drillholes within the Yeelirrie South region.

Figure 3. Ground gravity survey results showing Zeus drillholes and historical calcrete drillholes (<15m) within the Hinkler Well tenement.

Yeelirrie Palaeochannel

Eight drillholes were completed within the Yeelirrie Palaeochannel with drillholes sited to target ground gravity lows defining the palaeochannel axis (Figure 2). Drillhole details are summarised in Table 2.

<u>E36/733</u>

Six drillholes were completed on E36/733 and confirmed the presence of the major palaeochannel interpreted from ground gravity data, defining a deep Tertiary palaeovalley in which Basal Channel Sands are blanketed by extensive lacustrine clays.

Drillholes ZYS001 & ZYS002 were sited within the interpreted palaeovalley axis and intersected clean palaeochannel sandstones overlying granitic basement at 94m and 88m respectively. Drillholes ZYS003-ZYS006, located on the channel margins, did not intersect any significant sands, indicating prospective sandstones are restricted to the main palaeovalley axes.

Minor anomalous gamma associated with near-surface calcrete development was intersected in ZYS003.

No significant anomalism was detected within palaeochannel sediments. However, a prospective lateral redox boundary was detected within the axis of the Yeelirrie South Palaeochannel with haematite oxidation noted at the base of the channel sands in ZYS002 and oxidised pyrite observed within reduced sands recorded at the base of ZYS001.

<u>E36/735</u>

Two drillholes were completed on E36/735 and confirmed the presence of the palaeochannel interpreted from ground gravity data. Thin (<5m) gravelly to pebbly sandstones were developed at the base of the channel. Weak anomalous gamma was encountered in both holes, albeit within clays.

Abercromby Palaeochannel

<u>E53/1247</u>

Nine holes were drilled within the Abercromby Palaeochannel on Hinkler Well (E53/1247). Five drillholes targeted ground gravity lows on the western half of the tenement with a further four drillholes targeting radiometrically anomalous calcrete outcrop east of the Goldfields Highway. Drillhole locations are shown in Figure 3 with drillhole details summarised in Table 2.

Drilling in the western part of E53/1247 confirmed the presence of the palaeochannel interpreted from ground gravity data and indicated depths to basement ranging from 46m to 72m. Two regionally extensive target sand horizons were defined:

 <u>Basal Channel Sands (BCS)</u> - clayey to clean, gravelly- to pebbly-sands overlying weathered basement. Moderately- to poorly-developed, attaining a maximum thickness of 5m in ZHW001. 2. <u>Mid-Sequence Sands (MSS)</u> – Moderately- to well-developed (generally 3-5m thick), clean fine- to medium-grained sands, occurring consistently at ¬40-45m depth above a regionally extensive grey clay horizon. Characteristically finer-grained, better-sorted and cleaner in comparison to the BCS.

No significant anomalism was detected on Hinkler Well within the either the Mid-Sequence or Basal Channel Sands.

Minor anomalism associated with discontinuous calcrete development was intersected in four drillholes (Table 2) on the western half of the tenement. A further four holes were drilled across a substantial calcrete-hosted surface radiometric anomaly (>1,000cps) on the eastern part of the tenement (Figure 3) and intersected patchy sub-surface anomalism (maximum anomaly within ZHW007).

Fifty two samples were submitted for confirmatory assay from Hinkler Well but results have not yet been received at the time of writing.

Lake Gregory Palaeochannel

E53/1600 & E53/1602

Three drillholes were completed on E53/1602 (Figure 4) with no drilling conducted on E53/1600. Drilling targeted a radiometrically anomalous linear valley-fill calcrete (similar to that developed on Hinkler Well) thought to mark the centre of the Palaeovalley.

Drilling on the northern part of the E53/1602 tenement indicated that a thin veneer of colluvial sediments overlies heavily weathered crystalline basement with ZLG003 intersecting moderately-developed Tertiary lacustrine clays directly overlying saprolite. No sands were intersected by drilling indicating that the middle to upper reaches of the Lake Gregory Palaeovalley have been subject to erosion rather than deposition of sediments. Evidence from the Kukububba Palaeochannel to the south supports this conclusion.

Anomalous gamma associated with surficial calcrete development was intersected in ZLG001 and ZLG003. Twenty six samples were submitted for confirmatory assay but results have not yet been received at the time of writing.

Figure 4. Zeus drillholes and surface radiometric anomalism within the Lake Gregory Palaeochannel on E53/1602.

Kukububba Palaeochannel

<u>E53/1601</u>

Two drillholes were completed on the northern half of E53/1601 (Figure 5, Table 2) and failed to intersect Tertiary sediments, instead intersecting heavily weathered basement and indicating that the upper reaches of the Kukububba Palaeochannel was an area of erosion rather than deposition of palaeochannel sediments.

However, historical drilling on the southern half of the tenement suggests the development of up to 50m of palaeochannel sediments. In light of drilling results on E53/1603, further drilling is likely on the northern extension of the Kukububba Palaeochannel on the southern half of E53/1601.

<u>E53/1603 & E53/1604</u>

Five holes were drilled on E53/1603 across the interpreted course of the main Kukububba Palaeovalley (Figure 6, Table 2).

Drillholes ZLW001 and ZLW002 failed to intersect Tertiary palaeochannel sediments and instead encountered weathered pyritic greenstone saprolite and vein quartz. Eight composite assay samples were taken to assay for gold mineralisation. Assay results have not yet been received at the time of writing. Minor anomalous gamma was also observed in association with calcrete development at shallow depth in ZLW002.

Drillholes ZLW003 & ZLW004 intersected thin lacustrine clays on the margins of the palaeochannel whilst the axis of the Kukububba Palaeochannel was located with the final drillhole of the program (ZLW005). The target Basal Channel Sand (BCS) horizon was encountered at 83-92m where it comprised moderately-developed, reduced clayey gravelly sands overlying fresh granite. Clean, Mid-Sequence Sands (MSS) were intersected at 48-52m unconformably overlying reduced grey clays.

Importantly, weakly anomalous gamma was detected within ZLW005 over a broad interval (45-60m) with maximum counts occurring at the base of the Mid-Sequence Sands.

Twenty five samples were submitted for confirmatory assay but results have not yet been received at the time of writing.

The eastern margin of the palaeochannel has not been located and is likely to extend a considerable distance onto E53/1604. Follow-up drilling being planned on these two tenements for Q1/Q2 2015.

Figure 5. Zeus drillholes within the upper reaches of the Kukububba Palaeochannel on E53/1601.

Figure 6. Zeus drilling& cleared locations, Lake Way region. Note eastern boundary of palaeochannel not yet defined by drilling.

Narnoo Project

Work during the quarter comprised planning of follow up drilling to be carried out in Q2/Q3 2015.

Gascoyne Project

No work conducted during the quarter.

North Musgrave Project

No work conducted during the quarter.

Competent Person Statement:

Information in this release that relates to Exploration Results is based on information compiled by Mr Jonathan Higgins, who is a Member of the Australian Institute of Mining and Metallurgy (AusIMM). Mr Higgins is a full-time employee of Zeus Resources Limited. Mr Higgins has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity being undertaken to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Higgins consents to the inclusion in this release of the matters based on his information in the form and context in which it appears.

JORC Code, 2012 Edition – Table 1 Report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria JORC 2012 Code Explanation		Commentary			
Sampling techniques	 Nature and quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. 	 All drill holes were downhole gamma logged by BoreHole Geophysical Services (BHGS) utilising a calibrated 33mm Auslogger natural gamma probe. Logging was conducted through the drill rods and wherever possible in the open hole. Downhole gamma data was collected at 1cm using a logging speed of 2m per minute. Downhole gamma results have not been reported and were used to select intervals for conventional geochemical assays. Sample intervals for conventional geochemical assay at 1m intervals were selected on the basis of downhole gamma logging results. 			
	 Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	 Bore-Hole Geophysical Services (BHGS) provided a calibrated 33mm Auslogger natural gamma probe. Probe calibration was conducted at the AMDEL test pits in Adelaide in June 2014. Calibration data has provided to Zeus by BHGS. 			
	• Aspects of the determination of mineralisation that are Material to the Public Report.	• N/A			
Drilling techniques	 Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face- sampling bit or other type, whether core is oriented and if so, by what method, etc). 	 Drilling was conducted using a Challenger R/A 150 aircore drilling rig supplied by Challenge Drilling. Vertical holes were drilled through Tertiary palaeochannel sediments until crystalline basement was intersected. 			
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	 All drill cuttings were collected at 1m intervals from the drill-rig cyclone in sample bags (amounting to 20-30kg of sample per metre). 			
	 Measures taken to maximise sample recovery and ensure representative nature of the samples. 	• Entire sample intervals drill cuttings were collected at 1m intervals from the drill-rig cyclone in sample bags (amounting to 20-30kg of sample per metre).			
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	 Sample loss does not affect qualitative downhole gamma logging data of sediments in situ. All drill cuttings were collected and bagged for each 1m sample interval. 			

Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	 All aircore cuttings were geologically logged in detail at 1m intervals. Assay intervals were selected on the basis of downhole gamma logging results. Cuttings samples were then checked on site using a hand held RS125 Super Spectrometer. Radiometrically anomalous sample intervals were submitted for assay.
	 Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. 	 Representative qualitative cuttings samples were collected in chip trays with a reference photography being taken to record colour and redox state.
	• The total length and percentage of the relevant intersections logged.	 All aircore cuttings were geologically logged in detail and the entire drillhole was downhole gamma logged within the drill rods. Wherever possible, logging was also conducted, in the open hole using downhole gamma, conductivity and density.
Sub-sampling techniques and sample preparation	• If core, whether cut or sawn and whether quarter, half or all core taken.	• N/A
	• If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	 Samples were collected by spearing of wet and dry samples. Tertiary sediments were generally dry but unconsolidated sand intervals tended to contain water.
	• For all sample types, the nature, quality and appropriateness of the sample preparation technique.	• N/A
	 Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. 	• N/A
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. 	• Samples were collected from bags by multiple spearings from different angles within the sample bags.
	• Whether sample sizes are appropriate to the grain size of the material being sampled.	• Sample sizes are appropriate for the grainsize of the material.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	 111 samples, including Zeus standards and field duplicates, were submitted to ALS Laboratory in Kalgoorlie for standard multi- element assay. Sampled were crushed and pulverised before assaying for 61 elements including Uranium. Assay techniques comprised : <u>Assay Code ME-MS61u</u> - Four-acid digest including Hydrofluoric, Nitric, Perchloric and Hydrochloric acids in Teflon Tubes. Analysed by Inductively Coupled Plasma Mass Spectrometry (ICP-MS)

	• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 <u>Assay Code Au-OG43</u> – 25g nominal sample weight assayed for Au by aqua regia extraction with standard multi-element analysis (as per ME-MS61u) ICP-MS finish. Appropriate QA/QC procedures including the use of sample blanks, repeats and standards were applied by the laboratory. Cuttings sample radiometrics were individually analysed using hand held self-calibrating RS-125 Spectrometer containing a 6.3 cubic inch Sodium Iodide (NaI) crystal. Downhole logging was conducted using an AusLogger 33mm slimline gamma probe. Gamma probe response is checked daily using a Thorium-232 reference source. Probe calibration was conducted at the AMDEL test pits in Adelaide in June 2014. Calibration data has provided to Zeus by BHGS
		 Calibration factors were not applied as qualitative downhole gamma logs were used to select intervals for conventional geochemical assay. Assay results have not been received at the time of writing.
	 Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Selected sample intervals were submitted to ALS analytical laboratory in Kalgoorlie for conventional assay. Reference standards and blank samples were inserted at 1 in 20 ratio. An additional 5% of Samples were check assayed by the laboratory with laboratory blanks and standards each inserted at 1 in 20 ratio. Assay results have not been received at the time of writing.
Verification of sampling and assaying	• The verification of significant intersections by either independent or alternative company personnel.	Assay results have not been received at the time of writing.
	• The use of twinned holes.	• N/A
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 Primary assay data (including assay certificates) is stored electronically as either '.csv' or '.pdf' or Wellcad files on the Zeus server in both Zeus' Sydney and Perth offices. Assay data has been verified by senior Zeus personnel. Zeus' database and server is backed up regularly.
	Discuss any adjustment to assay data	Assay results have not been received at the time of writing
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches,	 Sample locations were recorded using handheld GPS. Elevations is derived from a digital elevation

	 mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used 	 model covering the tenement area. Drilling comprised initial scout exploration drilling. No down-hole surveys were completed since all holes were drilled vertically and the shallow hole depths relative to wide drill spacing would have a negligible on any mineralised intercepts. The grid system used is GDA94, Zone 51.
	Used. Quality and adequacy of topographic control.	• The primary topographic control is from the Digital Elevation Mode which is sufficient given the generally flat-lying nature of the landscape.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. 	 Drillhole spacing is currently at a 1 to several km spacing. Drillhole traverses were oriented along existing tracks orthogonal to interpreted palaeochannels. Close-spaced calcrete drillholes on E53/1247 were drilled at a 200m spacing across a surface radiometric anomaly associated with outcropping calcrete.
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied	 Data spacing is not yet sufficient to establish any degree of geological and grade continuity.
	• Whether sample compositing has been applied.	 Within Tertiary sediments no sample compositing was applied with assay samples taken at 1m intervals. Basement samples with potential to contain gold mineralisation were composited. Eight 3m composite samples were submitted for E53/1603.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. 	 Drillholes were oriented vertically. Drillhole traverses were oriented along existing access tracks orthogonal to interpreted palaeochannel orientation.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	 Drillholes were not surveyed using a downhole orientation tool and cannot be incorporated in any future ore reserve calculations. No sampling bias is evident in the orientation of the drill holes.

JORC Code, 2012 Edition – Table 1 Report

Section 2 Reporting of Exploration Results.

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC 2012 Code Explanation	Commentary		
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	 Zeus Resources holds 11 granted exploration tenements within the Wiluna and Narnoo Regions. Zeus operates a further 6 granted exploration tenements within the Wiluna, Gascoyne and North Musgrave regions. Transfer of tenement ownership to 100% of tenement ownership to Zeus Resources Ltd is in progress at the time of writing. Tenement details and status are outlined in Table 1. Drilling was conducted on the E36/733,E36/735, E51/1247, E53/1601, E53/1602 and , E53/1603 tenements which are 100% owned by Zeus Resources Ltd. 		
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	All tenements are in currently in good standing and no impediments to operating are currently known to exist.		
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 Exploration efforts have been conducted following review of publically available historical exploration data from the WA Department of Mines & Petroleum "WAMEX" dataset. Shallow drilling for surficial calcrete-hosted uranium mineralisation has been conducted sporadically by several companies over Zeus' tenement holding. Tertiary palaeochannel sediments have previously been reported in waterbore records but the majority of waterbores targeted shallow aquifers. Historical drilling focused almost exclusively on shallow calcrete-hosted uranium mineralisation with >90% of historical drillholes <20m in depth. 		
Geology	• Deposit type, geological setting and style of mineralisation.	 Potential deposit types/mineralisation styles at the Narnoo Projects include: Calcrete- and sandstone-hosted uranium mineralisation within Tertiary Palaeochannels systems. The primary exploration target comprises sandstone-hosted peneconcordant uranium mineralisation developed at the base of the Tertiary palaeochannels. 		

Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	All drillholes are reported within the drillhole details Table.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. 	• Assay results have not yet been received at the time of writing.
	 Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent walkes should be clearly stated 	 N/A Assay results have not yet been received at the time of writing.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. 	Assay results have not yet been received at the time of writing.
	• If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	• Current indications of anomalous gamma intercepts are not sufficient to draw any conclusions about their geometry.
	 If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Only downhole lengths are reported. These lengths are appropriate given the vertical orientation of the drillholes and the flat-lying nature of the Tertiary sediments.
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for	Refer to drillhole location maps.

	any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• Assay results have not yet been received at the time of writing.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	 Geological observations and geophysical survey results have been accurately reported. Assay results have not yet been received at the time of writing.
Further work	• The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling).	 Planned further work comprises further data review and exploration drilling. Subsequent exploration work will be dependent upon assay results received.
	• Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	 Refer to drillhole location maps for current drilling areas. Potential future drilling areas have not been included due to commercial sensitivity.