

ASX/Media Announcement

21st May 2015

COPI NORTH MINERAL SAND DEPOSIT DRILLING RESULTS DELIVER OUTSTANDING SHALLOW HIGH-GRADES OVER 10KM

Highlights

- ➤ Remaining analyses have been received for the 129 drill holes recently completed at the Copi North Heavy Mineral Sand ('HMS') deposit
- > Results have exceeded Management's expectation with many high-grade intersections (>20% Heavy Minerals ('HM')) reported along a 10km trend
- Very high-grade intersections have been defined at shallow depths ranging from 8 to 42 metres, averaging 18 metres
- ➤ Hole CNA098 has returned 7 metres averaging 21.4% HM from 16 metres below surface and individual metre assays range to 34.5% HM
- ➤ Numerous holes contain >5 metre thick intervals of plus 10% HM
- > Average head grade of current commercial HMS operations in the Murray Basin within the vicinity of Copi North range between 3.5 to 4% HM
- ➤ Copi North has typical strand line deposit grain size characteristics with >95% of grains coarser than 0.053mm
- Maiden JORC resource estimation has commenced

Summary

The Directors of Broken Hill Prospecting Limited (ASX: BPL) ("The Company") are pleased to announce the remaining results of HM determinations from air-core drilling undertaken in March 2015 at the Copi North (EL8312) Heavy Mineral Sand (HMS) deposit located in western NSW (Figure 1). Laboratory analysis reporting has returned outstanding, shallow high-grade HM contents. Exceptionally high-grades, some within intersections of more than 10 metres, are distributed throughout the >10 kilometre trending Copi North deposit (Table 1). The mineralisation remains open to the northwest and southeast. Drilling across traverses spaced about 500 metres along the Copi North deposit has shown that the width of the high-grade portion of the deposit ranges between 120-220 metres.

Figure 2 (and insets) show the location the 129 air core drill holes (totaling 3,383 metres) completed by BPL at the project as well as previous drill holes completed by Iluka Resources. More than 850 samples collected from one-metre drilled intervals at Copi North were analysed by ALS Metallurgical Laboratories in Perth. Drill hole locations (Table 2), significant drilled HM intervals (Table 3) and sample collection and analysis details (Table 4) are listed at the end of this report.

The receipt of this new data completes the bulk of the Copi North in-fill drilling information gathering and confirmatory work which was described in the Company's recent ASX announcements (16th and 23rd April 2015) which are available on BPL's website (www.bhpl.biz). The data is currently being assessed, together with historic drilling results undertaken by Iluka Resources during previous exploration campaigns. A JORC compliant resource estimation for the Copi North deposit is expected to be completed in the coming weeks.

Table 1. High-grade heavy mineral drill intersections from the Copi North HMS deposit.

Drill	Sele	cted hig	h-grade zo	nes	Selected	l very hi	gh-grade ir	ntervals
Hole	from (m)	to	interval	HM% **	from (m)	То	interval	HM% **
		(m)	(m)*			(m)	(m)*	
CNA002	17	20	3	12.17				
CNA009	24	30	6	12.90	25	28	3	19.66
CNA021	29	34	5	18.66	29	33	4	22.45
CNA028	19	25	6	12.80	19	22	3	21.49
CNA037	14	18	4	14.05	15	17	2	19.34
CNA044	8	13	5	15.32	8	10	2	28.37
CNA048	9	13	4	12.48	10	11	1	21.41
CNA049	9	13	4	10.88				
CNA050	9	12	3	10.09				
CNA057	8	10	2	13.07				
CNA063	13	18	5	14.19	14	16	2	20.82
CNA064	10	17	7	10.29				
CNA075	16	23	7	13.74	17	19	2	26.20
CNA076	16	24	8	11.15	16	17	1	26.06
CNA081	17	20	3	9.62				
CNA082	18	20	2	10.44				
CNA083	14	21	7	10.11	16	18	2	20.32
CNA091	17	22	5	12.82	19	20	1	26.16
CNA092	14	22	8	13.82	15	18	3	24.46
CNA093	16	21	5	8.41				
CNA094	14	17	3	12.85	15	16	1	21.51
CNA098	16	23	7	21.43	16	17	1	34.52
CNA099	16	23	7	17.09	16	17	1	31.82
CNA100	18	24	6	9.14				
CNA108	26	34	8	10.70	28	29	1	33.74
CNA109	36	44	8	9.80				
CNA112	33	44	11	7.84	38	39	1	29.20
CNA113	33	44	11	9.48	38	39	1	23.58
CNA121	42	45	3	10.73				
CNA122	39	47	8	10.19	42	43	1	22.09
* Averages	of 1 metre drille	nd and acca	ved intervals I	Drill holes are v	ertical and inte	vals are clo	se to true thic	knoss

^{*} Averages of 1 metre drilled and assayed intervals. Drill holes are vertical and intervals are close to true thickness.

^{**} HM contents determined by ALS Metallurgical (Perth)

Copi North Heavy Mineral Deposit

The Copi North data include numerous drilled intervals of between 1-4 metres thick which grade >20% HM within thicker zones which have >10% HM content (Tables 1 and 3). Importantly, these are spread along the 10 kilometre length of the deposit and are all contained within a 120 to 220 metre wide trend which is defined by mineralised intervals with >3% HM (yellow dashed lines in Figure 2 Insets 1-7, Table 3). The zone is widest in the northwest portion of the trend (Figure 1, Inset 1) and this is close to the western boundary of EL8312.

The Company has applied for a new exploration licence (ELA5147 'Sunshine') to cover the strike extent of the Copi North deposit which is interpreted from historical Iluka Resources drilling as extending further towards the northwest. Clearly, continuation of the HM mineralisation in this direction would add considerably to the current known limits of the deposit

BHM is undertaking detailed drill hole collar height elevation and is not currently in a position to provide accurate terrain elevations across the deposit. This survey data will be complete in late May and detailed descriptions of each drilled traverse will be prepared and the results reported in coming weeks. In the meantime scale-accurate sections from several of the drill traverses are included in this announcement for illustrative purposes and these demonstrate the continuity, thickness, shallowness and high-grade nature of the mineralisation (Figure 3, Sections A, E, G, K, M, O, Q).

Depth of cover above the HMS rich horizon is variable along the length of the deposit but averages 18 metres. Relatively thin cover of quartz sand, silt and clay are typical near the middle of the drilled area where the top of high-grade HM sand occurs between 9-13 metres depth (Figure 2, Inset 4). The HM horizon becomes deeper and narrower to the southeast where it is covered by approximately 43 metres of sand and silt (Figure 2, Inset 8). Drill holes CNA001-8 at the northwest end of the drilled area intersected HMS at between 17-19 metres depth (Figure 3, Section A) and BPL considers that the high grade HM horizon shallows as it extends into ELA5147.

Sieve sampling of representative mineralised intervals showed that most (>95%) of the Ti and Zr mineral grains (ilmenite, rutile and zircon) are coarser than 0.053mm. The HM contents of drill samples determined by ALS Metallurgical and reported in this release are for sand fractions of between 0.053mm and 1mm. BPL believes that the relatively coarse nature of the Copi North HMS may allow recovery using "off the shelf" mineral separation equipment using conventional mineral separation techniques.

BHM has possession of historical (Iluka Resources) mineral assemblage data (ilmenite, rutile, zircon), which gives confidence of a positive Ti, Zr mineral makeup of the HM suite. However, the Company has decided to wait on processing of new drilling samples before announcing mineral assemblage details. New composites prepared from HM samples along each of the drill traverses will be used to estimate the mineral composition of the deposit. Ilmenite, weathered ilmenite (leucoxene) rutile and zircon as well as some other HM (monazite, xenotine, garnet, tourmaline) will be reported for each of the composites and will allow the value of the HM mineralisation to be more closely defined. Analyses of composites (already underway) is expected to take several weeks and will provide important distribution data for a new JORC resource estimation which has already commenced.

Background

Exploration Licence 8312 (Copi) is located approximately 80 kilometres northwest of Wentworth and approximately 60km WSW of Cristal Mining's Ginkgo and Snapper Mineral Sands operations (Figure 1). In March 2015, air core drilling was undertaken at the Copi North deposit largely contained within EL8312 and the Magic Deposit in EL8311. This work is summarised in the Company's ASX release dated 16 April, 2015. Both deposits are known high-grade HMS deposits associated with well-defined ancient beach sand strandlines. A total of 129 holes were drilled along the trend of the Copi North deposit and 88 air core drill holes were completed at the Magic deposit located 50km to the north of Copi North.

Samples were collected at one metre intervals from drill holes located throughout both deposits and sent to ALS Metallurgical (Perth) for analysis.

Both deposits are considered to be at an advanced exploration status and have been the subject of significant past exploration activities (including substantial amounts of drill testing) by other HMS explorers and miners. The majority of the work was undertaken by Iluka Resources in the 1990's and early 2000's.

The drilling has been fully funded by the private mining investment group Relentless Resources Limited (RRL) which is providing \$2m of funding through a recently announced Joint Venture to earn a 50% interest in the two tenements. BHM is manager of the Joint Venture.

Comments

BPL's Managing Director Dr Ian Pringle commented:

"These are exceptional results. The wide distribution of high-grades throughout the 10 kilometre portion of the Copi North Deposit that has been drill tested has certainly exceeded our expectations. Intersections of such high grades, many of which are covered by less than 12 metres of overburden will give us the opportunity to consider many low-cost, small footprint mine development options in the forthcoming prefeasibility study.

"The abundance of high HM grades over 20% HM, some exceeding 35% HM, indicate potential for a fast-track, low CAPEX & OPEX high-grade mine development. Run of mine grades of nearby operating HMS mines are around 3.5 to 4.0 % HM."

"I am pleased to note that most samples appear to have significant zircon content which has high value, although the laboratory has yet to determine an accurate breakdown of titanium and zirconium bearing minerals and these results will be reported in the near future."

Yours faithfully,

Ian J Pringle

(Managing Director)

\Competent Person Statement

Exploration activities and results contained in this notice are based on information compiled by Mr Ian Spence, Managing Director of Broken Hill Minerals Pty Ltd and reviewed by Dr Ian Pringle who is a Member of the Australasian Institute of Mining and Metallurgy. Dr Pringle is the Managing Director of Broken Hill Prospecting Ltd and also a Director of Ian J Pringle & Associates Pty Ltd, a consultancy company in minerals exploration. He has sufficient experience which is relevant to the style of mineralisation and types of deposits under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the December 2012 edition of the Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (the JORC Code). Dr Pringle has consented to the inclusion in this report of the matters based on his information in the form and context in which it appears.

About Broken Hill Prospecting Limited ("BPL")

BPL has commenced assessment of Heavy Mineral Sand ("HMS") deposits (titanium and zirconium) located south of Broken Hill in western NSW. These deposits have been extensively explored and drill tested by other parties and provide the Company with an opportunity to progress advanced evaluation and fast-track development of several substantial high-grade heavy mineral sand deposits.

Australia has the world's largest deposits of the titanium minerals ilmenite and rutile. Australian mines extract and refine Ti, but don't process it in large quantities. It is used in many applications in light and heavy industries as well as in jewellery and 3D printing. However approximately 95% is used in an oxide form as the pure white colour crucial in products from paint to cosmetics. Titanium's strength-to-weight ratio, corrosion resistance and biocompatibility make it perfect for aerospace, medical and sport applications.

BPL Cobalt and Pyrite (Sulphuric acid) deposits

BPL is progressing with exploration and evaluation of cobalt-pyrite deposits in the Broken Hill area within two exploration tenements (EL6622 and EL8143) and two mining leases (ML86 and ML87).

Broken Hill Prospecting Limited is in a strong strategic position to take advantage of increasing demand for cobalt to meet growth in environmental and industrial uses including rechargeable batteries in automobiles and super alloys. Co-product sulphuric acid could address Australian reliance on imported sulphur and provide opportunities for phosphate fertiliser and mineral processing industries.

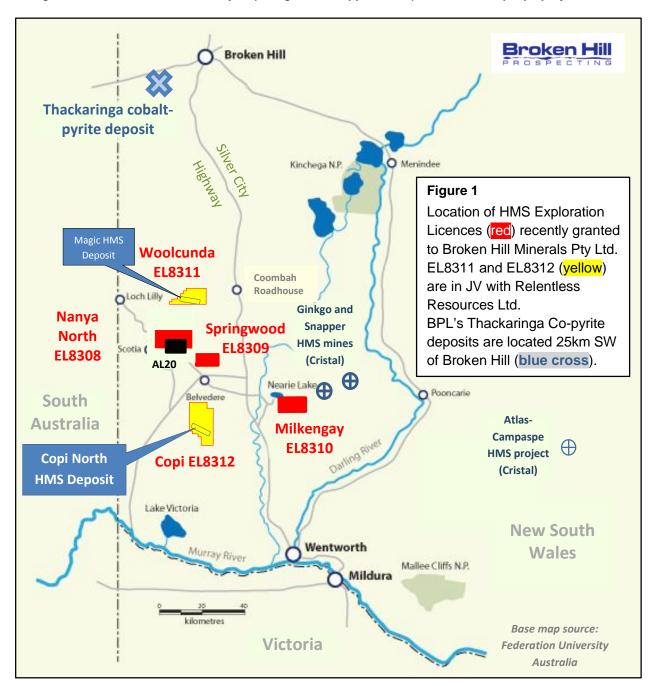
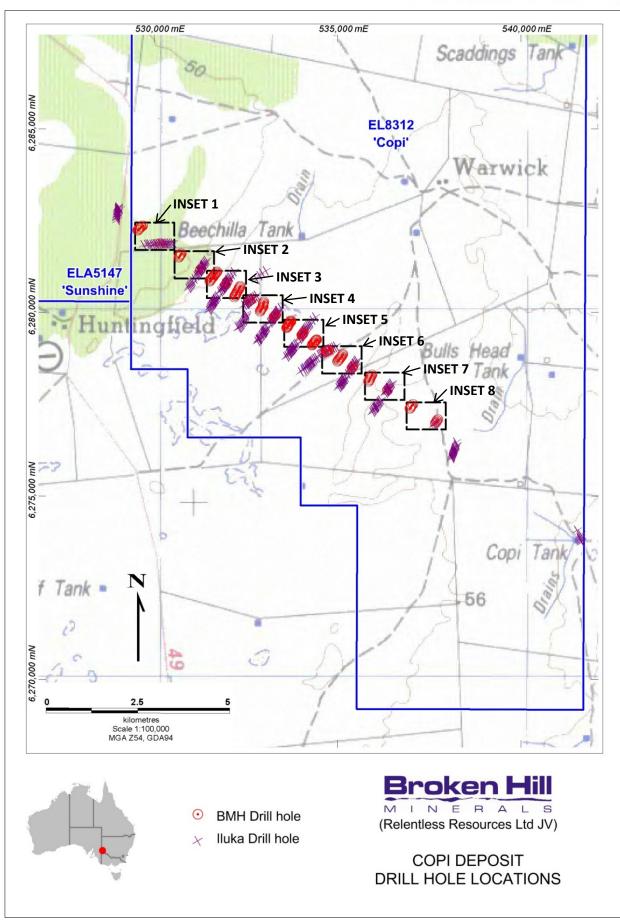
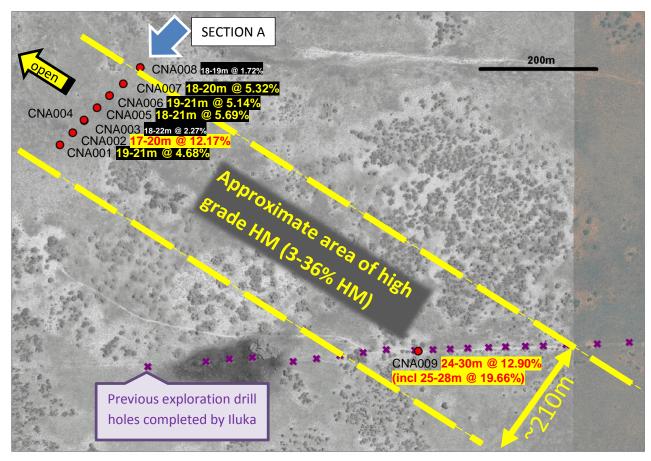
For further information contact;

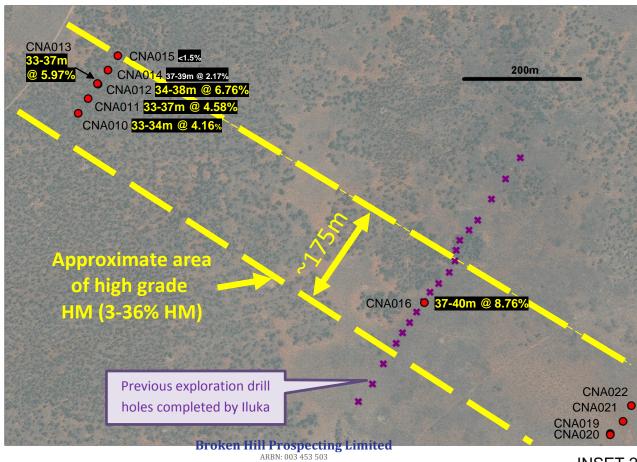
Dr Ian Pringle, Managing Director, Broken Hill Prospecting Ltd +61 408 548 767 ipringle@bhpl.biz Ian Spence, Manager, Broken Hill Minerals Ltd +61 437 880 455 ianspence71@gmail.com

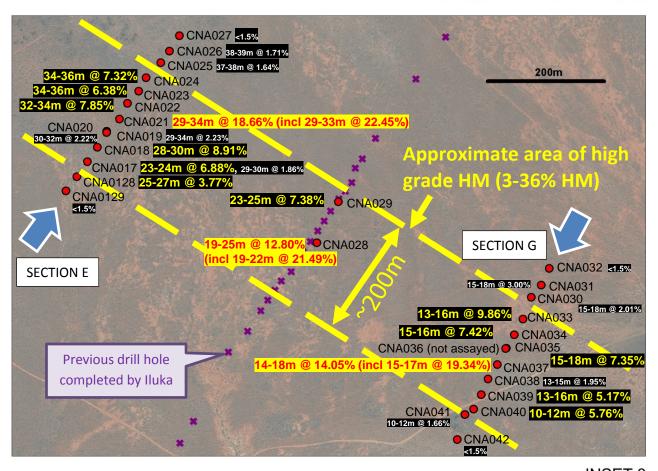
Australian media – Alan Deans, Partner, Last Word Corporate Communications +61 427 490 992 alan.deans@lastwordcc.com.au

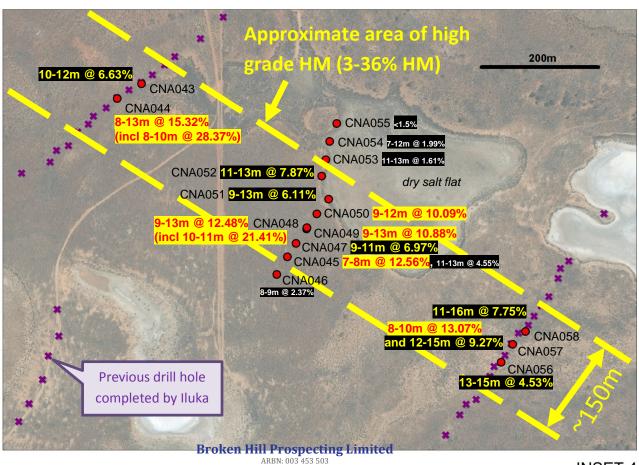
Broken Hill Prospecting Ltd has recently updated it's website at www.bhpl.biz

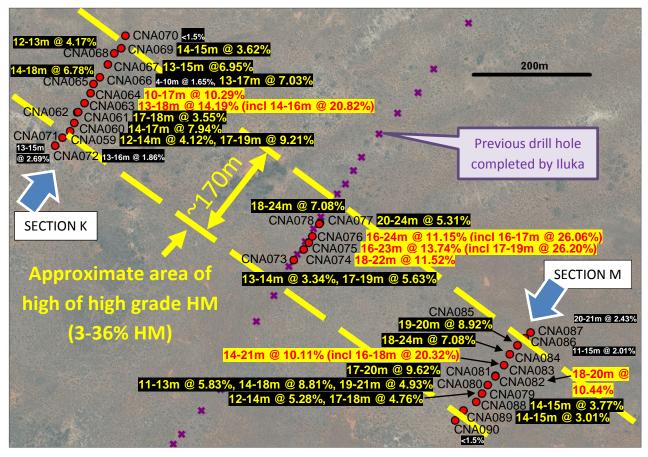
Figure 1. Map of western NSW showing the location of the Copi North Heavy Mineral Sands Deposit and Exploration Leases held by Broken Hill Minerals Pty Ltd. The map also shows the location of Cristal Mining's Pooncarie Mineral Sands Project (Ginkgo and Snapper Mines) and Atlas-Campaspe project.

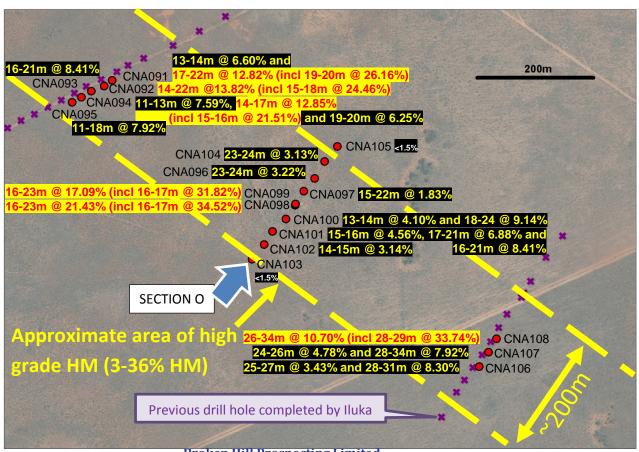




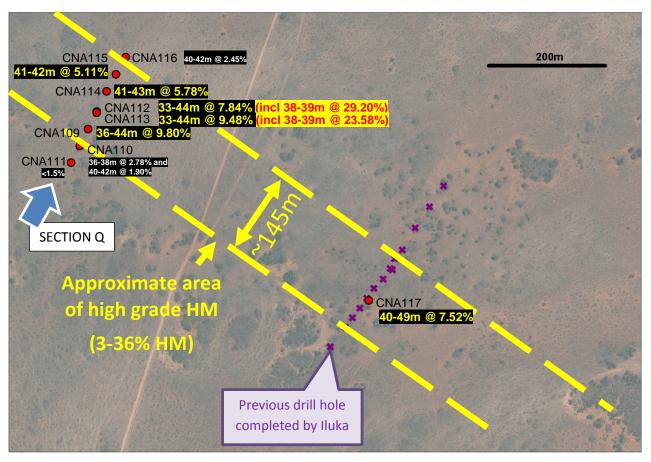

Figure 2. Copi North Deposit drill hole location map. Insets (following pages) detail individual drill hole locations. Hole names coloured red for samples described in this report.

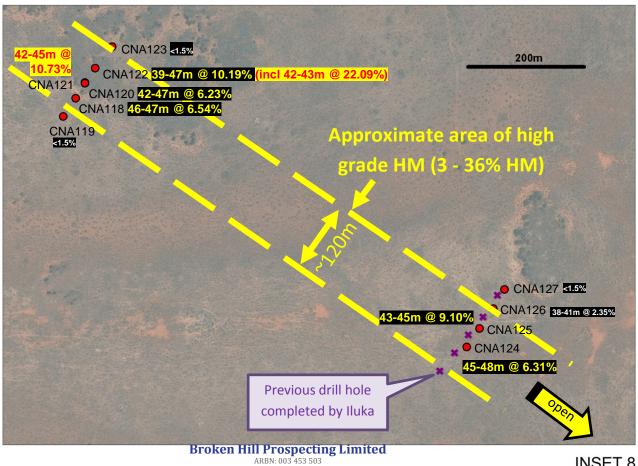












Broken Hill Prospecting Limited

ARBN: 003 453 503

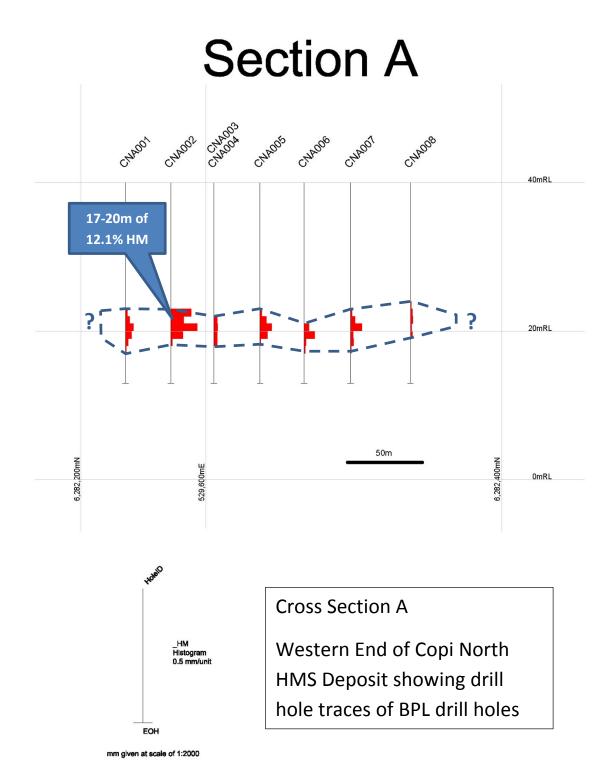


Figure 3. Cross sections A, E, G, K, M, O and Q across Copi North HMS deposit (locations shown on Figure 2). Note the difference in scale (1:5, horizontal:vertical).

Section E

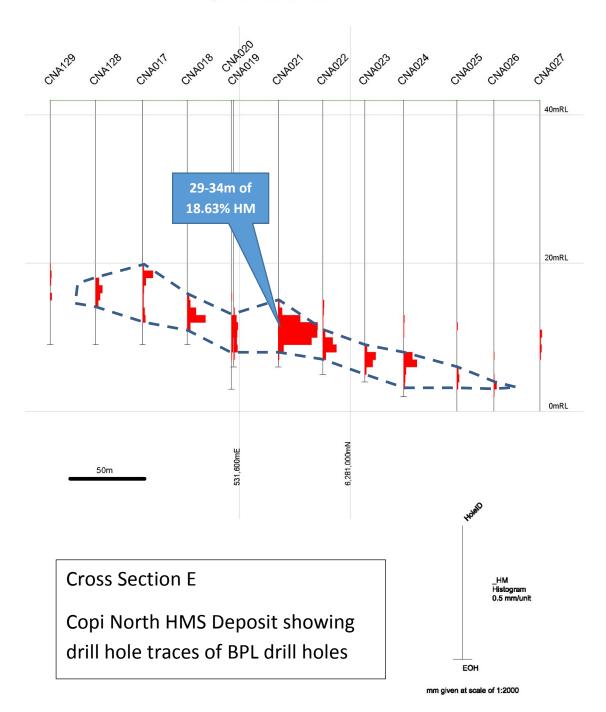


Figure 3 (continued). Cross sections A, E, G, K, M, O and Q across Copi North HMS deposit (locations shown on Figure 2). Note the difference in scale (1:5, horizontal:vertical).

Section G

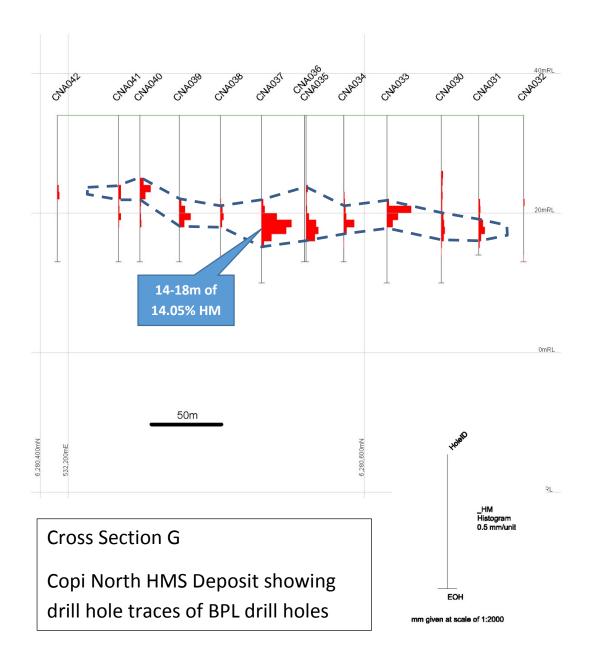


Figure 3 (continued). Cross sections A, E, G, K, M, O and Q across Copi North HMS deposit (locations shown on Figure 2). Note the difference in scale (1:5, horizontal:vertical).

Section K

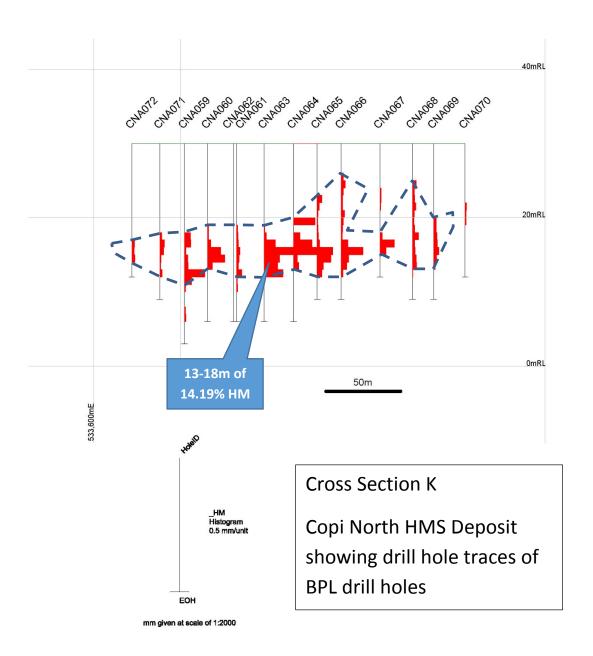


Figure 3 (continued). Cross sections A, E, G, K, M, O and Q across Copi North HMS deposit (locations shown on Figure 2). Note the difference in scale (1:5, horizontal:vertical).

Section M

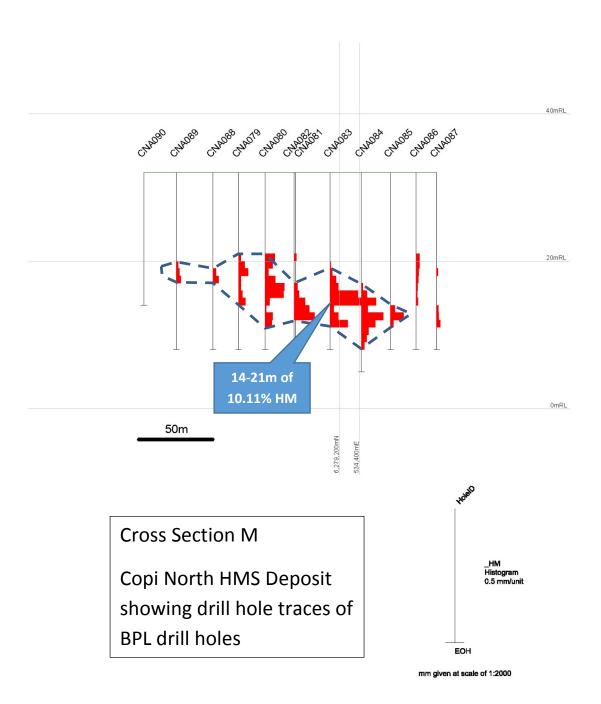


Figure 3 (continued). Cross sections A, E, G, K, M, O and Q across Copi North HMS deposit (locations shown on Figure 2). Note the difference in scale (1:5, horizontal:vertical).

Broken Hill Prospecting Limited ARBN: 003 453 503

Level 14, 52 Phillip Street, Sydney NSW 2000 Box 3486 GPO, Sydney NSW 2001 P: +61 2 9252 5300 F: +61 2 9252 8400 E: info@bhpl.biz W: www.bhpl.biz

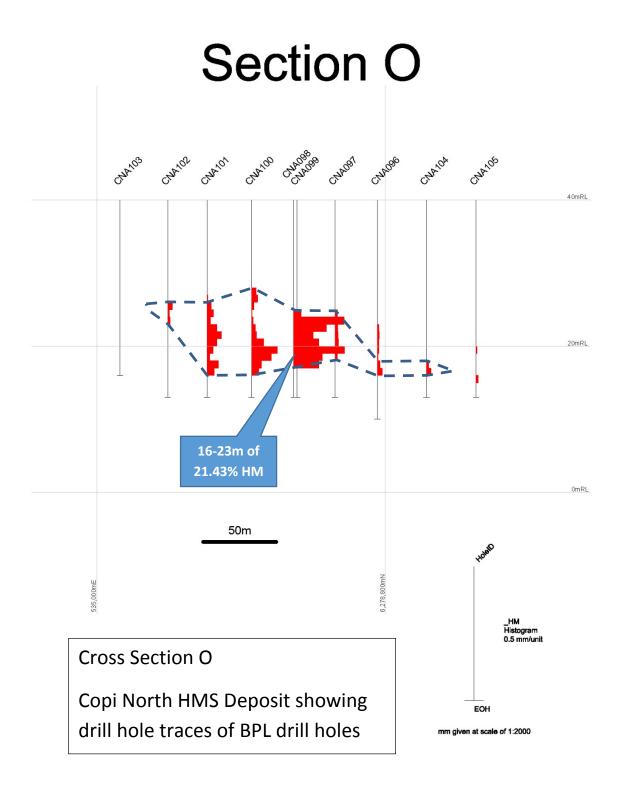


Figure 3 (continued). Cross sections A, E, G, K, M, O and Q across Copi North HMS deposit (locations shown on Figure 2). Note the difference in scale (1:5, horizontal:vertical).

Section Q

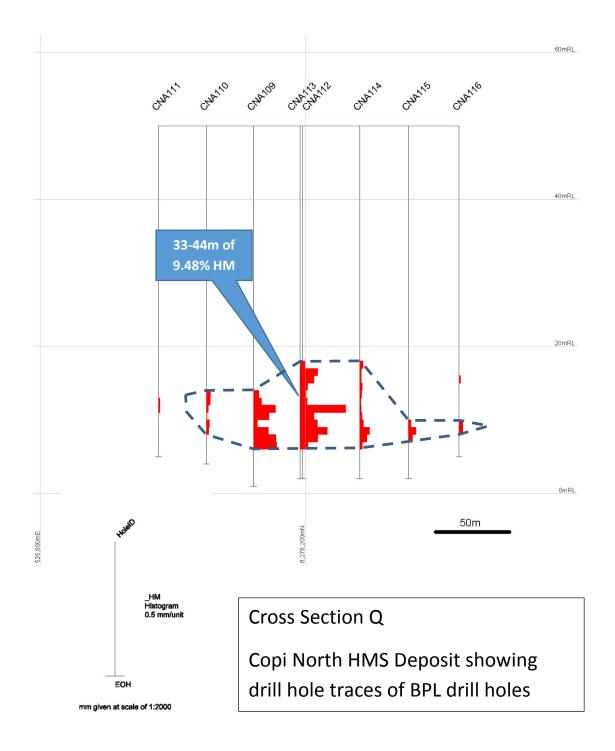


Figure 3 (continued). Cross sections A, E, G, K, M, O and Q across Copi North HMS deposit (locations shown on Figure 2). Note the difference in scale (1:5, horizontal:vertical).

Broken Hill Prospecting Limited

ARBN: 003 453 503

Table 2 - Copi North Deposit air-core drill holes (EL8312) which have samples reported

in this announcement.

in this anno	uncemen	τ.				
Air-Core Drill Hole	Depth	E_MGA94	N_MGA94	Azimuth	Dip	Collar Elevation (RL)*
CNA001	27	529559	6282224	0	-90	yet to be surveyed
CNA002	27	529581	6282245	0	-90	yet to be surveyed
CNA003	27	529601	6282266	0	-90	yet to be surveyed
CNA004	27	529600	6282267	0	-90	yet to be surveyed
CNA005	27	529623	6282288	0	-90	yet to be surveyed
CNA006	27	529644	6282309	0	-90	yet to be surveyed
CNA007	27	529668	6282329	0	-90	yet to be surveyed
CNA008	27	529697	6282357	0	-90	yet to be surveyed
CNA009	33	530175	6281869	0	-90	yet to be surveyed
CNA010	39	530680	6281490	0	-90	yet to be surveyed
CNA011	39	530697	6281515	0	-90	yet to be surveyed
CNA012	39	530714	6281540	0	-90	yet to be surveyed
CNA013	39	530713	6281541	0	-90	yet to be surveyed
CNA014	39	530731	6281564	0	-90	yet to be surveyed
CNA015	41	530748	6281589	0	-90	yet to be surveyed
CNA016	42	531275	6281164	0	-90	yet to be surveyed
CNA017	33	531562	6280887	0	-90	yet to be surveyed
CNA018	33	531579	6280912	0	-90	yet to be surveyed
CNA019	36	531595	6280939	0	-90	yet to be surveyed
CNA020	39	531595	6280937	0	-90	yet to be surveyed
CNA021	36	531617	6280960	0	-90	yet to be surveyed
CNA022	37	531631	6280987	0	-90	yet to be surveyed
CNA023	38	531650	6281008	0	-90	yet to be surveyed
CNA024	40	531663	6281031	0	-90	yet to be surveyed
CNA025	42	531688	6281057	0	-90	yet to be surveyed
CNA026	42	531703	6281077	0	-90	yet to be surveyed
CNA027	42	531720	6281103	0	-90	yet to be surveyed
CNA028	28	531956	6280748	0	-90	yet to be surveyed
CNA029	30	531993	6280818	0	-90	yet to be surveyed
CNA030	24	532324	6280654	0	-90	yet to be surveyed
CNA031	21	532341	6280675	0	-90	yet to be surveyed
CNA032	21	532355	6280704	0	-90	yet to be surveyed
CNA033	24	532310	6280617	0	-90	yet to be surveyed
CNA034	21	532295	6280590	0	-90	yet to be surveyed
CNA035	21	532281	6280567	0	-90	yet to be surveyed
CNA036	21	532280	6280566	0	-90	yet to be surveyed
CNA037	24	532266	6280539	0	-90	yet to be surveyed
CNA038	21	532250	6280514	0	-90	yet to be surveyed
CNA039	21	532238	6280487	0	-90	yet to be surveyed
CNA040	21	532225	6280462	0	-90	yet to be surveyed
CNA041	21	532210	6280453	0	-90	yet to be surveyed
CNA042	21	532197	6280410	0	-90	yet to be surveyed
CNA043	18	532663	6280348	0	-90	yet to be surveyed
CNA044	18	532621	6280323	0	-90	yet to be surveyed
CNA045	18	532913	6280051	0	-90	yet to be surveyed
CNA046	18	532895	6280021	0	-90	yet to be surveyed
CNA047	18	532928	6280074	0	-90	yet to be surveyed
CNA048	18	532947	6280101	0	-90	yet to be surveyed
CNA049	18	532946	6280099	0	-90	yet to be surveyed
CNA050	18	532964	6280125	0	-90	yet to be surveyed
CNA051	18	532984	6280150	0	-90	yet to be surveyed
CNA052	18	532972	6280190	0	-90	yet to be surveyed
CNA053	18	532979	6280218	0	-90	yet to be surveyed
CNA054	15	532986	6280249	0	-90	yet to be surveyed
CNA055	18	532998	6280280	0	-90	yet to be surveyed
						•

CNA056	18	533280	6279870	0	-90	yet to be surveyed
CNA057	18	533300	6279901	0	-90	yet to be surveyed
CNA058	18	533322	6279923	0	-90	yet to be surveyed
CNA059	27	533644	6279596	0	-90	yet to be surveyed
CNA060	24	533651	6279610	0	-90	yet to be surveyed
CNA061	24	533658	6279629	0	-90	yet to be surveyed
CNA062	24	533656	6279628	0	-90	yet to be surveyed
CNA063	24	533669	6279644	0	-90	yet to be surveyed
CNA064	24	533679	6279661	0	-90	yet to be surveyed
CNA065	21	533684	6279677	0	-90	yet to be surveyed
CNA066	21	533695	6279689	0	-90	yet to be surveyed
CNA067	18	533709	6279711	0	-90	yet to be surveyed
CNA068	21	533720	6279730	0	-90	yet to be surveyed
CNA069	21	533732	6279739	0	-90	yet to be surveyed
CNA070	18	533739	6279760	0	-90	yet to be surveyed
CNA071	21	533631	6279585	0	-90	yet to be surveyed
CNA072	18	533618	6279571	0	-90	yet to be surveyed
CNA073	24	534029	6279374	0	-90	yet to be surveyed
CNA074	27	534046	6279392	0	-90	yet to be surveyed
CNA075	27	534055	6279404	0	-90	yet to be surveyed
CNA076	27	534061	6279415	0	-90	yet to be surveyed
CNA070	28	534074	6279438	0	-90	yet to be surveyed
	28			-		•
CNA078 CNA079	26 24	534073 534353	6279436 6279144	0 0	-90 -90	yet to be surveyed
				-		yet to be surveyed
CNA080	24	534363	6279159	0	-90	yet to be surveyed
CNA081	24	534376	6279175	0	-90	yet to be surveyed
CNA082	24	534376	6279174	0	-90	yet to be surveyed
CNA083	24	534391	6279193	0	-90	yet to be surveyed
CNA084	27	534401	6279212	0	-90	yet to be surveyed
CNA085	24	534414	6279227	0	-90	yet to be surveyed
CNA086	24	534427	6279239	0	-90	yet to be surveyed
CNA087	24	534437	6279249	0	-90	yet to be surveyed
CNA088	24	534343	6279130	0	-90	yet to be surveyed
CNA089	24	534321	6279115	0	-90	yet to be surveyed
CNA090	18	534307	6279098	0	-90	yet to be surveyed
CNA091	25	534764	6278963	0	-90	yet to be surveyed
CNA092	25	534750	6278953	0	-90	yet to be surveyed
CNA093	24	534728	6278944	0	-90	yet to be surveyed
CNA094	24	534711	6278934	0	-90	yet to be surveyed
CNA095	24	534695	6278925	0	-90	yet to be surveyed
CNA096	30	535113	6278794	0	-90	yet to be surveyed
CNA097	27	535094	6278772	0	-90	yet to be surveyed
CNA098	27	535079	6278748	0	-90	yet to be surveyed
CNA099	27	535080	6278750	0	-90	yet to be surveyed
CNA100	27	535063	6278724	0	-90	yet to be surveyed
CNA101	27	535040	6278703	0	-90	yet to be surveyed
CNA102	27	535026	6278680	0	-90	yet to be surveyed
CNA103	24	535005	6278655	0	-90	yet to be surveyed
CNA104	27	535130	6278823	0	-90	yet to be surveyed
CNA105	27	535152	6278849	0	-90	yet to be surveyed
CNA106	36	535396	6278470	0	-90	yet to be surveyed
CNA107	39	535412	6278495	0	-90	yet to be surveyed
CNA108	39	535426	6278518	0	-90	yet to be surveyed
CNA109	49	535881	6278167	0	-90	yet to be surveyed
CNA110	46	535867	6278138	0	-90	yet to be surveyed
CNA111	45	535852	6278109	0	-90	yet to be surveyed
CNA112	48	535896	6278197	0	-90	yet to be surveyed
CNA113	48	535896	6278195	0	-90	yet to be surveyed
CNA114	48	535913	6278232	0	-90	yet to be surveyed
CNA115	48	535929	6278261	0	-90	yet to be surveyed
CNA116	45	535946	6278291	0	-90	yet to be surveyed
						•

Level 14, 52 Phillip Street, Sydney NSW 2000 Box 3486 GPO, Sydney NSW 2001 P: +61 2 9252 5300 F: +61 2 9252 8400 E: info@bhpl.biz W: www.bhpl.biz

yet to be surveyed	-90	0	6277872	536364	54	CNA117
yet to be surveyed	-90	0	6277398	536997	51	CNA118
yet to be surveyed	-90	0	6277367	536976	51	CNA119
yet to be surveyed	-90	0	6277425	537013	51	CNA120
yet to be surveyed	-90	0	6277424	537013	51	CNA121
yet to be surveyed	-90	0	6277450	537031	51	CNA122
yet to be surveyed	-90	0	6277487	537060	51	CNA123
yet to be surveyed	-90	0	6276970	537670	54	CNA124
yet to be surveyed	-90	0	6277002	537692	51	CNA125
yet to be surveyed	-90	0	6277036	537716	51	CNA126
yet to be surveyed	-90	0	6277069	537735	51	CNA127
yet to be surveyed	-90	0	6280861	531544	33	CNA128
yet to be surveyed	-90	0	6280837	531525	33	CNA129

^{*} drillhole collars are located on flat to gently sloping ground. Height (RL) surveys are planned.

Table 3. Copi North Deposit summary of drill intersections which have Heavy Mineral contents over 3% НМ.

DRILL		INTERVA	LS 1.5% HM	Cut		INTE	RVALS >3% H	M	HI	GH GRAI	DE HM INTEI	RVALS
HOLE	from (m)	to (m)	interval (m)	HM%	from (m)	to (m)	interval (m)	HM%	from (m)	to (m)	interval (m)	HM%
CNA001	18	22	4	3.51	19	21	3	4.68	(,	()	()	
CNA002	17	20	3	12.17	17	20	3	12.17				
CNA003	18	22	4	2.27								
CNA004	no r	esults >1	5% HM									
CNA005	18	21	3	5.69	18	21	3	5.69				
CNA006	19	21	2	5.14	19	21	2	5.14				
CNA007	18	22	4	3.60	18	20	2	5.32				
CNA008	18	19	1	1.72								
CNA009	23	30	7	11.33	24	30	6	12.90	25	28	3	19.66
CNA010	33	36	3	2.86	33	34	1	4.16				
CNA011	33	37	4	4.58	33	37	4	4.58				
CNA012	33	38	5	5.82	34	38	4	6.76				
CNA013	33	38	5	5.24	33	37	4	5.97				
CNA014	37	39	2	2.17								
CNA015	no r	esults >1	.5% HM									
CNA016	36	41	5	6.00	37	40	3	8.76				
CNA017	23	25	2	4.54	23	24	1	6.88				
CNA017	29	30	1	1.86								
CNA018	27	31	4	5.40	28	30	2	8.91				
CNA019	29	34	5	2.23								
CNA020	30	32	2	2.22								
CNA021	28	34	6	15.97	29	34	5	18.66	29	33	4	22.45
CNA022	31	35	4	4.85	32	34	2	7.85				
CNA023	33	36	3	4.79	34	36	2	6.38				
CNA024	34	37	3	5.39	34	36	2	7.32				
CNA025	37	38	1	1.64								
CNA026	38	39	1	1.71								

										_		14 6
CNA027	no r	esults >1.	5% HM									
CNA028	18	25	7	11.27	19	25	6	12.80	19	22	3	21.49
CNA029	23	25	2	7.38	23	25	2	7.38				
CNA030	15	18	3	2.01								
CNA031	15	18	3	3.00	16	17	1	4.42				
CNA032	no r	esults >1.	5% HM									
CNA033	13	16	3	9.86	13	16	3	9.86				
CNA034	14	17	3	3.72	15	16	1	7.42				
CNA035	14	18	4	5.98	15	18	3	7.35				
CNA036	not as	sayed										
CNA037	13	19	6	9.98	14	18	4	14.05	15	17	2	19.34
CNA038	13	15	2	1.95								
CNA039	13	16	3	5.17	13	16	3	5.17				
CNA040	9	12	3	4.69	10	12	2	5.76				
CNA041	10	12	2	1.66								
CNA042	no r	esults >1.	5% HM									
CNA043	10	13	3	5.12	10	12	2	6.63				
CNA044	7	14	7	11.52	8	13	5	15.32	8	10	2	28.37
CNA045	6	14	8	3.85	7	8	1	12.56				
CNA045					11	13	2	4.55				
CNA046	8	9	1	2.37								
CNA047	8	12	4	4.63	9	11	3	6.97				
CNA048	8	13	5	10.31	9	13	4	12.48	10	11	1	21.41
CNA049	8	13	5	9.19	9	13	4	10.88				
CNA050	9	13	4	8.08	9	12	3	10.09				
CNA051	8	14	6	4.70	9	13	4	6.11				
CNA052	9	14	5	4.22	11	13	2	7.87				
CNA053	11	13	2	1.61								
CNA054	7	12	5	1.99								
CNA055	no r	esults >1.	5% HM									
CNA056	11	15	4	3.60	13	15	2	4.53				
CNA057	8	15	7	8.33	8	10	2	13.07				
CNA057					12	15	3	9.27				
CNA058	11	16	5	7.75	11	16	5	7.75				
CNA059	12	19	7	4.59	12	14	2	4.12				
CNA059					17	19	2	9.21				
CNA060	13	17	4	6.54	14	17	3	7.94				
CNA061	14	18	4	2.20	17	18	1	3.55				
CNA062	no r	esults >1.	5% HM									
CNA063	12	18	6	12.08	13	18	5	14.19	14	16	2	20.82
CNA064	10	17	7	10.29	10	17	7	10.29				
CNA065	7	8	1	3.03	7	8	1	3.03				
CNA065	13	18	5	5.72	14	18	4	6.78				
CNA066	4	10	6	1.65								

										_		
CNA066	13	17	4	7.03	13	17	4	7.03				_
CNA067	12	15	3	5.18	13	15	2	6.95				
CNA068	5	17	12	2.05	12	13	1	4.17				
CNA069	10	16	6	2.34	14	15	1	3.62				
CNA070	no r	esults >1.	5% HM									
CNA071	13	15	2	2.69								
CNA072	13	16	3	1.86								
CNA073	12	20	8	2.94	13	14	1	3.34				
CNA073					17	19	2	5.93				
CNA074	17	23	6	8.40	18	22	4	11.52				
CNA075	16	24	8	12.35	16	23	7	13.74	17	19	2	26.20
CNA076	15	24	9	10.24	16	24	8	11.15	16	17	1	26.06
CNA077	17	24	7	4.19	20	24	4	5.31				
CNA078	18	24	6	7.08	18	24	6	7.08				
CNA079	11	18	7	3.23	12	14	2	5.28				
CNA079					17	18	1	4.76				
CNA080	11	21	10	5.98	11	13	2	5.83				
CNA080					14	18	4	8.81				
CNA080					19	21	2	4.93				
CNA081	16	20	4	7.83	17	20	3	9.62				
CNA082	16	20	4	6.42	18	20	2	10.44				
CNA083	13	21	8	9.04	14	21	7	10.11	16	18	2	20.32
CNA084	16	24	8	6.60	16	23	7	7.26				
CNA085	18	21	3	4.62	19	20	1	8.92				
CNA086	11	15	4	2.01								
CNA087	20	21	1	2.43								
CNA088	13	15	2	2.88	14	15	1	3.77				
CNA089	13	15	2	2.49	14	15	1	3.01				
CNA090	no r	esults >1.	5% HM									
CNA091	13	22	9	8.50	13	14	1	6.60				
CNA091					17	22	5	12.82	19	20	1	26.16
CNA092	14	22	8	13.82	14	22	8	13.82	15	18	3	24.46
CNA093	15	21	6	7.47	16	21	5	8.41				
CNA094	11	20	9	7.55	11	13	2	7.59				
CNA094					14	17	3	12.85	15	16	1	21.51
CNA094					19	20	1	6.25				
CNA095	11	18	7	7.92	11	18	7	7.92				
CNA096	22	24	2	2.47	23	24	1	3.22				
CNA097	15	22	7	1.83								
CNA098	15	23	8	19.01	16	23	7	21.43	16	17	1	34.52
CNA099	15	23	8	15.31	16	23	7	17.09	16	17	1	31.82
CNA100	12	15	3	2.97	13	14	1	4.10				
CNA100	17	24	7	8.21	18	24	6	9.14				
CNA101	14	24	10	5.21	15	16	1	4.56				

CNA101					17	21	4	6.88				
CNA101					22	24	2	6.39				
CNA102	14	17	3	2.00	14	15	1	3.14				
CNA103	no re	esults >1.	.5% HM									
CNA104	22	24	2	2.36	23	24	1	3.13				
CNA105	no re	esults >1.	.5% HM									
CNA106	25	32	7	5.11	25	27	2	3.43				
CNA106					28	31	3	8.30				
CNA107	24	34	10	5.89	24	26	2	4.78				
CNA107					28	34	6	7.92				
CNA108	26	34	8	10.70	26	34	8	10.70	28	29	1	33.74
CNA109	36	44	8	9.80	36	44	8	9.80				
CNA110	36	38	2	2.78								
CNA110	40	42	2	1.90								
CNA111	no re	esults >1.	.5% HM									
CNA112	32	44	12	7.31	33	44	11	7.84	38	39	1	29.20
CNA113	32	44	12	8.84	33	44	11	9.48	38	39	1	23.58
CNA114	32	33	1	2.21								
CNA114	35	36	1	1.80								
CNA114	39	44	5	3.46	41	43	2	5.78				
CNA115	40	43	3	3.27	41	42	1	5.11				
CNA116	40	42	2	2.45								
CNA117	39	49	10	7.00	40	49	9	7.52				
CNA118	43	47	4	3.03	46	47	1	6.54				
CNA119		esults >1.										
CNA120	39	47	8	4.57	42	47	5	6.23				
CNA121	39	47	8	5.10	42	45	3	10.73				
CNA122	37	48	11	7.23	39	47	8	10.19	42	43	1	22.09
CNA123	no re	esults >1.	.5% HM									
CNA124	44	48	4	5.45	45	48	3	6.31				
CNA125	40	46	6	4.52	43	45	2	9.10				
CNA126	38	41	3	2.35								
CNA127		esults >1.										
CNA128	24	28	4	2.86	25	27	2	3.77				
CNA129	no re	esults >1.	.5% HM									

Table 4 - JORC Code, 2012 Edition

Section 1 Sampling Techniques and Data

Criteria	JORC Code explanation	Commentary
Sampling techniques	 Nature and quality of sampling, measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used. 	 All air-core drill holes were routinely sampled at 1m intervals down hole. Samples were collected in situ at the drill site collecting 2kg to 3 kg per sample.

	 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Sample duplicates and company standards were inserted at random intervals. Twin drill holes were undertaken for approximately every 5th hole. Samples were submitted to internationally accredited ALS Metallurgical Laboratories in Perth for Heavy Mineral Sand (HMS) analysis
Drilling techniques	Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, facesampling bit or other type, whether core is oriented and if so, by what method, etc).	 Drilling was carried out using a Toyota Landcruiser mounted Mantis 80 drill rig. Standard features fitted to the rig include drill rod clamps, hydraulic rod bins, onboard water storage, hydraulic height adjustment of the cyclone and 6 x 6 all-wheel drive. The rig is capable of drilling NQ diameter holes to 120 metres and HQ diameter holes to 80 metres.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 An initial visual estimate of sample recovery was undertaken at the drill rig for each sample metre collected. Samples were panned and logged on site. Sample from each drilled metre has been retained in plastic trays and residual sample was collected and stored. Collected samples were weighed to ensure consistency of sample size and monitor sample recoveries. If there was no sampling issues, and no recovery issue or bias identified then it was considered that both sample recovery and quality was adequate for the drilling technique employed.
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All drill samples were geologically logged at the rig by the Company's geologists. Geological logging using an industry standardised logging system was used to record mineral and rock types and their abundance, as well as grain size, cementation and clay content. A sample of each sampled interval was panned at the rig for an in-field visual estimate of the Heavy Mineral content A small representative sample was retained in a plastic chip tray for future reference and logging checks.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being 	 All samples were riffle split at the drill rig. Duplicates were regularly taken to evaluate representativeness. Further sample preparation was undertaken at the ALS laboratories by experienced HMS specialists. At the laboratory, samples were weighed, dried and analysed for Heavy Mineral Sand content by microscope point counting methods. Residual sample material will be returned from the ALS laboratory under secure "chain of custody" procedure by ALS staff, registered transport courier and Broken Hill staff and will be stored in a secure location for possible future analysis. Sample sizes and laboratory preparation techniques are considered to be appropriate for this stage of exploration and the commodity being targeted.

	sampled.	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established. 	 Assaying, separation and point counting analysis for heavy mineral content was undertaken at ALS Laboratories Perth Point Counting is considered a "total" assay technique. No field non-assay analysis instruments are used in the analyses reported. A review of standard reference material is undertaken and checked for significant analytical bias or preparation errors in the reported analyses. Results of analyses for field sample duplicates are checked for consistency with the style of mineralisation evaluated and considered to be representative of the geological zones which were sampled. Internal laboratory QAQC checks are reported by the laboratory and a review of the QAQC reports suggests the laboratory is performing within acceptable limits. Check analyses will be undertaken by a separate commercial and accredited laboratory for independent checks.
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 All drill hole data was paper logged at the drill site and then digitally entered by Company geologists at the site office. All digital data is verified and validated by the Company's database consultant before loading into the drill hole database. Twinning of holes was undertaken in this program Reported drill results are compiled by the Company's geologists, verified by the Company's database administrator and Managing Director. No adjustments to assay data are made.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Drill hole collars were positioned using hand held GPS. Accuracy of a hand held GPS (+/- 5m) is considered appropriate for this level of exploration. Accurate drill collar heights (height above sea level) are yet to be determined. The surface is flat to gentle slopes and RL will be determined by independent survey.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Air-core holes are spaced at a nominal 20-40 metres along lines spaced at 250-500 metres. Drilling results reported in this program will be used in conjunction with historical drilling results to estimate mineral resources or reserves. Sample compositing is used in this program.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	Exploration is considered to be at a relatively advanced stage and, as such, knowledge on exact location of mineralisation and its relation to lithological and structural boundaries is relatively well known. The current hole orientation is considered appropriate for the program to reasonably assess the prospectivity of known strandline deposits of Heavy Mineral Sands interpreted from extensive historical drill data.
Sample security	The measures taken to ensure sample security.	 Air-core samples are taken to the ALS laboratory in Perth under secure "chain of custody" procedure by Broken Hill staff and registered transport couriers.

		 Samples are returned from the ALS laboratory under secure "chain of custody" procedure by ALS staff or transport courier and will be stored in a secure location.
		 The samples remaining after splitting were collected by Broken Hill staff and trucked to Broken Hill Prospecting's storage facilities in Broken Hill where they are stored under security for future reference.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	 A review of the Company's sampling techniques and data has been undertaken by independent geological consultants Geos Mining Limited. Geos Mining is based in Sydney and has significant local Heavy Mineral Sands exploration experience and will be engaged to undertake an independent resource estimate in accordance with the JORC 2012 code.

Section 2 Reporting of Exploration Results

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. 	 The drill holes reported in this report are all contained within the recently granted Copi exploration licence (EL8312) are held 100% by Broken Hill Prospecting Limited's wholly owned subsidiary company Broken Hill Minerals Pty Ltd. Private mining investment group Relentless Resources Limited (RRL) under Joint Venture with Broken Hill Prospecting is earning a 50% interest by expenditure of \$2m Broken Hill Prospecting is the Joint Venture and Project Manager. RRL's participation in the Joint Venture is purely as a passive investor level. RRL is not undertaking or involved with any of the fieldwork or associated future resource estimation activities. The Copi Exploration Licence is in good standing. The lease is held over privately held goat and sheep grazing terrain consisting of poor quality arid soils sustaining sparse shrubs and spinifex with limited tree cover. No naturally occurring surface freshwater is present. No native title interests, historical sites, wilderness or national park and environmental settings are located within the drill program area.
Exploration done by other parties	 Acknowledgment and appraisal of exploration by other parties. 	 The areas presently covered by the Copi Exploration Licence was extensively but not exhaustively by Iluka Resources in the 1990's and early 2000's. Exploration consisted of aeromagnetic surveys, prior to air-core drilling.
Geology	Deposit type, geological setting and style of mineralisation.	 The deposit style targeted for exploration is a Heavy Mineral Sand concentration formed within an ancient Miocene sea shore strandline. This style of mineralisation typically occurs as fine dark sand horizons within a beach sand sequence. This style of deposit is often found in close proximity to geological features associated with ancient coastlines. The deposits being targeted are all located within 50 metres of surface and located well above the current water table.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material 	 Drill collar elevations have not been recorded. They will be measured (as height above sea level in metres (RL)) by future surveys.

	drill holes:	 Easting and northing of drill hole collars were determined after the completion of drilling by handheld GPS. All air-core holes were drilled vertically. Down hole length of the hole is the distance from the surface to the end of the hole, as measured along the drill trace.
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 1.5% and 3% cut-off grades have been applied to the reported 1m down-hole intervals. No grade top cut off has had to be applied. Maximum internal dilution is 2m within a reported interval. No metal equivalent reporting is used or applied
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	 Mineralisation (deposit) geometry is accurately recorded and known and it has been deemed that the deposit with respect to the drill hole angle is optimal at 90 degrees. Mineralisation results reported as "downhole" widths are considered as true widths.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	 Completed drill hole location plans are provided in both table and map format. All holes are vertical. No sections are provided because insignificant results have been returned and until more data is available cross sections are meaningless.
Balanced reporting	 Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results. 	 Results have been reported with specific composited sample intervals, drill hole number and from to interval (metres).
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or	 No other exploration data that is considered meaningful and material has been omitted from this report

	contaminating substances.	
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	Further air-core drilling is likely to be required in order to allow a higher component of any future resource estimate to an elevated category. In addition it is anticipated trial mining and the extraction of a bulk sample will be undertaken during any feasibility study undertaken at the Copi North deposit.

-End of Announcement-