

2015 BluGlass Annual General Meeting

MONDAY 16 NOVEMBER 2015

THE YEAR IN REVIEW

George Venardos, Non-Executive Chairman

CORPORATE OVERVIEW

George Venardos Chairman

> Giles Bourne Managing Director

Bill Johnson Non Executive Director

Chandra Kantamneni Non Executive Director

Greg Cornelson

AWARDS & GRANTS 2013

Australian Cleantech Competition Winner & 2013 Australian Cleantech Competition Manufacturing Award

GLOBAL TOP 30

Finalist in GCCA Cleantech Later Stage Award

\$5M

Commercial Ready Grant

\$4.95M Climate Ready Grant

\$3M Cleantech Innovation Grant

TIMELINE Historical

BluGlass has made significant technical progress in bringing RPCVD towards commercialisation

-4-

HIGHLIGHTS 2015

PATENTS

Hardware & Process Patents

FOUNDRY UPDATE

Multiple foundry customers & a growing pipeline of new customers

Some customers have begun to trial RPCVD

BluGlass is now conducting foundry and custom epitaxy services for a variety of applications including green and blue LEDs, power electronics, and laser diodes

The foundry business continues to expose BluGlass to new and emerging applications that could benefit from a low temperature RPCVD technology

FINANCIAL PERFORMANCE

THE YEAR AHEAD

Giles Bourne, Managing Director

VEECO EVALUATION

RPCVD Evaluation

STATUS

Worlds largest MOCVD equipment manufacturer

/ Positive initial 2 inch trials for green LEDs / Now progressing to 4 inch trials and greater collaboration

NASDAQ: VECO

\$806M

Market cap

 / Initial materials evaluation of p-GaN for power electronics has also shown that p-GaN has the potential for significant performance advantage

TOP-TIER LED EVALUATION

TIER-1

LED COMPANY

EVALUATING RPCVD

FOR NOVEL LED APPLICATION

SUBJECT TO A CONFIDENTIALITY AGREEMENT

BLUGLASS LIMITED ANNUAL GENERAL MEETING 2015

RPCVD A Platform Technology

BluGlass is targeting the rapidly expanding LED, PV, and Power Electronics markets

Lighting Mobile devices & TVs Green & yellow LEDs UV LEDs

Consumer electronics Power Supply Data centers Auto

Focus on industrial scale solar power (concentrated photovoltaics)

PATH TO MARKET

END MARKETS LED

END USE, WORLD MARKETS: 2015-2024 4,500,000 4,000,000 3,500,000 Thousands 3,000,000 2,500,000 2,000,000 1,500,000 1,000,000 500,000 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 MODULES - AUTOMOTIVE MODULES - OUTDOOR MODULES - INDUSTRIAL MODULES - RESIDENTIAL 🛑 MODULES - COMMERCIAL 🛑 LAMPS - OUTDOOR) LAMPS - INDUSTRIAL 🔵 LAMPS - RESIDENTIAL 🛑 LAMPS - COMMERCIAL SOURCE: Navigant Research, LED Lighting: Global Outlook Report September 2015

UNIT SHIPMENTS OF LED LAMPS & MODULES BY

45%

The LED lighting market is anticipated to grow 45% per year through 2020

\$216B

Global revenue from LED lighting systems is expected to total **\$216** *billion* through to 2024

Source: Navigant Research

BLUGLASS LIMITED ANNUAL GENERAL MEETING 2015

END MARKETS Power Electronics

The Power Electronics markets also presents a growing opportunity for the RPCVD technology

IHS IMS RESEARCH FIGURE: GLOBAL MARKET FORECAST FOR SiC & GaN POWER SEMICONDUCTOR DEVICES (Revenue in Millions of US Dollars)

SOURCE: IHC Inc, The World Market for SiC & GaN Power Semiconductors, 2014

\checkmark

A wholly owned subsidiary of *Sumitomo Precision Products* (TSE:6355)

FACILITY & WORLD LEADING TEAM

CONCLUSION Investment Highlights

TECHNOLOGY REVIEW DR IAN MANN, CHIEF OPERATIONS & TECHNOLOGY OFFICER

KEY TECHNICAL HIGHLIGHTS

RPCVD for 3rd Party Applications — Industry driven development

KEY TECHNICAL HIGHLIGHTS

BLG-300 established best RPCVD results to date surpassing the BLG-180

Generated RPCVD awareness with latest p-GaN electrical properties and LED data

> Invited to present the benefits of **RPCVD** at SemiCon China, LED China Conference 2015

INDUSTRY **EVALUATIONS WITH** MARKET LEADERS

GREEN LED APPLICATION

2 KEY

MARKETS FOR GREEN LEDs: GENERAL LIGHTING & DISPLAYS (TVs/MOBILES/ PROJECTORS) An alternative to using a blue LED + yellow phosphor is to use three different LEDs: Red, Green, and Blue (**RGB**) that when mixed can produce both white light, or any colour required (see bottom left image)

30%

LOSS OF LED EFFICIENCY WHEN USING A PHOSPHOR However, today's green LEDs grown by MOCVD suffer from relative poor efficiency compared to blue LEDs, in part due to the poorer material quality of green LED structures.

This is where low temperature RPCVD comes in.

SOURCE: Laser Focus World "PHOTONIC FRONTIERS: RGB LEDS FOR ILLUMINATION: Color-tunable RGB LED lighting goes far beyond replacement bulbs", Aug 2013.

RPCVD p-GaN for LED APPLICATIONS (Blue, Green, Yellow)

LED Structure grown using MOCVD

p-GaN Grown using **RPCVD**

p-GaN grown at *INTERMEDIATE to HIGH* temperature

Multi-Quantum-Well (MQW) InGaN layer, the *active region* of an LED – grown at low temperature

n-GaN grown at *high temperature*

GaN grown at high temperature

Sapphire Substrate

p-GaN grown at *LOW* temperature

Multi-Quantum-Well (MQW) InGaN layer, the *active region* of an LED – grown at low temperature

n-GaN grown at high temperature

GaN grown at *high temperature*

Sapphire Substrate

MOCVD

RPCVI

MOCVD

RPCVD p-GaN for LED UPDATE

GREEN LED EL DATA	MOCVD LED	RPCVD LED	% Performance improvement of RPCVD compared to MOCVD
Light Output (mW)	1.3	1.6	+10%
$V_{f}(V)$	3.5	3.9	
Peak Wavelength (nm)	525	525	
FWHM (nm)	35	33	
BLUE LED EL DATA	MOCVD LED	RPCVD LED	% Performance improvement of RPCVD compared to MOCVD
BLUE LED EL DATA Light Output (mW)	MOCVD LED 3.0	RPCVD LED 2.8	% Performance improvement of RPCVD compared to MOCVD
BLUE LED EL DATA Light Output (mW) V _f (V)	MOCVD LED 3.0 4.0	RPCVD LED 2.8 3.9	% Performance improvement of RPCVD compared to MOCVD
BLUE LED EL DATA Light Output (mW) V _f (V) Peak Wavelength (nm)	MOCVD LED 3.0 4.0 469	RPCVD LED 2.8 3.9 470	% Performance improvement of RPCVD compared to MOCVD -4%

*MOCVD & RPCVD LED wafer test at 20mA using indium contacts. Best data point for each wafer used.

BluGlass has demonstrated internal results showing an **improvement in green LED performance** and is now working with Veeco to demonstrate similar performance on their wafers

FOUNDRY UPDATE

\$300K COMMITTED WORK FROM A US BASED CUSTOMER FOR CUSTOM LEDS (GREEN & BLUE)

GROWING NEW CUSTOMER PIPELINE

2 Specialty application LED Companies

Key strategy is to attract customers requiring MOCVD initially to test their applications with a path to incorporate the advantages of low temperature RPCVD as the technology continues to mature

1 Laser Diode Company wanting to try hybrid RPCVD/MOCVD Laser Diodes

1 Power Electronics Company

bluglass.com.au

