QUARTERLY REPORT for the period ending 30 September 2016
SEPTEMBER QUARTER HIGHLIGHTS

- Gold production of 9,254 ounces at an AISC of A\$1,235/oz
- Record quarterly processing throughput of 85,314 tonnes
- Quarterly revenue of $\$ 20.7$ million and Site EBITDA of $\$ 8.0$ million
- Exploration of Hera North Pod commenced

HERA OPERATIONS

- September quarter gold production of 9,254 ounces at an AISC of A\$1,235/oz
o Lower grade gold ore processed during the quarter (85,314 tonnes at $4 \mathrm{~g} / \mathrm{t}$ gold)
- Strong levels of lead-zinc concentrate production of 8,021 tonnes
o High base metal recoveries maintained ( $+90 \%$ )
- Focus on process debottlenecking achieving results with record throughput
o 14\% improvement on the prior quarter
o The month of September achieved annualised throughput of $+370,000 \mathrm{t} / \mathrm{y}$
- Continued improvement in quarterly gold recovery to $84.3 \%$, despite lower grades processed
- AISC of $\$ 1235 /$ oz impacted by delayed shipment (delay of by-product credits) of 5,710 dmt of bulk concentrate shipped in early October.
- Drilling to test the size and quality of the North Pod commenced at the end of the quarter.
- Significant intercepts returned from infill drilling the main areas of the deposit include:
o 15 metres at $23.9 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $5.8 \% \mathrm{~Pb}+\mathrm{Zn}$ (HRUD271) - $\mathrm{NSR}^{(1)}$ of $\$ 1,102 / \mathrm{t}$
o 9 metres at $17.5 \mathrm{~g} / \mathrm{t} \mathrm{Au}$ and $9.9 \% \mathrm{~Pb}+\mathrm{Zn}$ (HRUD310) - $\mathrm{NSR}^{(1)}$ of $\$ 858 / \mathrm{t}$
(1) NSR (Net Smelter Return) is a recoverable value per tonne calculation using the metal prices used in short term planning (approximately spot prices), using recovered metal and deducting the costs of royalty, shipping and treatment charges.

CORPORATE

- Site EBITDA (revenue less site operating costs) was $\$ 8.0$ million. Quarterly revenue of $\$ 20.7$ million included revenue from gold sold of 9,683 oz at an average spot price of A $\$ 1757 / 0 z$.
- Cash in bank increased by $\$ 0.8$ million to $\$ 22.4$ million at 30 September 2016 (with $\$ 3.5$ million restricted).
- Cash was impacted by one-third of the September months gold production being sold on the 30 September $(1,078 \mathrm{oz})$ with cash of $\$ 1.82 \mathrm{M}$ received in early October. Planned cash was further reduced by the delay in receiving provisional cash flow of $\$ 3.4$ million, relating to the delayed shipment of concentrate in the quarter.
- New Managing Director \&t CEO, Mr Jim Simpson, appointed 1 August 2016.
- Hedge position at quarter end of 7,350 ounces at a price of $A \$ 1782 /$ ounce.
- Maiden profit of $\$ 10.943$ million for the FY16 year announced during the quarter.


## HERA MINE NSW (100\%)

## HERA OPERATIONS SUMMARY

Operations performed strongly in the quarter despite lower grade processed. Increasing throughput and improving gold recovery is a major focus. Work on the gravity section of the processing plant yielded strong gains by the end of the quarter, with gravity gold recovery reaching record levels of $+50 \%$.

Mining performed strongly with a record level of ore mined. The mine has sufficient flexibility to meet the increased capacity of the plant.
Process throughput was a record for the quarter at 85,314 tonnes. This reflects efforts made in the continual debottlenecking of the plant. Summary quarterly production figures are tabulated below:

| Aurelia Metals Sep-16 Qtr Summary | Units | Dec Qtr FY16 | Mar Qtr FY16 | $\begin{gathered} \hline \text { Jun Qtr } \\ \text { FY16 } \end{gathered}$ | Sep Qtr FY17 | $\begin{aligned} & \hline \text { YTD } \\ & \text { FY17 } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Ore Mined | t | 74,946 | 81,087 | 75,927 | 88,890 | 88,890 |
| Mined Grade - Gold | $\mathrm{g} / \mathrm{t}$ | 5.33 | 6.62 | 6.96 | 4.21 | 4.21 |
| Mined Grade - Silver | $\mathrm{g} / \mathrm{t}$ | 14.6 | 12.4 | 16.0 | 12.5 | 12.45 |
| Mined Grade - Lead |  | 2.70\% | 2.15\% | 3.06\% | 2.19\% | 2.19\% |
| Mined Grade - Zinc |  | 2.71\% | 1.65\% | 3.31\% | 3.15\% | 3.15\% |
| Ore Processed | t | 71,703 | 83,522 | 74,665 | 85,314 | 85,314 |
| Processed Grade - Gold | g/t | 5.50 | 6.51 | 6.95 | 4.00 | 4.00 |
| Processed Grade - Silver | $\mathrm{g} / \mathrm{t}$ | 14.32 | 12.69 | 15.84 | 12.76 | 12.76 |
| Processed Grade - Lead |  | 2.65\% | 2.22\% | 3.04\% | 2.23\% | 2.23\% |
| Processed Grade - Zinc |  | 2.64\% | 1.80\% | 3.17\% | 3.27\% | 3.27\% |
| Gold recovery |  | 74.6\% | 81.2\% | 83.9\% | 84.3\% | 84.3\% |
| Silver recovery |  | 89.3\% | 85.2\% | 85.1\% | 84.3\% | 84.3\% |
| Lead recovery |  | 90.2\% | 87.6\% | 93.0\% | 93.2\% | 93.2\% |
| Zinc recovery |  | 93.3\% | 92.4\% | 92.5\% | 90.2\% | 90.2\% |
| Gold Production | oz | 9,432 | 14,184 | 14,035 | 9,254 | 9,254 |
| Silver Dore Production | Oz | 6,002 | 7,385 | 8,555 | 6,269 | 6,269 |
| Concentrate produced | DMT | 6,491 | 5,874 | 8,081 | 8,021 | 8,021 |
| Gold sold | Oz | 8,913 | 14,652 | 13,280 | 9,683 | 9,683 |
| Concentrate sold | dmt | 4,914 | 4,886 | 10,379 | 5,171 | 5,171 |
| Payable Lead sold | t | 1,230 | 1,195 | 2,585 | 1,064 | 1,064 |
| Payable Zinc sold | t | 907 | 931 | 1,690 | 1,052 | 1,052 |
| Payable Silver sold | oz | 3,580 | 4,722 | 6,164 | 0 | 0 |

## MINING

A total of 88,890 tonnes of ore was mined during the quarter at an average grade of $4.21 \mathrm{~g} / \mathrm{t}$ gold, $2.0 \%$ lead and $3 \%$ zinc. Lateral underground development achieved during the quarter was 726 metres ( 652 metres in the prior quarter). Unit costs are reducing due to the new mining contract and revised underground practicesi (unit costs/t of ore processed was $\$ 70 / \mathrm{t}$ ).

## DRILIING

Drilling during the quarter focused on three main areas of the Hera deposit:

- Beneath the existing reserve on Main Lens South and Hays South,
- Upper northern portion of the Far West Lens, and
- Testing the extent of the Hays North mineralization.

Results from the Hays North structure returned a number of wide high-grade intervals from areas outside the current Hera Reserve. These results have led to a re-interpretation in this area and are likely to provide additional tonnage to reserves.

Strong intersections from the Hays North structure include:

| Hole ID | Intercept <br> $\mathbf{( m )}$ | Est. true <br> width $(\mathbf{m})$ | $\mathbf{A u}(\mathbf{g} / \mathbf{t})$ | $\mathbf{A g}(\mathbf{g} / \mathbf{t})$ | $\mathbf{P b} \mathbf{Z n} \%$ | $\mathbf{N S R} \mathbf{\$ / \mathbf { t }}$ | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HRUD264 | 3.7 | 3.7 | 8.76 | 12 | 10.01 | 473 | Hays North |
| HRUD271 | 15 | 13.8 | 23.93 | 7 | 5.8 | 1103 | Hays North |
| HRUD272 | 20 | 19.4 | 3.26 | 10 | 5.68 | 194 | Hays North |
| HRUD304 | 7 |  | 4.51 | 41 | 25.56 | 446 | Hays North |
| HRUD305 | 12 |  | 6.65 | 35 | 18.78 | 459 | Hays North |
| HRUD308 | 11 |  | 1.96 | 23 | 13.14 | 211 | Hays North |
| HRUD312 | 6.2 |  | 0.59 | 51 | 15.58 | 174 | Hays North |
| HRUD314 | 5 |  | 10.13 | 6 | 0.78 | 451 | Hays North |
| HRUD323 | 14 |  | 4.41 | 9 | 1.85 | 212 | Hays North |

Drilling results in the upper sections of the Far West lens were sporadic, but included a number of very strong intersections including:

| Hole ID | Intercept <br> $\mathbf{( m )}$ | Est. true <br> width $(\mathbf{m})$ | $\mathbf{A u}(\mathbf{g} / \mathbf{t})$ | $\mathbf{A g}(\mathbf{g} / \mathbf{t})$ | $\mathbf{P b + Z n \%}$ | $\mathbf{N S R} \mathbf{\$ / \mathbf { t }}$ | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HRUD310 | 9 |  | 17.47 | 19 | 9.87 | 859 | Far West |
| Includes | 2 |  | 76 | 34 | 10.75 | 3427 | Far West |
| HRUD296 | 2 |  | 17.36 | 18 | 3.21 | 797 | Far West |

Drilling on the Main South and Hays South lenses was directed into marginal mineralisation below existing Reserves with a view to locating high grade zones. Drilling on Hays South returned the following significant result:

| Hole ID | Intercept <br> $\mathbf{( m )}$ | Est. true <br> width (m) | $\mathbf{A u}(\mathbf{g} / \mathbf{t})$ | $\mathbf{A g}(\mathbf{g} / \mathbf{t})$ | $\mathbf{P b}+\mathbf{Z n} \%$ | NSR \$/t | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HRUD286 | 6 |  | 16.91 | 7 | 4.07 | 780 | Hays South |

A number of strong gold intervals were also recorded from the Main Lens North. These are highlighted below, however it should be noted that many of these intersections do not represent the full width of the Main Lens, as they were collared from within ore drives.

| Hole ID | Intercept <br> $\mathbf{( m )}$ | Est. true <br> width (m) | Au (g/t) | Ag (g/t) | $\mathbf{P b + Z n \%}$ | NSR \$/t | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HRUD326 | 3 |  | 20.24 | 3 | 0.89 | 894 | Main North |
| HRUD327 | 2 |  | 37.8 | 7 | 1.06 | 1666 | Main North |
| HRUD328 | 3 |  | 33.66 | 6 | 1.31 | 1486 | Main North |
| HRUD329 | 3 |  | 9.45 | 1 | 0.24 | 416 | Main North |
| HRUD334 | 1.5 |  | 20.97 | 9 | 3.15 | 949 | Main North |

All gold results reported above are generated by 30 g Fire Assay. By practice, the Company re-assays all intervals $>0.5 \mathrm{~g} / \mathrm{t}$ Au by Screen Fire Assay (SFA), which is considered a more reliable technique for coarse gold. SFA results were not available at time of reporting.

- North Pod Exploration Drilling

Drilling of the bottom section of the North Pod commenced at the end of the quarter. No assays are available but visual inspection of at least two holes confirm high grade sphalerite-galena mineralization (zinc-lead) with visible gold has been intersected. Drilling is planned to continue over the December quarter.

Detailed results and hole collar positions for drilling the main areas of the Hera deposit are tabulated in Appendix 1. The position of the drilling, together with mine development as at 30 September, is presented in plan and 3D below.


Plan and 3D Mine Image showing underground drill holes (red), with mine development (grey), current Mining Inventory (blue) and areas mined to date (green)

Long section of drill locations are location in the Appendix to this report.

## PERMITTING

During the quarter, Aurelia received approval of a project modification required to extend the mining area to the north to provide for the eventual extraction of the North Pod mineralisation. The Mining Lease application will now be progressed along with the Mining Operations Plan.

## PROCESSING

A total of 85,314 tonnes of ore was processed during the quarter grading $4.00 \mathrm{~g} / \mathrm{t}$ gold, $2.2 \%$ lead and $3.3 \%$ zinc.

Process throughput increased to record levels with the reduction in base metal grades during the quarter and continued effort at debottlenecking the plant. Throughput reached an annualised rate of 370,000 t/y at the end of the quarter. Work on the filter press efficiency has allowed for increased throughput at current base metal ore grades.

Improvements to the gravity gold circuit continued in the September quarter. Gravity goldl recovery increased strongly and recovery rates of greater than $50 \%$ were achieved by the end of the quarter. These improvements have continued into early October. Total gold recovery improved marginally in the quarter to 84.3\%, with further improvement planned. The lead and zinc circuit continues to perform strongly, with 8,021 tonnes of concentrate produced.

Unit costs reduced to $\$ 73 /$ t of ore processed, due to increased throughput.

A single shipment of 5,171 dmt of bulk concentrate was completed during the quarter in the month of July 2016. An additional shipment was planned for late September, however, due to wet weather affecting trucking movements, this shipment was delayed until after quarter end, in early October. The weather had no other adverse impacts on production.

## CORPORATE

## FINANCIAL PERFORMANCE

Financial performance of the Hera operation is summarised in the table below. The quarterly AISC of \$1,235/oz increased due to reduced gold sales and the delay of a concentrate shipment in the next quarter (delay in recognizing the by-production credits completed on a sales basis).

| Aurelia Metals Sep-16 Qtr Summary | Units | Dec Qtr FY16 | Mar Qtr FY16 | $\begin{gathered} \text { Jun Qtr } \\ \text { FY16 } \\ \hline \end{gathered}$ | $\begin{gathered} \text { Sep Qtr } \\ \text { FY17 } \\ \hline \end{gathered}$ | $\begin{aligned} & \text { YTD } \\ & \text { FY17 } \\ & \hline \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Mining | \$/oz | 665 | 449 | 424 | 617 | 617 |
| Processing | \$/oz | 637 | 414 | 448 | 6.45 | 645 |
| Site Administration | \$/oz | 108 | 59 | 89 | 96 | 96 |
| Concentrate Transport \& Refining | \$/oz | 112 | 65 | 100 | 137 | 137 |
| Net Inventory adjustments | \$/oz | (156) | 51 | 27 | (258) | (258) |
| Royalties | \$/oz | 53 | 85 | 99 | 76 | 76 |
| Third party smelting, refining | \$/oz | 208 | 132 | 257 | 228 | 228 |
| Total By-Product Credits | \$/oz | (593) | (341) | (790) | (671) | (671) |
| Adjusted Operating Costs* | \$/oz | 1,035 | 914 | 655 | 870 | 870 |
| Corporate admin and other | \$/oz | 208 | 67 | 78 | 120 | 120 |
| Sustaining Capex | \$/oz | 105 | 171 | 344 | 245 | 245 |
| AISC (All-in Sustaining Cost)* | \$/oz | 1,348 | 1,153 | 1,076 | 1,235 | 1,235 |

* Operating Costs and AISC are calculated on gold sold with by-products credited on a sales basis. Base metal sales are approximately $30 \%$ of total sales and are accounted for as a by-product credit. The timing of $\mathrm{Pb}-\mathrm{Zn}$ shipments (approx. every 6 weeks) will create volatility in the Company's reported ASIC due to timing of base metal by-product credits and concentrate inventory movements.
All financials are preliminary and subject to change. Final revenue will be adjusted due to quotational period pricing, product inventory and smelter payable adjustments, where applicable. Cost data is preliminary and subject to final review and adjustment.

During the quarter, cash at bank increased by $\$ 0.8$ million to $\$ 22.4$ million as at 30 September 2016 ( $\$ 3.5$ million of cash in bank is unavailable and held as cash deposits for environmental bonds). The delayed shipment of concentrate, due to wet weather, reduced the planned quarter end cash balance by $\$ 3.4$ million (provisional payment received in early $0 c t$ ). In addition, around one-third of the September months gold production was sold on the 30 September $(1,078 \mathrm{oz})$ with cash of $\$ 1.82 \mathrm{M}$ received in early October. These timing differences will provide a positive cash flow benefit in the December quarter.

Hera EBITDA (provisional only and subject to final review) was $\$ 8.0$ million in the September 2016 quarter, compared with $\$ 13.7$ million in the previous quarter. Financial performance was impacted by reduced gold grade and reduced gold sales volumes, timing of concentrate sales, offset by a strong A\$ gold price and rising US\$ lead and zinc prices.

Aurelia net cash flow in the period was positive $\$ 0.8$ million. This was generated by Hera EBITDA of $\$ 8.0$ million, less $\$ 2.5$ million of mine development and processing capital, less $\$ 1.1$ million in corporate administration costs, minus a net $\$ 3.6$ million outflow from an increase in working capital \&t other (primarily an increase in concentrate stocks).

The Company generated sales of $\$ 20.7$ million (excluding interest). Gold sales totaled $\$ 17$ million from the sale of 9,683 oz of gold at an average price of $A \$ 1,757 /$ oz. Silver dore sales generated $\$ 0.2$ million. Net concentrate sales were $\$ 3.5$ million from the sale of $5,171 \mathrm{dmt}$ of concentrate in the period (parcel number 10) and final pricing adjustments on prior shipments.

Total drawn debt from the Glencore Finance Facility remained unchanged at $\$ 125$ million. The debt remains interest free with the first repayments not due until March 2018.

Net debt was \$102.6 million at 30 September 2016.
On the 19 September, the Company announced a maiden profit of $\$ 10.943$ million for the 12 months to 30 June 2016.

## MANAGEMENT

The Company's former Chief Executive Officer, Rimas Kairaitis resigned on 31 August 2016. Mr Kairaitis steered the Company since its formation in 2004 from an exploration company focused on tin prospects to a gold and base metal producer with the successful acquisition and development of the Hera Mine.

Jim Simpson was appointed Managing Director on 1 August 2016 and Chief Executive Officer on 1 September 2016. Mr Simpson is an experienced manager, specialising in underground metalliferous mining. The Board believes that Mr Simpson has the experience and skills required to provide the next stage of growth in Aurellia.

## GOLD FORWARD SALES

At quarter end the company's hedge position consisted of 7,350 ounces of gold at a price of $\mathrm{A} \$ 1782 /$ ounce with deliveries to January 2017. During the quarter, 7,600 oz were closed out for a gain of $\$ 248 \mathrm{k}(\$ 32 / \mathrm{oz}$ ) and additional hedge cover of 3,750 oz was entered into.

At favourable pricing levels, Aurelia will look to increase forward sales to cover a modest proportion of production over the next year.

CORPORATE INFORMATION: Aurelia Metals Limited ABN 37108476384

| ASX Code: AMI | Website: www.aureliametals.com | Email: office@ aureliametalls.com |
| :---: | :---: | :---: |
| Registered Office: | 2 Corporation Place Orange NSW | Tel: +61 (0)2 63635200 |
| Share Registry: | Security Transfer Registrars Pty Ltd | Tel: +61 (0)8 93152333 |
| Issued capital: | 388.0M ord. shares, 158M unlisted options, 0.3M unlisted perf. Rights. |  |
| Substantial Shareholders: | PacRoad 93.4M (24.1\%), Glencore 26.0M (6.7\%), Yunnan Tin 24.2M (6.2\%) |  |
| Directors: | Non-Executive Chairman: | Tony Wehby |
|  | Managing Director: | Jim Simpson |
|  | Non-Executive Directors: | Gary Comb, Paul Espie, Mike Menz |

## COMPETENT PERSONS STATEMENT - EXPLORATION RESULTS

The information in this report that relates to Exploration Results is based on information compiled by Rimas Kairaitis, who is a Member of the Australasian Institute of Mining and Metallurgy. Rimas Kairaitis has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves.' Mr Kairaitis consents to the imclusion in this report of the matters based on his information in the form and context in which it appears.

## APPENDIX 1 -DRILLING INFORMATION

Drilling - Collar Information:

| Hole | GDA_E | GDA_N | RL | Local RL | DIP | AZI_MGA | Depth m | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HRUD261 | 436348.458 | 6447291.27 | -115.732 | 9884.268 | -12.54 | 272.47 | 108.6 | Testing Main North |
| HRUD262 | 436348.503 | 6447291.86 | -112.216 | 9887.784 | 37.46 | 279.78 | 75.1 | Testing Main North |
| HRUD263 | 436348.513 | 6447291.87 | -113.309 | 9886.691 | 26.11 | 279.89 | 85.9 | Testing Main North |
| HRUD264 | 436348.521 | 6447291.88 | -114.121 | 9885.879 | 15.73 | 280.1 | 115.7 | Testing Main North and Far West |
| HRUD265 | 436348.552 | 6447291.91 | -115.355 | 9884.645 | -5.4 | 280.69 | 119 | Testing Main North and Far West |
| HRUD266 | 436348.811 | 6447291.81 | -115.683 | 9884.317 | -15.1 | 280 | 125.1 | Testing Main North and Far West |
| HRUD267 | 436348.904 | 6447291.8 | -116.009 | 9883.991 | -25.3 | 280.1 | 129.7 | Testing Main North and Far West |
| HRUD268 | 436348.351 | 6447297.72 | -112.919 | 9887.081 | 29.5 | 277.4 | 76.5 | Testing Main North and Far West |
| HRUD269 | 436349.23 | 6447290.3 | -115.88 | 9884.12 | -23.1 | 247.3 | 116.1 | Testing Main North and Far West |
| HRUD270 | 436349.235 | 6447290.26 | -115.599 | 9884.401 | -14.1 | 247 | 105 | Testing Main North, Hays North \& Far West |
| HRUD271 | 436348.789 | 6447290.85 | -116.039 | 9883.961 | -24.3 | 261.7 | 119.7 | Testing Main North, Hays North \&t Far West |
| HRUD272 | 436348.907 | 6447290.87 | -115.707 | 9884.293 | -16.4 | 261.6 | 110.4 | Testing Main North, Hays North \&t Far West |
| HRUD273 | 436469.004 | 6447139.12 | -100.354 | 9899.646 | -9.4 | 262.4 | 101.4 | Testing Hays South |
| HRUD274 | 436469.278 | 6447138.5 | -100.32 | 9899.68 | -9.22 | 246.61 | 107.5 | Testing Hays South |
| HRUD275 | 436469.861 | 6447137.17 | -99.61 | 9900.39 | 9 | 213.95 | 155.4 | Testing Hays South |
| HRUD276 | 436469.866 | 6447137.21 | -100.102 | 9899.898 | 0 | 213.98 | 153.5 | Testing Hays South |
| HRUD277 | 436470.023 | 6447136.9 | -100.522 | 9899.478 | -12 | 207.9 | 184.1 | Testing Hays South |
| HRUD278 | 436470.047 | 6447136.56 | -99.351 | 9900.649 | 12 | 204.91 | 170 | Testing Hays South |
| HRUD279 | 436470.201 | 6447136.55 | -100.556 | 9899.444 | -11 | 201.9 | 183 | Testing Hays South |
| HRUD280 | 436470.212 | 6447136.56 | -100.896 | 9899.104 | -19 | 201.9 | 186 | Testing Hays South |
| HRUD281 | 436470.504 | 6447136.33 | -99.682 | 9900.318 | 7 | 195.5 | 197.4 | Testing Hays South |
| HRUD282 | 436470.464 | 6447136.42 | -100.092 | 9899.908 | 0 | 196.42 | 197.35 | Testing Hays South |
| HRUD283 | 436470.551 | 6447136.48 | -100.483 | 9899.517 | -9 | 196.74 | 196.7 | Testing Hays South |
| HRUD284 | 436471 | 6447136 | -100.793 | 9899.207 | -17 | 196.77 | 200.4 | Testing Hays South |
| HRUD285 | 436471 | 6447136 | -99.792 | 9900.208 | 5 | 192.3 | 218.3 | Testing Hays South |
| HRUD286 | 436471 | 6447137 | -100.373 | 9899.627 | -7 | 192.2 | 220.3 | Testing Hays South |
| HRUD287 | 436471 | 6447136 | -100.693 | 9899.307 | -15 | 192.1 | 220.1 | Testing Hays South |
| HRUD288 | 436243 | 6447439 | -140.131 | 9859.869 | 33 | 286.86 | 85.3 | Testing Hays North and Far West |
| HRUD289 | 436243 | 6447439 | -142.104 | 9857.896 | 3 | 284.75 | 70 | Testing Hays North and Far West |
| HRUD290 | 466243 | 6447439 | -142.938 | 9857.062 | -22 | 284.77 | 85.05 | Testing Hays North and Far West |
| HRUD291 | 436243 | 6447439 | -143.653 | 9856.347 | -38 | 284.31 | 100 | Testing Hays North and Far West |
| HRUD292 | 436243 | 6447438 | -140.093 | 9859.907 | 39 | 242.34 | 75 | Testing Hays North and Far West |
| HRUD293 | 436243 | 6447437 | -142.067 | 9857.933 | 4 | 241.21 | 56.2 | Testing Hays North and Far West |
| HRUD294 | 436243 | 6447437 | -143.043 | 9856.957 | -29 | 241.65 | 76.8 | Testing Hays North and Far West |
| HRUD295 | 436243 | 6447437 | -143.494 | 9856.506 | -43 | 241.95 | 90 | Testing Hays North and Far West |
| HRUD296 | 436254 | 6447407 | -140.848 | 9859.152 | 35 | 267.5 | 80 | Testing Hays North and Far West |
| HRUD297 | 436254 | 6447407 | -142.53 | 9857.47 | 7 | 267.2 | 60 | Testing Hays North and Far West |
| HRUD298 | 436253 | 6447407 | -143.658 | 9856.342 | -28 | 267 | 71.6 | Testing Hays North and Far West |

Drilling - Collar Information:

| Hole | GDA_E | GDA_N | RL | Local RL | DIP | AZI_MGA | Depth m | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HRUD299 | 436253 | 6447407 | -144.308 | 9855.692 | -44 | 266.9 | 90.25 | Testing Hays North and Far West |
| HRUD300 | 436254.367 | 6447405.34 | -140.574 | 9859.426 | 37 | 223 | 75.1 | Testing Hays North and Far West |
| HRUD301 | 436254.283 | 6447405.3 | -142.531 | 9857.469 | 6.4 | 223.7 | 60 | Testing Hays North and Far West |
| HRUD302 | 436254.2 | 6447405 | -143.813 | 9856.187 | -31.2 | 225.9 | 65 | Testing Hays North and Far West |
| HRUD303 | 436267.419 | 6447368.08 | -141.634 | 9858.366 | 34.17 | 266.09 | 65.15 | Testing Hays North and Far West |
| HRUD304 | 436267.165 | 6447368.11 | -143.124 | 9856.876 | 7.37 | 267.06 | 53 | Testing Hays North and Far West |
| HRUD305 | 436267.091 | 6447368.1 | -144.083 | 9855.917 | -23.31 | 267.31 | 56.7 | Testing Hays North and Far West |
| HRUD306 | 436267.791 | 6447366.77 | -141.705 | 9858.295 | 31.65 | 229.81 | 55.2 | Testing Hays North and Far West |
| HRUD307 | 436267.685 | 6447366.74 | -143.124 | 9856.876 | 7.56 | 230.78 | 46 | Testing Hays North and Far West |
| HRUD308 | 436267.692 | 6447366.75 | -144.013 | 9855.987 | -20.57 | 231.03 | 52.6 | Testing Hays North and Far West |
| HRUD309 | 436289.982 | 6447357 | -66.277 | 9933.723 | -43.71 | 265.19 | 92.6 | Testing Hays North and Far West |
| HRUD310 | 436290.16 | 6447356.11 | -66.358 | 9933.642 | -39.65 | 241.44 | 85.9 | Testing Hays North and Far West |
| HRUD311 | 436289.973 | 6447357.13 | -66.56 | 9933.44 | -31 | 269.2 | 86.5 | Testing Hays North and Far West |
| HRUD312 | 436289.873 | 6447357.14 | -65.508 | 9934.492 | -9.5 | 269.6 | 73.6 | Testing Hays North and Far West |
| HRUD313 | 436289.879 | 6447357.18 | -64.817 | 9935.183 | 8.1 | 270.5 | 74.1 | Testing Hays North and Far West |
| HRUD314 | 436289.617 | 6447357.18 | -63.903 | 9936.097 | 23 | 270.3 | 77.1 | Testing Hays North and Far West |
| HRUD315 | 436289.784 | 6447358.06 | -66.158 | 9933.842 | -27 | 291 | 102 | Testing Hays North and Far West |
| HRUD316 | 436289.783 | 6447358.08 | -65.241 | 9934.759 | 0 | 292 | 94.1 | Testing Hays North and Far West |
| HRUD317 | 436289.797 | 6447358.11 | -64.795 | 9935.205 | 9 | 292.2 | 100.7 | Testing Hays North and Far West |
| HRUD318 | 436289.737 | 6447357.93 | -65.646 | 9934.354 | -12 | 288.9 | 87.3 | Testing Hays North and Far West |
| HRUD319 | 436290.205 | 6447355.63 | -65.752 | 9934.248 | -16 | 232 | 73.7 | Testing Hays North and Far West |
| HRUD320 | 436290.063 | 6447355.49 | -64.722 | 9935.278 | 9 | 231.41 | 68.2 | Testing Hays North and Far West |
| HRUD321 | 436289.911 | 6447355.37 | -62.729 | 9937.271 | 35 | 231.48 | 79.1 | Testing Hays North and Far West |
| HRUD322 | 436289.774 | 6447357.65 | -65.251 | 9934.749 | 0 | 282.3 | 92.5 | Testing Hays North and Far West |
| HRUD323 | 436290 | 6447358 | -64.496 | 9935.504 | 14 | 282.69 | 88.6 | Testing Hays North and Far West |
| HRUD324 | 436290 | 6447357 | -65.316 | 9934.684 | -3 | 256.91 | 77.1 | Testing Hays North and Far West |
| HRUD325 | 436290 | 6447356 | -63.955 | 9936.045 | 23 | 250.44 | 83.05 | Testing Hays North and Far West |
| HRUD326 | 436299 | 6447308 | -66.989 | 9933.011 | -40 | 241.2 | 76.2 | Testing Hays North and Far West |
| HRUD327 | 436299 | 6447309 | -66.696 | 9933.304 | -34 | 255.6 | 73.1 | Testing Hays North and Far West |
| HRUD328 | 436299 | 6447309 | -66.127 | 9933.873 | -10 | 255.6 | 60.3 | Testing Hays North and Far West |
| HRUD329 | 436300 | 6447307 | -67.055 | 9932.945 | -29 | 215.3 | 77.4 | Testing Hays North and Far West |
| HRUD330 | 436300 | 6447307 | -66.175 | 9933.825 | -8 | 215.2 | 76.3 | Testing Hays North and Far West |
| HRUD331 | 436300 | 6447307 | -64.402 | 9935.598 | 21 | 215.5 | 68 | Testing Hays North and Far West |
| HRUD333 | 436299 | 6447310 | -64.214 | 9935.786 | 31 | 282.1 | 71.2 | Testing Hays North and Far West |
| HRUD334 | 436299 | 6447310 | -66.153 | 9933.847 | -11 | 276.8 | 72.6 | Testing Hays North and Far West |
| HRUD335 | 436299 | 6447310 | -65.696 | 9934.304 | 3 | 293.2 | 77.8 | Testing Hays North and Far West |
| HRUD336 | 436299 | 6447310 | -64.518 | 9935.482 | 26 | 293.21 | 81.6 | Testing Hays North and Far West |

Drilling: Results (Au assays in red are screen fire assay, remainder 30 g fire assay)

| Hole ID | From (m) | To (m) | Intercept (m) | Est. true width ( m ) | $\mathrm{Au}(\mathrm{g} / \mathrm{t})$ | $\mathrm{Ag}(\mathrm{g} / \mathrm{t})$ | $\mathrm{Pb}+\mathrm{Zn} \%$ | NSR \$/t | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HRUD261 | 41 | 49 | 8 | 8 | 0.76 | 10 | 4.75 | 77 | Main North |
| HRUD261 | 66 | 80 | 14 |  | 2.75 | 13 | 11.01 | 230 | Hays North |
| HRUD261 | 81 | 104 | 23 |  | 0.36 | 20 | 10.25 | 115 | Far West |
| HRUD262 | 41.9 | 49 | 7.1 | 5.7 | 0.38 | 9 | 4.38 | 59 | Main North |
| HRUD263 | 38 | 58 | 20 | 18 | 0.56 | 11 | 2.74 | 51 | Main North |
| HRUD263 | 69 | 77 | 8 |  | 0.77 | 4 | 2.9 | 61 | Hays North |
| HRUD264 | 57 | 62 | 5 | 5 | 0.68 | 18 | 5.14 | 77 | Main North |
| HRUD264 | 65 | 83 | 18 |  | 2.1 | 5 | 3.85 | 127 | Hays North |
| Includes | 66 | 69.7 | 3.7 | 3.7 | 8.76 | 12 | 10.01 | 473 | Hays North |
| HRUD264 | 85 | 103 | 18 | 18 | 0.35 | 14 | 6.57 | 78 | Far West |
| HRUD265 | 41 | 53 | 12 | 12 | 2.1 | 13 | 5.28 | 142 | Main North |
| HRUD265 | 69 | 100 | 31 | 31 | 0.75 | 24 | 9.04 | 120 | Far West |
| HRUD266 | 43 | 56 | 13 | 13 | 2.15 | 13 | 8.75 | 175 | Main North |
| HRUD266 | 69 | 72 | 3 | 3 | 0.02 | 3 | 2.54 | 25 | Hays North |
| HRUD266 | 81 | 105 | 24 | 23 | 0.47 | 29 | 12.51 | 143 | Far West |
| HRUD267 | 54 | 62 | 8 | 7.5 | 2.54 | 12 | 6.27 | 165 | Main North |
| HRUD267 | 68 | 72 | 4 | 3.7 | 0.1 | 1 | 0.31 | 8 | Hays North |
| HRUD267 | 96 | 112 | 16 |  | 0.59 | 20 | 12.17 | 144 | Far West |
| HRUD268 | 46 | 50 | 4 | 3.6 | 2.34 | 28 | 2.71 | 136 | Main North |
| HRUD268 | 57 | 65 | 8 | 7.4 | 0.29 | 4 | 1.38 | 25 | Hays North |
| HRUD268 | 69 | 74.75 | 5.8 | 5.4 | 1.23 | 7 | 6.2 | 113 | Far West |
| HRUD269 | 42 | 54 | 12 | 11.4 | 2.39 | 7 | 5.1 | 152 | Main North |
| HRUD269 | 71 | 73 | 2 | 1.9 | 0.75 | 10 | 6.32 | 92 | Hays North |
| HRUD269 | 87 | 89 | 2 | 1.9 | 0.72 | 7 | 5.82 | 88 | Far West |
| HRUD270 | 38 | 50.5 | 12.5 | 12.1 | 2.01 | 14 | 7.8 | 160 | Main North |
| HRUD270 | 64 | 66 | 2 | 1.9 | 0.03 | 6 | 3.4 | 31 | Hays North |
| HRUD270 | 79 | 83 | 4 |  | 0.79 | 16 | 7.2 | 99 | Far West |
| HRUD271 | 44 | 50 | 6 | 5.5 | 7.14 | 11 | 6.75 | 375 | Main North |
| HRUD271 | 60 | 75 | 15 | 13.8 | 23.93 | 7 | 5.8 | 1103 | Hays North |
| HRUD271 | 83 | 98 | 15 | 13.8 | 1.48 | 30 | 13.12 | 193 | Far West |
| HRUD272 | 40 | 49 | 9 | 8.7 | 2.2 | 9 | 3.59 | 130 | Main North |
| HRUD272 | 53 | 73 | 20 | 19.4 | 3.26 | 10 | 5.68 | 194 | Hays North |
| HRUD272 | 78.6 | 96 | 14.4 | 14.2 | 0.31 | 17 | 8.46 | 96 | Far West |
| HRUD273 | 88 | 90 | 2 | 2 | 0.39 | 19 | 18.17 | 201 | Main South |
| HRUD274 | 89 | 91 | 2 | 2 | 0.03 | 9 | 4.18 | 40 | Main South |
| HRUD275 | 111 | 115 | 4 | 4 | 1.13 | 5 | 4.47 | 94 | Main South |
| HRUD275 | 125 | 135 | 10 | 9.9 | 0.36 | 9 | 4.58 | 59 | Hays South |
| HRUD276 | 110 | 112 | 2 | 2 | 1.6 | 11 | 7.53 | 143 | Main South |
| HRUD276 | 128 | 133 | 5 | 5 | 0.1 | 9 | 4.84 | 50 | Hays South |
| HRUD277 | 115 | 116 | 1 | 1 | 0.05 | 7 | 2.52 | 27 | Main South |
| HRUD277 | 169 | 173 | 4 | 4 | 0.22 | 3 | 3.77 | 46 | Hays South |
| HRUD278 | 100 | 101 | 1 | 1 | 0.06 | 7 | 3.05 | 32 | Main South |
| HRUD278 | 144 | 151 | 7 | 7 | 1.48 | 12 | 6.58 | 125 | Hays South |
| HRUD280 | 120 | 123 | 3 | 2.8 | 0.02 | 2 | 0.6 | 7 | Main South |
| HRUD282 | 181 | 182 | 1 | 1 | 8.68 | 1 | 0.39 | 384 | Hays South |
| HRUD284 | 157 | 158 | 1 | 1 | 0.28 | 5 | 2.56 | 38 | Hays South |
| HRUD285 | 167 | 172 | 5 | 5 | 0.02 | 9 | 5.07 | 47 | Main South |
| HRUD285 | 207 | 209 | 2 | 2 | 0.02 | 17 | 7.36 | 70 | Hays South |
| HRUD286 | 165 | 172 | 7 |  | 0.15 | 2 | 0.57 | 12 | Main South |
| HRUD286 | 199 | 205 | 6 |  | 16.91 | 7 | 4.07 | 780 | Hays South |
| HRUD288 | 19 | 21 | 2 |  | 1.4 | 1 | 0.07 | 62 | Main North |
| HRUD288 | 35 | 38 | 3 |  | 0.04 | 13 | 6.39 | 64 | Hays North |
| HRUD288 | 59 | 62 | 3 |  | 0.76 | 4 | 0.71 | 41 | Far West |


| Hole ID | From (m) | To (m) | Intercept (m) | Est. true width (m) | $\mathrm{Au}(\mathrm{g} / \mathrm{t})$ | $\mathrm{Ag}(\mathrm{g} / \mathrm{t})$ | Pb+Zn\% | NSR \$/t | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HRUD289 | 26 | 36 | 10 |  | 1.8 | 8 | 4.41 | 121 | Main North |
| HRUD289 | 56 | 58 | 2 |  | 0.58 | 37 | 9.72 | 123 | Far West |
| HRUD290 | 26 | 38 | 12 |  | 0.17 | 18 | 7.34 | 80 | Main North |
| HRUD290 | 45 | 48 | 3 |  | 0.48 | 27 | 9.47 | 106 | Hays North |
| HRUD290 | 62 | 70 | 8 |  | 0.62 | 10 | 5.17 | 77 | Far West |
| HRUD291 | 42 | 49 | 7 |  | 0.46 | 9 | 5 | 68 | Hays North |
| HRUD291 | 61 | 88 | 27 |  | 0.88 | 18 | 6.21 | 102 | Far West |
| HRUD291 | 61 | 72 | 11 |  | 1.14 | 21 | 9.42 | 140 | Far West |
| And | 80 | 88 | 8 |  | 1.35 | 32 | 7.33 | 143 | Far West |
| HRUD292 | 19 | 21 | 2 |  | 0.28 | 7 | 1.98 | 32 | Main North |
| HRUD292 | 30 | 35 | 5 |  | 0.08 | 11 | 5.13 | 53 | Hays North |
| HRUD292 | 50.6 | 57 | 6.4 |  | 1.48 | 41 | 14 | 205 | Far West |
| HRUD293 | 20.8 | 21.7 | 0.9 |  | 0.32 | 40 | 12.64 | 132 | Main North |
| HRUD293 | 28 | 30 | 2 |  |  | 6 | 2.13 | 21 | Hays North |
| HRUD294 | 23 | 38 | 15 |  | 0.12 | 12 | 5.12 | 56 | Far West |
| HRUD295 | 27 | 29 | 2 |  | 2.09 | 6 | 2.81 | 118 | Main North |
| HRUD295 | 35 | 41 | 6 |  | 0.2 | 6 | 3.45 | 42 | Hays North |
| HRUD295 | 52 | 53 | 1 |  | 0.18 | 5 | 2.45 | 33 | Far West |
| HRUD296 | 31 | 35 | 4 |  | 0.11 | 8 | 2.8 | 33 | Main North |
| HRUD296 | 42 | 46 | 4 |  | 0.02 | 6 | 4.22 | 42 | Hays North |
| HRUD296 | 49 | 55 | 6 |  | 5.8 | 11 | 2.07 | 278 | Far West |
| Includes | 49 | 51 | 2 |  | 17.36 | 18 | 3.21 | 797 | Far West |
| HRUD297 | 19 | 26 | 7 |  | 0.6 | 19 | 4 | 69 | Main North |
| HRUD297 | 36 | 38 | 2 |  | 0.09 | 7 | 3.31 | 37 | Hays North |
| HRUD297 | 40 | 42 | 2 |  |  | 15 | 7.02 | 68 | Far West |
| HRUD298 | 24 | 34 | 10 |  | 0.3 | 24 | 7.34 | 83 | Hays North |
| HRUD298 | 35 | 42 | 7 |  | 0.1 | 8 | 3.01 | 34 | Far West |
| HRUD299 | 12 | 16 | 4 |  | 1.37 |  | 0.06 | 60 | Main North |
| HRUD299 | 28 | 38 | 10 |  | 3.76 | 23 | 7.81 | 242 | Hays North |
| HRUD299 | 41 | 52 | 11 |  | 1.95 | 25 | 7.57 | 165 | Far West |
| HRUD300 | 22 | 23 | 1 |  | 0.08 | 76 | 7.42 | 95 | Main North |
| HRUD300 | 25 | 37 | 12 |  | 3.46 | 27 | 6.84 | 222 | Hays North |
| HRUD300 | 46 | 59 | 13 |  | 2.02 | 21 | 6.37 | 154 | Far West |
| HRUD301 | 5 | 10 | 5 |  | 0.05 | 11 | 5.44 | 56 | Main North |
| HRUD301 | 17 | 30 | 13 |  | 0.51 | 10 | 1.1 | 37 | Hays North |
| HRUD301 | 38 | 47 | 9 |  | 0.14 | 14 | 5.46 | 60 | Far West |
| HRUD302 | 10 | 15 | 5 |  | 0.05 | 7 | 2.25 | 23 | Main North |
| HRUD302 | 25 | 41 | 16 |  | 2.03 | 18 | 6.56 | 153 | Hays North |
| HRUD302 | 44 | 51 | 7 |  | 1.26 | 16 | 8.93 | 142 | Far West |
| HRUD303 | 32 | 39 | 7 |  | 0.09 | 9 | 3.97 | 42 | Hays North |
| HRUD303 | 41 | 56 | 15 |  | 2.72 | 19 | 8.31 | 201 | Far West |
| HRUD304 | 26 | 33 | 7 |  | 4.51 | 41 | 25.56 | 446 | Hays North |
| HRUD304 | 37 | 42 | 5 |  | 0.31 | 16 | 4.69 | 61 | Far West |
| HRUD305 | 26 | 38 | 12 |  | 6.65 | 35 | 18.78 | 459 | Hays North |
| HRUD305 | 43 | 47 | 4 |  | 0.03 | 8 | 3.96 | 40 | Far West |
| HRUD306 | 36 | 47 | 11 |  | 1.07 | 16 | 5.02 | 96 | Hays North |
| HRUD307 | 27 | 37 | 10 |  | 0.44 | 12 | 4.25 | 61 | Hays North |
| HRUD308 | 28 | 39 | 11 |  | 1.96 | 23 | 13.14 | 211 | Hays North |
| HRUD308 | 44 | 51 | 7 |  | 0.09 | 6 | 2.73 | 31 | Far West |
| HRUD309 | 64 | 76 | 12 |  | 0.39 | 11 | 5.28 | 69 | Hays North |
| HRUD309 | 84 | 88.5 | 4.5 |  | 0.14 | 6 | 3.54 | 41 | Far West |
| HRUD310 | 67 | 76 | 9 |  | 17.47 | 19 | 9.87 | 859 | Far West |
| HRUD310 | 74 | 76 | 2 |  | 76 | 34 | 10.75 | 3427 | Far West |
| HRUD311 | 41 | 45 | 4 |  | 0.2 | 5 | 2.75 | 35 | Main North |


| Hole ID | From (m) | To (m) | Intercept (m) | Est. true width (m) | $\mathrm{Au}(\mathrm{g} / \mathrm{t})$ | $\mathrm{Ag}(\mathrm{g} / \mathrm{t})$ | Pb+Zn\% | NSR \$/t | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HRUD311 | 56 | 59 | 3 |  | 0.13 | 13 | 6.78 | 71 | Hays North |
| HRUD311 | 64 | 73 | 9 |  | 0.34 | 8 | 4.73 | 62 | Far West |
| HRUD312 | 25 | 28.5 | 3.5 |  | 0.52 | 14 | 8.39 | 106 | Main North |
| HRUD312 | 44.3 | 50.5 | 6.2 |  | 0.59 | 51 | 15.58 | 174 | Hays North |
| HRUD312 | 55 | 59 | 4 |  | 0.16 | 10 | 4.52 | 52 | Far West |
| HRUD313 | 22 | 25 | 3 |  | 0.31 | 6 | 2.48 | 38 | Main North |
| HRUD313 | 31.4 | 49 | 17.6 |  | 0.48 | 5 | 1.29 | 34 | Hays North |
| HRUD313 | 67 | 69 | 2 |  | 0.12 | 34 | 15.31 | 166 | Far West |
| HRUD314 | 23 | 25 | 2 |  | 0.26 | 23 | 12.42 | 133 | Main North |
| HRUD314 | 41 | 46 | 5 |  | 10.13 | 6 | 0.78 | 451 | Hays North |
| HRUD314 | 64 | 66 | 2 |  | 0.05 | 54 | 4.23 | 68 | Far West |
| HRUD315 | 29 | 31 | 2 |  | 0.48 | 7 | 3.21 | 52 | Main North |
| HRUD315 | 50 | 71 | 21 |  | 1.17 | 11 | 4.17 | 92 | Hays North |
| HRUD315 | 77 | 93 | 16 |  | 0.65 | 10 | 3.56 | 65 | Far West |
| HRUD316 | 37 | 45 | 8 |  | 2.27 | 7 | 2.06 | 120 | Hays North |
| HRUD316 | 71 | 73.1 | 2.1 |  | 0.06 | 21 | 10.23 | 102 | Far West |
| HRUD317 | 36 | 38 | 2 |  | 2.15 | 20 | 4.2 | 134 | Main North |
| HRUD317 | 48 | 60 | 12 |  | 0.1 | 6 | 1.85 | 23 | Hays North |
| HRUD317 | 86 | 88 | 2 |  | 0.3 | 29 | 0.94 | 39 | Far West |
| HRUD318 | 41 | 45 | 4 |  | 2.42 | 1 | 0.26 | 108 | Main North |
| HRUD318 | 48 | 62 | 14 |  | 0.67 | 9 | 4.33 | 72 | Hays North |
| HRUD318 | 77 | 83.5 | 6.5 |  | 0.03 | 12 | 5.73 | 60 | Far West |
| HRUD319 | 33 | 39 | 6 |  | 1.92 | 22 | 8.28 | 162 | Main North |
| HRUD319 | 49 | 51 | 2 |  | 0.18 | 6 | 5.15 | 60 | Hays North |
| HRUD319 | 58 | 63 | 5 |  | 0.5 | 9 | 3.74 | 60 | Far West |
| HRUD320 | 26 | 41 | 15 |  | 0.92 | 11.78 | 3.23 | 72 | Hays North |
| HRUD320 | 53 | 57 | 4 |  | 0.54 | 29 | 10.54 | 128 | Far West |
| HRUD321 | 18 | 23 | 5 |  | 0.11 | 23 | 6.87 | 70 | Main North |
| HRUD321 | 27 | 38 | 11 |  | 4.5 | 7 | 4.93 | 243 | Hays North |
| HRUD321 | 46 | 50 | 4 |  | 0.08 | 8 | 3.21 | 33 | Far West |
| HRUD322 | 22 | 25 | 3 |  | 0.26 | 8 | 4.8 | 57 | Main North |
| HRUD322 | 35 | 55 | 20 |  | 0.83 | 10 | 2.98 | 66 | Hays North |
| HRUD322 | 66 | 75 | 9 |  | 0.17 | 7 | 3.06 | 37 | Far West |
| HRUD323 | 22 | 25 | 3 |  | 1.96 | 13 | 5.12 | 137 | Main North |
| HRUD323 | 36 | 50 | 14 |  | 4.41 | 9 | 1.85 | 212 | Hays North |
| HRUD323 | 76 | 78 | 2 |  | 0 | 37 | 5.11 | 66 | Far West |
| HRUD324 | 36 | 51 | 15 |  | 0.23 | 14 | 4.22 | 51 | Hay North |
| HRUD324 | 57 | 64 | 7 |  | 0.02 | 3 | 1.88 | 20 | Far West |
| HRUD325 | 22 | 40 | 18 |  | 1.28 | 7 | 2.19 | 77 | Hays North |
| HRUD325 | 59 | 66 | 7 |  | 0.07 | 7 | 3.11 | 34 | Far West |
| HRUD326 | 1 | 4 | 3 |  | 20.24 | 3 | 0.89 | 894 | Main North |
| HRUD326 | 20 | 31 | 11 |  | 0.8 | 4 | 3.42 | 67 | Hays North |
| HRUD326 | 46 | 52 | 6 |  | 0.68 | 31 | 7.78 | 111 | Far West |
| HRUD327 | 2 | 4 | 2 |  | 37.8 | 7 | 1.06 | 1666 | Main North |
| HRUD327 | 17 | 23 | 6 |  | 0.43 | 2 | 2.08 | 38 | Hays North |
| HRUD327 | 47 | 54 | 7 |  | 0.29 | 14 | 6.29 | 71 | Far West |
| HRUD328 | 1 | 4 | 3 |  | 33.66 | 6 | 1.31 | 1486 | Main North |
| HRUD328 | 16 | 35 | 19 |  | 0.31 | 6 | 4.94 | 61 | Hays North |
| HRUD328 | 42 | 45 | 3 |  | 1.24 | 6 | 3.81 | 92 | Far West |
| HRUD329 | 2 | 5 | 3 |  | 9.45 | 1 | 0.24 | 416 | Main North |
| HRUD329 | 32 | 35 | 3 |  | 2.79 | 46 | 10.89 | 220 | Hays North |
| HRUD329 | 53 | 64 | 11 |  | 0.02 | 2 | 0.79 | 9 | Far West |
| HRUD330 | 19 | 27 | 8 |  | 0.03 | 4 | 1.87 | 19 | Hays North |
| HRUD330 | 46 | 56 | 10 |  | 0 | 3 | 1.26 | 13 | Far West |


| Hole ID | From $(\mathrm{m})$ | To $(\mathrm{m})$ | Intercept <br> $(\mathrm{m})$ | Est. true <br> width $(\mathrm{m})$ | $\mathrm{Au}(\mathrm{g} / \mathrm{t})$ | $\mathrm{Ag}(\mathrm{g} / \mathrm{t})$ | $\mathrm{Pb}+\mathrm{Zn} \%$ | $\mathrm{NSR} \$ / \mathrm{t}$ | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| HRUD331 | 22 | 26 | 4 |  | 0.04 | 4 | 1.49 | 17 | Hays North |
| HRUD331 | 41 | 46 |  |  | 0.01 | 4 | 2.24 | 22 | Far West |
| HRUD333 | 20 | 24 | 4 |  | 1.94 | 9 | 5.98 | 130 | Hays North |
| HRUD333 | 44 | 50 | 6 |  | 0.08 | 45 | 5.88 | 72 | Far West |
| HRUD334 | 2 | 3.5 | 1.5 |  | 20.97 | 9 | 3.15 | 949 | Main North |
| HRUD334 | 14 | 38 | 24 |  | 1.74 | 5 | 1.83 | 93 | Hays North |
| HRUD334 | 40 | 57 | 17 |  | 0.52 | 15.2 | 5.98 | 81 | Far West |
| HRUD335 | 2 | 6 | 4 |  | 2.99 | 8 | 3.29 | 161 | Main North |
| HRUD335 | 15 | 28 | 13 |  | 0.21 | 8 | 3.48 | 40 | Hays North |
| HRUD335 | 46 | 51 | 5 |  | 1.02 | 53 | 5.6 | 119 | Far West |
| HRUD336 | 2 | 4 | 2 |  | 0.66 | 9 | 5.72 | 81 | Main North |
| HRUD336 | 33 | 40 | 7 |  | 1.04 | 18 | 8.23 | 122 | Hays North |
| HRUD336 | 48 | 56 | 8 |  | 8.09 | 19 | 2.42 | 383 | Far West |

LONG SECTION OF FAR WEST DRILL LOCATIONS
(NOTE: MINE DEVELOPMENT IS ON THE MAIN ZONE LOCATED APPROX. 50-100 METRES EAST OF DRILL LOCATIONS)



## JORC CODE 2012 TABLE 1

Section 1 Sampling Techniques and Data - Hera Project -Underground Delineation Drilling

| Criteria and Explanation | Commentary |
| :---: | :---: |
| Criteria: Sampling techniques |  |
| Natureand quality of sampling (eg cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should notbe taken as limiting the broad meaning of sampling. | Sampling is by sawn half core HQ ,NQ, LTK60 core or quarter PQ core. Nominal sample intervals are 1 m with a range from 0.5 m to 1.5 m . Samples are transported to ALS Chemex Orange for preparation and assay |
| Include reference to measures taken to ensure sample representivity and the approoriate calibration of any measurement tools or systems used. | Assay standards or blanks are inserted at least every 40 samples. Silica flush samples are employed after each occurrence of visible gold. During resource drill out programmes duplicate splits of the coarse reject fraction of the crushed core are assayed every 20 samples. |
| Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrantdisclosure of detailed information. | Diamond drilling was used to obtain core samples of nominally 1 m , but with a range between $0.5-1.5 \mathrm{~m}$. Core samples are cut in half, dried, crushed and pulverised to $85 \%$ passing 75 microns. This is considered to appropriately homogenise the sample. 30 g fire assay with AAS finish, (Method Au - AA25) with a detection level of 0.01 ppm . For Base Metals a 0.5 g charge is dissolved using Aqua Regia Digestion (Method ICP41-A.ES) with detection levels of: Ag$0.2 p p m$, As-2ppm, Cu-1ppm, Fe-0.01\%, Pb-2ppm, S-0.01\%, Zn-2ppm. Overlimit analysis is by 0G46- Aqua Regia Digestion with ICP-AES finish. Coarse gold samples greater than $0.5 \mathrm{~g} / \mathrm{t}$ were reassayed by screen fire assay (Method AuSCR22) using the entire sample. |
| Criteria: Drilling techniques |  |
| Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple orstandard tube, depth ofdiamond tails, face-sampling bit or other type, whether core is oriented and if so, by whatmethod, etc). | Drilling is by diamond coring. Surface holes generally commence as PQ core until fresh rock is reached. The PQ rods are left as casing thence HO or NQ coring is employed. Underground holes are LTK60 sized drill core from collar. |
| Criteria: Drill sample recovery |  |
| Method of recording and assessing core and chip sample recoveries andresults assessed. | Measured core recovery against intervals drilled is recorded as part of geotechnical logging. Recoveries are greater than $95 \%$ once in fresh rock. |
| Measures taken to maximise sample recovery and ensure representative nature of the samples. | Surface holes use triple tube drilling employed to maximise recovery. Underground LTK60 core is double tube drilling. |

Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.

## Criteria: Logging

Whethercore and chip samples have been geologically and geotechnicallylogged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.

Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.
The total length and percentage of the relevant intersections logged.

## Criteria: Sub-sampling techniques and sample preparation

If core, whether cut or sawn and whether quarter, half or all core taken.

If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.
For all sample types, the nature, quality and appropriateness of the sample preparation technique.

Quality control procedures adopted for allsub-sampling stages to maximise representivity of samples.

Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.

Whether sample sizes are appropriate to the grain size of the material being sampled.

## Criteria: Quality of assay data and laboratory tests

The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.

For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.
Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.

Not Applicable since recoveries exceeds 95\%.

Systematic geological and geotechnical logging is undertaken. Data collected includes:

- $\quad$ Nature and extent of lithologies.
- Relationship between lithologies.
- Amount and mode of occurrence of ore minerals.
- Location, extent and nature of structures such as bedding, cleavage,
veins, faults etc. Structural data (alpha \&t beta) are recorded for orientated core.
- Geotechnical data such as recovery, ROD, fracture frequency,
qualitative IRS, microfractures, veinlets and number of defect sets. For some geotechnical holes the orientation, nature of idefects and defect fill are recorded.
- Bulk density by Archimedes principle at regular intervals.
- Magnetic susceptibility recorded at 1 m intervals for some holes as an orientation and alteration characterisation tool.
Both qualitative and quantitative data is collected. All core is digitally photographed.
All core is geologically and geotechnically logiged.

Core is sawn with half core submitted for assay. Sampling is consistently on one side of the orientation line so that the same part of the core is sent for assay. PQ core is $1 / 4$ sampled.
Not applicable as all samples are drill core
Samples are dried crushed and pulverised to 85\% passing 75 microns. This is considered to appropriately homogenise the sample to allow subsampling for the various assay techniques.
The use of Certified Standard Reference Mate rials and blanks are inserted at least every 40 samples to assess the accuracy and reproducibility. Silica flush samples are employed after each occurrence of visible gold. The results of the standards are to be within $\pm 10 \%$ variance from known certified result. If greater than $10 \%$ variance the standard and up to 10 samples each side are re-assayed. ALS conduct internal check samples every 20 samples for Au and every 20 for base metals. These are checked by AURELIA employees. Assay grades are compared with mineralogy logging estimates. If differemces detected a re-assay can be carried out by either: $1 / 4$ core of the original sample interval, re-assay using bulk reject, or the assay pulp. Submission of pulpsi to a secondary laboratory (Genalysis, Perth) to assess any assay bias.
No field duplicates are taken for core samples. Core samples are cut in $1 / 2$ for down hole intervals of 1 m , however, intervalsi can range from $0.5-1.5 \mathrm{~m}$. This is considered representative of the insitu materiial. The sample is crushed and pulverised to $85 \%$ passing 75 microns. This is considered to appropriately homogenise the sample.
Sample sizes are considered appropriate but under review. If visible gold is observed in surface drilling, gold assays are umdertaken by both a 30 g fire assay and a screen fire assay using the entire available sample (up to several kg).

Standard assay procedures performed by a reputable assay lab, (ALS Group), were undertaken. Gold assays are initially by 30 g fire assay with AAS finish, (method $\mathrm{Au}-\mathrm{AA} 25)$. $\mathrm{Ag}, \mathrm{As}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Pb}, \mathrm{S}, \mathrm{Zn}$ are digested in aqua regia then analysed by ICPAES (method ME-ICP41). Comparison with 4 acid digestion indicate that the technique is considered total for $\mathrm{Ag}, \mathrm{As}, \mathrm{Cu}, \mathrm{Pb}, \mathrm{S}, \mathrm{Zn}$. Fe may not be totally digested by aqua regia but near total digestion occurs.
Not Applicable as no geophysical tools were used in the determination of assay results. All assay results were generated by an independent third party laboratory as described above

Certified reference material or blanks are inserted at least every 40 samples. Standards are purchased from Certified Referience Material manufacture companies: Ore Research and Exploration, Gannet Holdings Pty Ltd and Geostats Pty Ltd. Standards were purchased in foil lined packets of between 60 g and 100 g . Different reference materials are used to cover high grade, medium grade and low grade ranges of elements: $\mathrm{Au}, \mathrm{Ag}, \mathrm{Pb}, \mathrm{Zn} \mathrm{Cu}, \mathrm{Fe} \mathrm{S}$ and As . The standard names on the foil packages were erased before going into the pre numbered sample bag and the standards are submitted to the lab blind.

| Criteria: Verification of sampling and assaying |  |
| :---: | :---: |
| The verification ofsignificant intersections by either independent or alternative company personnel. | The raw assay data forming significant intercepts are examined by at least two company personnel. |
| The use of twinned holes. | Twinned holes have not been. |
| Documentation of primary data, data entry procedures, data verification, data storage (physical andelectronic) protocols. | Drill Hole Data including: meta data, orientation methods, any gear left in the drill hole, lithological, mineral, structural, geotechnical, density, survey, sampling, magnetic susceptibility is collected and entered directly into an excel spread sheet using drop down codes. When complete the spreadsheet is emailed to the geological database administrator, the data is validated and uploaded into an SOL database. <br> Assay data is provided by ALS via .csv spreadsheets. The data is validated using the results received from the known certified reference material. Using an SOL based query the assay data is merged into the database. Hard copies of the assay certificates are stored with drill hole data such as drillers plods, invoices and hole planning documents. |
| Discussany adjustment toassay data. | Assay data is not adjusted. |
| Criteria: Location of data points |  |
| Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys, trenches, mine workings andother locations used in Mineral Resource estimation. | Drill hole collars are initially located using underground survey control. |
| Specification of the grid system used. | All coordinates are based on Map Grid Australia zone 55H |
| Quality and adequacy of topographic control. | Not applicable for underground drill collars. |
| Criteria: Data spacing and distribution |  |
| Data spacing for reporting of Results. | Drill results are stope delineation holes with piece points between 15 m and 25 m spacing within the mineralised structure. |
| Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. | The data spacing for stope delineation drill hole sis currently under review owing to difficulty in reconciling final grades with resource estimates. |
| Whether sample compositing has been applied. | Sample compositing is not applied. |
| Criteria: Orientation of data in relation togeological structure |  |
| Whether the orientation of sampling achieves unbiased sampling of possiblestructures and the extent to which this is known, considering the deposit type. | Drilling is orientated to cross the interpreted, steeply dipping mineralisation trend at moderate to high angles. Holes are drilled from both the footwall and hangingwall of the mineralisation. The use of orientated core allows estimates of the true width and orientation of the mineralisation to be made. |
| If the relationship between thedrilling orientation and the orientation ofkey mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. | No sample bias due to drilling orientation is known. |
| Criteria: Sample security |  |
| The measurestaken toensure sample security. | Chain of custody is managed by AURELIA. Samples are placed in tied calico bags with sample numbers that provide no information on the location of the sample. Samples are delivered by AURELIA personnel to the assay lab or transported by courier. |
| Criteria: Audits or reviews |  |
| The results of any audits or reviews of sampling techniques and data. | Audit of sampling and drill hole spacing currently under review. |

