

HIGHLIGHTS

DUKETON OPERATIONS

- Gold production of 75,656 ounces (Q2: 75,544 ounces) is the fourth consecutive quarter of production above 75,000 ounces and the fourth consecutive quarter of increased production.
- Gold production of 226,616 ounces for the first three quarters of FY2016 puts Regis on track to achieve in the upper end of annual FY2016 guidance range of 275,000-305,000 ounces.
- Pre-royalty cash cost of \$696 per ounce and an all in sustaining cost of \$856 per ounce (Q2: CC \$789/oz and AISC \$918/oz), both below the lower end of FY2016 annual guidance.
- March 2016 quarter AISC of \$856/oz the fourth consecutive quarter of lower operating costs.
- Strong cash flow generated from operations of \$56.5 million (Q2: \$49.8m).
- Development work underway at the Gloster Project with mining expected to commence in the September 2016 quarter and first gold production in the December 2016 quarter. Development of the Gloster Project will extend the Moolart Gold Mine mine life beyond FY2020.

CORPORATE

- Cash and bullion increased to \$106.7 million at 31 March 2016 (Dec15: \$98.5m) after the payment of dividends (\$20.0m), income tax (\$8.2m) and purchase of listed equity investments (\$1.4m) during the quarter.
- During the quarter, Regis sold 69,721 ounces of gold at an average price of A\$1,638 per ounce (Dec 15: 75,237 ounces at A\$1,567 per ounce).

RESOURCE AND RESERVE UPDATE

• Gloster and Baneygo Ore Reserve estimates added 361,000 ounces to Regis gold reserves, more than replacing forecast gold production for FY2016.

EXPLORATION

• RC drilling at Tooheys Well East (2.5km south of Garden Well) has confirmed continuation of fresh rock high grade mineralisation. Significant new drilling results include:

67 metres @ 2.18 g/t gold from 126 to 193m	31 metres @ 3.46 g/t gold from 186 to 217m
72 metres @ 2.73 g/t gold from 131 to 203m	32 metres @ 1.56 g/t gold from 58 to 90m
36 metres @ 2.73 g/t gold from 202 to 238m	31 metres @ 1.48 g/t gold from 95 to 126m

• RC drilling at Idaho (2.2km north of Baneygo) returned significant results including:

33 metres @ 2.33 g/t gold from 101 to 134m	24 metres @ 1.25 g/t gold from 53 to 77m
26 metres @ 1.43 g/t gold from 36 to 62m	7 metres @ 4.55 g/t gold from 42 to 49m
12 metres @ 2.54 g/t gold from 40 to 52m	19 metres @ 1.14 g/t gold from 80 to 99m

• Infill and extensional drilling at Russells Find has returned encouraging results including:

15 metres @ 9.37 g/t gold from 97 to 112m	34 metres @ 1.82 g/t gold from 162 to 196m
16 metres @ 2.28 g/t gold from 78 to 94m	13 metres @ 2.02 g/t gold from 165 to 178m
14 metres @ 2.76 g/t gold from 69 to 83m	1 metre @ 32.18 g/t gold from 160 to 161m

DUKETON OPERATIONS

Gold production at the Duketon Gold Project for the March 2016 guarter of 75,656 ounces (Dec15Q: 75,544 oz) was the fourth successive quarter gold production above 75,000 ounces. This excellent result, which takes year to date production to 226,616 ounces, sees Regis on track to achieve in the upper end of annual production guidance range of 275,000 - 305,000 ounces.

The pre-royalty cash cost for the quarter of \$696 per ounce and the all in sustaining cost (AISC) of \$856 per ounce (Dec15Q: cash cost \$789/oz and AISC \$918/oz) were both below the lower end of annual cost guidance for FY2016. The AISC of \$856/oz for the guarter was the fourth consecutive guarter of lower operating costs at the Duketon Gold Project. Efficiencies in mining, particularly with the renegotiation of the extension to the Moolart Well earthmoving contract, have contributed to the reduction in AISC for the quarter. Over the last 12 months reagent and grinding media costs have trended downwards and power costs have reduced significantly with the benefits of a low diesel price positively impacting AISC.

~		– ·					·
()nerating	results for the	Reals aroun	tor the	March 2016	quarter	were as	tollows.
oporuting		rtogio group		101011 2010	quartor	wore uo	10110110.

715

941

	Moolart Well	Rosemont	Garden Well	Total	Total Q2 (comparative)
Ore mined (bcm)	389,935	245,201	498,053	1,133,189	1,131,915
Waste mined (bcm)	1,435,242	2,361,741	1,569,359	5,366,342	5,213,702
Stripping ratio (w:o)	3.7	9.6	3.2	4.7	4.6
Ore mined (tonnes)	786,985	612,198	1,220,373	2,619,556	2,623,011
Ore milled (tonnes)	731,949	588,856	1,253,100	2,573,905	2,582,406
Head grade (g/t)	0.83	1.50	0.89	1.02	1.00
Recovery (%)	89.8	92.5	88.2	90.0	90.9
Gold production (ounces)	17,508	26,347	31,801	75,656	75,544
Cash cost (A\$/oz)	653	543	847	696	789

All in Sustaining Cost (A\$/oz)¹ 1 AISC calculated on a per ounce of production basis

Cash cost inc royalty (A\$/oz)

The Garden Well Gold Mine produced 31,801 ounces of gold at an all in sustaining cost of \$979 per ounce which was a result very consistent with the previous quarter. The project is performing in line with management expectations and pleasingly the March 2016 quarter was the highest gold production and lowest AISC for Garden Well since the December 2013 guarter.

612

650

913

979

762

856

861

918

The Rosemont Gold Mine continued to outperform with another strong guarter of operations producing 26,347 ounces of gold at an all in sustaining cost of \$650 per ounce. The strong performance at Rosemont continued to be underpinned by above budget mill throughput and higher processed grade. Gold production increased by 7% from the previous quarter as a result of an almost 10% increase to the head grade of the processed ore. The increased grade is due to mining in the high grade central part of the Rosemont Main Pit during the guarter.

Year to date expansionary capital of \$9.9 million has been spent on the major cutback in the Rosemont Main pit. This cost was excluded from AISC as per original FY2016 guidance.

Production at the Moolart Well Gold Mine was in line with budget producing 17,508 ounces of gold with all in sustaining costs of \$941 per ounce. Gold production at Moolart Well declined by 9% from the December 2015 quarter as a result of an 8% lower processed head grade. The milled grade for the quarter of 0.83g/t was reflective of the ore scheduled to be mined during the period. Despite the lower production for the quarter, all in sustaining costs fell by 5% to \$941 per ounce.

Development work is underway at the Gloster Project where, subject to final statutory approvals, it is expected that mining will commence in the September 2016 quarter and first gold production in the December 2016 quarter. During the quarter purchasing of infrastructure to support the project commenced, bores for dewatering and water supply for mine operations have been established and the haul road construction contract was awarded. Gloster is expected to add in the order of three years of additional mill feed to the Moolart Well processing plant at a production rate of approximately 70,000 ounces per annum. This will extend the current Moolart Gold Mine mine life beyond the FY2020 financial year and provide the longevity required for the Company to expedite regional exploration efforts with a view to extending the mine life further through discovery.

CORPORATE

Half Year Results

In February 2016 Regis announced a profit before tax of \$64.4 million and profit after tax of \$46.0 million for the half year ended 31 December 2015. On the back of this strong profit result and an operating cash-flow of \$95.8 million, the Company announced an interim fully franked dividend of 4 cents per share.

Cash Position

The Duketon project generated strong operating cash flow of \$56.5 million in the March 2016 quarter. In February 2016 the Company paid a \$20 million fully franked interim dividend of 4 cents per share. Pleasingly the cash and bullion balanced increased by \$8.2 million during the March 2016 quarter to \$106.7 million after the payment of the \$20 million interim dividend, exploration expenditure of \$4.8 million, \$8.2 million in income tax payments and payment of \$1.4 million for listed equity investments. The below waterfall chart highlights the movement in the Company's cash reserves over the quarter.

The strong conversion of cashflow from operations over the last four quarters to actual build up in the cash and bullion position (before dividends, income tax payments and equity investments) is reflected in the following chart.

The Company's secured debt position of \$20 million remains unchanged as at 31 March 2015.

Gold Sales & Hedging

During the March 2016 quarter, Regis sold 69,721 ounces of gold at an average price of A\$1,638 per ounce (Dec 15 qtr: 75,237 ounces at A\$1,567 per ounce). The Company had a gold hedging position at the end of the quarter of 374,480 ounces, being 96,458 ounces of flat forward contracts with a delivery price of A\$1,447 per ounce and 278,021 ounces of spot deferred contracts with a price of A\$1,524 per ounce.

Diesel Hedging

The board of Regis advises that the Company recently took advantage of historically low oil prices by entering into a commodity swap transaction to partially hedge future fluctuations in the AUD diesel price for the operating requirements of the Duketon Gold Project.

A chart showing the history of the benchmark oil price (WTI crude in USD) and the base diesel price* (AUD\$/litre) paid by Regis on a monthly basis (before delivery charges) since the start of FY2012 is shown below. This shows the strategic medium term risk management and value proposition presented by the diesel hedging programme undertaken.

* Base diesel price represents Singapore Gasoil 10ppm (the product Regis purchases) expressed in AUD. Base price does not include Government excise, GST (both claimable) or freight.

The Company has hedged a total of 4 million litres of diesel per month from 1 May 2016 to 31 April 2017 and a further 2 million litres per month from 1 May 2017 to 31 October 2017. The hedging programme has been implemented in two tranches as shown below:

Volume per month	Tenor	Price
2 million litres	1 May 2016 to 31 April 2017	A\$0.404/L
2 million litres	1 May 2016 to 31 October 2017	\$A0.419/L

The total amount hedged over the 12 month period represents approximately two thirds of total annual usage at the Duketon operations.

Investment in Capricorn Metals Limited

During the March 2016 quarter Regis participated in a placement in junior explorer Capricorn Metals Limited (Capricorn) which owns the Karlawinda Gold Project in the Pilbara region of Western Australia. Through participation in the placement the Company invested \$1.27 million to acquire a 9.9% stake in Capricorn.

Director Appointment and Retirement

In February 2016 the Company announced the appointment of Mr James Mactier as a non-executive director. Mr Mactier has had a distinguished career in banking, having been joint head of the Metals and Energy Capital Division of Macquarie Bank Limited for fifteen years until his retirement from the bank in April 2015.

In March 2016, the Company announced that Mr Nick Giorgetta will retire as a non-executive director of the Company effective 29 April 2016. Mr Giorgetta will retain an active involvement in the resources industry through his Chairmanship of the Diggers & Dealers Mining Forum but otherwise will not be seeking any further public corporate roles.

Share Buy Back

The Company has not purchased any of its shares under the share buy-back programme announced in the June 2015 quarter.

RESERVES AND RESOURCES

Maiden Reserves at Gloster & Baneygo

In March 2016 Regis announced a 361,000 ounces increase to the Ore Reserve base at the Duketon Gold Project following the estimation of maiden Ore Reserves at the Gloster and Baneygo gold projects. This addition to Ore Reserves more than replaces the expected production for the 2016 financial year and confirms the ongoing success of Regis' growth strategy at Duketon.

A breakdown of the maiden Ore Reserves is shown below:

Project	Tonnes (Mt)	Gold Grade (g/t)	Gold Metal (koz)
Gloster	7.0	1.00	226
Baneygo	3.6	1.16	136

Rounding errors may occur

The Ore Reserves have been estimated after completion of comprehensive studies which included:

- The concept of open pit mining, road haulage to, and processing at, existing processing plants;
- pit optimisation using wall angles based on geotechnical drill holes and independent geotechnical advice;
- pit design including provision of ramps, waste dumps and surface water management structures;
- bulk densities and metallurgical parameters from test work;
- mining costs based on contractor quotation;
- road haulage based on contractor estimates;
- processing, administration and other costs based on current Duketon operating costs; and
- optimisations at a gold price of A\$1400 per ounce.

Key results of the reserve studies include:

Physical	Gloster	Baneygo
Total pit volume (Mbcm)	14.4	11.6
Strip Ratio (waste bcm:ore bcm)	3.0	6.0
Ore tonnes (Mt)	7.0	3.6
Ore grade (g/t)	1.00	1.16
Contained Ounces (koz's)	226	136
Processing Recovery (%)	90%	92%
Recovered Ounces (koz's)	203	125

It is envisaged that open cut mining of both deposits will provide supplementary ore supply over several years for the existing Moolart Well and Garden Well processing plants. There will be numerous synergies in utilising Regis's existing mining teams and earthmoving contractor. Developing these mines will require only a modest capital investment for minor infrastructure and haul road construction.

The Gloster Ore Reserve has been estimated to a maximum pit depth of 130 metres while Baneygo extends to a depth of 106 metres. 70% of the contained gold at Gloster is in the oxide zone within 80 metres of surface.

Subject to final statutory approvals it is projected that mining should commence in the September 2016 quarter. Subsequent to the end of the quarter the Board gave approval to the development of the project subject to final statutory approvals. The Gloster deposit will be mined with ore hauled

overland to the 2.5 - 3mtpa Moolart Well processing plant and is expected to produce in the order of 70,000 ounces of gold per annum for approximately three years.

Regis will schedule the mining of the Baneygo deposit in conjunction with the other satellite deposits in the vicinity of the Garden Well and Rosemont processing plants where the Company has milling capacity in the order of 5mtpa and 2.5mtpa respectively. Baneygo is expected to produce around 70,000 ounces per annum for two years.

All in sustaining costs for both projects are expected to be similar to existing Duketon operating projects which are forecast to be between \$970-1,070 per ounce for the 2016 financial year.

Resource Update

In March 2016 an updated Mineral Resource estimate was completed at Gloster in compliance with the 2012 JORC Code and Guidelines. The Resource estimate was completed in-house using the Ordinary Kriging estimation technique based on 73,253 metres of drilling of which approximately 30% was completed by the recent infill drill program. This estimate has been validated by an independently completed estimation using Multiple Indicator Kriging.

The updated Mineral Resource estimate at Gloster of 21.3 million tonnes at a grade of 0.77g/t Au for 528,000 ounces of gold represents a 45% increase in contained ounces from the previous Mineral Resource estimate completed in 1997.

A cross section with updated Regis 25m x 25m RC drill results from the December 2015 quarter as announced on the ASX on the 14th of January 2016 showing the nature of gold mineralisation at Gloster is shown below.

Figure 1: Regis drilling at Gloster on oblique cross section 6905495mN. Holes drilled towards 244°.

In January 2016 Regis announced an updated Resource estimate at Baneygo of 7.1Mt at 1.03g/t gold for 236,000. This estimate was validated by an independently completed calculation using Multiple Indicator Kriging.

EXPLORATION

Duketon Overview

Exploration activities continued at the Duketon Gold Project with outstanding results achieved from drilling at new potential satellite mining operations.

Drilling at the Duketon Gold Project during the March 2016 quarter totalled 30,415 metres of RC and diamond drilling.

By Drilling Type			By Project		
Туре	No. Holes	Metres	Project	Metres	
RC	252	29,489	Gloster	6,786	
Diamond	6	926	McKenzie's Flats	1,404	
Total	258	30,415	Tooheys Well	4,027	
			Idaho	4,457	
			Coopers	216	
			Kintyre Soak	2,201	
			Russell's Find	7,403	
			Moolart Well	483	
			Water Exploration	3,438	
			Total	30,415	

Significant exploration projects advanced during the quarter at Duketon are outlined below.

Tooheys Well Gold Project

The Tooheys Well gold prospect is located on a granted Mining Lease, 2.5km south of the Garden Well gold mine. Gold mineralisation was previously defined in two north south trending Western and Eastern shear zones 100 metres apart hosted in chert and fine grained sediments. RC drilling in the December 2015 quarter defined high grade gold mineralisation along the Eastern shear zone and this was followed-up with further RC and initial DD drilling in the March 2016 quarter.

A programme of 19 RC holes (RRLTWRC068-070 and 079-094) for 3,584m and 4 DD holes (RRLTWRCD021, 058, 064, 080) for 443m was drilled in the March 2016 quarter to follow-up gold mineralisation in the Eastern shear zone. Gold analytical results were received for holes RRLTWRC065-089 with results pending for the remaining 5 holes.

Significant new drilling results received during the quarter include:

0	67m @ 2.18g/t Au from 126m in hole	RRLTWRC065
0	27m @ 1.78g/t Au from 58m	RRLTWRC067
0	32m @ 1.56g/t Au from 58m	RRLTWRC068
0	16m @ 3.35g/t Au from 118m	RRLTWRC068
0	31m @ 1.48g/t Au from 95m	RRLTWRC069
0	17m @ 1.92g/t Au from 155m	RRLTWRC069
0	31m @ 3.46g/t Au from 186m	RRLTWRC070
0	16m @ 1.72g/t Au from 66m	RRLTWRC072
0	72m @ 2.73g/t Au from 131m	RRLTWRC079
0	11m @ 3.43g/t Au from 50m	RRLTWRC082
0	14m @ 2.10g/t Au from 51m	RRLTWRC083
0	17m @ 2.82g/t Au from 101m	RRLTWRC086*
0	25m @ 2.09g/t Au from 170m	RRLTWRC087*
0	36m @ 2.73g/t Au from 202m	RRLTWRC089*
	* Not previously announced	

The recent drilling has confirmed and extended at depth significant gold mineralisation in the Eastern shear zone which is now mineralised over a strike length of 450m from 6909140mN to 6909500mN based on a 40m x 20m drilling pattern and for a further 160m south based on an 80m x 20m drilling pattern.

The eastern shear zone mineralisation appears to have steeply dip of 80-90° to the east. Host rocks are BIF/chert and shale and weathering extends to 80 to 100m vertical depth.

Logging of the four recently completed diamond core holes has improved the understanding of mineralisation at Tooheys Well. Gold mineralisation is associated with pyrrhotite hosted in Banded Iron Formation ("BIF") which now appears to be the dominant lithology at Tooheys Well. Pyrrhotite phase is restricted to BIF's, and has replaced magnetite during hydrothermal alteration.

The eastern shear zone is untested for 600m to the south and is open down dip. The western shear zone was not drilled in the March 2016 quarter and is also untested to the south and north.

Quarterly Report to 31 March 2016

Tooheys Well plan with geology and significant gold intercepts along the western and eastern mineralised shear zones. Earlier drilling results in grey and Regis drilling March 2016 quarter drilling in gold.

A cross section of 6909220mN showing the eastern gold mineralised shear zone and new significant results in holes RRLTWRC079 is shown below:

A cross section of 6909340mN showing the eastern gold mineralised shear zone and new significant results in holes RRLTWRC069 is shown below:

RC and DD drilling will continue in the June 2016 quarter to determine the continuity of gold mineralisation in the Eastern shear zone. Further RC drilling is also planned to test the Western shear zone at depth and along strike. RC drilling is also planned for the Western Shear zone.

Drill testing is also planned along strike from Tooheys Well to the north where the Eastern Shear is interpreted to join with the gold mineralised shear zones at Chert Ridge approximately 2.5 km away. Chert Ridge is located on the hanging-wall side of the Garden Well Shear. Gold mineralisation at Chert Ridge is hosted in a steeply east dipping shear and fracture zones in chert, shale and BIF which is identical to the mineralisation settings at Tooheys Well.

40 mineralised samples (including oxidised, transition and fresh samples) have been collected from Tooheys Well and submitted to an independent laboratory for preliminary metallurgical test work. Preliminary results indicate the majority of the gold is recoverable using standard CIL gold processing techniques.

Gloster Gold Project

The Gloster gold deposit located 26km west of Moolart Well was acquired by Regis in the June 2015 quarter. Gloster was historically mined from 1902-1908 and was extensively drilled from 1984-1996. As noted above, an updated Resource estimate and maiden Ore Reserve estimate was completed at Gloster during the quarter.

In addition an RC drilling programme of 75 holes for 6,786m was undertaken during the quarter.

Gold results received from this drilling programme include:

0	7m @ 1.41g/t Au from 7m in hole	RRLGLRC183
0	3m @ 7.33g/t Au from 36m	RRLGLRC213
0	24m @ 1.70g/t Au from 11m	RRLGLRC186
0	10m @ 1.41g/t Au from 23m	RRLGLRC241
0	12m @ 1.10g/t Au from 16m	RRLGLRC245

These results will be interpreted to test the potential for economic gold mineralisation east of the current pit design and to sterilize ground to the west for waste dump development.

Idaho Gold Project

The Idaho Gold Prospect is located 2.2km to the north along strike of the existing Baneygo Beacon pit. Gold results in the December 2015 quarter highlighted the potential for further infill drilling and testing along strike. A first pass RC drill programme continued in the March 2016 quarter to test the economic potential of gold mineralisation within the quartz-dolerite. This unit is the strike continuation of the gold mineralised quartz-dolerite at Baneygo.

A total of 40 holes were drilled (RRLIHRC077-116) for 4,457m on a 40m x 20m grid over a strike distance of 940m from 6908636mN to 6909580mN. To date 116 RC holes (RRLIHRC001-116) have been drilled for 10,648m at the Idaho gold prospect.

Significant results received in the March 2016 quarter include:

0	19m @ 1.14g/t Au from 80m in hole	RRLIHRC079
0	12m @ 2.54g/t Au from 40m	RRLIHRC086
0	33m @ 2.33g/t Au from 101m	RRLIHRC093
0	26m @ 1.43g/t Au from 36m	RRLIHRC026
0	24m @ 1.25g/t Au from 53m	RRLIHRC027
0	7m @ 4.55g/t Au from 42m	RRLIHRC043

The geology at Idaho is similar to Baneygo and Rosemont with gold hosted in a steeply east dipping 345° trending quartz-dolerite unit intruding in an ultramafic sequence. Gold mineralisation is associated with quartz-carbonate-chlorite-sulphide alteration and is restricted to the quartz-dolerite unit which is generally approximately 80m wide. The weathering depth at Idaho is approximately 50-60m vertical depth.

Cross sections 6909118mN with updated recent RC drill results showing the nature of gold mineralisation in the quartz-dolerite unit are shown below.

Quarterly Report to 31 March 2016

Idaho drilling on oblique cross sections 6909156mN and 6908944mN. Holes drilled towards 254°.

An infill RC drill program of 64 holes for 6,250m commenced early in the June 2016 quarter to reduce drill spacing to 20m x 20m across the resource where required to better constrain strike limited high grade gold intersections, and test the depth extent of gold mineralisation down to 130m below surface. This work is anticipated to lead to a maiden resource estimate for Idaho.

Coopers Gold Project

The Coopers gold prospect is located on a granted Mining Lease 11km south of Moolart Well and 600m north of the Dogbolter deposit, and is located on the same shear zone hosting those two deposits.

Gold mineralisation at Coopers is located in a moderately east dipping shear zone hosted in dolerite and diorite intrusive units near a basalt contact that also dip at 45° to the east. A 5m to 10m transported cover sequence conceals the gold mineralisation and weathering of the basalt and dolerite units extends to 90m depth. Most drilling to date has defined the gold mineralisation in the oxide zone.

A programme of 50 RC holes (RRLCPRC020-069) was drilled for 4,462m in the December 2015 quarter to follow-up anomalous gold mineralisation defined in the September 2015 quarter. 3 RC holes RRLCPRC070-072 for 216m were completed in the March 2016 quarter to reduce the drill spacing at the northern end of the deposit from 40m x 20m to 20m x 20m.

Significant new drilling results received during the quarter include:

- o 2m @ 7.24g/t Au from 16m in hole RRI
- 12m @ 3.01g/t Au from 26m

• 4m @ 6.81g/t Au from 68m

RRLCPRC070 RRLCPRC070 RRLCPRC072

Anomalous results from RRLCPRC070-072 show economic gold mineralisation at the northern end of the deposit. Further AC drilling will be conducted to close off these intercepts along strike and updip.

These results will provide enough data to complete a Resource estimation in the June 2016 quarter. A diamond drilling programme is also planned to determine bulk densities and metallurgical and geotechnical work to enable a Reserve estimate to be completed in the June 2016 quarter.

Russell's Find Gold Project

The Russell's Find deposit is located 6.5 km south of the Garden Well pit.

Gold mineralisation at Russells Find is contained in steep east dipping quartz-carbonate-biotite veins contained in a package of moderate east dipping carbonated ultramafic with a footwall sequence of chert, BIF and fine grained silicified shale.

A programme of RC drilling at Russells Find was completed during the quarter to validate and extend the current JORC 2004 gold resource of 0.4Mt @ 3.86 g/t for 55 koz Au using a 1 g/t cut. Drilling commenced in January 2016 and by the end of the quarter, 44 RC holes RRLRFRC017-060 have been completed for 7,403m.

Significant new drilling results received during the quarter include:

0	14m @ 2.76g/t Au from 69m	RRLRFRC024
0	16m @ 2.28g/t Au from 78m	RRLRFRC027
0	15m @ 9.37g/t Au from 97m	RRLRFRC027
0	1m @ 32.18g/t Au from 160m	RRLRFRC033
0	13m @ 2.02g/t Au from 165m	RRLRFRC046
0	34m @ 1.82g/t Au from 162m	RRLRFRC047

The results from the latest drilling program will assist in a review of the historic resource estimate and also for planning of any future drilling programs later in in the year.

McKenzie's Flat and Kintyre Soak Gold Projects

The McKenzie's Flat Area is located directly north along strike of Idaho. The area is covered by ~2m of broad sheet wash alluvium. Gold mineralisation occurs within the quartz dolerite unit that is the strike continuation of the gold mineralised quartz dolerite at Idaho-Baneygo.

During the March 2016 quarter, 13 first pass RC holes RRLMKRC001-013 were drilled for 1,404m. Drilling to date has intersected two separate quartz dolerite units, both host moderate gold mineralisation. Analytical results to date indicate the potential for economic gold mineralisation is greatest in the oxide zone.

Drill intercepts along the corridor include: RRLMKRC005: 3m @ 15.44g/t Au from 104-107m and RRLMKRC010: 6m @ 1.93g/t Au from 71-77m. A further 13 RC holes for 1,070m are planned to test the strike continuation of the quartz dolerite units and the potential for economic gold mineralisation in the oxide zone.

The Kintyre prospect is located 3.2 km south of the Rosemont pit. The geology is analogous to that at Rosemont with gold mineralisation hosted within quartz dolerite in a package of steep east dipping mafic-ultramafic units. Narrow zones of gold mineralisation were identified over 600m strike by Aurora Gold (early 1990s) however the majority of drilling only tested to 50m below surface in the oxide zone.

A preliminary RC drilling program of 22 RC holes RRLKIRC001-022 for 2,201m was completed during the current quarter at the Kintyre prospect to validate historical drill intercepts and define the potential for economic gold mineralisation.

Significant results from RC drilling include 15m @ 2.27 g/t Au from 19-34m in RRLKIRC014 and 6m @ 6.38 g/t Au from 33-39m in RRLKIRC022.

RC drilling has defined gold mineralisation over a strike distance of 150-200m.

Duketon Mining Joint Venture

Duketon JV (E38/2231, 2666, 2699, 2737)

A total of 9,516 (-6+2mm) first pass lag soil samples were collected on the Duketon Mining JV tenements to date to complete the first pass programme. This reconnaissance lag sampling was completed on a 400m x 100m grid, and lag sampling across mineralised trends was completed on a 200m x 50m grid.

The first pass sampling programme has now been completed. Gold and pathfinder element results have been received for all of the samples collected. Contouring of gold results has been completed.

Numerous +75ppb Au gold anomalies of interest have been defined that require further investigation and follow up infill lag sampling/mapping and subsequent air core drilling will be reviewed.

COMPETENT PERSON STATEMENT

The information in this report that relates to exploration results is based on and fairly represents information and supporting documentation that has been compiled by Mr Peter Woodman who is a member of the Australian Institute of Mining and Metallurgy. Mr Woodman has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2012 edition of the 'Australasian Code for the Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr Woodman is a full time employee of Regis Resources Ltd and consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

The information in this report that relates to the Baneygo and Gloster Minerals Resources and Ore Reserves is extracted from the ASX announcement released on 14 March 2016 entitled "Maiden Ore Reserves at Gloster & Beneygo Extend Mine Life" and for which Competent Person's consents were obtained.

The reports are available to view on the ASX website and on the Company's website at <u>www.regisresources.com.au</u>. The Company confirms it is not aware of any new information or data that materially affects the information included in the original market announcement, and, in the case of estimates of Mineral Resources and Ore Reserves, that all market assumptions and technical assumptions underpinning the estimates in the relevant market announcement continue to apply and have not materially changed.

The Competent Person's consents remain in place for subsequent releases by the Company of the same information in the same form and context, until the consent is withdrawn or replaced by a subsequent report and accompanying consent.

FORWARD LOOKING STATEMENTS

This ASX announcement may contain forward looking statements that are subject to risk factors associated with gold exploration, mining and production businesses. It is believed that the expectations reflected in these statements are reasonable but they may be affected by a variety of variables and changes in underlying assumptions which could cause actual results or trends to differ materially, including but not limited to price fluctuations, actual demand, currency fluctuations, drilling and production results, Reserve estimations, loss of market, industry competition, environmental risks, physical risks, legislative, fiscal and regulatory changes, economic and financial market conditions in various countries and regions, political risks, project delay or advancement, approvals and cost estimates.

Forward-looking statements, including projections, forecasts and estimates, are provided as a general guide only and should not be relied on as an indication or guarantee of future performance and involve known and unknown risks, uncertainties and other factors, many of which are outside the control of Regis Resources Ltd. Past performance is not necessarily a guide to future performance and no representation or warranty is made as to the likelihood of achievement or reasonableness of any forward looking statements or other forecast.

CORPORATE DIRECTORY

Regis Resources Ltd (ACN 009 174 761)

Registered Office

First Floor, 1 Alvan Street Subiaco, WA Australia 6008 Tel +618 9442 2200 Fax +618 9442 2290

Website <u>www.regisresources.com</u>

Email enquiries@regisresources.com

Directors

Mr Mark Clark (Executive Chairman) Mr Paul Thomas (Executive Director) Mr Mark Okeby (Non-Executive Deputy Chairman) Mr Nick Giorgetta (Non-Executive Director) Mr Ross Kestel (Non-Executive Director) Mr Glyn Evans (Non-Executive Director) Mr James Mactier (Non-Executive Director

Company Secretary and CFO

Mr Kim Massey

Share Registry

Computershare Ltd GPO Box D182 Perth WA 6840 Shareholder Enquiries: 1300 557 010 (local) +613 9415 4000 (international)

ASX Listed Securities (as at 31 March 2016)

Security	Code	No. Quoted
Ordinary Shares	RRL	499,781,595

APPENDIX 1

JORC Code, 2012 Edition – Table 1 report template

Section 1 Sampling Techniques and Data (Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These	Gloster: The Gloster gold deposit was sampled using Reverse Circulation (RC) Drill Holes on a nominal 25m east by 25m north initial grid spacing. The current study used the sampling from 75 holes for 6,786m, which were drilled angled -60 degrees to 244 degrees.	
	examples should not be taken as limiting the broad meaning of sampling. C v c	McKenzie's Flats and Kintyre Soak: The McKenzie's Flats and Kintyre Soak Prospects were sampled using Reverse Circulation (RC) on a nominal 40m east by 400m north initial grid spacing, which were predominantly drilled angled -60 degrees to 254- Kintyre/270-McKenzies degrees. Regis has drilled 35 RC holes for 3,605m.
		Idaho: The Idaho gold deposit was sampled using Reverse Circulation (RC) Drill Holes on a nominal 20m east by 40m north initial grid spacing. Regis has drilled 40 RC holes for 4,457m, which were drilled angled -60 degrees to 254 degrees.
		Coopers: The Coopers gold prospect was sampled using Reverse Circulation (RC) drill holes on a nominal 20m east by 40m north and 20m north grid spacing. Regis has drilled 3 RC holes for 216m, which were drilled angled -60 degrees to 270 degrees.
		Tooheys Well: The Tooheys Well gold prospect was sampled using Reverse Circulation (RC), drill holes on a nominal 20m east spaced holes on 40m north and 80m north initial grid spacing. Regis has drilled 19 RC holes for 3,908m and 4 DD holes for 443m, which were drilled angled -60 degrees to 270 degrees.
		Russell's Find: The Russel's Find gold deposit was sampled using Reverse Circulation (RC) Drill Holes on a nominal 20m east by 40m north initial grid spacing. Regis has drilled 44 RC holes for 7,403m, which were drilled angled -60 degrees to 254 degrees

Criteria	JORC Code explanation	Commentary
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	All Projects: Regis drill hole collar locations were picked up by site-based authorised surveyors using Trimble RTK GPS. Downhole surveying was measured by the drilling contractors using Reflex EZ-Shot Downhole Survey Instrument RC holes and DD holes. The surveys were completed every 30m down each drill hole.
		Core is aligned and measured by tape, comparing back to down hole core blocks consistent with industry practice.
		Regis drill hole sampling had certified standards and blanks inserted every 25th sample to assess the accuracy and methodology of the external laboratories, and field duplicates (RC only) were inserted every 20th sample to assess the repeatability and variability of the gold mineralisation. Laboratory duplicates were also completed approximately every 15th sample to assess the precision of the laboratory as well as the repeatability and variability of the gold mineralisation. Results of the QAQC sampling were considered acceptable for an Archaean gold deposit. QAQC results are not recorded for historical drilling, although twin hole drilling has demonstrated the accuracy of the historical assay intercepts at both Baneygo and Gloster.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases	Gloster, Idaho, Russell's Find, Coopers, Kintyre, McKenzie's and Tooheys Well: For the Regis RC drilling 1m samples were obtained by cone splitter (2.5kg – 3.0kg) and were utilised for lithology logging and assaying. The drilling samples were dried, crushed and pulverised to get 85% passing 75µm and were all Fire Assayed using a 50g charge (SGS, Bureau Veritas, Min Analytical and Aurum).
	more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Tooheys Well diamond: Diamond drilling completed to industry standard using varying sample lengths (0.3 to 1.2m) based on geological intervals, which are then dried, crushed and pulverised to get 85% passing 75µm and were all Fire Assayed using a 50g charge (Bureau Veritas).

Criteria	JORC Code explanation	Commentary
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Gloster, Idaho, Russell's Find, Coopers, Kintyre, McKenzies and Tooheys Well: RC drilling completed with a 139mm diameter face sampling hammer accounts for 100% of the drilling meters in the project area. Tooheys Well diamond: Surface diamond drilling carried out by using both NQ3 or HQ32 (triple tube) and NQ2 or HQ2 (standard tube) techniques. Core is routinely orientated by REFLEX ACT III tool.
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Gloster, Idaho, Russell's Find, Coopers, Kintyre, McKenzie's and Tooheys Well: RC recovery was visually assessed, with recovery being excellent except in some wet intervals which are recorded on logs. <1% of the overall mineralised zones have been recorded as wet.Tooheys Well diamond: DD core was measured and compared to the drilled intervals, and recorded as a percentage recovery.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Gloster, Idaho, Russell's Find, Coopers, Kintyre, McKenzies and Tooheys Well: RC samples were visually checked for recovery, moisture and contamination. The drilling contractor utilised a cyclone and splitter to provide uniform sample size, and these were cleaned routinely (cleaned at the end of each rod and more frequently in wet conditions). A booster was also used in conjunction with the RC drill rig to ensure dry samples are achieved.
		Tooheys Well diamond: The target zones ranged from oxidised rock near surface where recoveries were lower to highly competent fresh rock, where the DD method provided high recovery.

Criteria	JORC Code explanation	Commentary
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Gloster, Idaho, Russell's Find, Coopers, Kintyre, McKenzies and Tooheys Well: Sample recoveries for RC drilling are visually estimated to be high. No significant bias is expected although no recovery and grade correlation study was completed.
		Tooheys Well diamond: The DD drill sample recovery in the transitional and fresh rock zones is very high, and no significant bias is expected. Recoveries in the oxidised rock were lower.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Gloster, Idaho, Russell's Find, Coopers, Kintyre, McKenzies and Tooheys Well: Lithology, alteration, veining, mineralisation and, on some holes, magnetic susceptibility were logged from the RC chips and saved in the database. Chips from every interval are also placed in chip trays and stored in a designated building at site for future reference.
		Tooheys Well diamond: Lithology, alteration, veining, mineralisation and geotechnical information were logged from the DD core and saved in the database. Half core from every interval are also retained in the core trays and stored in a designated building at site for future reference.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	All logging is qualitative except for magnetic susceptibility and geotechnical measurements. Wet and dry photographs were completed on the core.
	The total length and percentage of the relevant intersections logged.	All drill holes are logged in full.
Sub- sampling techniques	If core, whether cut or sawn and whether quarter, half or all core taken.	Tooheys Well diamond: Core was half cut with a diamond core saw with the same half always sampled and the surplus retained in the core trays. Non-competent clay zones are sampled as whole core where necessary due to difficulty in cutting.

Criteria	JORC Code explanation	Commentary
and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	The RC drilling utilised a cyclone and cone splitter to consistently produce 2.5kg to 3.0kg dry samples.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples are dried, crushed to 10mm, and then pulverised to 85% passing 75µm (industry standard practice is assumed for the historical drilling). This is considered acceptable for an Archaean gold deposit.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Field duplicates (RC only) were inserted every 20th sample to assess the repeatability and variability of the gold mineralisation. Laboratory duplicates were also completed roughly every 15th sample to assess the repeatability and variability of the gold mineralisation.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Field RC duplicates (RC only) were taken at the rig from a second chute on the cone splitter allowing for the duplicate and main sample to be the same size and sampling technique. Field duplicates are taken every 20th sample. Laboratory duplicates (sample preparation split) were also completed roughly every 15th sample.
		Field duplicates on core, i.e. other half of cut core, have not been routinely assayed.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes (2.5kg to 3kg) are considered to be a sufficient size to accurately represent the gold mineralisation based on the mineralisation style (hypogene) associated with shearing and supergene enrichment), the width and continuity of the intersections, the sampling methodology, the coarse gold variability and the assay ranges for the gold.
		Field duplicates have routinely been collected to ensure monitoring of the sub- sampling quality. Acceptable precision and accuracy is noted in the field duplicates albeit the precision is marginally acceptable and consistent with a coarse gold Archaean gold deposit.
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Gloster, Baneygo, Idaho, Russell's Find, Coopers, Kintyre, McKenzies and Tooheys Well: All gold assaying was completed by external commercial laboratories (SGS, Bureau Veritas, Min Analytical and Aurum) using either a 40g or 50g charge for

Criteria	JORC Code explanation	Commentary
laboratory tests		fire assay analysis with AAS finish. This technique is industry standard for gold and considered appropriate.
		Tooheys Well diamond: All gold assaying will be completed by commercial laboratories (Bureau Veritas) using either a 40g or 50g charge for fire assay analysis with AAS finish. This technique is industry standard for gold and considered appropriate.
	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Gloster, Baneygo, Idaho, Russells Find, Kintyre, McKenzies Coopers, and Tooheys Well: Apart from magnetic susceptibility in targeted zones, no other geophysical measurements were routinely made.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Certified Reference Material (CRM or standards) and blanks were inserted every 25th sample to assess the assaying accuracy of the external laboratories. Field duplicates (RC only) were inserted every 20th sample to assess the repeatability from the field and variability of the gold mineralisation. Laboratory duplicates were also completed approximately every 15th sample to assess the precision of assaying.
		Evaluation of both the Regis submitted standards, and the internal laboratory quality control data, indicates assaying to be accurate and without significant drift for significant time periods. Excluding obvious errors, the vast majority of the CRM assaying report shows an overall mean bias of less than 5% with no consistent positive or negative bias noted. Duplicate assaying show high levels of correlation and no apparent bias between the duplicate pairs. Field duplicate samples show marginally acceptable levels of correlation and no relative bias.
		Results of the QAQC sampling were considered acceptable for an Archaean gold deposit. Substantial focus has been given to ensuring sampling procedures met industry best practise to ensure acceptable levels of accuracy and precision were achieved in a coarse gold environment.
Verification of sampling	The verification of significant intersections by either independent or alternative company personnel.	No independent personnel have visually inspected the significant intersections in RC chips. Numerous highly qualified and experienced company personnel from

Criteria	JORC Code explanation	Commentary
and assaying		exploration and production positions have visually inspected the significant intersections in RC chips.
	The use of twinned holes.	Coopers, Idaho, Russell's Find, Kintyre, McKenzies and Tooheys Well: No twinning of holes was completed at this stage.
		Gloster: The spatial location and assaying accuracy of historical drilling was confirmed with RC and DD twin holes. The Regis RC drilling spatial location and assaying accuracy was also twinned by Regis DD holes.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All geological and field data is entered into excel spreadsheets with lookup tables and fixed formatting (and protected from modification) thus only allowing data to be entered using the Regis geological code system and sample protocol. Data is then emailed to the Regis database administrator for validation and importation into a SQL database using Datashed.
	Discuss any adjustment to assay data.	Any samples not assayed (i.e. destroyed in processing, listed not received) have had the assay value converted to a -9 in the database. Any samples assayed below detection limit (0.01 ppm Au) have been converted to 0.005 ppm (half detection limit) in the database.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation	Regis drill hole collar locations were picked up by site-based authorized surveyors using Trimble RTK GPS, calibrated to a base station (expected accuracy of 20mm).
		Downhole surveying (magnetic azimuth and dip of the drill hole) was measured by the drilling contractors in conjunction with Regis personnel using Reflex EZ-Shot Downhole Survey Instrument. The surveys were completed every 30m down each drill hole. Magnetic azimuth is converted to AMG azimuth (-2 degrees) in the database.
	Specification of the grid system used.	The grid system is and AMG Zone 51 (AGD 84) for surveying pickups, as well as any modelling at Coopers, Gloster and Tooheys Well. Modelling at Baneygo and

Criteria	JORC Code explanation	Commentary
		Idaho is completed using a local grid, with conversion of digital data from AMG to local completed using macros.
	Quality and adequacy of topographic control.	An airborne photogrammetry surface was created by Fugro which has proven accurate by ground truthing by the site based surveyors.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Gloster: The drilling completed this period reduced the effective spacing to 25 metres (east) by 25 metres (north) to a depth of 100 metres from surface.
		Baneygo: The initial nominal drill hole spacing was 80m (northing) by 40m (easting), with infill drilling in the gold mineralised zones to 20m easting to a depth of approximately 100 metres from surface. Infill drilling in the north zone has reduced the effective spacing between drill lines to 40 metres (northing) by 20 metres (easting) and 20 metres (northing) by 20 metres (easting) on some lines to a depth of approximately 100 metres from surface.
		Idaho: The drilling completed this period reduced the effective spacing to 20 metres (east) by 40 metres (north) to a depth of 100 metres from surface.
		Coopers: The initial nominal drill hole spacing was 80m (northing) by 40m (easting). The drilling completed this period reduced the effective spacing to 20 metres (east) by 40 metres (north) to a depth of 100 metres from surface.
		Tooheys Well: The initial nominal drill hole spacing is 80m (northing) by 40m (easting), to a depth of 120 metres from surface. The drilling completed this period reduced the effective spacing to 20 metres (east) by 40 metres (north) to a depth of 130 metres from surface.
		Russel's Find:
		Nominal spacing is 25m by 25m E
		Kintyre Soak and McKenzies Flat:

Criteria	JORC Code explanation	Commentary
		Nominal spacing is 400m N by 40-80m E
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Gloster, Baneygo, Idaho, Russells Find, Kintyre, McKenzies Coopers and Tooheys Well: The data spacing and distribution is sufficient to demonstrate spatial and grade continuity of the mineralised domains to support the definition of Inferred and Indicated Mineral Resources under the 2012 JORC code.
	Whether sample compositing has been applied.	Gloster, Baneygo, Idaho, Russells Find, Kintyre, McKenzies Coopers and Tooheys Well: No sample compositing has been applied in the field within the mineralised zones. The hanging wall ultramatics at Baneygo were confirmed barren by the phase 1 drilling, therefore subsequent phases utilised the spearing of 4m field composites through this zone. The field composites were assayed at the commercial laboratories with the normal 1m samples from the mineralised zones, with no composites requiring the original 1m sample to be assayed.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Gloster: The mineralisation at Gloster is moderately dipping to the northeast so drilling is orientated to best suit the mineralisation to be closely perpendicular to both the strike and dip of the mineralisation. Intercepts are close to true-width in all cases. Baneygo:
		The mineralisation at Baneygo is predominantly sub-vertical dipping to local grid east (associated with shear zone-parallel veining) so drilling is orientated to best suit the mineralisation to be roughly perpendicular to both the strike and dip of the mineralisation. A 20-degree northerly plunge was also identified in the structural logging. Intercepts are close to true-width in most cases, and are not true width where the mineralisation is at its steepest. Structural logging of the orientated core indicates that the shear zone controlling mineralisation is approximately perpendicular to the drilling. Some moderate west dipping veins were also identified as being mineralised, although these are narrow in nature and not considered key mineralised structures.
		Idaho: The mineralisation at Idaho is sub-vertical dipping to the east so drilling is orientated to best suit the mineralisation to be roughly perpendicular to both the

Criteria		JORC Code explanation	Commentary
			strike and dip of the mineralisation. Intercepts are close to true-width in most cases, and are not true width where the mineralisation is at its steepest.
			Coopers: The Coopers drill holes were drilled at -60° to 270° and the mineralised zone is moderately to steeply east dipping. The intercepts reported are close to true width.
			Tooheys Well: The Tooheys Well drill holes were drilled at -60° to 270° and the mineralised zone is moderate to steeply east dipping. The intercepts reported are thought to vary from close to true width to down dip. See cross section diagrams
			Kintyre Soak and McKenzies Flats: The holes at Kintyre were drilled at -60° to 254° and the mineralised zone is moderately to steeply east dipping. The intercepts reported are close to true width. The holes at McKenzies were drilled at -60° to 270° and the mineralised zone is moderately to steeply east dipping. The intercepts reported are close to true width
			Russell's Find: The holes at Russell's Find were drilled at -60° to 254° and the mineralised zone is moderately to steeply east dipping. The intercepts reported are close to true width.
	-	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	Gloster, Baneygo, Idaho, Russells Find, Kintyre, McKenzies, Coopers and Tooheys Well: It is not believed that drilling orientation has introduced a sampling bias.
Sample security		The measures taken to ensure sample security.	Samples are securely sealed and stored onsite, until delivery to Perth via contract freight Transport, who then deliver the samples directly to the laboratory. Sample submission forms are sent with the samples as well as emailed to the laboratory, and are used to keep track of the sample batches.
Audits reviews	or	The results of any audits or reviews of sampling techniques and data.	Gloster, Baneygo, Idaho, Russells Find, Kintyre, McKenzies, Coopers and Tooheys Well: No audits on sampling techniques and data have been completed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests,	Gloster: The Gloster deposit is located on the recently granted tenement M38/1268, an area of 905.29ha.
tenure status	historical sites, wilderness or national park and environmental settings.	Normal Western Australian state royalties apply and a further royalty of between A\$10-\$100/troy ounce dependant on the gold price (A\$) is payable on a quarterly basis to a third party
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	Current registered holder of the tenement is Regis Resources Limited. There are no registered Native Title Claims.
		Baneygo:
		The Baneygo deposit comprises M38/344, an area of 9.8045 $\rm km^2$ (980.45 hectares).
		Normal Western Australian state royalties apply and a further 2% NSR royalty exists to a third party.
		Current registered holders of the tenements are Regis Resources Ltd and Duketon Resources Pty Ltd (20% owned by Regis, 80% Duketon Resources). There are no registered Native Title Claims.
		Idaho: The Idaho deposit is within the same tenement as Baneygo (M38/344). Normal Western Australian state royalties apply and a further 2% NSR royalty exists to a third party.
		Current registered holders of the tenements are Regis Resources Ltd and Duketon Resources Pty Ltd (20% owned by Regis, 80% Duketon Resources). There are no registered Native Title Claims.
		Coopers:
		The Coopers prospect comprises M38/302, an area of 9.86 km2 (986.00 hectares) with the prospect extending into M38/303, an area of 9.904km2 (990.4ha).

Criteria	JORC Code explanation	Commentary
		Current registered holder of M38/302 is Regis Resources Ltd (100%) and the registered holder of M38/303 is Regis Resources Ltd (20%) and Duketon Resources Pty Ltd (80%).
		Normal Western Australian state royalties apply and a further 2% NSR royalty exists to a third party for M38/303.
		There are no registered Native Title Claims on either tenement.
		Kintyre : The Kintyre deposit (M38/319), is an area of 10.42ha.
		Normal Western Australian state royalties apply and a further 2% NSR royalty exists to a third party.
		Current registered holders of the tenement is Regis Resources Ltd (20%) and Duketon Resources Pty Ltd (80%). There are no registered Native Title Claims.
		McKenzie's Flats:
		The McKenzie Well deposit (M38/237) is an area of 7.4445km2 (744.45ha).
		Normal Western Australian state royalties apply and a further 2% NSR royalty exists to a third party.
		Current registered holders of the tenement is Regis Resources Ltd (20%) and Duketon Resources Pty Ltd (80%). There are no registered Native Title Claims
		Russell's Find: The Russells Find prospect comprises M38/114, an area of 1.8355km2 (183.55ha) and M38/630, an area of 4.8585ha.
		Current registered holders of both tenements is Regis Resources Ltd (20%) and Duketon Resources Pty Ltd (80%). There are no registered Native Title Claims.
		Normal Western Australian state royalties apply and a further 2% NSR royalty exists to a third party.

Criteria	JORC Code explanation	Commentary
		Tooheys Well:
		The Tooheys Well prospect comprises M38/1251, an area of 9.109 km ² (910.90 hectares).
		Normal Western Australian state royalties apply and a further 2% NSR royalty exists to a third party.
		Current registered holders of the tenements are Regis Resources Ltd and Duketon Resources Pty Ltd (20% owned by Regis, 80% Duketon Resources). There are no registered Native Title Claims.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Gloster: Gloster was discovered in 1902, with no modern exploration work completed until Hillmin Gold Mines Pty Ltd and Aurotech NL conducted mapping, RC drilling, DD and RAB in the mid 1980's, culminating in Resource Estimates and feasibility studies. Leader Resources NL conducted some RC and DD drilling in 1991 before Maiden Gold NL purchase the project in 1994, completing more RC, DD and RAB drilling. In 1995 Johnsons Well Mining acquired the tenements and completed more RC, DD and RAB drilling to infill and extend the Resource.
		Baneygo: Shallow drilling (less than 100m vertical depth) completed by Aurora, Ashton and Johnsons Well Mining. Mining activity was completed by Ashton in the 1990's.
		Russells Find: Shallow drilling (less than 100m vertical depth) completed by Aurora, Ashton and Johnsons Well Mining. Mining activity was completed by Ashton in the 1990's.
		Kintyre/McKenzies: Shallow drilling (less than 100m vertical depth) completed by Aurora, Ashton and Johnsons Well Mining in the 1990's
		Idaho: Shallow drilling (less than 100m vertical depth) completed by Aurora, Ashton and Johnsons Well Mining in the 1990's.
		Coopers: All drilling intersecting mineralisation at Coopers has been drilled by Regis.

Criteria	JORC Code explanation	Commentary
		Tooheys Well: Minor amounts of drilling by Ashton and Johnsons Well Mining was completed although it was mainly shallow and not extensive enough to properly define the mineralisation.
Geology	Deposit type, geological setting and style of mineralisation.	Gloster: Gold mineralisation at Gloster is within a NW-SE trending, east dipping shear zone and associated with flat to moderately east dipping quartz veins hosted in felsic volcanics. A 5m transported cover sequence conceals the gold mineralisation and weathering extends up to 100m depth. Intensive gold leaching has occurred in the uppermost 15m of the weathering profile.
		Baneygo: The geology is similar to Rosemont with gold hosted in a steeply east dipping 345° trending quartz-dolerite unit intruding an ultramafic sequence. Gold mineralisation is associated with quartz-carbonate-chlorite-sulphide alteration and is restricted to the quartz dolerite unit which is generally approximately 80m wide. Weathering depths vary from 20m to 50m vertical depth.
		Idaho: The geology is similar to Rosemont with gold hosted in a steeply east dipping 345° trending quartz-dolerite unit intruding an ultramafic sequence. Gold mineralisation is associated with quartz-carbonate-chlorite-sulphide alteration and is restricted to the quartz dolerite unit which is generally approximately 80m wide. Weathering depths vary from 20m to 50m vertical depth.
		Russels Find: Gold mineralisation at Russell's Find is contained in steep east dipping quartz- carbonate-biotite veins contained in a package of moderate east dipping carbonated ultramafic with a footwall sequence of chert, BIF and fine grained silicified shale.
		Kintyre Soak/MacKenzies Flats : Gold mineralisation occurs within the quartz dolerite unit that is believed to be the strike continuation of the gold mineralised quartz dolerite at Idaho-Baneygo.

Criteria	JORC Code explanation	Commentary
		Coopers: Gold mineralisation at Coopers is located in a moderately east dipping shear zone hosted in dolerite and diorite intrusive units near a basalt contact that also dip at 45° to the east. A 5m to 10m transported cover sequence conceals the gold mineralisation and weathering of the basalt and dolerite units extends to 90m depth. Most drilling to date has defined the gold mineralisation in the oxide zone and only two RC holes have tested the fresh rock zone.
		Tooheys Well: The geology is similar to Garden Well with gold hosted in a moderately east dipping North-South trending chert and fine grained sediment unit. Gold mineralisation is associated with shearing at the interface between the chert and shales. Weathering depths vary from 20m to 70m vertical depth.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Refer to body of announcement
	easting and northing of the drill hole collar	
	elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	
	dip and azimuth of the hole	
	down hole length and interception depth	
	hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	

Criteria	JORC Code explanation	Commentary
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Reported intercepts include a minimum of 0.5 g/t Au value over a minimum distance of 1m with a maximum 2m consecutive internal waste. No upper cuts have been applied.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between	These relationships are particularly important in the reporting of Exploration Results.	Gloster: The Gloster drill holes were drilled at -60° to 244° and the mineralised zone is moderately dipping to the northeast. The intercepts reported are close to true
n widths and	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	width.
lengths	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	The Baneygo drill holes were drilled at -60° to 254° and the mineralised zone is sub-vertical. The intercepts reported are close to true width in some cases, and are not true width where the mineralisation is steepest.
		Idaho: The Idaho drill holes were drilled at -60° to 254° and the mineralised zone is subvertical. The intercepts reported are close to true width in some cases, and are not true width where the mineralisation is steepest.
		Coopers: The Coopers drill holes were drilled at -60° to 270° and the mineralised zone is moderately to steeply east dipping. The intercepts reported are close to true width.
		Tooheys Well: The Tooheys Well drill holes were drilled at -60° to 270° and the mineralised zone is moderately east dipping. The intercepts reported are close to true width.

Criteria	JORC Code explanation	Commentary
		Kintyre Soak and McKenzies Flats: The holes at Kintyre were drilled at -60° to 254° and the mineralised zone is moderately to steeply east dipping. The intercepts reported are close to true width. The holes at McKenzies were drilled at -60° to 270° and the mineralised zone is moderately to steeply east dipping. The intercepts reported are close to true width
		Russell's Find: The holes at Russell's Find were drilled at -60° to 254° and the mineralised zone is moderately to steeply east dipping. The intercepts reported are close to true width.
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to the body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	A list of all holes drilled during the quarter attached.
Other	Other exploration data, if meaningful and material, should be reported including (but not limited to); geological observations;	Idaho, Coopers and Tooheys Well: No other material exploration data to report.
exploration	geophysical survey results; geochemical survey results; bulk	Gloster and Baneygo:
data	samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	The Gloster diamond holes were also utilised for bulk density measurements. Geotechnical logging is in progress for determining ground conditions for open pit mining.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Gloster: It is expected some minor follow-up drilling will be required at Gloster in the June 2016 quarter.
		Baneygo: No further exploration drilling is planned at Baneygo in the June 2016 quarter.

Criteria	JORC Code explanation	Commentary
		Idaho: Further drilling is under way at Idaho to fully define the mineralisation, followed by a maiden Resource estimate.
		Coopers: A small exploration drilling is planned at Coopers in the June 2016 quarter. A gold Resource estimate will be completed subsequent to this.
		Tooheys Well: Drilling will continue in the June 2016 quarter to determine the continuity of gold mineralisation in the eastern shear zone 600m to the south, initially on 40m spaced East-West sections in the oxide zone and to target gold mineralisation in the fresh rock zone.
		Kintyre Soak and McKenzies Flats: Small follow up drill programs are planned to follow up anomalous results
		Russell's Find: Further drilling is planned prior to compiling a new resource estimate
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	See diagrams in main text

APPENDIX 2

	Coopers	Collar Locatio	n		Intersection >1.0 ppm Au and >1g/t Au*m			Au*m
	v	v	7	Total Depth	From	То	Interval	Au
noie_iD	Λ		L	(m)	(m)	(m)	(m)	(ppm)
RRLCPRC070	434,820	6,934,598	561	60.00	16	18	2	7.24
					26	34	8	4.32
RRLCPRC071	434,839	6,934,599	561	66.00	43	47	4	1.47
					52	54	2	1.37
					56	57	1	1.07
RRLCPRC072	434,867	6,934,599	561	90.00	68	72	4	6.81
	Idaho (Collar Location			Intersec	tion >1.0 ppm	Au and >1g/t	Au*m
Hole ID	х	Y	7	Total Depth	From	То	Interval	Au
	A	-	-	(m)	(m)	(m)	(m)	(ppm)
RRLIHRC077	431,222	6,909,582	480	87.00	38	41	3	1.54
					45	47	2	1.46
RRLIHRC078	431,240	6,909,587	480	111.00	35	41	6	1.73
RRLIHRC079	431,381	6,909,090	479	141.00	85	87	2	3.82
					96	103	7	1.23
					111	115	4	2.47
					126	127	1	1.12
RRLIHRC080	431,279	6,909,183	479	39.00	20	22	2	1.28
RRLIHRC081	431,342	6,909,201	479	141.00	71	75	4	1.04
					78	83	5	1.03
					97	98	1	8.96
RRLIHRC082	431,330	6,909,238	480	129.00	73	82	9	2.33
					87	88	1	1.19
					92	95	3	2.82
RRLIHRC083	431,282	6,909,267	479	75.00	29	31	2	1.92
					38	39	1	1.48
	424.222	c 000 070	470	07.00	56	58	2	1.88
RRLIHRC084	431,303	6,909,273	479	87.00	4	5	1	3.06
					9	10	1	2.50
					29 15	55 46	4	1.55
					45 49	40 51	2	1.30
					76	77	1	1.50
	/131 216	6 909 199	/180	51.00	33	3/	1	5 20
RRIHRCORE	/131 238	6 909 505	180	81.00	<u> </u>	/7		3.20
	731,230	0,202,303	-100	51.00	-+0 50	-+/ 52	,)	1 25
	431 256	6 909 510	480	99.00	72	73	1	2 08
	131,230	0,000,010	+00	55.00	76	80	4	3.67
					84	85	1	1.16
L					<u> </u>		±	1.10

RRLIHRC088	431,206	6,909,538	480	51.00	33	34	1	2.70
RRLIHRC089	431,239	6,909,548	480	93.00	72	75	3	1.34
RRLIHRC090	431,290	6,909,388	480	111.00	65	66	1	1.36
RRLIHRC091	431,310	6,909,318	479	111.00	67	68	1	1.23
					69	70	1	1.04
					73	74	1	7.04
					81	82	1	1.74
					91	92	1	5.36
RRLIHRC092	431,377	6,909,170	479	189.00	104	105	1	1.05
					108	112	4	1.77
					144	146	2	9.05
RRLIHRC093	431,382	6,909,129	479	165.00	102	108	6	5.00
					113	130	17	2.45
					137	138	1	1.34
	404 405		400	4.47.00	155	156	1	2.37
RRLIHRC094	431,425	6,908,989	480	147.00	83	84	1	1.14
					88	94	0	1.45
					90 103	99 105	1	1.14
					110	105	2	1.52
RRI IHRC095	431 464	6 908 955	480	195.00	93	94	, 1	1 39
	131,101	0,500,555	100	199.00	134	135	1	1.98
RRLIHRC096	431,468	6,908,918	480	183.00	94	95	1	1.63
RRLIHRC097	431,203	6,909,577	480	69.00	19	20	1	1.74
					45	49	4	1.63
RRLIHRC098	431,187	6,909,576	480	48.00	14	15	1	1.38
RRLIHRC099	431,260	6,909,596	480	90.00		No Significant	Intercepts	
RRLIHRC100	431,258	6,909,554	480	114.00		No Significant	Intercepts	
RRLIHRC101	431,276	6,909,518	480	126.00	103	104	1	1.00
RRLIHRC102	431,260	6,909,343	480	54.00	29	34	5	1.45
					41	44	3	1.28
RRLIHRC103	431,281	6,909,347	480	84.00	47	51	4	1.38
					54	57	3	3.29
					62	63	1	2.15
					72	75	3	2.35
RRLIHRC104	431,301	6,909,350	480	114.00		Awaiting F	Results	
RRLIHRC105	431,253	6,909,301	480	48.00		Awaiting F	Results	
RRLIHRC106	431,263	6,909,261	480	42.00		Awaiting F	Results	
RRLIHRC107	431,350	6,909,243	480	174.00		Awaiting F	Results	
RRLIHRC108	431,391	6,909,194	479	174.00		Awaiting F	Results	
RRLIHRC109	431,330	6,909,324	479	138.00		Awaiting F	Results	
RRLIHRC110	431,361	6,909,207	479	144.00		Awaiting F	Results	

-								
RRLIHRC111	431,295	6,909,168	479	60.00		Awaiting	Results	
RRLIHRC112	431,313	6,909,173	479	72.00		Awaiting	Results	
RRLIHRC113	431,330	6,909,177	479	102.00		Awaiting	Results	
RRLIHRC114	431,350	6,909,183	479	120.00		Awaiting	Results	
RRLIHRC115	431,372	6,909,189	479	138.00		Awaiting	Results	
RRLIHRC116	431,396	6,909,175	479	192.00		Awaiting	Results	
к	Intersection >1.0 ppm Au and >1g/t Au*m							
	v	v	7	Total Depth	From	То	Interval	Au
Hole_ID	^	T	Z	(m)	(m)	(m)	(m)	(ppm)
RRLKIRC001	430,187	6,915,984	492	66.00	30	31	1	1.49
					47	48	1	1.05
RRLKIRC002	430,219	6,915,993	492	126.00	44	45	1	2.23
RRLKIRC003	430,216	6,915,780	491	75.00	25	26	1	1.22
					31	32	1	2.78
					37	38	1	1.37
RRLKIRC004	430,244	6,915,788	491	120.00	32	34	2	1.23
					76	79	3	9.85
RRLKIRC005	430,273	6,915,796	491	150.00	138	139	1	1.10
RRLKIRC006	430,237	6,915,838	491	108.00	19	24	5	2.66
					27	28	1	2.61
					45	46	1	4.08
	420.264	6.045.044	404	111.00	60	61	1	3.92
RKLKIRCOU7	430,261	6,915,844	491	144.00	55	50	1	4.00
	420 242	6.045.022	401	72.00	76	20	1	1.46
RRLKIRC008	430,213	6,915,832	491	72.00	30	36	6	2.11
RRLKIRC009	430,192	6,915,905	491	100.00	26	27	1	2.69
RKLKIKCUIU	430,141	6,916,120	494	66.00	31	37	6	2.12
	420.100	C 01C 127	40.4	114.00	41	43	2	1.49
	430,168	6,916,127	494	114.00	04	65	1	1.34
	430,190	6,916,032	493	84.00	38	40	2	5.61
KKLKIKCU13	430,213	6,916,039	493	120.00	38 52	39	1	1.05
	120 212	6 015 026	401	96.00	10	21		1.95
KREKIRC014	430,212	0,913,930	491	90.00	19	51 //1	12	6.98
	130 231	6 915 9/1	/01	132.00	24	27	3	1.27
KREKIRC015	430,234	0,913,941	491	132.00	34	36	2	2 35
					56	57	1	7.04
					66	67	1	1.23
RRLKIRC016	430,189	6,915,930	491	66.00	28	30	2	2.44
	-				41	42	1	28.10
RRLKIRC017	430,255	6,915,741	491	115.00	31	32	1	2.81
	-				49	50	1	2.66
				•				

					70	71	1	1.98
					87	88	1	1.15
RRLKIRC018	430,283	6,915,748	491	114.00	69	70	1	1.01
	,				94	95	1	1.06
					97	99	2	1.30
RRLKIRC019	430,208	6,915,885	491	81.00	30	31	1	5.84
					38	41	3	2.15
					58	59	1	15.90
RRLKIRC020	430,233	6,915,892	491	129.00	24	34	10	1.51
					45	46	1	6.48
					110	111	1	2.32
RRLKIRC021	430,150	6,916,074	494	69.00	29	35	6	2.76
RRLKIRC022	430,181	6,916,082	494	93.00	33	39	6	6.38
Mo	Kenzies Flats	Project Collar	Location		Interse	ction >1.0 ppm	Au and >1g/t	Au*m
Hole ID	х	Y	z	Total Depth	From	То	Interval	Au
	~	•	-	(m)	(m)	(m)	(m)	(ppm)
RRLMKRC001	431,206	6,909,647	480	75.00		No Significan	t Intercepts	
RRLMKRC002	431,226	6,909,653	480	99.00	85	86	1	1.07
RRLMKRC003	431,182	6,909,858	480	114.00	95	96	1	1.39
					104	105	1	3.37
RRLMKRC004	431,107	6,910,398	481	84.00	42	43	1	1.95
RRLMKRC005	431,130	6,910,398	481	150.00	96	97	1	1.11
					104	107	3	15.44
					138	142	4	1.71
RRLMKRC006	431,105	6,910,431	481	90.00	54	55	1	1.18
RRLMKRC007	431,186	6,909,939	480	120.00	103	104	1	1.06
RRLMKRC008	431,170	6,910,060	480	114.00	94	95	1	1.05
					103	104	1	5.28
RRLMKRC009	431,150	6,910,138	481	150.00		No Significan	t Intercepts	
RRLMKRC010	431,067	6,910,432	481	90.00	71	72	1	1.34
					75	77	2	4.56
RRLMKRC011	431,026	6,910,610	481	114.00	91	92	1	1.46
RRLMKRC012	430,936	6,911,181	482	102.00		No Significan	t Intercepts	
[No Significan	t Intercepts	
	Russells Fi	nd Collar Locat	ion		Interse	ction >1.0 ppm	Au and >1g/t	Au*m
Hole_ID	х	Y	z	Total Depth	From	To	Interval	Au (mmm)
				(m)	(m)	(m)	(m)	(ppm)
RRLRFRC017	438,613	6,905,510	527	100.00	71	73	2	3.98
RRLRFRC018	438,607	6,905,484	528	120.00	67	69	2	7.46
RRLRFRC019	438,661	6,905,473	527	150.00	127	129	2	8.50
RRLRFRC020	438,640	6,905,439	528	180.00	104	105	1	6.13
RRLRFRC021	438,649	6,905,418	528	220.00	115	119	4	10.19

RRLEFRC022 438,673 6,905,421 528 158.00 143 145 2 4.19 RRLEFRC024 438,655 6,905,394 529 151.00 No Significant Intercepts Increments RRLFRC024 438,654 6,905,365 530 133.00 69 83 14 2.76 RRLFFRC025 438,654 6,905,464 529 153.00 108 110 2 3.87 RRLFFRC025 438,655 6,905,303 529 198.00 178 181 3 7.39 RRLFRC027 438,645 6,905,343 529 149.00 178 181 3 7.39 RRLFRC028 438,645 6,905,345 530 169.00 113 123 10 1.83 RRLFRC029 438,650 6,905,345 530 169.00 149 150 1 3.14 RRLFRC031 438,650 6,905,432 530 149.00 195 97 2 5.09 <t< th=""><th>1</th><th></th><th></th><th></th><th></th><th>1</th><th></th><th></th><th></th></t<>	1					1			
RRLRFRC023 438,655 6,905,356 530 131.00 No Significant Intercepts RRLRFRC024 438,632 6,905,356 530 133.00 69 83 14 2.76 RRLRFRC025 438,654 6,905,364 529 153.00 108 110 2 3.87 RRLRFRC026 438,6702 6,905,403 529 198.00 178 181 3 7.39 RRLRFRC027 438,645 6,905,340 529 149.00 79 85 6 2.65 RRLRFRC028 438,671 6,905,342 530 169.00 113 123 10 1.88 RRLRFRC029 438,666 6,905,345 530 169.00 113 123 10 1.23 RRLRFRC031 438,651 6,905,345 528 124.00 95 97 2 5.09 RRLRFRC032 438,651 6,905,312 530 149.00 109 111 2 5.04 RRLRFRC033	RRLRFRC022	438,673	6,905,421	528	158.00	143	145	2	4.19
RRLRFRC024 438,632 6,905,356 530 133.00 69 83 14 2.76 RRLRFRC025 438,654 6,905,364 529 153.00 108 110 2 3.87 RRLRFRC026 438,702 6,905,303 529 198.00 178 181 3 7.39 RRLRFRC027 438,645 6,905,339 529 149.00 79 85 6 2.65 RRLRFRC028 438,671 6,905,342 530 169.00 113 123 10 1.23 RRLRFRC029 438,696 6,905,453 528 169.00 113 123 10 3.49 RRLRFRC031 438,631 6,905,453 528 169.00 149 150 1 3.14 RRLRFRC032 438,650 6,905,267 536 174.00 99 103 4 1.35 RRLRFRC033 438,671 6,905,267 536 169.00 1 1.23 1.32 1.22	RRLRFRC023	438,655	6,905,394	529	151.00	No Significant Intercepts			
95 97 2 1.75 RRLRFRC025 438,654 6,905,364 529 153.00 108 110 2 3.87 RRLRFRC026 438,702 6,905,403 529 198.00 178 181 3 7.39 RRLRFRC027 438,645 6,905,339 529 149.00 79 85 6 2.65 RRLRFRC028 438,671 6,905,342 530 169.00 113 123 10 1.23 RRLRFRC029 438,681 6,905,455 530 194.00 128 136 8 2.37 RRLRFRC030 438,681 6,905,458 528 124.00 95 97 2 5.09 RRLRFRC031 438,681 6,905,266 528 124.00 95 97 2 5.09 RRLRFRC033 438,671 6,905,267 536 174.00 95 99 4 1.23 RRLRFRC034 438,669 6,905,267 536 169.00	RRLRFRC024	438,632	6,905,356	530	133.00	69	83	14	2.76
Image: RRLRFRC025 438,654 6,905,364 529 153.00 108 110 2 3.87 RRLRFRC026 438,702 6,905,403 529 198.00 178 181 3 7.39 RRLRFRC027 438,645 6,905,339 529 149.00 79 85 6 2.65 RRLRFRC028 438,671 6,905,342 520 169.00 113 123 10 1.83 RRLRFRC028 438,671 6,905,455 530 194.00 128 136 8 2.37 RRLRFRC031 438,681 6,905,453 528 169.00 113 123 10 1.33 RRLRFRC032 438,681 6,905,453 528 124.00 95 97 2 5.09 RRLRFRC032 438,651 6,905,12 536 174.00 95 97 2 5.09 RRLRFRC034 438,651 6,905,267 536 169.00 111 2 5.04 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>95</td><td>97</td><td>2</td><td>1.75</td></td<>						95	97	2	1.75
RRLRFRC025 438,654 6,905,364 529 153.00 108 110 2 3.87 RRLRFRC026 438,702 6,905,403 529 198.00 178 131 3 7.39 RRLRFRC027 438,645 6,905,339 529 149.00 79 85 6 2.65 RRLRFRC028 438,671 6,905,342 530 169.00 113 123 10 1.23 RRLRFRC029 438,696 6,905,345 530 194.00 128 136 8 2.37 RRLRFRC030 438,681 6,905,463 528 169.00 149 150 1 3.14 RRLRFRC032 438,650 6,905,468 528 124.00 95 97 2 5.09 RRLRFRC032 438,650 6,905,468 528 124.00 95 97 2 5.04 RRLRFRC033 438,651 6,905,267 536 169.00 103 4 1.35 RRLRFR						117	118	1	1.92
RRLRFRC026 438,702 6,905,403 529 198.00 178 181 3 7.39 RRLRFRC027 438,645 6,905,339 529 149.00 79 85 6 2.65 RRLRFRC027 438,645 6,905,342 530 169.00 113 123 10 1.23 RRLRFRC029 438,696 6,905,345 530 169.00 113 123 10 4.34 RRLRFRC020 438,681 6,905,453 528 169.00 149 150 1 3.14 RRLRFRC031 438,636 6,905,453 528 124.00 95 97 2 5.09 RRLRFRC032 438,651 6,905,453 528 124.00 95 97 2 5.09 RRLRFRC033 438,651 6,905,265 536 174.00 95 99 4 1.23 RRLRFRC034 438,659 6,905,267 536 169.00 0 4 4 1.07 135 139 4 1.35 132 133 4 1.07	RRLRFRC025	438,654	6,905,364	529	153.00	108	110	2	3.87
RRLRFRC026 438,702 6,905,033 529 198.00 178 181 3 7.39 RRLRFRC027 438,645 6,905,333 529 149.00 79 85 6 2.65 RRLRFRC028 438,671 6,905,342 530 169.00 113 123 10 1.23 RRLRFRC029 438,691 6,905,345 530 194.00 128 136 8 2.37 RRLRFRC020 438,691 6,905,345 528 169.00 149 150 1 3.14 RRLRFRC031 438,651 6,905,312 530 149.00 99 103 4 1.35 RRLRFRC032 438,651 6,905,226 536 174.00 95 99 4 1.23 RRLRFRC033 438,671 6,905,267 536 169.00 0 4 4 1.07 132 133 4 1.67 1.32 133 4 1.67 RRLRFRC034 4						135	137	2	5.51
RRLRFRC027 438,645 6,905,339 529 149.00 79 85 6 2.65 88 94 6 3.09 3.07 112 15 9.37 129 130 1 8.81 1.23 10 1.23 RRLRFRC028 438,671 6,905,342 530 169.00 113 123 10 1.23 RRLRFRC030 438,681 6,905,343 528 169.00 149 150 1 3.14 RRLRFRC031 438,651 6,905,453 528 124.00 95 97 2 5.09 RRLRFRC033 438,671 6,905,265 536 174.00 95 99 4 1.23 RRLRFRC034 438,671 6,905,267 536 169.00 0 4 4 1.07 125 129 4 3.12 135 3.22 135 3.22 RRLRFRC034 438,671 6,905,267 536 169.00 4	RRLRFRC026	438,702	6,905,403	529	198.00	178	181	3	7.39
RRLRFRC028 438,671 6,905,342 530 169.00 113 123 10 1.23 RRLRFRC029 438,696 6,905,345 530 194.00 128 136 8 2.37 139 144 5 4.94 5 4.94 RRLRFRC030 438,681 6,905,453 528 169.00 149 150 1 3.14 RRLRFRC031 438,650 6,905,453 528 124.00 95 97 2 5.09 RRLRFRC032 438,650 6,905,312 530 149.00 99 103 4 1.35 RRLRFRC033 438,671 6,905,267 536 174.00 95 99 4 1.23 RRLRFRC034 438,612 6,905,267 536 169.00 0 4 1.07 132 133 4 1.52 129 4 3.12 RRLRFRC034 438,612 6,905,267 536 169.00 0 4 1.07 135 139 4 1.52 127 131	RRLRFRC027	438,645	6,905,339	529	149.00	79	85	6	2.65
RRLRFRC028 438,671 6,905,342 530 169.00 113 123 10 1.23 RRLRFRC029 438,696 6,905,345 530 194.00 128 136 8 2.37 RRLRFRC030 438,681 6,905,453 528 169.00 149 150 1 3.14 RRLRFRC031 438,650 6,905,312 530 149.00 99 97 2 5.09 RRLRFRC032 438,650 6,905,312 530 149.00 99 103 4 1.35 RRLRFRC033 438,651 6,905,296 536 174.00 95 99 4 1.23 RRLRFRC033 438,650 6,905,267 536 169.00 0 4 4 1.07 132 133 4 1.32 135 3 2.22 160 161 1 32.18 1.30 1.63 1.34 1.07 135 139 4 1.63 165 2 2.57 1.30 1.22 67 72 5 1.22						88	94	6	3.09
RRLRFRC028 438,671 6,905,342 530 169.00 113 123 10 1.23 RRLRFRC029 438,696 6,905,345 530 194.00 128 136 8 2.37 RRLRFRC030 438,681 6,905,453 528 169.00 149 150 1 3.14 RRLRFRC031 438,650 6,905,468 528 124.00 95 97 2 5.09 RRLRFRC032 438,650 6,905,312 530 149.00 99 103 4 1.35 RRLRFRC033 438,671 6,905,266 536 174.00 95 99 4 1.23 RRLRFRC034 438,669 6,905,267 536 169.00 0 4 4 1.07 135 132 135 3 2.22 160 161 1 32.18 RRLRFRC034 438,669 6,905,267 536 169.00 0 4 4 1.07 135 137 1 1.02 135 139 4 1.89 <						97	112	15	9.37
RRLRFRC028 438,671 6,905,342 530 169.00 113 123 10 1.23 RRLRFRC029 438,696 6,905,345 530 194.00 128 136 8 2.37 RRLRFRC030 438,681 6,905,453 528 169.00 149 150 1 3.14 RRLRFRC031 438,650 6,905,468 528 124.00 95 97 2 5.09 RRLRFRC032 438,650 6,905,296 536 174.00 99 103 4 1.35 125 129 4 3.12 132 135 3 2.22 160 161 1 32.18 125 129 4 3.12 RRLRFRC034 438,669 6,905,267 536 169.00 0 4 4 1.07 135 139 4 1.89 156 157 1 8.23 163 165 2 2.57 131 4						129	130	1	8.81
RRLRFRC029 438,696 6,905,345 530 194.00 128 136 8 2.37 RRLRFRC030 438,681 6,905,433 528 169.00 149 150 1 3.14 RRLRFRC031 438,636 6,905,438 528 124.00 95 97 2 5.09 RRLRFRC032 438,650 6,905,412 530 149.00 99 103 4 1.35 RRLRFRC033 438,671 6,905,267 536 174.00 95 99 4 1.23 RRLRFRC034 438,669 6,905,267 536 169.00 0 4 4 1.07 132 133 4 1.89 135 139 4 1.89 RRLRFRC034 438,669 6,905,267 536 169.00 0 4 4 1.07 132 133 4 1.89 156 157 1 8.23 RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 RRLRFRC036	RRLRFRC028	438,671	6,905,342	530	169.00	113	123	10	1.23
RRLRFRC030 438,681 6,905,453 528 169.00 149 150 1 3.14 RRLRFRC031 438,636 6,905,468 528 124.00 95 97 2 5.09 RRLRFRC032 438,650 6,905,312 530 149.00 99 103 4 1.35 RRLRFRC033 438,671 6,905,296 536 174.00 95 99 4 1.23 125 129 4 3.12 132 1335 3 2.22 132 1335 3 2.22 135 3 2.24 RRLRFRC034 438,669 6,905,267 536 169.00 0 4 4 1.07 135 139 4 1.89 156 157 1 8.23 RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 122 67 72 5 1.22 67 72 5 1.22 RRLRFRC035 438,612 6,905,515 527 139.0	RRLRFRC029	438,696	6,905,345	530	194.00	128	136	8	2.37
RRLRFRC030 438,681 6,905,453 528 169.00 149 150 1 3.14 RRLRFRC031 438,636 6,905,468 528 124.00 95 97 2 5.09 RRLRFRC032 438,650 6,905,312 530 149.00 99 103 4 1.35 RRLRFRC033 438,671 6,905,296 536 174.00 95 99 4 1.23 RRLRFRC034 438,669 6,905,267 536 169.00 0 4 4 1.07 132 1335 3 2.22 160 161 1 32.18 RRLRFRC034 438,669 6,905,267 536 169.00 0 4 4 1.07 135 139 4 1.89 135 139 4 1.89 145 149 1 107 13 4 1.07 135 139 4 1.89 1.30 1.22 1.30						139	144	5	4.94
RRLRFRC031 438,636 6,905,468 528 124.00 95 97 2 5.09 RRLRFRC032 438,650 6,905,312 530 149.00 99 103 4 1.35 RRLRFRC033 438,671 6,905,296 536 174.00 95 99 4 1.23 RRLRFRC034 438,667 6,905,267 536 174.00 0 4 4 1.07 132 135 3 2.22 160 161 1 32.18 RRLRFRC034 438,669 6,905,267 536 169.00 0 4 4 1.07 135 131 4 1.07 131 4 1.89 156 157 1 8.23 156 157 1 8.23 163 165 2 2.57 163 165 2 2.57 RRLRFRC035 438,612 6,905,211 530 125.00 47 56 9 <	RRLRFRC030	438,681	6,905,453	528	169.00	149	150	1	3.14
RRLRFRC032 438,650 6,905,312 530 149.00 99 103 4 1.35 RRLRFRC033 438,671 6,905,296 536 174.00 95 99 4 1.23 RRLRFRC033 438,671 6,905,296 536 174.00 95 99 4 3.12 125 129 4 3.12 132 135 3 2.22 160 161 1 32.18 3 2.22 160 161 1 32.18 RRLRFRC034 438,669 6,905,267 536 169.00 0 4 4 1.07 127 131 4 1.07 135 139 4 8.23 156 157 1 8.23 156 157 1 8.23 RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 RRLRFRC036 438,658 6,905,517 527 139.00	RRLRFRC031	438,636	6,905,468	528	124.00	95	97	2	5.09
RRLRFRC033 438,671 6,905,296 536 174.00 95 99 4 1.23 125 129 4 3.12 135 3 2.22 132 135 3 2.22 160 161 1 32.18 RRLRFRC034 438,669 6,905,267 536 169.00 0 4 4 1.07 127 131 4 1.07 135 139 4 1.89 RRLRFRC034 438,669 6,905,267 536 169.00 0 4 4 1.07 135 139 4 1.89 156 157 1 8.23 RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.32 RRLRFRC035 438,612 6,905,513 527 139.00 119 121 2 8.92 RRLRFRC036 438,635 6,905,517 527 140.00 99 97 5 <td>RRLRFRC032</td> <td>438,650</td> <td>6,905,312</td> <td>530</td> <td>149.00</td> <td>99</td> <td>103</td> <td>4</td> <td>1.35</td>	RRLRFRC032	438,650	6,905,312	530	149.00	99	103	4	1.35
RRLRFRC033 438,671 6,905,296 536 174.00 95 99 4 1.23 125 129 4 3.12 132 135 3 2.22 130 160 161 1 32.18 3 2.22 RRLRFRC034 438,669 6,905,267 536 169.00 0 4 4 1.07 135 139 4 1.89 135 139 4 1.89 156 157 1 8.23 163 165 2 2.57 RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 127 131 4 1.07 135 139 4 1.89 156 157 1 8.23 163 165 2 2.57 RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 120 2 97 5 3.68 3.28 3.28 3.28 3.68 3.68 3.						109	111	2	5.04
RRLRFRC034 438,669 6,905,267 536 169.00 0 4 4 1.07 127 131 4 1.07 135 139 4 1.89 126 157 1 8.23 166 165 2 2.57 RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 RRLRFRC036 438,612 6,905,281 530 125.00 47 56 9 1.30 RRLRFRC036 438,612 6,905,281 530 125.00 47 56 9 1.30 RRLRFRC036 438,658 6,905,531 527 139.00 119 121 2 8.92 RRLRFRC037 438,589 6,905,551 527 114.00 92 97 5 3.60 RRLRFRC038	RRLRFRC033	438,671	6,905,296	536	174.00	95	99	4	1.23
RRLRFRC034 438,669 6,905,267 536 169.00 0 4 4 1.07 127 131 4 1.07 135 139 4 1.89 156 157 1 8.23 169.00 165 2 2.57 RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 RRLRFRC035 438,658 6,905,581 527 139.00 119 121 2 8.92 RRLRFRC036 438,658 6,905,517 527 139.00 119 121 2 8.92 RRLRFRC038 438,635 6,905,517 527 139.00 119 121 2 8.92 RRLRFRC038 438,635 6,905,515 528 180.00 No Significant Intercepts 3.60 RRLRFRC040						125	129	4	3.12
RRLRFRC034 438,669 6,905,267 536 169.00 0 4 4 1.07 127 131 4 1.07 135 139 4 1.89 156 157 1 8.23 163 165 2 2.57 RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 RRLRFRC036 438,612 6,905,281 530 125.00 47 56 9 1.30 RRLRFRC036 438,658 6,905,513 527 139.00 119 121 2 8.92 RRLRFRC037 438,635 6,905,517 527 140.00 92 97 5 3.60 RRLRFRC038 438,635 6,905,517 527 114.00 92 97 5 3.60 RRLRFRC039 438,635 6,905,517 527 114.00 92 97 5 3.60 RRLRFRC039						132	135	3	2.22
RRLRFRC034 438,669 6,905,267 536 169.00 0 4 4 1.07 127 131 4 1.07 135 139 4 1.89 156 157 1 8.23 163 165 2 2.57 RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 59 60 1 1.22 67 72 5 1.22 67 72 5 1.22 91 92 1 3.28 RRLRFRC036 438,658 6,905,496 527 139.00 119 121 2 8.92 RRLRFRC037 438,589 6,905,517 527 139.00 119 121 2 8.92 RRLRFRC038 438,635 6,905,517 527 139.00 119 121 2 8.92 RRLRFRC038 438,690 6,905,517 527 114.00 92 97 5 3.60 RRLRFRC038 438,690 6,905,515						160	161	1	32.18
RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 SP 600 1 1.22 67 72 5 1.22 RRLRFRC036 438,658 6,905,496 527 139.00 119 121 2 8.92 RRLRFRC037 438,635 6,905,517 527 139.00 119 121 2 8.92 RRLRFRC038 438,635 6,905,517 527 114.00 92 97 5 3.60 RRLRFRC039 438,690 6,905,505 528 180.00 No Significant Intercepts 3.60 RRLRFRC040 438,603 6,905,461 528 99.00 68 69 1 1.28 RRLRFRC041 438,603 6,905,268 534 84.00 36 37 1 1.61	RRLRFRC034	438,669	6,905,267	536	169.00	0	4	4	1.07
RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 G7 72 5 1.22 67 72 5 1.22 RRLRFRC036 438,658 6,905,496 527 139.00 119 121 2 8.92 RRLRFRC037 438,589 6,905,531 527 139.00 119 121 2 8.92 RRLRFRC038 438,635 6,905,531 527 114.00 92 97 5 3.60 RRLRFRC038 438,635 6,905,517 527 114.00 92 97 5 3.60 RRLRFRC039 438,630 6,905,505 528 180.00 No Significant Intercepts 1.28 RRLRFRC040 438,637 6,905,461 528 99.00 68 69 1 1.28 RRLRFRC041 438,637 6,905,268 534 84.00 36 37 1 1.61 <						127	131	4	1.07
RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 FRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 FRLRFRC036 438,612 6,905,281 530 125.00 47 56 9 1.30 RRLRFRC036 438,658 6,905,496 527 139.00 119 121 2 8.92 RRLRFRC036 438,658 6,905,511 527 139.00 119 121 2 8.92 RRLRFRC037 438,658 6,905,517 527 140.00 41 42 1 3.68 RRLRFRC038 438,635 6,905,517 527 114.00 92 97 5 3.60 RRLRFRC039 438,635 6,905,505 528 180.00 No Significant Intercepts 1.28 RRLRFRC040 438,603 6,905,268 534 84.00 36 37 1 1.61 RRLRFRC042 438,577 6,905,268 534 84.00 36 37 1						135	139	4	1.89
RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 RRLRFRC035 438,612 6,905,281 530 125.00 47 56 9 1.30 G7 72 5 1.22 67 72 5 1.22 G7 72 5 1.22 91 92 1 3.28 RRLRFRC036 438,658 6,905,496 527 139.00 119 121 2 8.92 RRLRFRC037 438,589 6,905,511 527 64.00 41 42 1 3.68 RRLRFRC038 438,635 6,905,517 527 114.00 92 97 5 3.60 RRLRFRC039 438,635 6,905,517 528 180.00 No Significant Intercepts 3.60 RRLRFRC040 438,635 6,905,458 528 199.00 Awaiting Results 1.28 RRLRFRC041 438,635 6,905,273 533 94.00 36 37 1 1.61 RRLRFRC043 438,577 6,905,273 <td></td> <td></td> <td></td> <td></td> <td></td> <td>150</td> <td>157</td> <td>1</td> <td>0.23 2.57</td>						150	157	1	0.23 2.57
RRLRFRC035 438,612 6,905,261 530 125.00 47 56 9 1.30 59 60 1 1.22 67 72 5 1.22 67 72 5 1.22 91 92 1 3.28 RRLRFRC036 438,658 6,905,496 527 139.00 119 121 2 8.92 RRLRFRC037 438,589 6,905,531 527 64.00 41 42 1 3.68 RRLRFRC038 438,635 6,905,517 527 114.00 92 97 5 3.60 RRLRFRC039 438,690 6,905,505 528 180.00 No Significant Intercepts 5 RRLRFRC040 438,709 6,905,461 528 199.00 Awaiting Results 1.28 RRLRFRC041 438,603 6,905,268 534 84.00 36 37 1 1.61 RRLRFRC043 438,577 6,905,273 533 94.00 52 55 3 1.49 62 64 2 6.86		420 612	6 005 281	F 2 0	125.00	103	105	2	2.57
RRLRFRC036 438,658 6,905,496 527 139.00 119 121 2 8.92 RRLRFRC037 438,658 6,905,531 527 139.00 119 121 2 8.92 RRLRFRC037 438,635 6,905,531 527 64.00 41 42 1 3.68 RRLRFRC038 438,635 6,905,517 527 114.00 92 97 5 3.60 RRLRFRC038 438,635 6,905,505 528 180.00 No Significant Intercepts 7.06 RRLRFRC040 438,709 6,905,461 528 199.00 Awaiting Results 7.06 RRLRFRC041 438,603 6,905,268 534 84.00 36 37 1 1.61 RRLRFRC043 438,577 6,905,273 533 94.00 52 55 3 1.49 62 64 2 6.86 70 72 2 1.52 70 72 2 1.52 55 3 1.49 56 56	KKLKFKC035	438,012	0,905,281	530	125.00	47 50	50	9	1.30
RRLRFRC036 438,658 6,905,496 527 139.00 119 121 2 8.92 RRLRFRC037 438,589 6,905,531 527 64.00 41 42 1 3.68 RRLRFRC038 438,635 6,905,517 527 114.00 92 97 5 3.60 RRLRFRC039 438,690 6,905,517 527 114.00 92 97 5 3.60 RRLRFRC039 438,690 6,905,517 528 180.00 No Significant Intercepts RRLRFRC040 438,709 6,905,458 528 199.00 Awaiting Results RRLRFRC041 438,603 6,905,461 528 99.00 68 69 1 1.28 RRLRFRC042 438,577 6,905,268 534 84.00 36 37 1 1.61 RRLRFRC043 438,577 6,905,273 533 94.00 52 55 3 1.49 62 64 2 6.86 70 72 2 1.52						67	72	5	1.22
RRLRFRC036 438,658 6,905,496 527 139.00 119 121 2 8.92 RRLRFRC037 438,589 6,905,531 527 64.00 41 42 1 3.68 RRLRFRC038 438,635 6,905,517 527 114.00 92 97 5 3.60 RRLRFRC039 438,690 6,905,517 527 114.00 92 97 5 3.60 RRLRFRC039 438,690 6,905,505 528 180.00 No Significant Intercepts RRLRFRC040 438,709 6,905,458 528 199.00 Awaiting Results RRLRFRC041 438,603 6,905,461 528 99.00 68 69 1 1.28 RRLRFRC042 438,557 6,905,268 534 84.00 36 37 1 1.61 RRLRFRC043 438,577 6,905,273 533 94.00 52 55 3 1.49 62 64 2 6.86 70 72 2 1.52						91	92	1	3.22
RRLRFRC037 438,589 6,905,531 527 64.00 41 42 1 3.68 RRLRFRC037 438,635 6,905,531 527 64.00 41 42 1 3.68 RRLRFRC038 438,635 6,905,517 527 114.00 92 97 5 3.60 RRLRFRC039 438,690 6,905,505 528 180.00 No Significant Intercepts RRLRFRC040 438,709 6,905,458 528 199.00 Awaiting Results RRLRFRC041 438,603 6,905,268 534 84.00 36 37 1 1.61 RRLRFRC042 438,577 6,905,268 534 84.00 36 37 1 1.61 RRLRFRC043 438,577 6,905,273 533 94.00 52 55 3 1.49 G2 64 2 6.86 70 72 2 1.52		138 658	6 905 / 96	527	139.00	119	121	2	8.92
MRLM RC037 436,533 6,505,531 327 04.00 41 42 1 5.00 46 49 3 7.06 RRLRFRC038 438,635 6,905,517 527 114.00 92 97 5 3.60 RRLRFRC039 438,690 6,905,505 528 180.00 No Significant Intercepts RRLRFRC040 438,709 6,905,458 528 199.00 Awaiting Results RRLRFRC041 438,603 6,905,461 528 99.00 68 69 1 1.28 RRLRFRC042 438,557 6,905,268 534 84.00 36 37 1 1.61 RRLRFRC043 438,577 6,905,273 533 94.00 52 55 3 1.49 62 64 2 6.86 70 72 2 1.52	RRI RERCO37	/38 589	6 905 531	527	64.00	/1	/2	1	3.68
RRLRFRC038 438,635 6,905,517 527 114.00 92 97 5 3.60 RRLRFRC039 438,690 6,905,505 528 180.00 No Significant Intercepts Intercepts RRLRFRC040 438,709 6,905,458 528 199.00 Awaiting Results Intercepts RRLRFRC041 438,603 6,905,461 528 99.00 68 69 1 1.28 RRLRFRC042 438,557 6,905,268 534 84.00 36 37 1 1.61 RRLRFRC043 438,577 6,905,273 533 94.00 52 55 3 1.49 C - - - 62 64 2 6.86 70 72 2 1.52	Kitelii Keosy	+30,305	0,505,551	527	04.00	46	42	- 2	7.06
RRLRFRC039 438,690 6,905,505 528 180.00 No Significant Intercepts RRLRFRC040 438,709 6,905,458 528 199.00 Awaiting Results RRLRFRC041 438,603 6,905,461 528 99.00 68 69 1 1.28 RRLRFRC042 438,557 6,905,268 534 84.00 36 37 1 1.61 RRLRFRC043 438,577 6,905,273 533 94.00 52 55 3 1.49 Comparison 62 64 2 6.86 6.86 70 72 2 1.52		/38 635	6 905 517	527	11/1 00	40 92	97	5	3.60
RRLRFRC040 438,709 6,905,458 528 199.00 Awaiting Results RRLRFRC041 438,603 6,905,461 528 99.00 68 69 1 1.28 RRLRFRC042 438,557 6,905,268 534 84.00 36 37 1 1.61 RRLRFRC043 438,577 6,905,273 533 94.00 52 55 3 1.49 62 64 2 6.86 70 72 2 1.52		438,600	6 905 505	527	180.00	52	No Significant	Intercents	5.00
RRLRFRC040 438,703 6,905,458 528 199.00 68 69 1 1.28 RRLRFRC041 438,603 6,905,461 528 99.00 68 69 1 1.28 RRLRFRC042 438,557 6,905,268 534 84.00 36 37 1 1.61 RRLRFRC043 438,577 6,905,273 533 94.00 52 55 3 1.49 62 64 2 6.86 70 72 2 1.52		430,090	6,905,303	520	100.00	INO Significant Intercepts			
RRLRFRC041 438,557 6,905,268 534 84.00 36 37 1 1.61 RRLRFRC043 438,577 6,905,273 533 94.00 52 55 3 1.49 62 64 2 6.86 70 72 2 1.52		430,709		520	133.00	60		1	1 20
KKLKFRC042 438,557 6,905,268 534 84.00 36 37 1 1.61 RRLRFRC043 438,577 6,905,273 533 94.00 52 55 3 1.49 62 64 2 6.86 70 72 2 1.52		438,003		528	99.00	08	27	1	1.28
KKLKFKC043 438,577 6,905,273 533 94.00 52 55 3 1.49 62 64 2 6.86 70 72 2 1.52	KKLKFKC042	438,557	6,905,268	534	84.00	36	3/	1	1.61
62 64 2 6.86 70 72 2 1.52	KKLKFKC043	438,577	6,905,273	533	94.00	52	55	3 2	1.49
						02 70	04 70	2	0.80 1 E 0
						70	12	<u>ک</u>	1.52

RRLRFRC044	438,596	6,905,277	532	109.00	36	37	1	1.82
					53	54	1	1.21
RRLRFRC045	438,726	6,905,277	533	204.00	132	135	3	1.91
					154	156	2	2.73
					161	167	6	2.53
					172	174	2	1.38
					176	178	2	1.53
					197	199	2	14.43
RRLRFRC046	438,729	6,905,331	532	209.00	145	147	2	1.57
					151	156	5	1.45
					166	178	12	2.12
RRLRFRC047	438,752	6,905,335	532	229.00	165	196	31	1.92
					223	224	1	3.26
RRLRFRC048	438,727	6,905,429	529	204.00	202	203	1	2.96
RRLRFRC049	438,731	6,905,410	529	214.00	204	206	2	3.63
RRLRFRC050	438,749	6,905,390	530	234.00	221	222	1	4.05
RRLRFRC051	438,717	6,905,359	530	204.00	134	135	1	3.31
					162	164	2	3.04
					195	197	2	2.46
RRLRFRC052	438,744	6,905,362	531	229.00	225	227	2	3.36
RRLRFRC053	438,766	6,905,365	531	229.00	147	148	1	1.44
RRLRFRC054	438,741	6,905,317	532	209.00	149	155	6	2.04
					177	180	3	1.77
					183	189	6	1.87
RRLRFRC055	438,767	6,905,290	533	239.00	172	173	1	1.53
					185	189	4	1.90
					193	195	2	2.01
					204	206	2	1.54
					211	214	3	1.37
RRLRFRC056	438,734	6,905,256	534	204.00	138	139	1	1.13
					172	178	6	1.47
					185	186	1	2.20
					191	195	4	3.24
RRLRFRC057	438,778	6,905,264	534	234.00	181	182	1	1.36
					197	199	2	1.55
					215	216	1	1.20
					228	230	2	1.19
RRLRFRC058	438,690	6,905,247	532	164.00	106	107	1	9.25
					114	128	14	1.37
					149	151	2	2.96
	400	C 005 0 10	5 25	264.66	155	156	1	1.44
KKLRFRC059	438,759	6,905,242	535	264.00	1/8	1/9	1	1.07
					213	214	1	1.53
I					21/	210 Pa	 age 41	1.12

					220	222	2	1.42
					253	255	2	2.29
RRLRFRC060	438,778	6,905,216	536	248.00	195	202	7	1.75
					212	213	1	1.03
					227	228	1	1.73
					236	239	3	2.72
Tooł	neys Well F	Project Collar L	ocation		Intersect	tion >1.0 ppm	Au and >1g/t	Au*m
			-	Total Depth	From	То	Interval	Au
Hole_ID	X	Ŷ	Z	(m)	(m)	(m)	(m)	(ppm)
RRLTWRC068	437,840	6,909,377	508	163.00	50	55	5	3.94
					58	62	4	5.14
					65	66	1	2.91
					69	70	1	1.53
					73	79	6	1.30
					83	86	3	2.32
					101	102	1	1.00
					110	115	5	2.31
					119	134	15	3.54
RRLTWRC069	437,879	6,909,336	508	203.00	53	65	12	1.83
					68	69	1	1.53
					73	74	1	1.15
					82	83	1	1.18
					98	105	7	1.44
					108	126	18	1.80
					156	169	13	2.38
					183	186	3	2.36
RRLTWRC070	437,918	6,909,258	508	218.00	44	46	2	2.38
					62	63	1	1.24
					68	72	4	2.13
					142	143	1	1.51
					164	165	1	1.54
					186	217	31	3.46
RRLTWRC079	437,900	6,909,219	507	203.00	135	136	1	3.82
					139	180	41	2.58
					184	203	19	4.21
RRLTWRC080	437,938	6,909,180	507	93.00	53	54	1	1.01
					83	84	1	1.48
RRLTWRC081	437,881	6,909,418	508	224.00	41	42	1	1.58
					53	57	4	4.60
					63	68	5	2.01
					93	94	1	2.05
					204	209	5	1.12
					213	216	3	2.21
					220	221	1	1.84

	427.000	c 000 077	500	112.00	F 4	64	10	2 72
RRLIWRC082	437,860	6,909,377	508	113.00	51 79	61 80	10	3.72 5.84
RRLTWRC083	437,796	6,909,458	508	88.00	51	58	7	3.31
	,				63	64	1	2.01
RRLTWRC084	437.978	6.909.057	507	213.00	83	84	1	1.57
	,	-,,			195	197	2	1.13
RRLTWRC085	437,902	6,909,142	506	78.00		No Significant	Intercepts	
RRLTWRC086	437,820	6,909,460	508	173.00	1	2	1	1.44
					49	53	4	5.47
					102	118	16	2.95
RRLTWRC087	437,900	6,909,300	507	195.00	51	52	1	1.51
					62	64	2	1.32
					71	73	2	1.65
					124	125	1	1.02
					137	138	1	2.11
					153	162	9	1.59
					178	180	2	1.16
					183	195	12	3.68
RRLTWRC088	437,860	6,909,460	508	228.00	48	50	2	2.39
					55	59	4	3.00
					140	142	2	1.78
					148	149	1	1.23
					158	160	2	2.23
RRLTWRC089	437,900	6,909,380	508	238.00	67	72	5	4.87
					125	126	1	2.48
					204	238	34	2.85
	Liberator Pro	oject Collar Loc	ation		Intersection >1.0 ppm Au and >1g/t Au*m			
Hole ID	Х	Y	z	Total Depth	From	То	Interval	Au
_				(m)	(m)	(m)	(m)	(ppm)
RRLMWRCD1307	436,024	6,944,195	545	363.25	214.7	215	0.3	3.26
					224.35	225.92	1.57	1.63
					229.2	229.68	0.48	1.46
					249.43	249.95	0.52	2.26
					256.15	256.75	0.6	1.85
					263.88	264.18	0.3	1.06
					275.08	275.84	0.76	1.74
					295.27	295.69	0.42	1.08
					336.57	336.96	0.39	1.12
					345.3	346	0.7	1.18
					353	353.4	0.4	1.48
					243.83	244.23	0.4	2.66
					265.79	266.26	0.47	3.18
					268.55	272.55	4	4.13
					304.55	306.42	1.87	1.37

