

ABN: 44 103 423 981

Tel: +61 8 9322 6974 Fax: +61 8 9486 9393 email: dcrook@PIOresources.com.au

> Address: 21 Ord Street West Perth Western Australia

> > Postal: PO Box 1787 West Perth Western Australia 6872

LITHIUM-CAESIUM DISCOVERY AT PIONEER DOME

(Lithium) 7m at 1.52% Li_2O and (High Grade Caesium) 6m at 27.7% Cs_2O

Perth Western Australia, 4 October 2016: Pioneer Resources Limited ("Company" or "Pioneer", ASX: PIO) is pleased to provide the following update regarding its 100%-held Pioneer Dome Lithium Project.

- The first batch of assays received, including: 7m at 1.52% Li₂O from 52m in PDRC015. Petrology and XRD underway to confirm mineralogy;
- Similar mineralogy is visually observed in drill holes over a strike length of 400m. The second batch of analyses is expected later this week;
- PDRC015 also intersected very high grade caesium: 6m at 27.7% Cs₂O from 47m;
- The presence of lithium and high grade caesium confirms that the Pioneer Dome hosts highly prospective differentiated LCT pegmatites.

Lithium Discovery Confirmed

The Company has completed the first pass of drilling at 3 targets at its 100%-held Pioneer Dome Lithium Project, and the first batch of assays has been received. The programme saw 64 reverse circulation (RC) drill holes completed for 5,200m at the PEG001, PEG002 and PEG008A pegmatite and geochemistry targets, and confirmed unequivocally that the Project hosts rare-metal LCT Pegmatites.

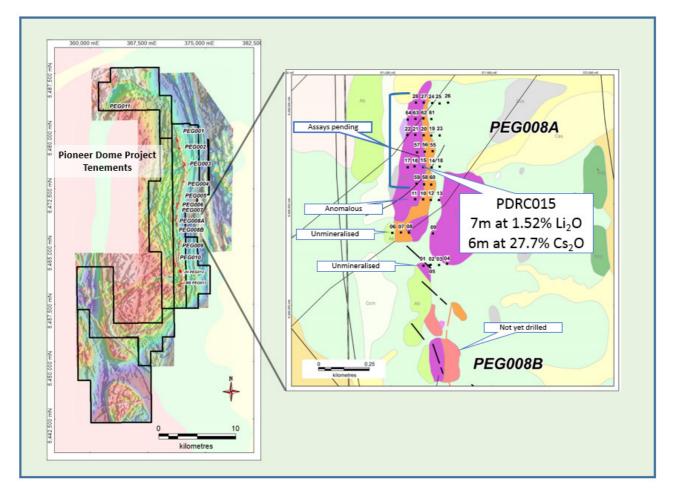
Assays have been received for holes PDRC001-PDRC015, drilled into the southern end of the PEG008A pegmatite (refer to Figure 1). Drill holes PDRC010 to PDRC028 were collared on 160m spaced drill traverses with holes spaced at 40m on each traverse. Infill holes, PDRC055-PDRC063, were drilled on a 80m x 40m spacing around the visually encouraging PDRC015 and PDRC021. Assays are pending for holes numbered PDRC016-PDRC065.

Lithium

The PEG008 lens is up to 80m thick with mineral differentiation evident, which has resulted in a quartzrich core encompassed by silicate mineral zones. **PDRC015 returned 7m at 1.52% Li₂O from 52m.**

Samples from PDRC015 have been submitted for petrology and XRD analyses to identify all lithiumbearing minerals in what is a highly differentiated rare-metal pegmatite body. (Refer Figure 2).

Caesium

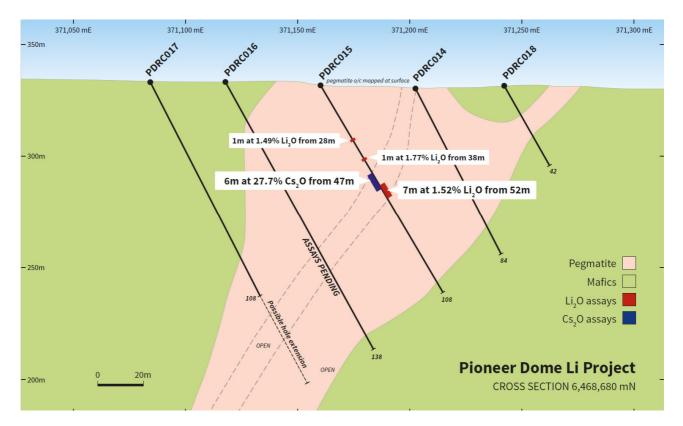

PDRC015 also returned 6m of high grade caesium grading 27.7% Cs₂O from 47m, likely to be contained in the mineral 'pollucite'.

The largest known deposit of pollucite is at the Tanco Mine, owned and operated by Cabot Corporation at Bernic Lake, Manitoba, Canada. Further information for caesium and the Tanco Deposit is readily available, including from (Tuck (USGS) 2015) and Martins et al (2013).

By gross weight, the greatest use of caesium is in the manufacture of formate brines for highpressure/high-temperature oil and gas drilling and exploration.

Pioneer Dome Exploration Programme Continuing

- Soil sampling has resumed: A further 5,000 samples have been taken from targets at PEG003, 004, 006, 009, 010, BB, BBSth and Franks Find. Sampling is continuing.
- A new tenement application (E63/1825) increases the Company's tenement holding in the Norseman area (centred on the Pioneer Dome) to 10 exploration licences covering 545km². The new tenement is the southern-most tenement shown in Figure 1 below.


Figure 1: LHS Pioneer Dome Project Tenements over aeromagnetic imagery, showing the location of known pegmatites PEG001-PEG014, and recently acquired E63/1825, the southern-most tenement shown. RHS Enlargement of PEG008 showing location of drill hole collars and PDRC015.

Photograph 1. RC drill hole PD001 is collared at the southern traverse of PEG008A

Photograph 2. Drill hole PD015 reached a depth of 108m, and show 103 x 1m sample piles of white pegmatite.

Figure 2: Schematic cross section of PEG008 showing the location of mineralisation in drill hole PDRC015.

Pioneer's Managing Director said "We're very encouraged with the information gained from the first drilling and particularly hole PDRC015, which marks a new lithium and caesium discovery. The Company looks forward to providing further updates to the market as more assay results and other minerology information comes to hand."

puroch

Managing Director Pioneer Resources Limited

For further information please contact:

David Crook Pioneer Resources Limited T: +61 8 9322 6974 E: dcrook@pioresources.com.au James Moses Media and Investor Relations M: +61 420 991 574 E: james@mandatecorporate.com.au

-ENDS-

Notes about the Pioneer Dome Lithium Project

REFERENCES

Company announcements to ASX 19 May 2016, 27 July 2016, 28 August 2016, 1 September 2016, and Quarterly Activity Reports.

Jones, M.G., (2005): "The Surface Geology of the Pioneer Dome Area, Yilgarn Craton, W.A"

Bradley, D., and McAuley, A. (2013): "A preliminary deposit model for lithium-cesium-tantalum (LCT) pegmatites". U.S. Geological Survey Open File Report 2013-1008 7p.

Martins, T., Kremer, P. and Vanstone P. (2013): "Field Trip Guidebook FT-C1 / Open File OF2013-8. The Tanco Mine: Geological Setting, Internal Zonation and Mineralogy of a World-Class Rare Element Pegmatite Deposit."

Tuck, C. A. (2015) "U.S. Geological Survey, Mineral Commodity Summaries, January 2015, (Cesium)"

GLOSSARY

Elements: "Au" means gold, "Be" beryllium, "Cs" caesium, "Cu" copper, "Ni" nickel, "Ag" silver, "Pb" lead, "Zn" zinc, "Pt" platinum, "Pd" palladium, "Li" Lithium, "Nb" niobium, "Rb" rubidium, "Sb" antimony, "Sn" tin, "Ta" tantalum.

" Cs_2O " means Caesium Oxide, and is the elemental metal quantity converted to its oxide (in percent (%)), which is a form of reporting used for caesium in scientific literature. The conversion factor for Cs to Cs_2O is 1.06.

"Li₂O" means Lithia, or Lithium Oxide, and is the elemental metal quantity converted to its oxide (in percent (%)), which is a form of reporting used for lithium in scientific literature. The conversion factor for Li to Li_2O is 2.153.

"Pegmatite" is a common plutonic rock of variable texture and coarseness that is composed of interlocking crystals of widely different sizes. They are formed by fractional crystallization of an incompatible elementenriched granitic melt. Several factors control whether or not barren granite will fractionate to produce a fertile granite melt (Černý 1991; Breaks 2003):

- presence of trapped volatiles: fertile granites crystallize from a volatile-rich melt.
- composition of melt: fertile granites are derived from an aluminium-rich melt.
- source of magma: barren granites are usually derived from the partial melting of an igneous source (I-type), whereas fertile granites are derived from partial melting of a peraluminous sedimentary source (S-type).
- degree of partial melting: fertile granites require a high degree of partial melting of the source rock that produced the magma.

Initially, fractional crystallization of a granitic melt will form barren granite consisting of common rock forming minerals such as quartz, potassium feldspar, plagioclase and mica. Because incompatible rare elements, such as Be, Li, Nb, Ta, Cs, B, which do not easily fit into the crystal of these common rock-forming minerals, become increasingly concentrated in the granitic melt as common rock forming minerals continue to crystallize and separate from the melt.

"Pollucite" is a zeolite mineral with the formula $(Cs,Na)_2Al_2Si_4O. _{12}\cdot 2H_2O$ with iron, calcium, rubidium and potassium as common substituting elements. It is an important ore of caesium.

"Spodumene" is a lithium aluminosilicate (pyroxene) found in certain rare-element pegmatites, with the formula LiAlSi₂O₆. Spodumene is the principal lithium mineral sourced from pegmatites and is the preferred source for high purity lithium products.

"ppm" means 1 part per million by weight.

"RC" means reverse circulation, a drilling technique that is used to return uncontaminated pulverised rock samples through a central tube inside the drill pipes. RC samples can be used in industry-standard Mineral Resource estimates.

"N", "S", "E", or "W" refer to the compass orientations north, south, east or west respectively.

"pXRF" means portable x-ray fluorescence. Pioneer owns an Bruiker S1 Titan 800 portable XRF analyser which is an analytical tool providing semi-quantitative analyses for a range of elements 'in the field'.

COMPETENT PERSON

The information in this report that relates to Exploration Results is based on information supplied to and compiled by Mr David Crook. Mr Crook is a full time employee of Pioneer Resources Limited and a member of The Australasian Institute of Mining and Metallurgy (member 105893) and the Australian Institute of Geoscientists (member 6034). Mr Crook has sufficient experience which is relevant to the exploration processes undertaken to qualify as a Competent Person as defined in the 2012 Editions of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'.

Mr Crook consents to the inclusion of the matters presented in the announcement in the form and context in which they appear.

CAUTION REGARDING FORWARD LOOKING INFORMATION

This document contains certain statements that may be deemed "forward-looking statements." All statements in this announcement, other than statements of historical facts, that address future market developments, government actions and events, are forward-looking statements.

Forward-looking statements are not statements of historical fact and actual events and results may differ materially from those described in the forward looking statements as a result of a variety of risks, uncertainties and other factors. Forward-looking statements are inherently subject to business, economic, competitive, political and social uncertainties and contingencies. Many factors could cause the Company's actual results to differ materially from those expressed or implied in any forward-looking information provided by the Company, or on behalf of, the Company. Such factors include, among other things, risks relating to additional funding requirements, metal prices, exploration, development and operating risks, competition, production risks, regulatory restrictions, including environmental regulation and liability and potential title disputes.

Forward looking statements in this document are based generally on the Company's beliefs, opinions and estimates as of the dates the forward looking statements that are made, and no obligation is assumed to update forward looking statements if these beliefs, opinions and estimates should change or to reflect other future developments.

Although Pioneer believes the outcomes expressed in such forward-looking statements are based on reasonable assumptions, such statements are not guarantees of future performance and actual results or developments may differ materially from those in forward-looking statements. Factors that could cause actual results to differ materially from those in forward-looking statements include new rare earth applications, the development of economic rare earth substitutes and general economic, market or business conditions.

While, Pioneer has made every reasonable effort to ensure the veracity of the information presented they cannot expressly guarantee the accuracy and reliability of the estimates, forecasts and conclusions contained herein. Accordingly, the statements in the presentation should be used for general guidance only.

APPENDIX 1. Drill Hole Information and Results Summary

Table 1							
Hole ID	Easting	Reverse Circula Northing	tion Drill H RL	ole Collar Loc Depth (m)	ations Dip (°)	Azimuth (°)	Prospect
PDRC001	371,162	6,468,196	335	90	-60	270	PEG008
PDRC002	371,197	6,468,200	331	84	-60	270	PEG008
PDRC003	371,238	6,468,200	323	108	-60	270	PEG008
PDRC004	371,278	6,468,205	325	84	-60	270	PEG008
PDRC005	371,191	6,468,197	331	48	-60	90	PEG008
PDRC006	371,008	6,468,358	326	72	-60	270	PEG008
PDRC007	371,051	6,468,360	331	72	-60	270	PEG008
PDRC008	371,090	6,468,359	336	66	-60	270	PEG008
PDRC009	371,208	6,468,355	333	78	-60	270	PEG008
PDRC010	371,160	6,468,523	337	90	-60	270	PEG008
PDRC011	371,121	6,468,523	342	102	-60	270	PEG008
PDRC012	371,198	6,468,520	338	54	-60	270	PEG008
PDRC013	371,238	6,468,519	330	42	-60	270	PEG008
PDRC014	371,202	6,468,681	331	84	-60	90	PEG008
PDRC015	371,160	6,468,682	332	108	-60	90	PEG008

Notes:

• Hole locations are in MGA 94 zone 51 derived from a hand held Garmin GPS with a nominal accuracy of ±3m in easting and northing.

• The RL is the elevation and is not considered accurate from a hand held GPS but is included as an estimate of the elevation.

• The azimuth is in degrees magnetic as derived from a hand held compass.

Table 2 Selected Assays						
Hole ID	Sample ID	From	То	Li₂O (%)	Ta (ppm)	Cs2O (%)
PDRC002	ARC103217	37	38	0.15	13	0.02
PDRC002	ARC103218	38	39	0.13	150	0.01
PDRC002	ARC103219	39	40	0.08	197	0.01
PDRC002	ARC103220	40	41	0.08	15	0.01
PDRC010	ARC103519	27	28	0.02	12	0.01
PDRC010	ARC103520	28	29	0.17	117	0.02
PDRC010	ARC103521	29	30	0.07	116	0.01
PDRC010	ARC103522	30	31	0.09	35	0.01
PDRC010	ARC103523	31	32	0.22	192	0.02
PDRC010	ARC103524	32	33	0.30	50	0.02
PDRC011	ARC103617	39	40	0.03	27	0.00
PDRC011	ARC103618	40	41	0.77	270	0.10
PDRC011	ARC103619	41	42	1.05	62	0.24
PDRC011	ARC103620	42	43	0.29	18	0.08
PDRC011	ARC103621	43	44	0.11	5	0.01
PDRC011	ARC103622	44	45	0.20	14	0.02
PDRC011	ARC103623	45	46	0.59	17	0.05
PDRC011	ARC103624	46	47	0.35	17	0.04

Table 2 Selected Assays						
Hole ID	Sample ID	From	То	Li₂O (%)	Ta (ppm)	Cs ₂ O (%)
PDRC011	ARC103646	66	67	0.04	4	0.01
PDRC011	ARC103647	67	68	0.13	347	0.02
PDRC011	ARC103648	68	69	0.14	238	0.02
PDRC011	ARC103649	69	70	0.18	129	0.02
PDRC011	ARC103650	70	71	0.20	36	0.02
PDRC015	ARC103831	26	27	0.01	3	0.03
PDRC015	ARC103832	27	28	0.71	54	0.13
PDRC015	ARC103834	28	29	1.49	55	0.15
PDRC015	ARC103835	29	30	0.21	11	0.05
PDRC015	ARC103843	37	38	0.09	3	0.09
PDRC015	ARC103844	38	39	1.77	72	0.30
PDRC015	ARC103845	39	40	0.05	2	0.10
PDRC015	ARC103852	46	47	0.47	1	6.83
PDRC015	ARC103853	47	48	0.12	21	30.58
PDRC015	ARC103854	48	49	0.15	138	27.35
PDRC015	ARC103855	49	50	0.30	37	29.61
PDRC015	ARC103856	50	51	0.14	15	30.62
PDRC015	ARC103857	51	52	0.15	4	30.09
PDRC015	ARC103858	52	53	0.91	37	18.04
PDRC015	ARC103859	53	54	1.63	67	7.34
PDRC015	ARC103861	54	55	2.04	73	0.43
PDRC015	ARC103862	55	56	1.09	119	0.29
PDRC015	ARC103863	56	57	1.39	129	0.32
PDRC015	ARC103864	57	58	2.77	196	0.52
PDRC015	ARC103865	58	59	0.80	60	0.18
PDRC015	ARC103867	59	60	0.53	90	0.17
PDRC015	ARC103868	60	61	0.42	47	0.12
PDRC015	ARC103869	61	62	0.21	18	0.05
PDRC015	ARC103870	62	63	0.22	54	0.07
PDRC015	ARC103871	63	64	0.39	43	0.10
PDRC015	ARC103872	64	65	0.16	15	0.03
PDRC015	ARC103873	65	66	0.44	21	0.15
PDRC015	ARC103874	66	67	0.17	9	0.07
PDRC015	ARC103875	67	68	0.44	14	0.09
PDRC015	ARC103876	68	69	0.13	10	0.06
PDRC015	ARC103877	69	70	0.34	10	0.13

Notes:

• Selected Assay results as derived from chemical analysis by Intertek-Genalysis.

• The yellow highlighted intervals are >0.8% Li_2O assays, pink are >100ppm Ta₂O and the green >17% Cs₂O.

• Intersections noted are 'down-hole' and do not necessarily represent a true width.

Section 1 - Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Pioneer Dome Project, PEG 08A Prospect.

Criteria	JORC Code explanation	Commentary		
Sampling techniques	• Nature and quality of sampling (eg cut Faces, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down-hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	 Reverse circulation (RC) samples from holes drilled from surface reported. Single meter samples were collected in calico bags via a cone splitter directly from the cyclone on the RC drill rig. pXRF analysis was undertaken using a Bruker S1 Titan 800 hand held portable XRF analyser. 		
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	 Industry-standard reverse circulation drilling, using a face-sampling hammer with a booster and auxiliary compressors used to ensure dry samples. Individual one meter samples were collected using a cyclone and a cone splitter into sub samples of approximately 3.5kg weight, the cyclone was regularly cleaned to minimise contamination. Duplicate samples and Certified Reference Standards were inserted at regular intervals to provide assay quality checks. The standards and duplicates reported within acceptable limits. 		
	 Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (eg 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (eg submarine nodules) may warrant disclosure of detailed information. 	 Reverse circulation drilling was used to obtain 1 m samples from which approximately 3.5 kg sampled. 3.5kg samples were crushed and pulverised by pulp mill to nominal P80/75um to produce a 50 gram charge for analysis. Lithium exploration package of elements were analysed by a four acid digestion with a Mass Spectrometer (MS) determination (Intertek analysis code 4A Li48-MS). The quoted detection limits for this method are a lower detection limit of 0.1ppm and an upper detection of 5000ppm Li. Most other elements have a similar analytical range. Any over range samples were re analysed by a sodium peroxide zirconium crucible fusion with a detection range of 1ppm to 20% Li. 		
Drilling techniques	• Drill type (eg core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (eg core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	 Reverse Circulation Drilling. 4.5 inch drill string. Face-sampling hammer. Auxiliary and Booster compressors used to exclude ground water. 		
Drill sample recovery	• Method of recording and assessing core and chip sample recoveries and results assessed.	• During drilling the geologist recorded occasions when sample quality is poor, sample return was low, when the sample was wet or compromised in another way.		
	• Measures taken to maximise sample recovery and ensure representative nature of the samples.	 Sample recovery is generally good for RC drilling using the equipment described. Sample recovery is mostly under the control of the drill operator and is generally influenced by the experience and knowledge of the operator. 		

Criteria	JORC Code explanation	Commentary		
	• Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain o fine/coarse material.			
Logging	• Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.			
	• Whether logging is qualitative or quantitative in nature. Core (or costean Face, etc) photography.	 Logging has primarily been qualitative. Qualitative litho-geochemistry based on pXRF analyses is used to confirm rock types. A representative sample of each meter is sieved and retained in chip trays for future reference. Petrology of chips from selected samples is underway to determine the mineralogy of the intervals. XRD analysis of selected pulps retained from the chemical analysis will be undertaken once all chemical assays have been received. 		
	• The total length and percentage of the relevant intersections logged.	The entire length of the drill holes were geologically logged.		
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whethe sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. 	3.5kg. The bulk residue was collected via plastic drums and laid out in order on the		
	• Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Cyclones are routinely cleaned after each 6m rod		
	 Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second half sampling. 	Standard Reference Material is included at a rate of 1 per 30 samples. Duplicate field camples are routingly incerted at a 1 per 30 samples.		
	• Whether sample sizes are appropriate to the grain size of the material being	• The sample size is considered appropriate for the style of deposit being sampled.		

Criteria	JORC Code explanation	Commentary		
	sampled.			
Quality of assay data and laboratory tests	• The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	• The sample preparation and assay method used is considered to be standard industry practice and is appropriate for the deposit.		
	• For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	 Pioneer owns a Bruker S1 Titan 800 handheld XRF instrument which it used to assist with selecting zones for initial one meter sampling. Zones have been selected due to elevated caesium, niobium, tantalum, gallium, rubidium, thallium or tin. Intervals not identified as elevated from the pXRF have been sampled with three meter composites. Standards, blanks and duplicates have been analysed with the Bruker to ensure the instrument is operating as expected and correctly calibrated. 		
	• Nature of quality control procedures adopted (eg standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	• Standards and laboratory checks have been assessed. Most of the standards show results within acceptable limits of accuracy, with good precision in most cases. Internal laboratory checks indicate very high levels of precision.		
Verification of sampling and assaying	 The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. 	 Significant intersections are calculated by experienced staff with these intersections checked by other staff. No holes have been twinned 		
	• Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	 Pioneer has a digital SQL drilling database where information is stored. The Company uses a range of consultants to load and validate data, and appraise quality control samples. 		
	Discuss any adjustment to assay data.	 Pioneer has adjusted the lithium assay results to determine Li₂O grades. This adjustment is a multiplication of the elemental Li assay results by 2.153 to determine Li₂O. 		
Location of data points	• Accuracy and quality of surveys used to locate drill holes (collar and down- hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	 Collar surveys were completed using a hand-held GPS with an accuracy of +-3 metres. 		
	• Specification of the grid system used.	• MGA94 (Zone 51)		
	• Quality and adequacy of topographic control.	• Topographic control is from a Digital Terrain Model (DTM). Once all exploration has been completed the RL of each drill collar and soil sampling points are assigned from this DTM. This is considered adequate for work at the early exploration stage.		
Data spacing and distribution	Data spacing for reporting of Exploration Results.	 Individual drill hole traverses were initially drilled on a 160m x 40m drill pattern. Selected infill has been completed on a 80m x 40m drill spacing in prospective zones. 		
	• Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications	• There has been insufficient work conducted to allow the estimation of a mineral resource.		

Criteria	JORC Code explanation	Commentary
	applied.	
	• Whether sample compositing has been applied.	All reported assays are of 1m samples.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 The strike of the mineralisation is estimated at to be broadly north – south, therefore the angled RC holes have been drilled at either 270° to 090°. Scissor holes have been drilled to determine the overall dip of the pegmatite bodies. The pegmatites dip toward the east on the southern line of drilling and to the west on all other drill traverses. Cross sections were drawn as the holes progressed to ensure the drilling was optimal to the interpreted orientation of the intrusions. Down hole intercept widths are estimated to closely approximately true widths based on the interpretation of the pegmatite bodies and the orientation of the drilling.
Sample security	• The measures taken to ensure sample security.	 Pioneer uses standard industry practices when collecting, transporting and storing samples for analysis. Drilling pulps are retained by Pioneer off site.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data.	 Sampling techniques for assays have not been specifically audited but follow common practice in the Western Australian exploration industry. The assay data and quality control samples are periodically audited by an independent consultant.

Section 2 - Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites	 The Pioneer Dome drilling reported herein is entirely within E63/1669 which is a granted Exploration Licence. The tenement is located approximately 40km N of Norseman WA. Pioneer Resources Limited is the registered holder of the tenement and holds a 100% unencumbered interest in all minerals within the tenement. The tenement is on vacant crown land. The Ngadju Native Title Claimant Group has a determined Native Title Claim which covers the Pioneer Dome project.
	• The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	• At the time of this Statement E63/1669 is in Good Standing. To the best of the Company's knowledge, other than industry standard permits to operate there are no impediments to Pioneer's operations within the tenement.
Exploration done by other parties	• Acknowledgment and appraisal of exploration by other parties.	• There has been no previous lithium exploration drilling or sampling on the Pioneer Dome project. Previous mapping by the Western Australian Geological Survey and Western Mining Corporation (WMC) in the 1970's identified several pegmatite intrusions however these were not systematically explored for Lithium or associated elements.
Geology	• Deposit type, geological setting and style of mineralisation.	• The Pioneer Dome pegmatite exploration is at an early stage however the pegmatite body at PEG08 appears based on rock chip and soil samples, to be a highly differentiated Lithium Caesium Tantalum (LCT) pegmatite intrusion. This type of pegmatite intrusions are the target intrusions of hard rock lithium deposits.
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including easting and northing of the drill hole collar, elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar, dip and azimuth of the hole, down hole length and interception depth plus hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	• Refer to Appendix 1 of this announcement.
Data aggregation methods	• In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (eg cutting of high grades) and cut-off grades are usually Material and should be stated.	 Intercepts noted are from 1m sample intervals. Lithium intersections are based on a 0.8% (lower) cut-off with a minimum width of 1m and no external or internal dilution.
	• Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown	• Caesium intersections are based on a 17% lower cut-off with a minimum width of 1m and no external or internal dilution.

Criteria	JORC Code explanation	Commentary
	 in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	No metal equivalent values have been used.
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (eg 'down hole length, true width not known'). 	• Downhole lengths are reported in Appendix 1. The current geological interpretation, based on RC drilling and mapping, suggests that the true widths are similar to the down hole widths.
Diagrams	 Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views. 	Refer to maps in this report.
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• Comprehensive reporting of drill details has been provided in Appendix 1 of this announcement.
Other substantive exploration data	 Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances. 	All meaningful and material exploration data has been reported.
Further work	 The nature and scale of planned further work (eg tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive. 	• Additional work including detailed petrography within the anomalous zones along with selected XRD to determine the mineralogy of the mineralised zones. Depending on the results of the remaining assay results and the mineralogical studies additional drilling including Diamond Drilling and infill RC would be conducted to allow the completion of a resource estimate for the mineralised body.