

COMPETENT PERSON'S REPORT

JINCHANGXI-BIZE GOLD PROJECT IN JINPING COUNTY, GUIZHOU PROVINCE, PEOPLE'S REPUBLIC OF CHINA

FOR QUEST INVESTMENTS LIMITED

PREPARED BY ROMA OIL AND MINING ASSOCIATES LIMITED

DATE CASE REF : 25/05/206 : BC/CR8226/APR16

Exploring Beyond Resources Realizing Your Full Potential

Unit 3806, 38/F, China Resources Building, 26 Harbour Road, Wan Chai, Hong Kong Tel (852) 2529 6878 Fax (852) 2529 6806 E-mail info@romagroup.com http:// www.romagroup.com

25/05/2016

Quest Investments Limited 7 Dallas Street, Mt Waverley Victoria Australia 3149

Case Ref: BC/CR8226/APR16

Dear Sir/madam,

Re: Competent Person's Report concerning the Jinchangxi-Bize Gold Project in Guizhou, China

Quest Investments Limited (the "Company") commissioned Roma Oil and Mining Associates Limited ("ROMA") to compose a Competent Person's Report (the "Report") for the Jinchangxi-Bize Gold Project located at Guizhou, China ("Project"). The effective date of the report is 25 May 2016.

Our report is to be used for the specific purposes stated herein and any other use is invalid. No one should rely on our report as a substitute for their own due diligence. No reference to our name or our report, in whole or in part, in any document you prepare or distribute to third parties may be made without our written consent. All files, work-papers or documents developed by us during the course of the engagement will be our property.

Yours faithfully, For and on behalf of Roma Oil and Mining Associates Limited

Hodgion

Steven Hodgson Principal Geologist

Contributor: Samantha Wan

Statement of Qualification of the Competent Person

I, Steven Hodgson, hereby confirm that:

- I have carried out the assignment for Roma Oil & Mining Associates Limited, located at: Unit 3806, 38/F, China Resources Building, 26 Harbour Road, Wan Chai, Hong Kong Tel: (852) 2529 6878 Fax: (852) 2529 6808 Email: <u>stevenhodgson@romagroup.com</u>
- I obtained a BAppSc (Geology) from Curtin University, Perth, Australia in 1989.
- I have over twenty years of experience as a geologist in exploration, prospect evaluation, project development, open pit mining, and resource estimation. I am also responsible for providing training to the geology team.
- I am a Member of the Australasian Institute of Geology, member number 3635 and the AusIMM, member number 108283.
- I have neither present nor prospective interests in the Company, the Project or the values reported herein.
- I am not aware of any material fact or material change with respect to the subject matter of the Report that is not reflected in the Report.

Table of Contents

Ta	ble d	of Con	tents	iii
Lis	t of	Figure	25	v
Lis	t of	Tables	5	vi
1	SI	UMM	ARY	7
2	IN	NTROE	DUCTION	10
	2.1	Sco	pe and Purpose of the Report	10
	2.2	Aut	horisation	11
	2.3	Sta	tement of Independence of ROMA	11
	2.4	Wa	rranties	11
	2.5	Ind	emnities	11
	2.6	Cor	isents	12
3	Р	ROPE	RTY DESCRIPTION AND LOCATION	13
	3.1	Loc	ation of the Project	13
	3.2	Mir	neral Tenure	14
	3.	.2.1	Legal Opinion	17
	3.	.2.2	Permits	18
	3.3	Env	ironmental Liabilities	18
4	С	LIMAT	E, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY	19
5	Н	ISTOR	Υ	25
6	G	EOLO	GICAL SETTING AND MINERALISATION	26
	6.1	Reg	ional Geology	26
	6.2	Loc	al Geology	27
	6.3	Dep	oosit Type	29
7	D	RILLIN	IG	29
8	D	ata v	ERIFICATION	

9	RESC	ESOURCE MODELLING AND PARAMETERS				
9	.1 \	Nireframing				
9	.2 5	Statistics				
	9.2.1	Compositing Interval	43			
	9.2.2	Bulk Density	43			
	9.2.3	Top Cuts	44			
	9.2.4	Block Model	44			
	9.2.5	Methodology	46			
	9.2.6	Validation	47			
10	MIN	ERAL RESOURCE ESTIMATE	50			
1	0.1 F	Resource classification	50			
1	0.2	Mineral Resource estimate resource	51			
11	MINI	NG METHODS	54			
12	ORE	RESERVE ESTIMATES	55			
14	RECC	OMMENDATIONS	56			
15	REFE	RENCES	57			
APF	ENDIX	(A: JORC CODE (2012) RESOURCE AND RESERVE CHECKLIST	58			
APF	ENDIX	(B: GLOSSARY OF TECHNICAL TERMS AND ABBREVIATIONS	77			
APF	ENDIX	C: MINING LICENSE and APPLICATION LETTER REPLY	80			
APF	ENDIX	(D: EXPLOITATION LICENSE OF BIZE	82			
APPENDIX E: ASSAY RESULTS84						
APF	APPENDIX F: DRILLHOLE COLLARS					
APF	APPENDIX G: DRILLHOLE\CHANNEL SAMPLES > 10 g/t90					

List of Figures

Figure 3-1 Regional Location of the Project	13
Figure 3-2 Road from Jinping to the Project.	14
Figure 3-3 Tenement boundaries and drillhole\channel sample collars	15
Figure 4-1 Site dormitory and office	20
Figure 4-2 Drillhole cores storage facility	21
Figure 4-3 Mineral concentrating plant.	21
Figure 4-4 Mineral concentrating plant.	22
Figure 4-5 Site power facility	22
Figure 4-6 Closed mining portal adjacent to the dormitory building	23
Figure 4-7 Ball mill crusher and floatation circuit	23
Figure 6-1 Regional setting of the Project area (after Enos et al., 2006)	26
Figure 6-2 Local Geology Map of Project	28
Figure 7-1 Plan View of Drilling and Sampling	30
Figure 7-2 Long Section of Drilling and Sampling	31
Figure 7-3 Surface drillhole core trays	32
Figure 7-4 Broken quartz from ZK205, 176.5 to 177.2 m	33
Figure 7-5 Quartz veining, 530 level	33
Figure 8-1 Collar of ZK503	34
Figure 8-2 Drilling validation	35
Figure 8-3 Channel sample validation	35
Figure 8-4 Laboratory duplicates	36
Figure 9-1 Stacked lodes and topography looking south	37
Figure 9-2 Northern area, mineralisation and faults, 70 m clipping	38
Figure 9-3 Drillhole samples distribution	40
Figure 9-4 Channel samples distribution.	41
Figure 9-5 Log probability plot of drillhole and channel samples	42
Figure 9-6 Drillhole and channel samples intervals.	43
Figure 9-7 Vein 9 showing rotation, green lode is not rotated	45
Figure 9-8 Underground workings.	47
Figure 9-9 Swath plots for all data.	49
Figure 10-1 Vein 8.1 rotated blocks coloured by Classification	51

List of Tables

Table 1-1 2016 Bize Mineral Resource estimate, 2.5 g/t Au cut-off	8
Table 3-1 Summary of the Bize mineral tenure	16
Table 3-2 Coordinates of the Bize mining license.	16
Table 3-3 Details of the Shierpan exploration license	16
Table 3-4 Coordinates of Shierpan exploration license	17
Table 3-5 Permits sighted by ROMA	18
Table 4-1 Metres of underground workings	24
Table 5-1 Bize work history	25
Table 8-1 Laboratory duplicates	36
Table 9-1 Mineralised wireframe extents	39
Table 9-2 Drillhole Au statistics	39
Table 9-3 Channel samples Au statistics	40
Table 9-4 Rotation parameters	44
Table 9-5 Block model parameters.	45
Table 9-6 Number of samples used per cell estimation.	46
Table 9-7 Average drillhole assays and model grade by lode	48
Table 10-1 Unmined Resource at 2.5 g/t Au lower cut off, all lodes	52
Table 10-2 May 2016 Mineral Resource estimate, 2.5 g/t Au lower cut off	53
Table 10-3 Unmined Resource by tenement at 2.5 g/t Au lower cut off, all lo	des53

1 SUMMARY

Quest Investments Limited (the "Company") commissioned Roma Oil and Mining Associates Limited ("ROMA") to provide a Competent Person's Report ("Report") for the Jinchangxi-Bize Gold Project ("Project") located at Guizhou, China.

The Project is owned by Jinping County Jinlong Mining Company Limited ("Jinlong"). The Bize mining lease expired in July 2015 while the exploration license expired 28th May, 2016. A reply letter to the application for Approval from the Department of Land and Resources of Guizhou Province, dated 19th April 2016, stated that the application for the mining license must be completed by the 30th August 2016.

The Project is located 16km southwest of Jinping town in Guizhou, China. It is connected by provincial roads to Jinping as well as the provincial capital Guiyang.

The Project is located near townships that supply labour and electricity from a nearby hydroelectric power station. Road access to and within the Project is good.

Infrastructure at the Project consists of a mill, offices and accommodation. No tailings dams are present, with the waste rock from the mill used for construction by local builders.

The Project has nearly 14 km of underground workings and is currently on standby.

The Project is geologically located in the Jiangnan tectonic belt, underlain by metamorphic rocks. The gold mineralisation of the Project is related to hydrothermal alteration which is associated with silicification, pyrite, carbonate, sericite and chlorite alteration.

The gold mineralisation within the Project area occurs in strataform quartz-veins. The mineralisation consists of six sub-horizontal stacked veins or orebodies that have been folded. The orebodies are numbered 7 to 12, with a second smaller orebody sub-parallel to orebodies 7, 8 and 9.

Fold axis are orientated in a NE-SW direction with the mineralisation trends in the

same direction. Individual veins can occur over 1,000 m NE/SW direction and 500 m in a NE/SW direction and 200 m vertically. The individual veins are thin, being approximately 0.8 m in thickness.

The Mineral Resource estimate was based on 103 channel samples and 93 diamond drillholes. The sampling was taken at right angles to the orebodies, which represented the true width of the veins.

A bulk density of 2.70 g/cm³ based on the processing of the ore from the mill was used and a top cut of 70 g/t was applied prior to the resource estimation.

The May 2016 Jinchangxi-Bize Gold Project Mineral Resource estimate is 1.883 million tonnes at 9.28 g/t of gold classified as Indicated or Inferred for 17,450 kg of gold, using a 2.5 g/t cut off, Table 1-1. The resource is compliant with the 2012 JORC Code guidelines.

Category	Tonnes (t)	Au (g/t)	Au Metal (kg)
Indicated	964,000	8.36	8,050
Inferred	919,000	10.25	9,400
Total	1,883,000	9.28	17,450

Table 1-1 2016 Bize Mineral Resource estimate, 2.5 g/t Au cut-off Notes: Differences may occur due to rounding.

There is a large amount of material that was not classified due to the distance from sample points. Given the continuous nature of the quartz veining, it should be possible to increase the size and confidence of this material with relatively minor expenditure. However the potential quantity and grade is conceptual in nature as there has been insufficient exploration to estimate a Mineral Resource and that it is uncertain if further exploration will result in an increase of the estimation of a Mineral Resource.

The Mineral resource estimate was carried out using an Inverse Distance Squared methodology. The model was depleted by the mined-out areas and material outside of the tenement prior to reporting.

The classification is based on the distance and number of samples used for the resource estimation which is a reflection of the drilling/channel sampling spacing and

geological structure.

It is recommended that drillhole collars, drives and stopes be surveyed prior to any further exploration is carried out. The differences in the historic and recent channel samples should be examined and if necessary, more channel samples should be collected. Any exploration should include detailed mapping. Structural mapping is recommended in the north western area due to the faulting and folding. The tenement licence should be renewed and boundaries modified to include the resource currently outside of the tenements.

2 INTRODUCTION

Quest Investments Limited ("the Company") commissioned ROMA to compose the Report for the Bize Project, located at Guizhou, China.

ROMA conducted a site visit during April 2016 to confirm the collar location of the drillholes, inspect underground workings, obtain reference samples, and discuss geological and mining aspects with the site personnel. Thirty channel samples and 17 drill core reference samples were collected for data verification.

2.1 Scope and Purpose of the Report

The scope of work is as follows:

- Data Review of available technical reports and maps;
- Review the database and conduct QA/QC data validation;
- Site visit to compare core against the drillhole logs and select samples for QA/QC verification;
- Geological/mineralogical interpretation and geostatistical analysis;
- Resource estimation and reporting in compliance with the JORC Code (2012) guidelines; and
- CP Report preparation and compilation.

The deliverables from the scope of work are Report and Mineral Resource estimations for the Project.

The Report has been prepared in accordance to The Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves (hereinafter referred to as the "JORC Code (2012)").

2.2 Authorisation

The Report is intended only for the use of the person to whom it is addressed. ROMA assumes no responsibility whatsoever to any person other than the Company in respect of, or arising out of, the contents of the Report. If others choose to rely in any way on the contents of the Report they do so entirely on their own risk.

The title to the Report shall not pass to the Company until all professional fees have been paid in full.

2.3 Statement of Independence of ROMA

ROMA and this Report are independent of the Company, its directors, senior management and advisers. Neither ROMA nor any of the authors of the Report have any material existing or contingent interest in the outcome of the Report, nor do they have any pecuniary or other interest that could be reasonably regarded as being capable of affecting their independence or that of ROMA.

2.4 Warranties

The Company has represented in writing to ROMA that full disclosure has been made of all material information and that, to the best of its knowledge and understanding, such information is complete, accurate and true.

2.5 Indemnities

The Company has provided ROMA with an indemnity under which ROMA is to be compensated for any liability and/or any additional work or expenditure resulting from any additional work required:

- which results from ROMA's reliance on information provided by the Company which is inaccurate or incomplete; or
- Which relates to any consequential extension workload through queries, questions or public hearings arising from the Report.

2.6 Consents

ROMA consents to the Report being included, in full, and the reference to ROMA's name and names of the authors of the Report in the public documents to be issued by the Company, in the form and context in which the technical assessment is provided, and not for any other purpose.

3 PROPERTY DESCRIPTION AND LOCATION

3.1 Location of the Project

The Project is located 16km from Jinping town to the east, and 260 km east of Guiyang City, the provincial capital of Guizhou, China, Figure 3-1 and Figure 3-2. Guiyang City can be accessed by daily flights from Hong Kong in 2 hours, or more than ten flights from Beijing in three and a half hour.

Access from Guiyang is good with bituminous road to the mine turn off. From the turn off a steep dirt road of about 2 km leads down to the mill. The mill is located at or below the mine portals.

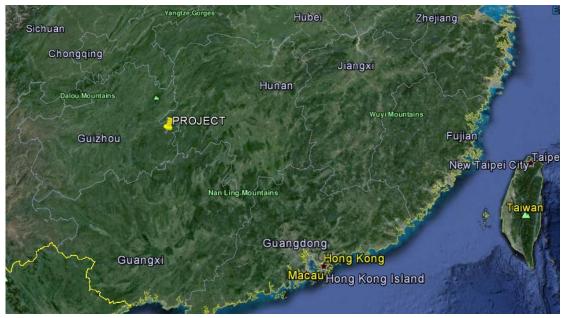


Figure 3-1 Regional Location of the Project.

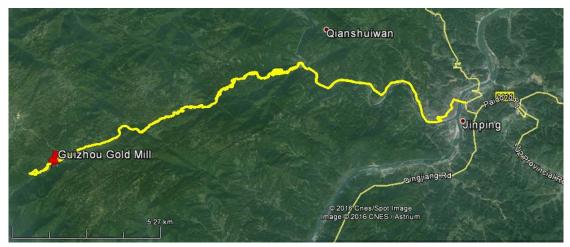


Figure 3-2 Road from Jinping to the Project.

3.2 Mineral Tenure

Mining license holder is Jinping County Jinlong Mining Company Ltd. and the license expired in 2015. In a reply to the application for Approval from the Department of Land and Resources of Guizhou Province, dated 19th April 2016, stated that the application for the mining license must be completed by the 30th August 2016. The reply has been observed by ROMA.

The Bize mining license is located adjacent to the Shierpan exploration licence, also held by Jinping County Jinlong Mining Company Ltd, Figure 3-3. The mining license is summarised in Table 3-1, and the coordinates of the license area is listed in Table 3-2. The exploration license details are presented in Table 3-3 and Table 3-4.

The 2010 Shandong No. 6 Brigade report stated that the permissible mining depth is 70 m to 800 m RL. This was not observed on the mining licence, however as the known mineralisation sits between 300 m and 800 m RL, this possible restriction is not an issue.



Figure 3-3 Tenement boundaries and drillhole\channel sample collars

License Type	Mining license
License Number	C5200002012024120122959/ 520000090028
Holder	Jinping County Jinlong Mining Ltd (WANG, Yong-ping)
Address	Sanjiang Town, Jinping County
Mine Name	Jinping County Jinchangxi-Bize Gold Mine
Ore Type	Gold
Mining Method	Underground mining
Mining Depth	70 to 800 m elevation
Mining Scale	20,000 tonnes per year
Area	0.8934 square kilometres
Validity	Nov 2011 to July 2015

Table 3-1 Summary of the Bize mineral tenure.

Doint	1980 Xi'an system		
Point	X	Y	
1	2950680	36605140	
2	2950050	36605100	
3	2949670	36604740	
4	2949490	36604320	
5	2949730	36604080	
6	2950590	36604260	

Table 3-2 Coordinates of the Bize mining license.

(From 2010 Shandong No. 6 Brigade)

License Type	Licence Number	Area (Km²)	Date Granted	Date Expired
Exploration	T52120081202019207	2.49	28 May 2013	28 May 2016

Table 3-3 Details of the Shierpan exploration license

Deint	1980 Xi'an system		Coordinates		
Point	Y		Longitude	Latitude	
1	36602047	2950235	109°01′30″	26°39′30″	
2	36602877	2950242	109°02′00″	26°39′30″	
3	36602869	2951166	109°02′00″	26°40′00″	
4	36604528	2951179	109°03′00″	26°40′00″	
5	36604525	2951641	109°03′00″	26°40′15″	
6	36603695	2951634	109°02′30″	26°40′15″	
7	36603691	2952096	109°02′30″	26°40′30″	
8	36605765	2952113	109°03′45″	26°40′30″	
9	36605769	2951651	109°03′45″	26°40′15″	
10	36604939	2951644	109°03′15″	26°40′15″	
11	36604947	2950721	109°03′15″	26°39′45″	
12	36604117	2950714	109°02′45″	26°39′45″	
13	36604121	2950252	109°02′45″	26°39′30″	
14	36603706	2950249	109°02′30″	26°39′30″	
15	36603714	2949325	109°02′30″	26°39′00″	
16	36602884	2949318	109°02′00″	26°39′00″	
17	36602880	2949780	109°02′00″	26°39′15″	
18	36602050	2949773	109°01′30″	26°39′15″	

Table 3-4 Coordinates of Shierpan exploration license (From 2010 Shandong No. 6 Brigade report)

3.2.1 Legal Opinion

A legal opinion from Christine M. Koo & IP, (Tower 1, Admiralty Centre, Harcourt Road, Hong Kong), dated 31st May 2016 stated that, as of the 21st December 2015, Mr Lok Wai Ming was the sole director and shareholder of Gold Lord Investment Inc.

Gold Lord Investments Inc. holds 93.6 % of the shares of Mountain Gold Holdings Inc. and is the sole director.

Asia Gold Limited ("Asia Gold") is a wholly owned subsidiary of Mountain Gold Holdings Inc.

Asia Gold holds 90 % of Shandong Yantai Sanhui Mining Co. Ltd ("Sanhui Mining"). Sanhui Mining holds 95 % of the shares to Jinping Country Jinlong Mining Co. Ltd.

3.2.2 Permits

Permits observed at the site are presented in Table 3-5.

Type of license	Issuing Authority	Certificate no.	Issue day	Expiry day
Blasting operation unit license (Cover and content page)	Ministry of Public Security	5226001300009	26 Jul 2013	30 Jul 2015
Business license (Cover and content page)	Jinping Administration for Industry and Commerce	522628000003802	6 Nov 2008	No expiry
Certificate Non-Coal Mines Work Safety Standardization (Fifth grade)	State Administration of Work Safety	AQBKV (Qian) H0003	5 Jan 2011	4 Jan 2014
Mining license	Department of Land and Resources of Guizhou Province	C520000201202412 0122959	15 Nov 2011	Nov 2011 – Jul 2015
Reply on mining license extension application	Department of Land and Resources of Guizhou Province	(2016)357	19 Apr 2016	30 Aug 2016
Organization code certificate (Cover and content page)	General Administration of Quality Supervision, Inspection and Quarantine of the PRC	522628-002679		31 Jul 2015 – 30 Jul 2019
Pollutant Discharge Permit of Guizhou Province (Cover page)	Jinping County Environmental Protection Bureau	628220135002	18 Nov 2013	18 Nov 2013 - 17 Nov 2016
TaxRegistrationCertificate (Cover andcontent page)	Jinping Administration for Industry and Commerce	52262868017780-2	17 Nov 2008	No expiry
Production Safety License (Cover and content page)	QiandongnanStateAdministrationofproduction safety	(Qian) 2012 H0077	17 Oct 2012	17 Oct 2012 - 30 Jul 2015

Table 3-5 Permits sighted by ROMA

3.3 Environmental Liabilities

There are no known environmental liabilities or restrictions regarding the Project.

4 CLIMATE, LOCAL RESOURCES, INFRASTRUCTURE AND PHYSIOGRAPHY

The area has a hilly topography modified by intensive weathering and erosion. The hills are generally NE striking and the overall relief is gentle in the NW side of the area, while a steeper relief is located in the SE side. Elevation ranges from 485 m to 927 m, with a difference of 442 m.

The climate of the area is a sub-tropical and humid monsoon climate. Annual average temperature is 17.4°C, with the highest temperature of 38°C and the lowest temperature of -1°C. The annual precipitation of 1348mm which is the major source of underground water. The precipitation has 80 % fall in the summer and autumn (May to September), and the rest of the year (October to April) is the dry season. The annual evaporation is 1250 mm. The evaporation mainly occur in the dry season when evaporation exceeds precipitation. There is no earthquake record in the area, and the earthquake intensity index is VI, which is not a threat to mine site infrastructures.

Agriculture is the major economic activity in the area. Local people also participate in mining activities in their spare time.

Site infrastructure are of good quality. A site office facility with storage areas, an office building and two dormitory buildings, are present in the southern margin of the tenement, Figure 4-1. The site office building consists of meeting and office rooms, a kitchen and storage facilities for documentation. Dormitories are attached to the offices and above the mill. These dormitories are used by local labourers who reside on site. There is also a drillhole cores storage facility adjacent to the mining portal PD580, Figure 4-2. Mobile phone signals and data networks are available all over the scope of the tenement area. Food and other necessities for the mine site offices and camps are purchased from the city of Jinping.

Approximately 3 km of gravel/unsealed roads have been constructed covering the tenement. These roads are connected to the sealed highway. The lay-out of these roads provide access for carrying out exploration programs, smallscale mining and the transportation of ore by trucks and loaders for any operations later on.

Below the mill is a small reservoir, Figure 4-3. As the waste rock from the mill is

donated to the local builders to be used for construction, there are no tailing dams which reduce the risk of mine/mill runoff into the reservoir.

The mill was constructed in 2011 and power is sourced from the town of Pingqiu's hydroelectric station, Figure 4-4 and Figure 4-5.

Adjacent to both the office building and dormitories is a small "Run of Mine" (ROM) pad where the mined ore is stock piled. A small underground portal currently exists approximately 30 m west from the site office (Figure 4-6). The portal is currently not in use.

A mineral processing plant equipped with crushing and concentrating machinery is built on the south of site office. The targeted mine production is 350 t/day. The process included 1st and 2nd stage crushing, a ball mill, floatation circuit and gravity separation tables (Figure 4-7).

The 2010 Geological Report (Shandong No.6) reported that there are nearly 14 km of underground development and stoping, Table 4-1.

Figure 4-1 Site dormitory and office.

Figure 4-2 Drillhole cores storage facility.

Figure 4-3 Mineral concentrating plant.

Figure 4-4 Mineral concentrating plant.

Figure 4-5 Site power facility.

Figure 4-6 Closed mining portal adjacent to the dormitory building.

Figure 4-7 Ball mill crusher and floatation circuit.

Drive	Before 2009		2009 On		Total
	Stoping (m)	Development (m)	Stoping (m)	Development (m)	m
PD700	1287	565	260	240	2352
PD630	612	0	282	144	1038
PD580	1153	1380	914	295	3742
PD570	1018	607	342	103	2070
PD560	502	200	100	228	1030
PD530	1800	960	338	619	3717
Total	6372	3712	2236	1629	13949

Table 4-1 Metres of underground workings

(From Geological Brigade No.6)

5 HISTORY

Since the 1970's, work has been carried out at the Project by various parties, as summarised in Table 5-1 (Allmark, 2013).

Year	Work	Contractor
Before 1976 From	Regional geological survey on a scale of 1:200,000 and placer surveys were carried out. General exploration for gold was	Local Regional Survey Team of Geology & Mineral Bureau Geological Team No. 117
1976 to 1978	conducted in the region and auriferous quartz veins were identified.	
From 2000 to 2002	Further region exploration was conducted. Potential for gold mineralisation was predicted at the Jinchangxi-Bize anticline.	Local Geological Survey Institute of Geology & Mineral Bureau
From 2008 to 2010	Geological work for the mine was conducted with one drill hole completed. Underground development and surveys were completed, reporting 13,949 m of underground drives. 480 underground channel samples were collected and analysed within the drives. A non-JORC resource estimate was reported.	Guizhou Non-ferrous Geological Brigade No.6 and mine site technical staff
From 2010 to 2012	Geological works for the mine conducted with 92 drill holes, 101 underground channel re-samples, 35 new channel samples and one trench excavated. Underground development and surveys.	Geology and Mineral Resources Exploration and Development Bureau of Shandong Province Geological Brigade No. 6 and site technical staff

Table 5-1 Bize work history.

Source: Allmark, D., 2013

6 GEOLOGICAL SETTING AND MINERALISATION

6.1 Regional Geology

The Project area is located in eastern Guizhou, which is in the Jiangnan Massifs between the South China Block of Yantze Craton and the South China Fold Belt (Figure 6-1). The deposition of shallow-water carbonates from Late Proterozoic through Middle Triassic has accumulated to a thickness of up to 12,000 m, and was shaped into the nowadays well-known karst landscape in Guizhou.

The region had undergone several periods of orogenic activity with the main folding dating back to the Indosinian and Yanshanian movements in Triassic and Mesozoic. This activity resulted in high angled northeast-trending folds and strike-slip faults. The faults and folds that are parallel to the South China Fold Belt which spans the southern part of China. Structures in this area are NNE-SSW and NE-SW trending.

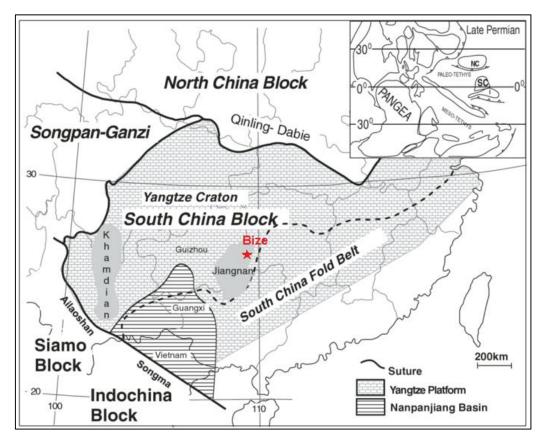


Figure 6-1 Regional setting of the Project area (after Enos et al., 2006)

Sediments of the Xiajing Group comprise the prevalent strata in this region and consist of mainly Proterozoic slates, lacustrine tuffaceous sandstones, tuffs and some carbonaceous rocks. Major formations in this group include: Jialu, Niaoye, Fanzhao, Zhangjiaba, Qingshuijiang, Pinglue and Longli. The prevalent formation in the Project area is the Fanzhao Formation.

6.2 Local Geology

Stratigraphy in this area consists of three sub-members of the second member of Fanzhao Formation, Xiajiang Group. The lithologies of the three sub-members, from the oldest to the youngest:

- The first sub-member (Qbf²⁻¹) is thin to medium thick layered sericite slates with a thickness of more than 97 m;
- The second sub-member (Qbf²⁻²) has a thickness of about 204 m. The lithology comprises of thin to medium thick layered sericite slate intercalated with medium thick meta-siltstone. This siltstone is the ore-bearing strata;
- The third sub-member (Qbf²⁻³) is more than 103 m thick and consists of thin to medium thick sericite slate intercalated with medium to thick layers of meta-sandstone.

The oldest strata in the area ((Qbf²⁻³) is exposed on the northwest limb of Taozi'ao anticline in an elongated shape and is parallel to the NE-SW orientated hinge of the anticline complex. The strata becomes younger in both northwest and southeast directions.

Locally the major structures consist of an anticline fold complex, two major faults and some secondary faults, Figure 6-2. These structures are parallel to the regional NE-SW striking structure. The anticline fold complex lies across the Project area and includes two anticlines which lie very close and parallel to each other. These are named the Taozi'ao anticline and Jinchangxi anticline. The Taozi'ao anticline lies northwest of the Jinchangxi anticline. This anticline fold complex is asymmetric with the steeper limb dipping 58° to 80° towards the northwest and a relatively gentle limb with a dipping of 15° to 36° toward southeast. The orebodies are located in the limbs as hidden orebodies and controlled by the major faults.

Two major faults lies parallel to the hinge of this fold complex:

- Fault F1 is a reverse fault that strikes northeast and dips to northwest at an angle of 80°. The fault is located on the northwest limb of the Taozi'ao anticline. A shear zone of 1-5 m wide is accompanied with reidel shear structures on both walls. The fault defines the southeast boundary of the oldest strata outcrop.
- Fault F2 strikes northeast and dips to southeast at about 75°. It is located between the two anticline hinges, on the southeast limb of the Taozi'ao anticline. A shear zone of 1-10 m is formed between the two walls and quartz veins are observed in the zone. Several secondary faults are also observed on the northwest limb of the anticline complex which are north and north-northeast trending and dip to northwest.

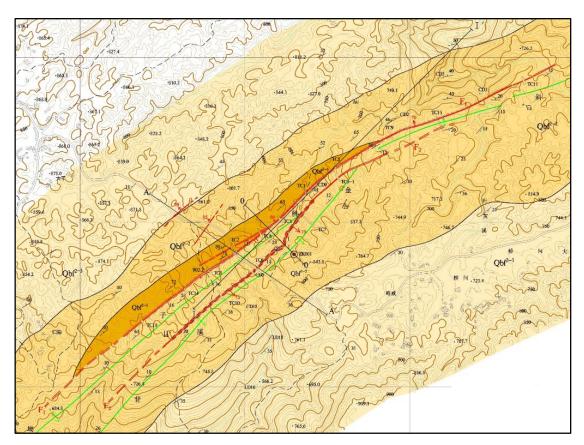


Figure 6-2 Local Geology Map of Project (After Shandong No.6, 2010).

Hydrothermal alteration in the area includes silicification with pyrite, arsenopyrite,

and sphalerite alteration. They are closely related to the gold mineralisation in the area.

6.3 Deposit Type

The mineralisation style of the Project is epithermal veining. The gold mineralisation is a result of intensive tectonic activities include folding and faulting during Late Jurassic and Cretaceous. This resulted in high temperature metamorphism and the introduction of hydrothermal fluids containing gold. The hydrothermal fluids formed the gold-bearing quartz veining along lines of weaknesses such as bedding planes, shear zones and faults. At the Project, the resultant orebodies lie between beddings in the anticline complex and in the shear zones associated with faults. The orebodies vary in thicknesses and range from 0.4 m to 2.6 m and average 0.8 m.

The structurally formed orebodies M5 and M6 are related to the F1 fault which extended about 3 km. F5 was formed along rock beddings with an average thickness of around 0.81 m. F6 was formed along F1, and the average thickness is 1.8 m approximately. The interbedded vein-type orebodies are formed parallel to bedding planes in the anticline fold complex and includes M7, M8, M9, M10, M11 and M12. Their distance from each other varies from 50 m to 100 m.

7 DRILLING

Drilling activities were undertaken by Shangdong Brigade No. 6 within the Project area from 2010 to 2012. The Shangdong No.6 Brigade drilled 93 holes comprised of 67 underground diamond drillholes with an aggregate length of 8,356 m and 26 surface holes with an aggregate length of 9,458 m. The average length was 125 m and 365 m respectively. Drillhole collars and depth of holes are presented in Appendix F and the drillhole plans and long section is presented in Figure 7-1 and Figure 7-2. Assays for the drillholes and channel samples with the grades > 10 g/t are presented in Appendix G.

Of the underground holes, 11 were drilled at 135°, 8 holes were drilled at 315° and 46 holes were drilled vertically. Twelve of the surface drillholes were drilled at 135°, 3 were drilled at 115°, 10 were vertical and 1 was drilled at 190°.

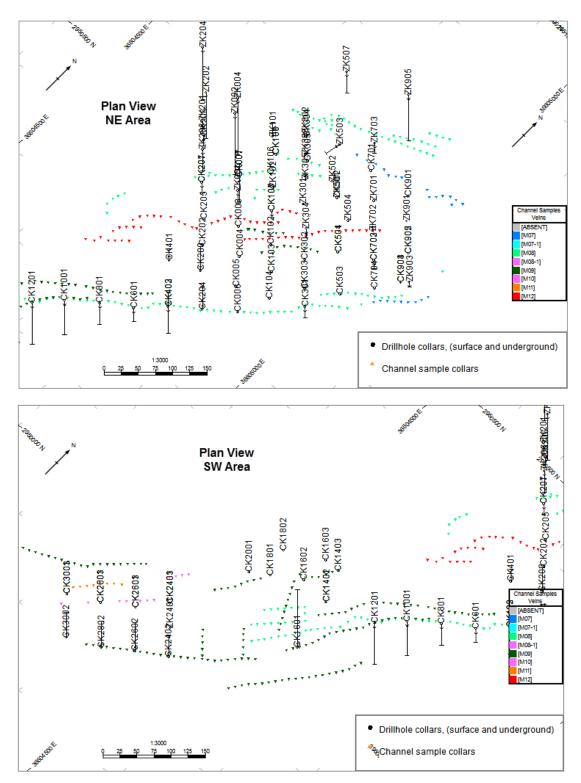


Figure 7-1 Plan View of Drilling and Sampling

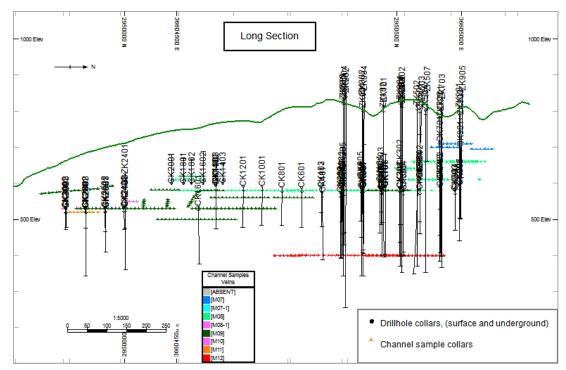


Figure 7-2 Long Section of Drilling and Sampling

The drilling was done in accordance to Chinese Standard. All the holes were surveyed at the start and end of the holes and cores were logged geologically. The drill core is NQ in size.

Out of the 666 mineralised intercepts, 623 samples had a recovery > 90%, 21 samples had a recovery of 80 to 89 % and 21 samples had a core recovery of < 80 %. Samples with core recovery of < 80 % were used for interpretation but removed for the resource estimation.

The cores have been stored in a core sheds, Figure 8. While some of the markings on the core trays had been lost and some wooden core trays had fallen apart, most of the core were in reasonable conditions, Figure 7-3. However poor organisation of the trays made it difficult to find particular surface drillholes core. The underground drilling core trays were better maintained and organised.

Sampled intervals of quartz veining in the core trays had been broken using a hammer and then samples taken from the selected interval.

Figure 7-3 Surface drillhole core trays

The Shangdong Brigade also took 101 underground channel re-samples, 35 new channel samples and excavated one trench.

ROMA verified the existing drilling by submitting 17 drillhole core samples and 30 underground channel samples.

The initial sampling of the drillhole core by the Shandong Brigade was to place the core in a jig and break the core with a hammer. Samples were then taken from the broken core. Much of the remaining quartz veining from the 17 intervals was taken by ROMA during the verification work. An example of the broken quartz veining is presented in Figure 7-4. As the core was broken and not cut for sampling, a greater variation between the historical and ROMA samples was expected.

Figure 7-4 Broken quartz from ZK205, 176.5 to 177.2 m

The 30 channel samples were taken using a hammer and chisel and at the same sites as the Shandong Brigade channel samples. Examples of the veining are presented in Figure 7-5.

Figure 7-5 Quartz veining, 530 level

8 DATA VERIFICATION

During the site visit ROMA confirmed the location of 6 surface drillholes collars (ZK101,

ZK102, ZK303, ZK305, ZK503 and ZK905) using a handheld GPS, Figure 8-1.

Figure 8-1 Collar of ZK503

ROMA verified the existing drill assays by submitting 17 drill hole core samples (surface and underground drilling) and 30 underground channel samples.

Of the 7 surface and 10 underground samples, only 7 samples had a difference of 2 g/t or less, indicating that the correlation between the historical and validation samples was poor, Figure 8-2. One sample, R012, is not shown as including the sample would hide the variation of the samples in the 0 to 15 g/t range.

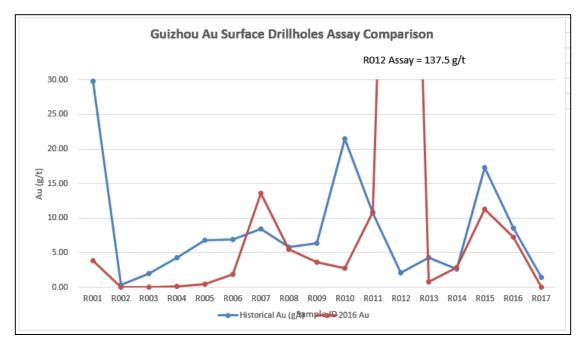


Figure 8-2 Drilling validation

The 30 channel samples were taken as close to the site of the Shandong Brigade as possible. The 2016 resampling showed a larger variation in Au grade compared with the historical one. The average grade of the 2016 channel samples was 8.02 g/t which is higher than the 4.21 g/t in the historical result, Figure 8-3. One sample, RU24, is not shown as including the sample would hide the variation of the samples in the 0 to 10 g/t range.

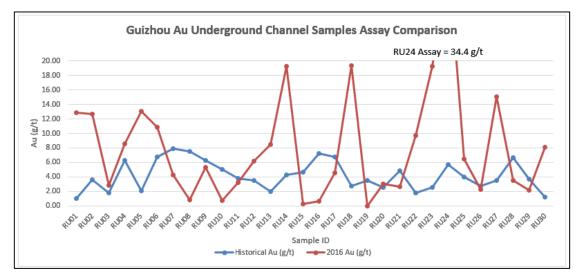


Figure 8-3 Channel sample validation

Repeat analysis to 5 out of the 47 validation samples indicated a moderate to poor correlation, indicating that the gold is nuggety in nature, Table 8-1 and Figure 8-4.

Method	Au-GRA21	
Sample	Au (ppm)	Au Duplicate (ppm)
R010	2.77	17.15
RU03	2.8	2.86
RU13	8.52	10.3
RU23	19.3	13.75
RU30	8.12	12.25

Table 8-1 Laboratory duplicates

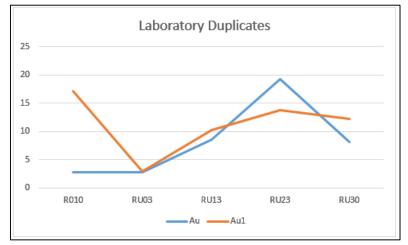


Figure 8-4 Laboratory duplicates

Two bulk density tests were carried out, one on the sediments using drillhole core and one on barren quartz veining. The results were 2.72 g/cm³ and 2.62 g/cm³ respectively.

Validation work showed that the area has a large variation in the gold grade and that the gold is nuggety in nature. The validation samples showed poor correlation to the original samples.

9 RESOURCE MODELLING AND PARAMETERS

All the resource modelling and estimation was carried by Steven Hodgson, Principal Geologist employed by ROMA. Steve Hodgson is a member of the AusIMM and has more than five years relevant experience in resource modelling and estimation in the type of mineral resources included in this report.

9.1 Wireframing

The mineralisation was constrained by wireframes that were created by snapping to the drillholes or channel samples based on a 1.0 g/t cut-off.

The mineralisation consists of six sub-horizontal stacked veins or orebodies that have been folded/sheared, Figure 9-1. The orebodies are numbered 7 to 12, with a second smaller orebody sub-parallel to orebodies 7, 8 and 9.

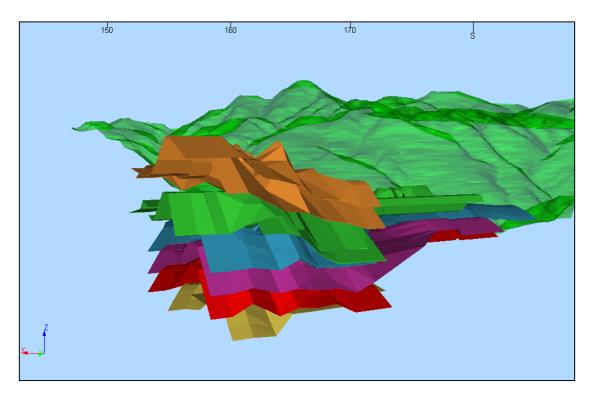


Figure 9-1 Stacked lodes and topography looking south

During wireframing, it was observed that the surface drillholes did not always relate spatially to the channel samples. This was attributed to a slightly different datum points between the underground and surface surveys. This resulted in an uneven appearance of the wireframe, mostly in the north-eastern area.

Several channel samples appear to have the wrong elevations by 2 to 5 m. These were corrected.

The wireframes showed minor folding and displacement by faulting. Figure 9-2. The faulting offset appears to decrease with depth.

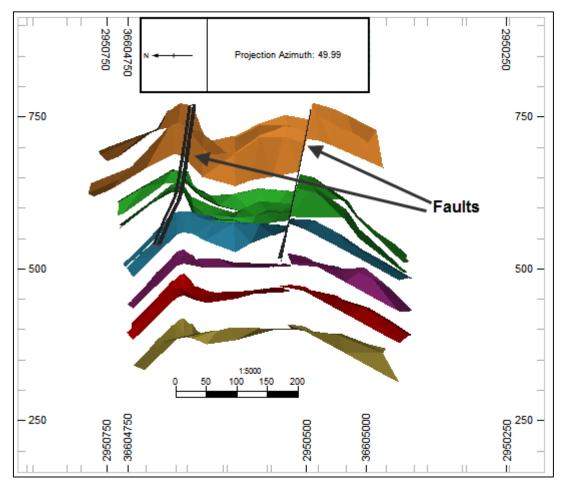


Figure 9-2 Northern area, mineralisation and faults, 70 m clipping

The extents of the wireframed lodes are presented in Table 9-1.

	M07_0	M07_1	M08_1_	M08_2_
	Length (m)	Length (m)	Length (m)	Length (m)
Easting	660	535	890	595
Northing	540	480	890	490
RL	160	195	155	150

	M09_1_	M09_2_	M10_1_	M11_1_	M12_1_
	Length (m)				
Easting	260	1,035	935	915	575
Northing	190	1,130	1,085	1,065	605
RL	125	145	120	160	195

Table 9-1 Mineralised wireframe extents

9.2 Statistics

A total of 255 drillhole samples were used in the resource estimation. Drillhole samples with a hole ID starting with "H" were excluded due to lack of interval information. The drillhole samples taken from ore vein M07, M08, M08-1 and M09 have average Au grades of over 13 g/t. The ore vein M12 drillhole samples have the lowest average Au grade, Table 9-2 and Figure 9-3.

Hole ID	Count	Average Au (g/ton)	Maximum Au (g/ton)
M07	30	13.55	118.03
M07-1	18	7.19	31.38
M08	34	17.81	95.08
M08-1	15	17.59	39.83
M09	59	13.70	156.75
M10	51	9.24	34.01
M11	35	7.21	42.16
M12	13	4.34	24.23
Total	255	11.74	156.75

Table 9-2 Drillhole Au statistics

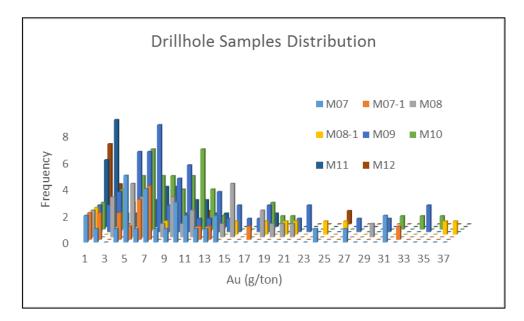


Figure 9-3 Drillhole samples distribution.

A total of 460 channel samples were used during the resource estimation. The channel samples taken from ore vein M07, M08, M10 and M12 have average Au grades of over 5 g/t, Table 9-3 and Figure 9-4. It is notable that the average Au grades are lower than the drillhole samples.

Hole ID	Count	Average Au (g/t)	Maximum Au (g/ton)
M07	24	5.12	32.42
M08	183	5.91	20.8
M09	172	2.99	10.2
M10	12	6.15	12.3
M11	8	2.55	3.5
M12	61	5.92	30.56
Total	460	4.73	32.42

Table 9-3 Channel samples Au statistics

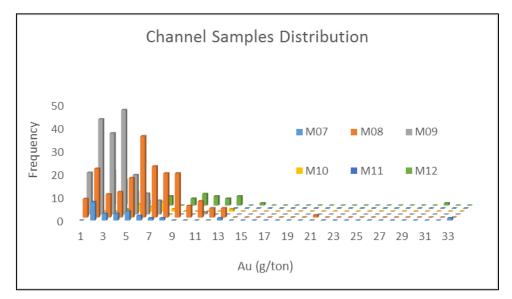


Figure 9-4 Channel samples distribution.

A log probability plot, Figure 9-5, shows the differences in the channel and drillhole samples. The difference in the grades may be due to:

- Poor sampling practices. The drillhole core was not cut longitudinally with a core saw, but broken in a jig and samples selected from the interval. The channel samples were taken using a chisel and hammer with the sampled material collected on a plastic sheet. This may cause a bias to the softer material, which may have different grade than the harder, more competent material.
- The location of samples. The drillhole samples collected at fold limbs were reported have higher Au grade than the channel samples collected away from the fold axis, however this was not that apparent when examine the data in 3D.
- High nuggety nature of the gold.

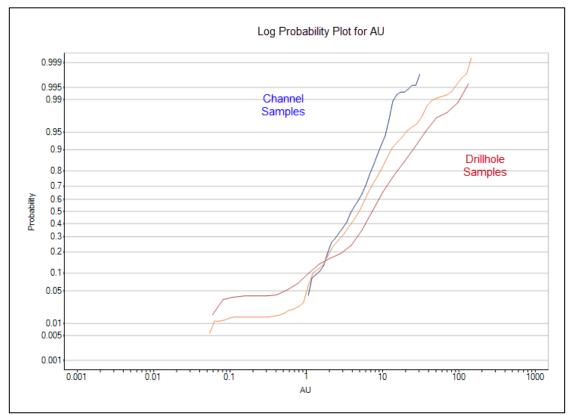


Figure 9-5 Log probability plot of drillhole and channel samples.

9.2.1 Compositing Interval

The drillhole and channel sample orientation meant that the samples generally represented the true width of the veins with an average of 0.8 m, Figure 9-6. The intervals were composited to a sample length of 0.8 m.

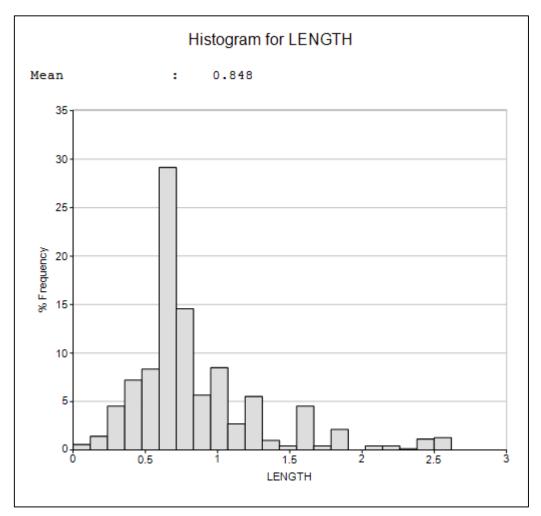


Figure 9-6 Drillhole and channel samples intervals.

9.2.2 Bulk Density

ROMA submitted two samples for bulk density analysis to ALS Chemex (Guangzhou) Co. Ltd in Guangzhou.

The first sample was NQ drill core of unmineralised slate which had a bulk density of 2.72 t/m³. The second sample was a grab sample of quartz veining from the 530 level which had a bulk density of 2.62 t/m³ which is slightly lower than the industry average of 2.65 t/m³. Both bulk densities are within the expected range for their rock type.

The Chinese brigade reported a bulk density of 2.70 t/m³ based on the results from the processing plant.

A bulk density of 2.70 t/m³ was used.

9.2.3 Top Cuts

A top cut of 70 g/t was applied to the composited Au assays. This resulted in 5 samples being cut, 3 samples from the underground drilling and 2 samples from the surface drilling.

The top cut was selected based on the log histogram and log probability plot, Figure 9-5 (orange line).

9.2.4 Block Model

Due to the folded nature of the mineralised lodes and the small average width of the lodes, the wireframes and the assays data were rotated to an orthogonal plane prior to construction of the block model. The rotation coordinates are presented in Table 9-4 and Figure 9-7.

Parameters	Value
Angel of rotation	-43
Axis of rotation	Z
Point of Rotation X	3,6604,000
Point of Rotation Y	2,949,500
Point of Rotation Z	550
Angel of rotation	-43
Axis of rotation	Z

Table 9-4 Rotation parameters

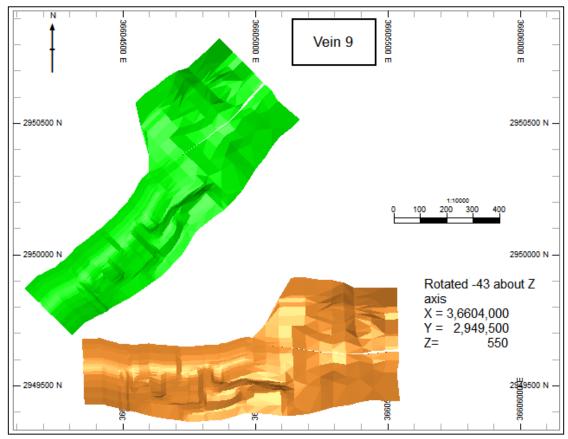


Figure 9-7 Vein 9 showing rotation, green lode is not rotated.

The block model was constructed in Datamine Studio 3 with the parameters presented in Table 9-5.

Parameters	Х	Y	RL
Minimum Coordinates	36,604,200	2,949,100	250
Maximum Coordinates	36,605,800	2,949,500	900
Extents	1,600	400	650
User Block Size	100	20	10
Min. Block Size	5.0	0.8	0.5

Table 9-5 Block model parameters.

The block model was visually checked to ensure that the blocks were coded by wireframes correctly.

9.2.5 Methodology

The Mineral Resources estimation for the Project was done by using an inverse distance squared algorithm. While ordinary kriging would be a more appropriate estimation methodology, the variograms were of poor quality.

A 1.0 g/t Au boundary was used to constrain the mineralisation. Each of the lode or secondary lode (i.e. 8.1 and 8.2) as defined by the 1.0 g/t Au wireframes were treated as a "hard boundary" or separate zone, in order to prevent assay values in adjacent wireframes influencing the grades of the separate wireframes.

Seven hundred and ninety three samples comprised of 531 channel samples, 127 surface drill holes samples and 135 underground drillhole samples were used in the resource estimation.

Search ellipse

One spheroid search ellipse was used for all lodes. The size of each axis was the same at 50 m by 50 m by 50 m. As each wireframe was estimated separately and only with the samples for that wireframe, the spheroid nature of the ellipse was acceptable.

The search parameters and the number of samples used to estimate each block are presented in Table 9-6. An octant based search was not used and a maximum of three samples per drill hole was used for each cell estimate.

Denesit		Ellipse Multiplying Factor					
Deposit	1st Pass, Factor = 1		2nd Pass, Factor = 2		3rd Pass, Factor = 4		
	Minimum	Maximum	Minimum	Maximum	Minimum	Maximum	
All lodes	3	10	3	10	1	10	

Table 9-6 Number of samples used per cell estimation.

Mined Out Material

Part of the resource has been mined out. The mined out areas plus development drives and cross cuts, Figure 9-8, has been excluded from the resource figures.

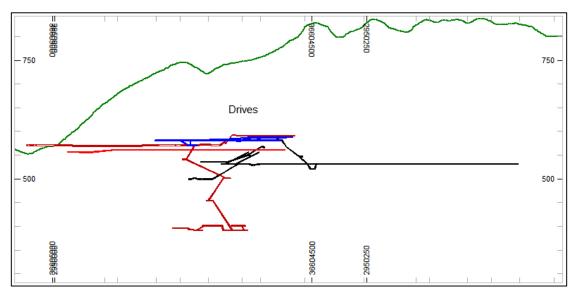


Figure 9-8 Underground workings.

9.2.6 Validation

An inverse distance cubed resource was competed as a check estimation and the results were similar.

A visual comparison was also made between the drill hole grades on cross sections and the block models grades by colour coding the drill assays and resource model blocks with the same colour ranges and stepping through cross sections. The model grades were found to honour the drill hole composite grades.

The wireframe volume by lode was compared to the volume in the block model and the difference was less than 1% for each of the lodes or sub lodes.

A statistical comparison of the average drillhole assays and model grade of lodes is presented in Table 9-7. Only lode 9.1 has a significant variation between the model Au grade and the drilling Au average. This may due to an increased number of high assays

in the drillhole/channel samples, elevating the block model mean. Statistics analyses of the other lodes are acceptable.

	Drillhole	Model	Drillhole	Model	Drillhole	Model
					Standard	Standard
Lode	Mean	Mean	Maximum	Maximum	Deviation	Deviation
7.1	8.73	8.67	70.00	33.27	11.16	5.41
7.2	7.19	7.54	31.38	19.50	7.24	4.35
8.1	7.31	8.67	70.00	35.40	8.43	5.39
8.2	13.64	14.20	39.83	33.09	12.04	8.04
9.1	5.13	9.42	70.00	39.58	7.50	7.20
9.2	5.84	5.66	8.98	6.92	2.22	0.48
10.1	8.56	8.64	34.01	22.95	6.69	3.67
11.1	6.31	7.15	42.16	37.55	8.52	6.14
12.1	5.64	4.71	30.56	9.78	5.44	2.60

Table 9-7 Average drillhole assays and model grade by lode.

Swath plots were generated to compare the model grade and tonnage with the drillhole grades and the amount of the samples over various directions, i.e. bench, E-W direction and N-S direction. Only model grades estimated within first search volume were used, as these are the grades with the greatest level of confidence.

The swath plots of all the data, presented in Figure 9-9, indicate that overall there is a good correlation between the drill hole/channel samples assay and estimated grade.

Swath plots, not shown, were also generated for lode 9.1, which indicates overestimation appears to the east of 36,605,200 mE of the rotated data. This area is the north-eastern areas of the un-rotated data and is structurally more complex with faulting and folding. This area also has most of the drillhole data.



Figure 9-9 Swath plots for all data.

10 MINERAL RESOURCE ESTIMATE

10.1 Resource classification

The JORC Code states the three classifications on reporting resource based on the level of confidence:

- Measured: Tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a high level of confidence. It is based on detailed and reliable exploration, sampling and testing information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes. The locations are spaced closely enough to confirm geological and grade continuity.
- Indicated: Tonnage, densities, shape, physical characteristics, grade and mineral content can be estimated with a reasonable level of confidence. It is based on exploration, sampling and testing information gathered through appropriate techniques form locations such as outcrops, trenches, pits, workings and drill holes. The locations are too widely or inappropriately spaced to confirm geological and/or grade continuity but are spaced closely enough for continuity to be assumed.
- Inferred: Tonnage and mineral quality can be estimated with a low level of confidence. It is inferred from geological evidence and assumed but not verified geological and/or quality continuity. It is based on information gathered through appropriate techniques from locations such as outcrops, trenches, pits, workings and drill holes, which may be limited or uncertain quality and reliability.

In addition to the classification there is the Exploration Target. An Exploration Target is conceptual in nature in that there has been insufficient exploration to estimate a Mineral Resource and the potential quantity and grade is uncertain.

Classification of the Jinchangxi-Bize Gold Project is based on the distance and number of samples used for the resource estimation, which is a reflection of the drillhole

sampling, channel sampling spacing and geological structure.

Blocks estimated within the first search ellipse were classified as Indicated, while blocks estimated within the second search ellipse were classified as Inferred. Care was taken to prevent a spotted dog effect during classification. Figure 10-1 show the classification for vein 8.1.

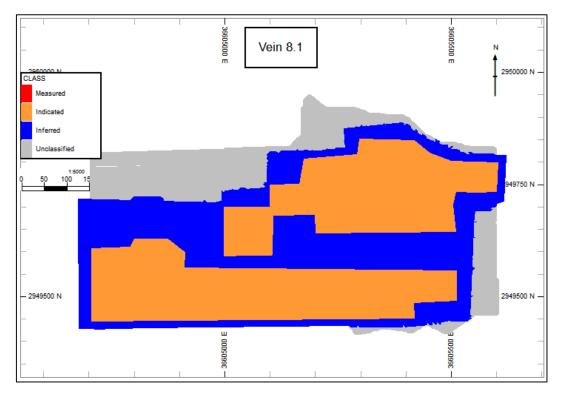


Figure 10-1 Vein 8.1 rotated blocks coloured by Classification

10.2 Mineral Resource estimate resource

ROMA's May 2016 Mineral Resource estimate resource for the Project is 1.883 million tonnes at 9.28 g/t of gold classified as Indicated and Inferred for 17,450 kg of gold metal and based on a 2.5 g/t Au lower cut off, Table 10-1. The resource is compliant with the 2012 JORC Code guidelines.

The model has been depleted of mined material and material outside of the tenements prior to reporting the mineral resource.

Category	Tonnes (t)	Au (g/t)	Au Metal (kg)
Indicated	964,000	8.36	8,050
Inferred	919,000	10.25	9,400
Total	1,883,000	9.28	17,450

Table 10-1 Unmined Resource at 2.5 g/t Au lower cut off, all lodes. Notes: Differences may occur due to rounding. Note: Au metal rounded to nearest 50 kg.

All the resource modelling and estimation was carried out by Steven Hodgson, Principal Geologist employed by ROMA, and is the Competent Person for this report. Steven Hodgson is a member of the AusIMM and has more than five years relevant experience in resource modelling and estimation in the deposit type/mineralisation style of mineral resources included in this report.

The resource estimate for the Project by lode based on a 2.5 g/t cut off is presented in Table 10-2.

Lode	Tonnes (t)	Au (g/t)	Au Metal (kg)
7.1	247,000	9.33	2,300
7.2	71,000	6.96	500
8.1	661,000	8.93	5,900
8.2	117,000	16.28	1,900
9.1	232,000	11.02	2,550
9.2	25,000	5.90	150
10.1	322,000	8.38	2,700
11.1	97,000	8.55	850
12.1	111,000	5.75	650
Total	1,883,000	9.28	17,450

Table 10-2 May 2016 Mineral Resource estimate, 2.5 g/t Au lower cut off.Note: Au metal rounded to nearest 50 kg.

The combined estimated resource for material inside and outside the tenements with a sufficient level of confidence to be classified as Indicated or Inferred under JORC (2012) is 2.186 million tonnes at 8.82 g/t of gold classified as for 19,250 kg of gold using a 2.5 g/t cut off. The 98% of the estimated resource lies within the mining licence, Table 10-3

Tenement	Tonnes (t)	Au (g/t)	Au Metal (kg)
Exploration	57,000	4.72	250
ML	1,825,000	9.42	17,200
Outside	303,000	5.94	1,800
Total	2,186,000	8.82	19,250

Table 10-3 Unmined Resource by tenement at 2.5 g/t Au lower cut off, all lodes. *Note: Only that resource that may be classified as Indicated or Inferred is presented*

There is a large amount of material that was not classified due to the distance from sample points. However given the continuous nature of the quartz veining, it may be possible to increase the size and confidence of the resource with a relatively minor expenditure.

11 MINING METHODS

The main factors affecting choice of mining method are the dip, thickness of the ore body and the stability of rock.

The dip of ore body is estimated to be gentle which is less than 15° and with average thickness of 0.45 m to 0.97 m.

The author considers short-hole room and pillar method to be suitable for the style of mineralisation, i.e. flat dipping veining of the Project. This mining method has been used previously. However, the author strongly recommends the Company to carry out mining feasibility study or detailed mining design before any mining operation recommences.

12 ORE RESERVE ESTIMATES

No Ore Reserves has been estimated in this Report.

14 RECOMMENDATIONS

The Competent Person recommends the following:

- The surface and underground drillhole collars should be surveyed to ensure matching datum's.
- The underground workings should be surveyed.
- Further drilling by competent drillers should be undertaken using best practices and a proper QAQC sampling program. Downhole surveys should be taken every 50 m to 60 m to allow for accurate modelling of the geology. To save drilling costs, as much of the drilling as possible should be collared from the underground development.
- Further channel sampling should be carried out. The sampling should be done with a diamond channel saw that cuts 2 parallel cuts 5 cm apart and to a depth of 3 to 4 cm. The results should be compared to the historical channel samples.
- Bulk density samples should be taken of the mineralised quartz veining at different locations throughout the mine.
- Structural mapping is recommended in the north eastern area due to the faulting and folding.
- The mining and exploration licenses should be renewed and the mining license should be expanded to include the mineral resource between the two tenements.
- Once mining recommences, the location and tonnage of ore mined should be recorded daily.

15 REFERENCES

Allmark, D., 2013, Jinchangxi-Bize Gold Mine Project (Draft), RungePincockMinarco

Enos et al. (2006) *Triassic Evolution of the Yangtze Platform in Guizhou Province, People's Republic of China*. The Geological Society of America.

Fowler, P., July 2011, Initial Technical Review, Jinping Shierpan Gold Mine, Jinping County, Guizhou, China, Rockhound

Marjorie M. Sweeting (2012) *Karst in China: Its Geomorphology and Environment.* Springer Science & Business Media

Shandong No.6 Province Geological Brigade, October 2010, Geological Report, Jinping County Jinlong Mining Company Ltd

APPENDIX A: JORC CODE (2012) RESOURCE AND RESERVE CHECKLIST

58

	Section 1 Sampling Technique	ues and Data
Criteria	JORC Code explanation	Commentary
	warrant disclosure of detailed	
	information.	
Drilling	• Drill type (e.g. core, reverse	• Drilling method was diamond
techniques	circulation, open-hole	drilling.
	hammer, rotary air blast,	• The core was NQ in size.
	auger, Bangka, sonic, etc.) and	
	details (e.g. core diameter,	
	triple or standard tube, depth	
	of diamond tails, face-	
	sampling bit or other type,	
	whether core is oriented and	
	if so, by what method, etc.).	
Drill sample	• Method of recording and	• According to the log record
recovery	assessing core and chip	provided by the Guizhou
	sample recoveries and results	Geological Brigade 117,
	assessed.	Brigade No. 6 of Guizhou
	• Measures taken to maximise	Nonferrous Geological
	sample recovery and ensure	Bureau, the average recovery
	representative nature of the	of drill samples is around
	samples.	97%.
	• Whether a relationship exists	• The drillhole and channel
	between sample recovery and	samples show a significant
	grade and whether sample	difference in average grade.
	bias may have occurred due to	This is believed to be a
	preferential loss/gain of	combination of poor
	fine/coarse material.	sampling practices and the
<u> </u>		nuggety effect of the gold.
Logging	• Whether core and chip	• All the cores were logged
	samples have been	geologically. The core was
	geologically and	not photographed and
	geotechnically logged to a	logging quality is suitable
	level of detail to support	only to provide information
	appropriate Mineral Resource	for the next drilling program.
	estimation, mining studies	• 67 underground drilling a
	and metallurgical studies.	total length of 8,356 m
	Whether logging is qualitative	• 26 surface holes with a total
	or quantitative in nature. Core	length of 9,458 m.

	Section 1 Sampling Technique	ues and Data
Criteria	JORC Code explanation	Commentary
Criteria Sub- sampling techniques and sample preparation		
	 representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. 	 The historic assays were conducted by Shandong Brigade No. 6's laboratory in Zhaoyuan, Shandong Province which is a state

	Section 1 Sampling Techniques and Data
Criteria	JORC Code explanation Commentary
Verification of sampling and assaying	 For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes. Documentation of primary data, data entry procedures, any adjustment to assay data.
Leasting of	not correlate.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. There is a minor vertical discrepancy between the drillhole and channel samples, possibly due to a different datum origin.

Section 1 Sampling Techniques and Data		
Criteria	JORC Code explanation	Commentary
	 Specification of the grid system used. Quality and adequacy of topographic control. 	 Downhole surveys were only taken at the start and end of the drillholes. The coordinates of samples taken were surveyed. The underground working was surveyed. The grid system used is the Chinese Beijing 54 coordinate system. Topographic map is in digital format.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	 Channels samples were every 10m along the drives. Surface drilling was on a 40m by 30m grid with allowances for topography. Underground drilling was on a 30m to 40 m by 25 m grid. The sampling was sufficient to establish the continuous nature of the geology and grade.
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, 	• The orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.

Section 1 Sampling Techniques and Data		
Criteria	JORC Code explanation	Commentary
	this should be assessed and reported if material.	
Sample security	• The measures taken to ensure sample security.	 No specific measure for sample security was provided.
Audits or reviews	 The results of any audits or reviews of sampling techniques and data. 	• No specific audits or review for the sampling techniques and data.

	Section 2 Reporting of Exploration Results
Criteria	JORC Code explanation Commentary
Criteria Mineral tenement and land tenure status	 Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area. There are no known restriction on mining due to, historical sites, wilderness or national park and environmental settings.
Exploration done by other parties Geology	 Acknowledgment and appraisal of exploration by other parties. Guizhou Geological Brigade 117, Brigade No. 6 of Guizhou Nonferrous Geological Bureau and Brigade No. 6 of the Geology and Mineral Resources Exploration and Development Bureau of Shandong Province have been involved in the exploration of the Project. Deposit type, geological setting and style of mineralisation.
Drill hole Information	 A summary of all information material to the <i>alterations.</i> <i>A</i> summary of all information material to the

	Section 2 Reporting of Explorat	tion Results
Criteria	JORC Code explanation	Commentary
Criteria Relationship between mineralisation widths and intercept lengths	 longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. These relationships are particularly important in the reporting of Exploration Results. If the geometry of the 	 Commentary The mineralisation is mainly flat dipping and the drillholes were vertical, giving a true width of the mineralisation. Channel samples represent the true width of the veining.
Diagrams	width not known').Appropriate maps and a	 Appropriate maps are
	sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	attached in the Report

	Section 2 Reporting of Exploration Results
Criteria	JORC Code explanation Commentary
Balanced	• Where comprehensive • Both high and low grades
reporting	reporting of all Exploration are report and the reported
	Results is not practicable, assays are representative
	representative reporting of
	both low and high grades
	and/or widths should be
	practiced to avoid
	misleading reporting of
	Exploration Results.
Other	Other exploration data, if Other relevant exploration
substantive	meaningful and material, data has been summarized
exploration	should be reported <i>in the Report</i>
data	including (but not limited
	to): geological observations;
	geophysical survey results;
	geochemical survey results;
	bulk samples – size and
	method of treatment;
	metallurgical test results;
	bulk density, groundwater,
	geotechnical and rock
	characteristics; potential
	deleterious or
	contaminating substances.
Further work	• The nature and scale of • Further work consist of
	planned further work (e.g. survey and samples
	tests for lateral extensions collection (drilling and
	or depth extensions or large- <i>channel samples) to</i>
	scale step-out drilling). <i>improve the classification</i>
	• Diagrams clearly <i>and mining of the ore.</i>
	highlighting the areas of • Structural mapping is
	possible extensions, <i>recommended for the north</i>
	including the main <i>east area</i> .
	geological interpretations
	and future drilling areas,
	provided this information is
	not commercially sensitive.

Se	ction 3 Estimation and Reporting of Mineral Resource
Criteria	JORC Code explanation Commentary
Database	• Measures taken to ensure • Data validation procedures
integrity	that data has not been are included in the Report.
	corrupted by, for example,
	transcription or keying
	errors, between its initial
	collection and its use for
	Mineral Resource
	estimation purposes.
	Data validation procedures
	used.
Site visits	Comment on any site visits <i>The Competent Person</i>
	undertaken by the <i>performed a site visit in April</i>
	Competent Person and the 2016. The drives and mill
	outcome of those visits. <i>were inspected and samples</i>
	• If no site visits have been <i>collected for validation</i>
	undertaken indicate why <i>purposes.</i>
	this is the case.
Geological	Confidence in (or <i>The style and geological</i>
interpretation	conversely, the uncertainty controls of the
	of) the geological <i>mineralisation is well</i>
	interpretation of the <i>understood</i> .
	mineral deposit. • The quartz veining is
	Nature of the data used and continuous and is
	of any assumptions made. strataform.
	• The effect, if any, of • Only the quartz veining was
	alternative interpretations sampled and the hanging
	on Mineral Resource and footwalls were used to
	estimation. constrain the mineralisation.
	• The use of geology in • <i>Nuggety nature of the gold</i>
	guiding and controlling plus the sampling practices
	Mineral Resource <i>employed resulted in a low</i>
	estimation. confidence of the final
	The factors affecting grade.
	continuity both of grade
Dimensions	and geology. The veining can be traced
	 The extent and variability of the Mineral Resource The veining can be traced over 1,200m by 500m with a
	the Mineral Resource over 1,200m by 500m with a

Se	ction 3 Estimation and Reporting	of Mineral Resource
Criteria	JORC Code explanation	Commentary
Estimation	expressed as length (along strike or otherwise), plan width, and depth below surface to the upper and lower limits of the Mineral Resource.	 vertical range of 400m. Each vein is narrow, 0.8m vertically with some thickening in the fold hinges.
and modelling techniques	 The nature and appropriateness of the estimation technique(s) applied and key assumptions, including treatment of extreme grade values, domaining, interpolation parameters and maximum distance of extrapolation from data points. If a computer assisted estimation method was chosen include a description of computer software and parameters used. The availability of check estimates, previous estimates and/or mine production records and whether the Mineral Resource estimate takes appropriate account of such data. The assumptions made regarding recovery of by-products. Estimation of deleterious elements or other non-grade variables of economic 	 Inverse distance squared methodology was used for Resource Estimation. The area of the gold bearing quartz vein sets were constrained using wireframes. All the parameters used is based on the experience of the Competent Person, discussions with the Company and reference to the similar projects Due to the nugget effect, ordinary kriging would be more appropriate method, however the variograms were of poor quality. The model was depleted of mined areas prior to reporting the resource estimate. A smaller block size than normal was used due to the narrow vertical veining width and the use of parent cell estimation. A spheroid search ellipse of 50 by 50 by 50 m was used to cover any local variations in
	significance (e.g. sulphur	the orientation of the quartz veining.

Section 3 Estimation and Reporting of Mineral Resource			
Criteria	JORC Code explanation Commentar	Commentary	
		ere present estimated o other	
Moisture	 available. Whether the tonnages are The tonnages are 	estimated	
	 Whether the tolllages are stimated on a dry basis or with natural moisture, and the method of determination of the moisture content. The tolllages are on a dried basis. 	CSUMULEU	
Cut-off parameters	 The basis of the adopted cut-off grade(s) or quality parameters applied. The cut-off grade for was 1.0g/t and the estimate reported 	indard. domaining he resource	

Section 3 Estimation and Reporting of Mineral Resource										
Criteria	JORC Code explanation Commentary									
Mining factors	Assumptions made The Competent Person									
or	regarding possible mining considers short-hole room									
assumptions	methods, minimum mining <i>and pillar method is suitable</i>									
	dimensions and internal (or, for the style of									
	if applicable, external) <i>mineralisation, i.e. flat</i>									
	mining dilution. It is always <i>dipping</i> .									
	necessary as part of the • This mining method has									
	process of determining been used previously.									
	reasonable prospects for • The Competent Person									
	eventual economic strongly recommends the									
	extraction to consider Company to carry out a									
	potential mining methods, <i>mining feasibility study or</i>									
	but the assumptions made detailed mining design									
	regarding mining methods before further mining									
	and parameters when <i>recommences</i> .									
	estimating Mineral									
	Resources may not always									
	be rigorous. Where this is									
	the case, this should be									
	reported with an									
	explanation of the basis of									
	the mining assumptions									
	made.									
Metallurgical	• The basis for assumptions • No metallurgical factors or									
factors or	or predictions regarding assumptions were made.									
assumptions	metallurgical amenability. It									
	is always necessary as part									
	of the process of									
	determining reasonable									
	prospects for eventual									
	economic extraction to									
	consider potential									
	metallurgical methods, but									
	the assumptions regarding									
	metallurgical treatment									
	processes and parameters									
	made when reporting									
	Mineral Resources may not									

Section 3 Estimation and Reporting of Mineral Resource										
Criteria	JORC Code explanation	Commentary								
	always be rigorous. Where									
	this is the case, this should									
	be reported with an									
	explanation of the basis of									
	the metallurgical									
	assumptions made.									
Environmental	Assumptions made	• All the mining operation will								
factors or	regarding possible waste	need to comply with all								
assumptions	and process residue	relevant Chinese Laws and								
	disposal options. It is always	regulations.								
	necessary as part of the	• The lack of a tailings dam,								
	process of determining	limited foot print of the mine								
	reasonable prospects for	and that gold concentrate is								
	eventual economic	transported off site for								
	extraction to consider the	refining means that less								
	potential environmental	environmental and								
	impacts of the mining and	government permits are								
	processing operation.	required.								
	While at this stage the	• The required permits were								
	determination of potential	valid prior to the mining								
	environmental impacts,	moving to standby.								
	particularly for a									
	greenfields project, may									
	not always be well									
	advanced, the status of									
	early consideration of these									
	potential environmental									
	impacts should be									
	reported. Where these									
	aspects have not been									
	considered this should be									
	reported with an									
	explanation of the									
	environmental assumptions									
	made.									
Bulk density	Whether assumed or	• Bulk density was based on								
	determined. If assumed,	the density reported by the								
	the basis for the									

Section 3 Estimation and Reporting of Mineral Resource									
Criteria	JORC Code explanation	Commentary							
	assumptions. If	mill. The average bulk							
	determined, the method	density used was 2.7kg/m³.							
	used, whether wet or dry,								
	the frequency of the								
	measurements, the nature,								
	size and representativeness								
	of the samples.								
	• The bulk density for bulk								
	material must have been								
	measured by methods that								
	adequately account for void								
	spaces (vugs, porosity, etc.),								
	moisture and differences								
	between rock and								
	alteration zones within the								
	deposit.								
	• Discuss assumptions for								
	bulk density estimates used								
	in the evaluation process of								
	the different materials.								
Classification	• The basis for the	• The classification of the							
	classification of the Mineral	Mineral Resource is							
	Resources into varying	according to the number of							
	confidence categories.	samples used for a block							
	Whether appropriate	estimate. Inferred material							
	account has been taken of	required there to be at least							
	all relevant factors (i.e.	3 samples from the same							
	relative confidence in	vein within 50 m.							
	tonnage/grade estimations,	 The confidence in tonnage is 							
	reliability of input data,	• The confidence in confidence in higher than the confidence in							
	confidence in continuity of	the grade due to the poor							
	geology and metal values,	•							
		sampling practices							
	quality, quantity and	employed historically.							
	distribution of the data).Whether the result								
	appropriately reflects the								
	Competent Person's view of								
	the deposit.								

Se	ection 3 Estimation and Reporting of	of Mineral Resource		
Criteria	JORC Code explanation	Commentary		
Audits or	• The results of any audits or	• No audits were done for the		
reviews	reviews of Mineral	Mineral Resource Estimates		
	Resource estimates.			
Discussion of	• Where appropriate a	• A second resource		
relative	statement of the relative	estimation was carried out		
accuracy/	accuracy and confidence	using Inverse Distance Cubed		
confidence	level in the Mineral	and compared to the current		
	Resource estimate using an	resource. There was only a		
	approach or procedure			
	deemed appropriate by the	global estimate.		
	Competent Person. For	• The resource is acceptable as		
	example, the application of	a global estimate. Due to the		
	statistical or geostatistical	nuggety gold effect and		
	procedures to quantify the	variations between the		
	relative accuracy of the	historical and 2016		
	resource within stated	sampling, local estimates		
	confidence limits, or, if such	based on the current		
	an approach is not deemed	resource model should not		
	appropriate, a qualitative	be used.		
	discussion of the factors	• Production data was not		
	that could affect the	provided.		
	relative accuracy and			
	confidence of the estimate.			
	• The statement should			
	specify whether it relates to			
	global or local estimates,			
	and, if local, state the			
	relevant tonnages, which			
	should be relevant to			
	technical and economic			
	evaluation. Documentation			
	should include assumptions			
	made and the procedures			
	used.			
	• These statements of			
	relative accuracy and			
	confidence of the estimate			
	should be compared with			

Section 3 Estimation and Reporting of Mineral Resource							
Criteria	Criteria JORC Code explanation Commentary						
	production data, where available.						

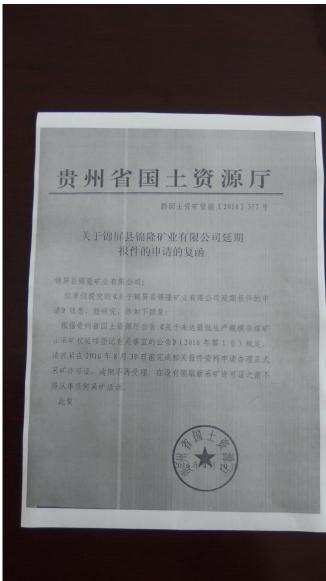
APPENDIX B: GLOSSARY OF TECHNICAL TERMS AND ABBREVIATIONS

77

A list of abbreviations and definitions used in this Report (where appropriate) is shown below.

μ	micron	km ²	square kilometre
°C	degree Celsius	kPa	kilopascal
°F	degree Fahrenheit	kVA	kilovolt-amperes
μg	microgram	kW	kilowatt
A	ampere	kWh	kilowatt-hour
а	annum	L	litre
Bbl	barrels	L/s	litres per second
btu	British thermal	m	metre
	units		
C\$	Canadian dollars	М	Mega (million)
cal	calorie	m ²	square metre
CFM	cubic metres per	m ³	cubic metre
	minute		
cm	centimetre	min	minute
cm ²	square centimetre	MASL	metres above sea level
d	day	mm	millimetre
dia	diameter	mph	miles per hour
dmt	dry metric tonne	MVA	megavolt-amperes
dwt	deadweight ton	MW	megawatt
ft	foot	MWh	megawatt-hour
ft/s	foot per second	m³/h	cubic metres per hour
ft²	square foot	opt, oz/st	ounce per short ton
ft ³	cubic foot	OZ	Troy ounce (31.1035g)
g	gram	oz/dmt	ounce per dry metric
			tonne
G	giga (billion)	ppm	part per million
Gal	Imperial gallon	psia	pound per square inch
- /1			absolute
g/L	gram per litre	psig	pound per square inch
	grom por toppo	Ы	gauge
g/t	gram per tonne	RL	relative elevation
gpm	Imperial gallons per minute	S	second
gr/ft ³	grain per cubic foot	st	short ton
gr/m ³	grain per cubic metre	stpa	short ton per year
hr	hour	stpd	short ton per day
ha	hectare	t	metric tonne
		t/m ³	
hp	horsepower	UIII [®]	metric tonne per cubic

			metre
in	inch	tpd	metric tonne per day
in ²	square inch	US\$	United States dollar
J	Joule	USg	United States gallon
k	kilo (thousand)	USgpm	US gallon per minute
kcal	kilocalorie	V	Volt
kg	kilogram	W	Watt
km	kilometre	wmt	wet metric tonne
km/h	kilometre per hour	yd ³	cubic yard
		yr	Year



APPENDIX C: MINING LICENSE and APPLICATION LETTER REPLY

80

APPENDIX D: EXPLOITATION LICENSE OF BIZE

82

APPENDIX E: ASSAY RESULTS

Г

ALS	12- Hua Gua	Chemex (Guang 1# American du District ngzhou GUA ne: +86 20 3	Ind Park, 48 NGDONG	# Hongmian Ave. Fax: +86 20 36875988	www.alsglobal.com	Project: Guizhou Gold	Page: 2 - Total # Pages: 3 (/ Finalized Date: 5-MAY-201 Account: ROMAON
Mineral	S					CERTIFICATE OF ANALYS	IS GZ16067760
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-GRA21 Au ppm 0.05				
R001 R002 R003 R004 R005	LOK	1.23 0.50 0.89 1.36 1.11	3.81 <0.05 <0.05 0.07 0.41				
R006 R007 R008 R009 R010		0.36 0.27 0.50 0.50 0.63	1.88 13.65 5.44 3.66 2.77				
R011 R012 R013 R014 R015		0.55 0.58 1.12 0.70 0.75	10.85 137.5 0.82 2.81 11.35				
R016 R017 RU01 RU02 RU03		0.56 0.61 1.50 1.28 1.61	7.20 <0.05 12.90 12.70 2.80				
RU04 RU05 RU06 RU07 RU08		2.13 2.17 1.66 2.68 1.83	8.55 13.05 10.85 4.23 0.86				
RU09 RU10 RU11 RU12 RU13		1.83 1.37 1.81 1.65 1.73	5.28 0.76 3.25 6.14 8.52				
RU14 RU15 RU16 RU17 RU18		1.30 2.13 1.50 1.49 0.80	19.25 0.25 0.64 4.57 19.35				
RU19 RU20 RU21 RU22 RU23		1.12 1.94 1.73 1.50 1.14	<0.05 3.05 2.68 9.73 19.30				

CASE REF: BC/CR8226/APR16

ALS	12- Hua Gua Pho	Chemex (Guang 1# American adu District angzhou GUAN ne: +86 20 30	Ind Park, 48 NGDONG	i. # Hongmian Ave. Fax: +86 20 36875988	www.alsglobal.com	Project: Guizhou Gold CERTIFICATE OF ANALYSIS	Page: 3 - A Total # Pages: 3 (A) Finalized Date: 5-MAY-2016 Account: ROMAONM GZ16067760
Sample Description	Method Analyte Units LOR	WEI-21 Recvd Wt. kg 0.02	Au-GRA21 Au ppm 0.05				
RU24 RU25 RU26 RU27 RU28		1.75 1.75 1.87 1.79 1.97	34.4 6.47 2.26 15.05 3.54				
RU29 RU30		2.00 1.62	2.13 8.12				

Not presented here are:

Certificate A4QC_GZ16067760 (blanks standards and duplicates)

Certificate A4QC_GZ16067760_130352-34008644 (blanks standards and duplicates)

APPENDIX F: DRILLHOLE COLLARS

Hole	Easting (m)	Northing	RL	Depth (m)
	Easting (m)	(m)		
CK001	36,604,766	2,950,500	586	185
CK003	36,604,821	2,950,444	583	177
CK004	36,604,857	2,950,411	583	169
СК005	36,604,887	2,950,374	614	120
CK006	36,604,917	2,950,347	584	135
CK007	36,604,766	2,950,500	589	120
CK1001	36,604,725	2,950,181	590	120
CK101	36,604,779	2,950,564	587	185
CK102	36,604,875	2,950,458	580	60
CK103	36,604,907	2,950,427	626	140
CK104	36,604,934	2,950,395	602	140
CK105	36,604,838	2,950,496	580	90
CK106	36,604,796	2,950,536	587	189
CK107	36,604,838	2,950,496	583	100
CK108	36,604,779	2,950,564	590	90
CK1201	36,604,694	2,950,145	590	131
CK1401	36,604,620	2,950,119	596	68
CK1402	36,604,620	2,950,119	593	120
CK1403	36,604,597	2,950,167	597	60
CK1601	36,604,641	2,950,038	535	185
CK1602	36,604,572	2,950,121	597	90
CK1603	36,604,572	2,950,166	598	66
CK1801	36,604,531	2,950,091	598	70
CK1802	36,604,517	2,950,133	598	69
CK2001	36,604,506	2,950,073	598	82
CK201	36,604,734	2,950,456	587	187
CK202	36,604,805	2,950,386	614	120
CK203	36,604,832	2,950,355	572	185
CK204	36,604,878	2,950,313	585	195
CK205	36,604,777	2,950,417	639	180
CK206	36,604,683	2,950,510	577	150
CK207	36,604,734	2,950,456	590	110
CK2401	36,604,459	2,949,955	532	173
CK2402	36,604,518	2,949,894	531	70
CK2403	36,604,459	2,949,955	536	70
CK2601	36,604,428	2,949,915	530	120
CK2602	36,604,477	2,949,865	531	80
CK2603	36,604,428	2,949,915	533	70
CK2801	36,604,387	2,949,885	528	185
CK2802	36,604,438	2,949,834	530	69

1				
ZK305	36,604,838	2,950,566	830	478
ZK501	36,604,890	2,950,578	806	170
ZK502	36,604,867	2,950,592	815	445
ZK503	36,604,833	2,950,641	827	480
ZK504	36,604,927	2,950,564	801	449
ZK507	36,604,759	2,950,730	854	196
ZK701	36,604,932	2,950,613	802	405
ZK702	36,604,965	2,950,578	783	400
ZK703	36,604,867	2,950,678	831	466
ZK901	36,604,988	2,950,624	810	370
ZK903	36,605,060	2,950,558	790	152
ZK905	36,604,848	2,950,768	856	252

APPENDIX G: DRILLHOLE\CHANNEL SAMPLES > 10 g/t

Hole ID with prefix of CK are underground drillholes, ZK prefixes are surface drillholes and the remainder are channels samples.

Hole ID	From	То	Vein	Length	Au
СК001	32.80	33.00	9.1	0.20	70.00
СК003	49.00	49.70	10.1	0.70	11.02
СК003	108.00	108.50	11.1	0.50	11.58
СК004	48.00	48.70	10.1	0.70	11.42
СК005	45.00	45.90	9.1	0.90	12.64
СК005	99.00	99.60	10.1	0.60	10.80
СК006	37.00	37.80	9.1	0.80	15.17
СК007	118.00	118.80	7.1	0.80	70.00
CK1001	101.20	102.10	9.1	0.90	12.79
CK101	29.00	29.90	9.1	0.90	21.52
CK101	79.00	79.50	10.1	0.50	10.78
СК107	22.00	22.50	8.1	0.50	19.16
CK108	88.00	89.30	7.1	1.30	10.96
CK1401	33.00	34.40	8.1	1.40	14.27
CK1602	48.00	48.60	8.1	0.60	13.45
CK1603	48.00	48.85	8.1	0.85	14.20
CK1603	48.85	49.70	8.1	0.85	14.20
CK1802	53.00	53.85	8.1	0.85	14.66
CK1802	53.85	54.70	8.1	0.85	14.66
СК202	40.00	41.10	9.1	1.10	13.94
СК203	60.00	60.80	10.1	0.80	10.79
СК203	60.80	61.60	10.1	0.80	10.79
СК204	33.50	34.10	9.1	0.60	17.32
СК205	18.00	18.90	7.2	0.90	12.12
СК205	44.00	44.60	8.1	0.60	17.78
СК205	64.00	64.70	8.2	0.70	17.55
СК205	76.00	76.70	9.1	0.70	26.68
СК206	36.00	36.50	8.2	0.50	25.84
СК206	101.00	101.60	10.1	0.60	30.57
CK2403	5.00	5.50	10.1	0.50	10.91
CK2403	58.00	58.60	9.1	0.60	20.62
CK2601	12.00	12.40	11.1	0.40	12.91
CK2602	42.00	42.40	10.1	0.40	10.86
CK2602	53.00	53.50	11.1	0.50	10.92
CK2603	45.00	45.60	9.1	0.60	14.37
CK2801	12.00	12.40	11.1	0.40	17.73
CK2802	34.00	34.50	10.1	0.50	32.62

СК2803	48.00	48.60	9.1	0.60	16.38
CK3002	40.00	40.50	10.1	0.50	17.03
CK3003	44.00	44.60	9.1	0.60	17.03
CK301	57.40	57.50	9.1	0.10	70.00
CK503	102.00	102.50	10.1	0.50	18.33
CK702	112.00	112.60	7.1	0.60	13.96
CK902	71.00	71.40	10.1	0.40	19.43
CK903	55.00	55.70	8.1	0.70	10.03
CK904	20.00	20.60	9.1	0.60	14.61
CK904	79.00	79.50	10.1	0.50	12.19
CK905	115.00	115.65	7.1	0.65	23.68
M10_47@-6	0.00	0.60	10.1	0.60	12.30
M12_18@-3	0.00	0.90	12.1	0.90	30.56
M12_44@-0	0.00	0.80	12.1	0.80	12.30
M12_44@-4	0.00	0.80	12.1	0.80	12.67
M12_44@-8	0.00	0.70	12.1	0.70	12.60
M12_45@	0.00	0.76	12.1	0.76	10.80
M12_45@-3	0.00	0.80	12.1	0.80	10.67
M12_5@-13	0.00	0.80	12.1	0.80	12.20
M12_5@-19	0.00	0.70	12.1	0.70	11.68
M12_5@-21	0.00	0.70	12.1	0.70	10.67
M12_5@-24	0.00	0.90	12.1	0.90	11.89
M12_5@-27	0.00	0.90	12.1	0.90	10.65
M12_5@-29	0.00	0.50	12.1	0.50	14.70
M12_5@-8	0.00	0.80	12.1	0.80	11.67
M7_29@-1	0.00	0.70	7.1	0.70	32.42
M7_29@-2	0.00	1.20	7.1	1.20	12.68
M8_1@-5	0.00	0.70	8.1	0.70	10.20
M8_21@-16	0.00	1.00	8.1	1.00	10.56
M8_36@-3	0.00	0.60	8.1	0.60	11.60
M8_4@-1	0.00	0.80	8.1	0.80	12.00
M8_4@-2	0.00	0.80	8.1	0.80	10.60
M8_40@-0	0.00	0.70	8.1	0.70	10.60
M8_41@-0	0.00	0.60	8.2	0.60	12.10
M8_41@-3	0.00	0.60	8.1	0.60	11.50
M8_55@-2	0.00	0.87	8.1	0.87	12.61
M8_55@-2	0.87	1.73	8.1	0.87	12.61
M8_55@-2	1.73	2.60	8.1	0.87	12.61
M8_58@-22	0.00	0.40	8.1	0.40	20.80
M8_58@-28	0.00	0.50	8.1	0.50	11.40
M8_58@-29	0.00	0.50	8.1	0.50	10.60

M8_7@-6	0.00	0.40	8.1	0.40	10.20
M8_7@-8	0.00	0.40	8.1	0.40	13.00
M8_9@-2	0.00	0.60	8.1	0.60	12.86
M8_9@-3	0.00	0.60	8.1	0.60	10.67
M9_39@-0	0.00	1.00	9.1	1.00	10.20
ZK001	195.00	195.90	8.1	0.90	18.61
ZK004	159.80	160.30	7.1	0.50	26.71
ZK004	308.00	308.80	9.1	0.80	12.50
ZK004	396.70	397.20	11.1	0.50	10.65
ZK101	134.00	134.80	7.1	0.80	11.18
ZK101	196.00	196.90	8.1	0.90	17.30
ZK101	297.50	298.40	10.1	0.90	11.64
ZK101	341.50	341.70	11.1	0.20	42.16
ZK201	177.50	178.30	7.1	0.80	30.63
ZK201	208.00	208.60	7.2	0.60	17.00
ZK202	174.00	174.80	7.1	0.80	30.62
ZK202	210.00	210.50	7.2	0.50	31.38
ZK202	256.10	256.60	8.1	0.50	28.77
ZK202	300.00	300.60	8.2	0.60	36.69
ZK202	327.50	328.30	9.1	0.80	33.73
ZK202	370.00	370.70	10.1	0.70	34.01
ZK202	419.00	419.30	11.1	0.30	37.55
ZK204	301.60	302.20	8.2	0.60	23.33
ZK204	334.60	335.30	9.1	0.70	29.86
ZK205	287.80	288.20	8.2	0.40	39.83
ZK2401	46.00	46.50	9.1	0.50	10.72
ZK2401	97.00	97.50	10.1	0.50	17.30
ZK301	219.50	220.10	8.2	0.60	12.01
ZK302	214.50	215.10	8.1	0.60	53.20
ZK303	194.50	195.10	8.1	0.60	70.00
ZK303	200.50	200.90	8.1	0.40	65.74
ZK303	215.00	215.70	8.2	0.70	14.82
ZK304	73.50	74.40	7.1	0.90	13.18
ZK304	425.00	425.40	12.1	0.40	10.33
ZK305	113.00	114.20	7.1	1.20	10.92
ZK305	208.00	209.00	8.1	1.00	20.67
ZK305	238.60	238.75	8.2	0.15	20.68
ZK502	254.60	254.90	8.2	0.30	35.98
ZK502	288.00	289.10	9.1	1.10	11.86
ZK503	200.00	200.50	8.1	0.50	14.36
ZK503	281.00	281.90	9.1	0.90	22.00

ZK504	150.00	150.90	7.2	0.90	11.48
ZK504	203.50	204.30	8.1	0.80	10.53
ZK504	204.30	205.10	8.1	0.80	10.53
ZK504	224.50	225.60	8.2	1.10	19.39
ZK504	298.00	298.80	10.1	0.80	10.78
ZK504	402.00	402.40	12.1	0.40	24.23
ZK901	205.00	205.20	8.1	0.20	70.00
ZK901	250.00	250.15	9.1	0.15	33.10
ZK903	72.50	73.10	7.1	0.60	12.80

Roma Group (ROMA), a listed company in Hong Kong (Stock Code: 8072), is a well-established independent firm engaged in the provision of valuation and technical advisory services.

We provide a board range of services from business & intangible assets valuation, to oil & mining valuation & technical advisory and from credit & risk evaluation to surveyors & property agency services.

Our dynamic & experienced professional team is committed to deliver credible, professional and the highest quality services to our clients. ROMA has performed numerous sizable valuation and advisory assignments worldwide. Our customized solutions comply with standards and regulation of major countries in a fair and accurate manner. Our extensive networks and connections with professional groups and financial institutions enable us to add value to your business. ROMA is your strategic partner of choice. We help you make the most reliable, informed and insightful corporate decisions.

Our Services:

- Exploration Planning & Onsite Supervision
- Due Diligence
- Resource and Reserve Estimation
- JORC/NI43-101/PRMS Reports
- Geostatistical Studies
- Scoping and Feasibility Studies
- Compliance Studies for IPOs
- Project Evaluation

- Inventory Surveys
- Biological Assets Valuation
- Business & Intangible Assets Valuation
- Credit and Risk Evaluation
- Financial Instruments Valuation
- Natural Resources Valuation
- Purchase Price Allocation

We Value Assets | We Value Our Clients

- Strategic Marketing
- Surveyors & Property Consultants

Work of Art Valuation

We Value Assets | We Value Our Clients

ROMA GROUP (HKEx Stock Code: 8072)

Unit 3806, 38/F, China Resources Building, 26 Harbour Road, Wan Chai, Hong Kong

Tel +852 2529 6878

Fax +852 2529 6806

info@romagroup.com