

ASX Code: MOY

Corporate Details

Ordinary Shares: 749,695,372

Market Capitalisation: ~A\$110 million

Cash at 1 June 2016: ~\$A17.0 million

Debt NIL

ASX Code: MOY

Board of Directors

Richard Procter Non-Executive Chairman

Greg Bittar Executive Director

Michael Chye Non-Executive Director

Ross Gillon Non-Executive Director

Tim Kennedy

Non-Executive Director

Management

Glenn Dovaston Chief Executive Officer

Richard Hill Chief Financial Officer

Pierre Malherbe Company Secretary

Peter Cash GM Corporate Development

Peter Manton GM Operations

Hardy Cierlitza Chief Geologist

Contact Details

10 Kings Park Road West Perth, Western Australia,

Telephone: + 61 (08) 9216 9011

Facsimile: + 61 (08) 9481 0288

Email: info@mmltd.com.au

Website:

millenniumminerals.com.au

Outstanding high-grade results returned from all prospects drilled at Nullagine Gold Project in WA

ALLEN LEVE AN

Latest hits such as 12 m at 8.5 gpt, 4 m at 43 gpt, 1 m at 171 gpt and 6 m at 10 gpt to underpin Mineral Resource and Ore Reserve update

Key points

- Latest round of drilling at Nullagine returns numerous high-grade intersections from all eight prospects tested
- Results to be included in an updated Mineral Resource and Ore
 Reserve Estimate scheduled for October this year results include:

<u>All Nations</u> – Multiple wide, high-grade intersections adjacent to the existing All Nations deposit:

- 12 m @ 8.54 g/t Au including 4 m @ 24.19 g/t Au (ANRD00082)
- 13 m @ 2.63 g/t Au including 6 m @ 5.00 g/t Au (ANRD00109)
- 8 m @ 3.36 g/t Au including 6 m @ 4.15 g/t Au (ANRD00039)

<u>Anne de Vidia</u> – Significant high-grade intersections returned from drilling designed to test strike extensions of the main Anne de Vidia high-grade lode and recently identified parallel lodes:

- 4 m @ 43.00 g/t Au including 1 m @ 171.01 g/t Au (FMX313)
- 2 m @ 5.70 g/t Au including 1 m @ 8.61 g/t Au (FMX273)
- 3 m @ 6.05 g/t Au including 2 m @ 8.67 g/t Au (FMX295)
- 2 m @ 3.94 g/t Au including 1 m @ 7.23 g/t Au (FMX293)

<u>Hut</u> – Further wide zones of mineralisation returned from follow-up RC drilling designed to in-fill and extend the known mineralisation at Hut in preparation for a maiden Mineral Resource estimate:

- 21 m @ 1.77 g/t Au (FMX331)
- 32 m @ 1.10 g/t Au (FMX339)
- 4 m @ 7.78 g/t Au including 2 m @ 14.55 g/t Au (FMX334)

<u>Golden Eagle South</u> – drilling to test for southern strike extensions to the Golden Eagle deposit returns wide, high-grade intercepts:

- 6 m @ 10.05 g/t Au including 1 m @ 55.00g/t Au (GERC12056)
- 37 m @ 1.00 g/t Au (GERC12005)
- 9 m @ 2.55 g/t Au (GERC12059)
- 13 m @ 1.71 g/t Au (GERC12010)

Millennium Minerals Limited (Millennium or **Company** – ASX: MOY) is pleased to advise that the latest round of drilling at its 100 per cent-owned Nullagine Gold Project in WA has returned outstanding high-grade results from every prospect tested (*Figure 1*).

di gai

The results continue to outline both extensions to known mineralisation and new mineralisation adjacent to well-established deposits and mining centres.

These results will be combined with those released previously and those to come from the ongoing drilling program to calculate an updated Mineral Resources and Ore Reserves for publication in October 2016.

The previously announced \$10 million exploration campaign is aimed at growing the mine life at Nullagine, where Millennium is on track to meet its guidance of producing 80,000 oz -85,000 oz of gold at an all-in sustaining cost of A\$1180/oz-A\$1220/oz this calendar year.

Millennium has had three RC drilling rigs as well as a diamond rig (where required) operating at the Project for most of 2016 to assist with delineation of new Mineral Resources.

Millennium last reported exploration results as part of its March 2016 Quarterly Activities report (ASX release 26 April 2016) and since that time has drill-tested several high-priority targets located close to existing mining centres and the Project's Golden Eagle processing plant.

The latest rounds of drilling have focused on several near-mine opportunities at the All Nations, Anne de Vidia, Hut, Crossing, Linq, Pan, Federation and Golden Eagle South deposits, all of which are close to existing mining centres at Nullagine.

A summary of activities by deposit is summarised below.

Figure 1: Nullagine Deposit Location Plan over regional geology

All Nations

The All Nations deposit is located approximately 24 km north-east of the Project's processing plant (*Figure 1*). First-pass drilling conducted in late 2015 was successful in delineating extensions to the main All Nations lode for at least 100 m to the south of the current pit design as well as the identification of a mineralised cross structure, oblique to the main All Nations lode.

(Ball

This oblique lode is interpreted to be part of an ENE-trending structural corridor that encompasses the southern tail of the main All Nations deposit and currently has an interpreted strike length of approximately 1 km (*Figure 2*).

A multi-phase, 91-hole RC drilling program has now been completed consisting of a 20 m x 20 m Resource definition program in the immediate vicinity of the All Nations Deposit, as well as a nominal 40 m x 20 m drill program as a first pass test of the prospective ENE corridor (*Figure 2*).

Significant high-grade and wide intercepts were returned from areas within the defined All Nations south extension as well as highly encouraging intercepts from the ENE-trending structural corridor. Significant intercepts included (*Figures 3* and *4*, *Appendix 1*):

- 12 m @ 8.54 g/t Au from 12 m including 4 m @ 24.19 g/t Au (ANRD00082)
- 13 m @ 2.63 g/t Au from 32 m including 6 m @ 5.00 g/t Au (ANRD00109)
- 8 m @ 3.36 g/t Au from 17 m including 6 m @ 4.15 g/t Au (ANRD00039)

• 9 m @ 2.07 g/t Au from 18 m (ANRD00068)

Figure 2: Overview of recently completed drilling in the All Nations region, illustrating the southern extension and ENE-trending mineralised corridor.

Figure 3: Significant results from the 20 m x 20 m drilling program adjacent the All Nations Deposit

Figure 4: Significant results from the 40 m \times 20 m drilling program along the regional targeted ENE-trending structural corridor.

Drilling completed to date has now defined a moderately shallow (30-40°) south to SSE-dipping +5 m wide body of mineralization that can be traced continuously for up to 300 m in the immediate vicinity of the All Nations deposit. A faulted off-set of the same mineralised body (or a parallel trend) is also interpreted to continue for an additional 200 m to the south-west.

(and

These highly encouraging results will now be integrated with previous drilling results received earlier this year with the aim of updating and expanding the existing mine Mineral Resource inventory encompassing the All Nations deposit.

Planning is underway for follow-up drilling programs and exploration activities to infill and further refine the evolving All Nations ENE mineralised corridor as well as to incorporate the latest results from the southern extensional drilling into the existing All Nations Mineral Resource model.

Anne de Vidia

Anne de Vidia is located approximately 9 km from the Project's processing plant (*Figure 1*) with high-grade mineralisation identified over a strike length in excess of 240 m. Work was completed during the 2016 March quarter to establish a maiden Mineral Resource estimate and Ore Reserve incorporating drilling results received from the first phases of drilling completed earlier this year.

As part of a detailed review of the last drilling program which yielded significant high grade intercepts including **3 m @ 15.08 g/t Au** (FMX112) and **3 m @ 24.49 g/t Au** (FMX113), it was interpreted that the Anne de Vidia deposit remained open to the NE. In addition, a parallel ENE-trending zone of mineralization was interpreted to remain open to the south (*Figure 5*).

Figure 5 – Anne de Vidia and Castlemaine Projects showing historical, recent and current drilling

A follow up drill program was conducted in late May 2016 to test the northern and southern strike extensions of the main high-grade Anne de Vidia lode as well as to test the strike extents of the southern parallel lodes.

A number of outstanding high-grade results were returned from this latest program, further confirming that the Anne de Vidia project is emerging as a significant high grade discovery. Significant intercepts include (*Figure 5* and *Appendix 2*):

(Bal

- 4 m @ 43.00 g/t Au from 43 m including 1 m @ 171.01 g/t Au (FMX313)
- 2 m @ 5.70 g/t Au from 6 m (FMX273)
- 3 m @ 6.05 g/t Au from 59 m (FMX295)
- 2 m @ 3.94 g/t Au from 11 m (FMX293)
- 31 m @ 0.94 g/t Au from 29 m (FMX303)

Follow up drilling has now commenced (*Figure 5*) to test the extents of the parallel mineralised structures to the south of the Anne de Vidia main lode with drilling results to be reported once they have been received and assessed.

<u>Hut</u>

The Hut project is located approximately 6 km north-east of the Project's processing plant, adjacent to the haul road (*Figures 1* and *6*). A review of previous RAB and RC drilling at Hut indicated the presence of wide zones of gold mineralisation including **28 m @ 0.89 g/t Au** and **16 m @ 1.22 g/t** to EOH (FMR01003) from 4 m composite RAB samples.

Figure 6: Hut prospect location plan showing recent and historic drill hole intercepts

A first-pass RC drilling program was completed during the March Quarter consisting of 9 RC holes for 555 m on 40 m spaced sections to confirm the tenor of these previous RAB intersections. Highly encouraging results for the first six holes of this program were reported in the March Quarterly activities report in April including (ASX release 26 April 2016):

- 21 m @ 1.60 g/t from 24 m including 2 m @ 6.05 g/t Au (FMX247)
- 13 m @ 2.14 g/t from 27 m to EOH including 1 m @ 5.76 g/t Au (FMX246)
- 10 m @ 2.06 g/t from 55 m to EOH (FMX247)

Results have now been received from the final three holes of this program including (*Appendix* 3):

- 5 m @ 3.61 g/t from 33 m including 1 m @ 15.5 g/t Au (FMX249)
- 3 m @ 1.57 g/t from 19 m (FMX251)

A follow-up RC program to in-fill and extend the known mineralisation has now been completed and has returned further significant, wide intercepts including (*Figure 6* and *Appendix 3*):

- 21 m @ 1.77 g/t Au from 60 m (FMX331)
- 32 m @ 1.10 g/t Au from 10 m (FMX339)
- 4 m @ 7.78 g/t Au from 40 m including 2 m @ 14.55 g/t Au (FMX334)

Based on the significance of these results, a follow up 20 m x 20 m drill program is scheduled to commence in the coming weeks to assist with establishing a maiden Mineral Resource model for the Hut prospect.

Crossing

The Crossing project is situated only 8 km from the processing plant and adjacent to the existing haul road (*Figures 1* and *7*). The mineralisation at the Crossing prospect appears to be in close proximity to a sub-cropping quartz vein.

A review of previous RAB and RC drilling at Crossing indicated the presence of wide zones of gold mineralisation including **30 m @ 1.2 g/t Au** (FM97026), **20 m @ 1.2 g/t Au** (FM97025) and **12 m @ 1.1 g/t Au** (FM01002) from 4 m composite RAB samples. The mineralisation at Crossing is interpreted to be continuous over a strike length of greater than 200 m.

A first-pass RC drilling program was completed during March 2016 consisting of 17 RC holes to confirm the tenor of these historical wide intersections and to gain a greater understanding of the orientation of mineralisation and its extents. Assays for the first 12 holes of this program were reported in April (ASX Release 26 April 2016) with all holes reported returning significant intersections including:

- 29 m @ 1.88 g/t Au from 49 m including 2 m @ 15.22 g/t Au(FMX197)
- 21 m @ 1.12 g/t Au from 3 m including 1 m @ 7.82 g/t Au (FMX195)
- **11 m @ 1.34 g/t Au** from 22 m (FMX194)

Assays for the remaining five holes were subsequently returned and included (**Appendix 4**):

- 17 m @ 1.11 g/t Au from 34 m (FMX200)
- 7 m @ 1.26 g/t Au from 11 m (FMX200)
- 7 m @ 1.06 g/t Au from 14 m (FMX198)
- 5 m @ 0.65 g/t Au from 10 m (FMX199)

(Ball

Figure 7: Crossing prospect location plan showing recent and historic drill hole intercepts

Based on these very encouraging results, a 37 hole RC program was recently completed to infill and potentially expand the extents of the known mineralisation at Crossing.

Assays for the first 18 holes of this program have now been received and have delivered further broad intercepts including (**Appendix 4**):

- 16 m @ 1.47 g/t Au from 3 m including 1 m @ 6.45 g/t Au (FMX351)
- 11 m @ 1.43 g/t Au from 45 m (FMX352)
- 8 m @ 1.01 g/t Au from 36 m (FMX355)
- 5 m @ 2.50 g/t Au from 18 m including 1 m @ 5.80 g/t Au (FMX359)
- 17 m @ 1.17 g/t Au from 53 m (FMX362)

Preliminary interpretation based on results received to date suggests the mineralisation at Crossing as two distinct parallel zones with a strike extent of at least 200 m. These lodes remain open to the south with results yet to be received for several drill traverses testing the northern extents of known mineralisation (*Figure 7*).

It is anticipated that further drilling programs will be planned once all assays have been received and assessed.

<u>Linq</u>

The Linq prospect is located only 6.4 km north-east of the processing plant and adjacent to the existing haul road infrastructure (*Figures 1* and *B*). Historical RAB and RC drilling previously identified the presence of NNE and ENE trending mineralised structures.

(Ball

Significant results returned from previous drilling include 4 m @ 95.1 g/t Au (WTRB525) and 11 m @ 1.7 g/t Au (WTRB169) (RAB) and 5 m @ 0.93 g/t Au (LQRC0038) and 5 m @ 4.76 g/t Au (LQRC0002) (RC drilling).

A two-phase drilling program has now been completed to further define the NNE trend, validate high grade historic RAB results and test the interpreted intersection of the NNE and ENE trend.

Assays from the first phase drilling program have been received (*Figure 8* and *Appendix 5*) and include best results of **11 m at 3.23 g/t Au** including **1 m @ 11.95 g/t Au** (FMX237) with the remainder of results from the second phase of drilling, consisting of 21 holes, yet to be returned.

Once all results have been received, work will commence to interpret the significance of these results and to guide follow up exploration activities.

Figure 8: Linq prospect location plan showing recent and historic drill hole intercepts

Federation Prospect

The Federation prospect is located approximately 800 m to the east of the All Nations mining area and approximately 25 km north-east of the Project's processing plant (*Figures 1* and *9*). The primary mineralised trend at Federation is characterised by a series of historical workings along a southerly-dipping fault breccia that has been exploited over a strike length of approximately 200 m.

(and

First-pass RC drilling at the Federation prospect to test below the main line of workings as well as to test for potential extensions of the interpreted mineralisation trend to the NE and SW has now been completed and has delivered immediate success.

Assays for six holes are pending. However, this first-pass drilling program has already confirmed a main mineralised structure at Federation as well as two mineralised ENE-trending ridges west of the main line-of-workings (*Figure 10*). Best results returned to date include (*Appendix 6*):

- 4 m @ 2.11 g/t Au from 11 m (FDRC0021)
- 6 m @ 1.13 g/t Au from 13 m (FDRC0017)
- 4 m @ 1.58 g/t Au from 15 m (FDRC0034)
- 2 m @ 2.50 g/t Au from 21 m (FDRC0015)

Once all assays are received, a full review of the first-pass drilling at Federation will be completed to assist with planning for potential follow up drilling programs and exploration activities.

Figure 9 – Federation prospect relative to the All Nations deposit recent rock chip results

(leal)

Figure 10: May 2016 RC drilling at the Federation Prospect and mineralisation trends projected to surface.

Figure 11: Location of the Pan deposit and surrounding prospects within the All Nations to Federation Area.

Pan Prospect

The Pan prospect lies approximately 650 m to the East of the All Nations deposit and represents a broadly north-south trending corridor of deformation (crenulation zone) with a series of small prospector pit workings along an approximately 150 m section (*Figures 1* and *11*). The Pan prospect was identified as a potential parallel mineralised trend to All Nations.

Previous limited west and south-east directed RC drilling testing the old workings in the Pan region returned results including 1 m @ 5.17 g/t Au (CCP0601), 5 m @ 1.04 g/t Au (CCP0603) and 2 m @ 1.06 g/t Au (CCP0605) (**Figure 12**).

(Ball

East-directed RC drillina completed during May 2016 has delivered immediate success and has delineated several steeply west-dipping and north-striking mineralised zones. Significant intercepts (*Figure* include 12 and Appendix 7):

- 3 m @ 4.71 g/t Au from 12 m including 1 m @ 11.10 g/t Au (PARD018)

- 4 m @ 2.73 g/t Au from 46 m including 1 m @ 8.46 g/t Au (PARD021)

- 7 m @ 0.87 g/t Au (PARD001)

- 1 m @ 5.37 g/t Au from 47 m (PARD013)

Importantly, significant intercepts were returned from the western most hole (PARD001) drilled on а reconnaissance line at the northern extent of the

Figure 12: Pan Prospect showing significant intercepts and mineralisation zones projected to surface

program which was designed to test the main Pan trend and an interpreted regional parallel north-south structure identified to the west of historical workings.

It is therefore interpreted that mineralisation along this western parallel structure at Pan remains untested and open to both the north and south (*Figure 12*).

Interpretation and planning is now underway to design a follow up drilling program to test for potential extensions to the known mineralisation at Pan.

Golden Eagle South

The Golden Eagle South prospect is an interpreted southern extension of the main Golden Eagle deposit, which is located only 1.7 km from the Project's processing facility (*Figure 1* and *13*).

A PAN

Golden Eagle South is host to a 500 metre mineralised zone which has been identified from previously drilling and consists of two parallel northern and southern mineralised trends.

A RC drilling program was recently completed consisting of 76 holes for 3925 metres, which was designed to infill known mineralisation and to test for further strike extensions to the south of known mineralisation.

Encouraging results have now been received with significant high-grade intercepts including (*Figure 13* and *Appendix 8*):

- 6 m @ 10.05 g/t Au including 1 m @ 55.00 g/t Au (GERC12056)
- 37 m @ 1.00 g/t Au (GERC12005)
- 9 m @ 2.55 g/t Au including 2 m @ 7.17 g/t Au (GERC12059)
- 13 m @ 1.71 g/t Au (GERC12010)

Figure 13: Overview of drilling at Golden Eagle South, illustrating the mineralised trend, recent drilling and significant intercepts.

Based on these highly encouraging results, planning is underway for further infill drilling with the aim of extending the known mineralisation to the south as well as to assist with refining the existing Mineral Resource and converting it to Ore Reserves.

ENDS

For further information, please contact: Glenn Dovaston – Chief Executive Officer +61 8 9216 9011 For media inquiries, please contact: Paul Armstrong – Read Corporate +61 421 619 084

Competent Persons Statements – Exploration Results

Mr Andrew Dunn (MAIG), a geologist employed full-time by Millennium Minerals Limited, compiled the technical aspects of this Report. Mr Dunn is a member of the Australian Institute of Geoscientists and has sufficient experience that is relevant to this style of mineralization and type of deposit under consideration and to the activity that is being reported on to qualify as a Competent Person as defined in the 2012 edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves". Mr Dunn consents to the inclusion in the report of the matters in the form and context in which it appears.

Appendix 1 – All Nations table of RC drilling results

											Au	
	GDA	GDA				Depth		From	То	Width	Grade	Gram
Hole ID	East	North	RL	Az	Dip	(m)		(m)	(m)	(m)	(g/t)	metres
ANRD00024	222154	7579395	373	340	-60	65				NSA		NSA
ANRD00025	222161	7579376	374	340	-60	80				NSA		NSA
ANRD00027	222123	7579362	373	340	-45	84		27	28	1	0.55	0.55
								74	76	2	0.69	1.38
ANRD00028	222079	7579368	374	340	-60	65				NSA		NSA
ANRD00029	222085	7579349	373	340	-60	80				NSA		NSA
ANRD00030	222034	7579373	376	340	-60	54				NSA		NSA
ANRD00031	222041	7579354	375	340	-60	65				NSA		NSA
ANRD00032	222048	7579335	374	340	-60	80				NSA		NSA
ANRD00033	221997	7579359	382	340	-60	54				NSA		NSA
ANRD00034	222003	7579340	379	340	-60	65				NSA		NSA
ANRD00035	222010	7579321	376	340	-60	80				NSA		NSA
ANRD00036	221959	7579345	390	340	-60	80				AA		AA
ANRD00037	221966	7579327	381	340	-60	65				NSA		NSA
ANRD00038	221973	7579308	378	340	-60	80				NSA		NSA
ANRD00039	221920	7579343	390	340	-60	54		4	6	2	0.75	1.5
								17	25	8	3.36	26.88
							Incl.	22	23	1	13.2	13.2
ANRD00040	221925	7579322	388	340	-60	65		2	4	2	0.59	1.18
								18	19	1	1.59	1.59
ANRD00041	221932	7579304	381	340	-60	80				NSA		NSA
ANRD00042	221899	7579334	386	340	-60	65		5	6	1	3.26	3.26
ANRD00043	221906	7579315	385	340	-60	66				NSA		NSA
ANRD00044	221913	7579297	382	340	-60	80		66	67	1	0.6	0.6
ANRD00045	221858	7579330	380	340	-60	66		4	6	2	3.39	6.78
							Incl.	4	5	1	6.26	6.26
								64	65	1	1.29	1.29
ANRD00046	221865	7579311	378	340	-60	80		17	19	2	0.52	1.04
ANRD00047	221821	7579316	378	340	-60	72		6	7	1	1.69	1.69
								62	63	1	0.91	0.91
ANRD00048	221827	7579297	376	340	-60	80				NSA		NSA
ANRD00049	221783	7579303	376	340	-60	72				NSA		NSA
ANRD00050	221790	7579284	375	340	-60	80		21	22	1	0.73	0.73
								36	37	1	1.17	1.17
								67	69	2	0.87	1.74
ANRD00051	221739	7579308	378	340	-60	65		1	3	2	0.66	1.32
ANRD00052	221745	7579289	376	340	-60	80		12	13	1	0.73	0.73
								60	70	10	0.55	5.5
								79	80	1	0.57	0.57
ANRD00053	221701	7579294	377	340	-60	66				AA		AA
ANRD00054	221708	7579275	374	340	-60	80		14	15	1	0.54	0.54
								78	79	1	2.11	2.11
ANRD00055	221641	7579283	374	340	-60	65		18	19	1	0.71	0.71

(I sa

M	MILLENNIUM MINERALS LIMITED
	ASX Code: MOY

								63	64	1	0.66	0.66
ANRD00056	221648	7579264	373	340	-60	80		17	18	1	0.66	0.66
								75	76	1	0.83	0.83
ANRD00057	221604	7579269	373	340	-60	72		10	12	2	2.07	4.14
								51	52	1	5.08	5.08
								64	65	1	0.6	0.6
ANRD00058	221610	7579250	372	340	-60	80		24	26	2	3.46	6.92
							Incl.	24	25	1	5.91	5.91
ANRD00059	221559	7579274	373	340	-60	54		3	4	1	0.9	0.9
								7	10	3	1.16	3.48
								17	18	1	0.91	0.91
								33	34	1	3.27	3.27
								51	52	1	1.01	1.01
ANRD00060	221566	7579255	372	340	-60	66		20	22	2	1.25	2.5
								28	29	1	1.69	1.69
								58	59	1	0.66	0.66
								62	63	1	1.32	1.32
ANRD00061	221573	7579237	371	340	-60	80		45	47	2	1.87	3.74
ANRD00062	221534	7579286	374	340	-60	45				NSA		NSA
ANRD00063	221540	7579267	372	340	-60	54		5	11	6	0.77	4.62
ANRD00064	221547	7579249	371	340	-60	72		36	37	1	9.31	9.31
ANRD00065	221554	7579230	370	340	-60	80				NSA		NSA
ANRD00066	221515	7579279	373	340	-60	45				NSA		NSA
ANRD00067	221522	7579261	371	340	-60	54		8	15	7	1.22	8.54
ANRD00068	221528	7579242	370	340	-60	65		18	27	9	2.07	18.63
								33	34	1	0.81	0.81
ANRD00069	221535	7579223	371	340	-60	80		35	36	1	0.57	0.57
								45	46	1	1.08	1.08
ANRD00070	221493	7579282	374	340	-60	42				NSA		NSA
ANRD00071	221496	7579273	372	340	-60	45		3	8	5	0.5	2.5
								32	33	1	0.91	0.91
ANRD00072	221503	7579254	370	340	-60	54		8	9	1	0.93	0.93
								14	19	5	1.14	5.7
								22	25	3	0.52	1.56
								45	47	2	0.61	1.22
ANRD00073	221510	7579235	371	340	-60	65		25	26	1	0.53	0.53
								30	31	1	0.53	0.53
								35	36	1	0.79	0.79
ANRD00074	221516	7579216	371	340	-60	80		41	42	1	0.58	0.58
								66	67	1	0.69	0.69
ANRD00075	221523	7579197	372	340	-60	80		52	54	2	0.6	1.2
ANRD00076	221474	7579275	373	340	-60	35		0	1	1	0.91	0.91
								11	12	1	0.67	0.67
ANRD00077	221477	7579266	372	340	-60	45		12	17	5	0.79	3.95
ANRD00078	221484	7579247	370	340	-60	54		20	24	4	0.96	3.84
								28	29	1	0.53	0.53
ANRD00079	221491	7579228	371	340	-60	65		19	20	1	1.06	1.06
								27	29	2	1.08	2.16

151116

MILLENNIUM MINERALS LIMITED
ASX Code: MOY

								34	37	3	1.49	4.47
ANRD00080	221498	7579209	371	340	-60	80		41	43	2	0.62	1.24
								46	48	2	0.98	1.96
ANRD00081	221505	7579191	370	340	-60	80		47	58	11	0.99	10.89
ANRD00082	221479	7579202	370	340	-60	80		12	24	12	8.54	102.48
							Incl.	12	16	4	24.19	96.76
								28	30	2	1.58	3.16
								39	40	1	1.65	1.65
								47	48	1	0.5	0.5
ANRD00083	221486	7579184	370	340	-60	80		49	64	15	0.91	13.65
ANRD00084	221460	7579196	370	340	-60	80		44	45	1	0.82	0.82
								55	56	1	0.56	0.56
								65	66	1	0.8	0.8
ANRD00085	221441	7579189	370	340	-60	80		41	45	4	0.76	3.04
								54	55	1	0.56	0.56
								71	73	2	0.75	1.5
ANRD00086	221405	7579229	370	340	-60	54		33	39	6	2.61	15.66
								49	50	1	0.95	0.95
ANRD00087	221387	7579222	371	340	-60	50		36	39	3	1.51	4.53
ANRD00088	221393	7579203	371	340	-60	60		35	44	9	1.06	9.54
								48	51	3	1.71	5.13
ANRD00089	221347	7579272	371	340	-60	35		2	15	13	1.12	14.56
ANRD00090	221368	7579215	372	340	-60	50		38	40	2	1.24	2.48
ANRD00091	221375	7579196	372	340	-60	60		24	25	1	0.88	0.88
								49	53	4	0.4	1.6
ANRD00092	221328	7579265	371	340	-60	35		18	19	1	0.59	0.59
								22	23	1	1.37	1.37
ANRD00093	221349	7579208	373	340	-60	54		44	47	3	2.24	6.72
							Incl.	46	47	1	5.63	5.63
ANRD00094	221310	7579258	373	340	-60	42		22	25	3	1.27	3.81
ANRD00095	221317	7579239	372	340	-60	45				NSA		NSA
ANRD00096	221323	7579220	372	340	-60	54				NSA		NSA
ANRD00097	221330	7579202	373	340	-60	60		21	22	1	0.93	0.93
ANRD00098	221294	7579242	373	340	-60	48		20	23	3	0.66	1.98
								32	33	1	2.97	2.97
ANRD00099	221301	7579223	373	340	-60	54		19	20	1	0.62	0.62
ANRD00100	221276	7579235	374	340	-60	54		28	29	1	4.19	4.19
ANRD00101	221282	7579216	375	340	-60	66		30	31	1	0.73	0.73
ANRD00102	221303	7579160	370	340	-60	80				NSA		NSA
ANRD00103	221276	7579118	370	340	-60	85		2	4	2	1.09	2.18
								20	26	6	0.52	3.12
								52	62	10	0.81	8.1
			a -					67	72	5	0.49	2.45
ANRD00104	221243	7579149	380	340	-60	54		1	2	1	1.5	1.5
								14	15	1	0.58	0.58
								23	27	4	0.74	2.96
ANRD00105	221250	7579130	376	340	-60	71		0	1	1	0.89	0.89
								42	44	2	2.09	4.18

ATT

-

151116

MILLENNIUM MINERALS LIMITED. ABN 85 003 257 556. 10 Kings Park Road, West Perth, Western Australia / www.millenniumminerals. com.au

	1	
M	M	ILLENNIUM MINERALS LIMITED
	ASX	C o d e : M O Y

								48	51	3	5.71	17.13
							Incl.	49	50	1	15.35	15.35
								63	64	1	0.62	0.62
ANRD00106	221257	7579111	370	340	-60	85		10	11	1	1.44	1.44
								27	29	2	0.62	1.24
								56	67	11	0.9	9.9
ANRD00107	221235	7579114	371	340	-60	70		23	24	1	1.37	1.37
								58	59	1	4.8	4.8
ANRD00108	221216	7579107	370	340	-50	70		27	35	8	1.96	15.68
ANRD00109	221189	7579118	371	340	-55	66		18	19	1	0.93	0.93
								32	45	13	2.63	34.19
							Incl.	38	40	2	9.77	19.54
								48	53	5	2.42	12.1
							Incl.	48	49	1	7.8	7.8
								59	60	1	0.94	0.94
ANRD00110	221161	7579140	369	340	-60	45				NSA		NSA
ANRD00111	221168	7579121	369	340	-60	72		21	22	1	0.58	0.58
								47	48	1	0.66	0.66
ANRD00112	221175	7579102	368	340	-60	72		35	40	5	0.54	2.7
								50	57	7	1.35	9.45
ANRD00113	221142	7579133	367	340	-60	45				NSA		NSA
ANRD00114	221149	7579114	366	340	-60	60				NSA		NSA
ANRD00115	221156	7579096	367	340	-60	78		47	48	1	1.26	1.26
								63	64	1	0.98	0.98

E Bal

Appendix 2 – Anne de Vidia table of RC drilling results

	GDA	GDA				Depth		From	То	Width	Au Grade	Gram
Hole ID	East	North	RL	Az	Dip	(m)		(m)	(m)	(m)	(g/t)	metres
FMX260	209580	7573155	387	135	-60	80				NSA		NSA
FMX261	209594	7573141	386	135	-60	65				NSA		NSA
FMX262	209608	7573126	386	135	-60	54				NSA		NSA
FMX263	209552	7573126	387	135	-60	80		5	6	1	0.7	0.7
								9	10	1	0.63	0.63
FMX264	209566	7573112	387	135	-60	78		29	30	1	0.55	0.55
								34	35	1	0.62	0.62
FMX265	209580	7573098	386	135	-60	60		37	38	1	1.88	1.88
								45	50	5	0.97	4.85
FMX266	209594	7573084	386	135	-60	40				NSA		NSA
FMX267	209524	7573098	386	135	-60	80		38	39	1	0.57	0.57
FMX268	209537	7573084	386	135	-60	65				NSA		NSA
FMX269	209552	7573070	386	135	-60	50		0	2	2	0.84	1.68
								26	27	1	0.96	0.96
FMX270	209566	7573056	385	135	-60	40		0	1	1	2.82	2.82
FMX271	209495	7573069	388	135	-60	80		29	30	1	0.53	0.53
								33	34	1	0.51	0.51
								52	54	2	0.89	1.78
FMX272	209509	7573056	389	135	-60	65		10	11	1	0.81	0.81
								14	15	1	0.87	0.87
								18	19	1	1.13	1.13
								40	41	1	0.51	0.51
FMX273	209523	7573042	388	135	-60	50		6	8	2	5.7	11.4
							Incl.	6	7	1	8.61	8.61
								21	22	1	0.98	0.98
FMX274	209537	7573027	387	135	-60	40				NSA		NSA
FMX275	209467	7573041	386	135	-60	80		74	76	2	1.66	3.32
FMX276	209481	7573027	387	135	-60	65		41	42	1	0.61	0.61
FMX277	209495	7573013	388	135	-60	54				NSA		NSA
FMX278	209509	7572999	387	135	-60	40				NSA		NSA
FMX279	209438	7573013	386	135	-60	80		50	51	1	1.47	1.47
								68	71	3	0.56	1.68
FMX280	209452	7572999	386	135	-60	65				NSA		NSA
FMX281	209467	7572985	386	135	-60	50				NSA		NSA
FMX282	209481	7572971	386	135	-60	40				NSA		NSA
FMX283	209530	7572936	385	315	-60	65				NSA		NSA
FMX284	209544	7572921	385	315	-60	65				NSA		NSA
FMX285	209558	7572908	384	315	-60	80		27	28	1	0.58	0.58
FMX286	209573	7572893	384	315	-60	60		36	38	2	1.18	2.36
FMX287	209474	7572879	385	315	-60	72				NSA		NSA
FMX288	209487	7572865	385	315	-60	66		16	18	2	2.76	5.52
FMX289	209502	7572850	384	315	-60	78		30	38	8	1.49	11.92
								41	44	3	0.72	2.16

(I gal

MILLENNIUM MINERALS LIMITED. ABN 85 003 257 556. 10 Kings Park Road, West Perth, Western Australia / www.millenniumminerals. com.au

								49	53	4	0.35	1.4
								60	65	5	0.9	4.5
FMX290	209516	7572837	385	315	-60	60				NSA		NSA
FMX291	209417	7572822	385	315	-60	66				NSA		NSA
FMX292	209431	7572808	385	315	-60	65				NSA		NSA
FMX293	209445	7572794	385	315	-60	80		11	13	2	3.94	7.88
							Incl.	11	12	1	7.23	7.23
								17	18	1	0.67	0.67
								23	25	2	1.03	2.06
FMX294	209460	7572780	384	315	-60	60		1	2	1	0.59	0.59
								12	13	1	1.51	1.51
								58	60	2	0.8	1.6
FMX295	209388	7572794	387	315	-60	65		59	62	3	6.05	18.15
							Incl.	60	62	2	8.67	17.34
FMX296	209403	7572781	388	315	-60	65		8	12	4	1.97	7.88
							Incl.	10	11	1	5.31	5.31
FMX297	209421	7572763	388	315	-60	80		20	21	1	1.14	1.14
								26	27	1	0.6	0.6
FMX298	209431	7572752	387	315	-60	66		15	16	1	0.57	0.57
								31	34	3	0.59	1.77
								62	63	1	1.24	1.24
FMX299	209360	7572767	389	315	-60	54		20	21	1	0.75	0.75
								50	51	1	0.63	0.63
FMX300	209374	7572753	389	315	-60	72		9	11	2	0.59	1.18
								39	40	1	0.9	0.9
FMX301	209389	7572738	391	315	-60	84		13	14	1	0.54	0.54
								19	21	2	0.71	1.42
								26	30	4	0.52	2.08
								37	38	1	0.7	0.7
								42	46	4	0.67	2.68
								51	52	1	1.04	1.04
								63	64	1	0.73	0.73
								75	77	2	0.66	1.32
FMX302	209403	7572724	391	315	-60	72		5	6	1	0.51	0.51
								32	33	1	0.74	0.74
								60	61	1	0.78	0.78
FMX303	209417	7572710	390	315	-60	60		29	60	31	0.94	29.14
FMX304	209325	7572773	394	135	-60	65		5	13	8	0.56	4.48
								30	31	1	0.52	0.52
								38	40	2	0.64	1.28
FMX305	209346	7572752	389	315	-60	50		5	8	3	1.32	3.96
								46	47	1	0.52	0.52
FMX306	209360	7572739	387	315	-60	65		17	18	1	0.71	0.71
								39	41	2	2.02	4.04
								44	45	1	0.71	0.71
								50	55	5	1.41	7.05

T

MILLENNIUM MINERALS LIMITED

								63	65	2	1.53	3.06
FMX307	209373	7572723	387	315	-60	80		42	43	1	0.6	0.6
FMX308	209389	7572709	388	315	-60	60				NSA		NSA
FMX309	209403	7572696	388	315	-60	60		10	13	3	0.57	1.71
FMX310	209312	7572758	395	135	-60	65		12	13	1	0.53	0.53
								21	24	3	0.67	2.01
								27	38	11	0.82	9.02
								46	47	1	0.56	0.56
								56	60	4	1.06	4.24
FMX311	209297	7572745	398	135	-60	65		37	38	1	0.88	0.88
FMX312	209360	7572653	387	315	-60	60				NSA		NSA
FMX313	209350	7572635	385	315	-60	60		4	9	5	0.71	3.55
								24	25	1	0.74	0.74
								31	33	2	1.03	2.06
								43	47	4	43	172
							Incl.	43	44	1	171	171
								53	54	1	0.67	0.67
								57	60	3	0.98	2.94
FMX314	209261	7572695	399	135	-60	80		1	6	5	1.05	5.25
								23	24	1	0.52	0.52
								44	46	2	0.61	1.22
								49	50	1	0.63	0.63
								54	56	2	2.49	4.98
								66	67	1	0.52	0.52
								72	75	3	0.84	2.52
FMX315	209335	7572621	383	315	-60	60		12	13	1	0.72	0.72
FMX316	209273	7572675	395	135	-60	84		24	27	3	0.62	1.86
								38	39	1	0.82	0.82
								42	43	1	1.84	1.84
								50	51	1	0.52	0.52
								79	80	1	2.81	2.81
FMX317	209250	7572670	396	135	-60	84		24	25	1	1.97	1.97
								31	33	2	0.75	1.5
								59	63	4	1.39	5.56
								77	80	3	0.58	1.74
FMX318	209293	7572636	383	315	-60	65		4	5	1	0.58	0.58
								25	26	1	2.75	2.75
FMX319	209307	7572622	383	315	-60	80		57	60	3	2.31	6.93
							Incl.	59	60	1	5.69	5.69
	000000	7770000	0.0-	<u> </u>				66	67	1	2.79	2.79
FMX320	209321	/572608	383	315	-60	60		40	41	1	0.61	0.61
								50	51	1	1.1	1.1
	000000	7570017	0.0-	40-				55	56	1	1.37	1.37
FMX324	209228	/572617	383	135	-60	60		40	41	1	0.86	0.86
FMX325	209242	7572604	383	135	-60	60		27	29	2	0.71	1.42
FMX326	209255	7572591	383	135	-60	60		9	10	1	0.61	0.61

-

ALMAN A

FMX327	209269	7572574	383	135	-60	60		6	7	1	3.58	3.58
NSA = No Si	gnificant as	ssays. Interse	ections	are ca	lculate	d with 0.5	ig/t Au	lower cut-o	off and a	maximur	n of 2 consecu	utive

metres of internal dilution. Higher grade intersections are calculated with 5g/t Au lower cut-off and a maximum of 2 consecutive metres of internal dilution.

Appendix 3 – Hut table of RC drilling results

	GDA	GDA	RI	۸-7	Din	Depth		From	То	Width	Au Grade	Gram
TIOIE_ID	East	North		~2	ЧЧ	(m)		(m)	(m)	(m)	g/t	meters
FMX249	207496	7573337	383	120	-60	50		21	23	2	0.7	1.4
FMX249	207496	7573337	383	120	-60	50		33	38	5	3.61	18.05
							incl	33	34	1	15.5	15.5
FMX250	207479	7573346	382	120	-60	60		47	48	1	1.53	1.53
FMX251	207521	7573365	382	120	-60	60		19	22	3	1.57	4.71
FMX328	207448	7573271	384	120	-60	80		23	24	1	0.56	0.56
FMX328	207448	7573271	384	120	-60	80		27	32	5	1.85	9.25
FMX328	207448	7573271	384	120	-60	80		36	37	1	0.63	0.63
FMX328	207448	7573271	384	120	-60	80		44	46	2	0.82	1.64
FMX328	207448	7573271	384	120	-60	80		54	55	1	0.89	0.89
FMX329	207465	7573262	385	120	-60	80		0	1	1	0.53	0.53
FMX329	207465	7573262	385	120	-60	80		8	10	2	0.61	1.22
FMX329	207465	7573262	385	120	-60	80		16	17	1	0.51	0.51
FMX329	207465	7573262	385	120	-60	80		22	23	1	0.69	0.69
FMX329	207465	7573262	385	120	-60	80		41	46	5	0.47	2.35
FMX330	207482	7573253	386	120	-60	50		0	10	10	1.82	18.2
FMX330	207482	7573253	386	120	-60	50		22	27	5	0.67	3.35
FMX330	207482	7573253	386	120	-60	50		31	32	1	0.76	0.76
FMX331	207464	7573307	384	120	-60	90		11	19	8	0.73	5.84
FMX331	207464	7573307	384	120	-60	90		29	35	6	0.69	4.14
FMX331	207464	7573307	384	120	-60	90		43	44	1	1.79	1.79
FMX331	207464	7573307	384	120	-60	90		47	53	6	1.83	10.98
FMX331	207464	7573307	384	120	-60	90		60	81	21	1.77	37.17
FMX332	207482	7573298	384	120	-60	80		0	7	7	2.85	19.95
							incl	3	4	1	8.72	8.72
FMX332	207482	7573298	384	120	-60	80		10	11	1	1.28	1.28
FMX332	207482	7573298	384	120	-60	80		20	31	11	1	11
FMX332	207482	7573298	384	120	-60	80		41	51	10	2.88	28.8
							incl	42	44	2	5.83	11.7
FMX332	207482	7573298	384	120	-60	80		61	62	1	0.56	0.56
FMX332	207482	7573298	384	120	-60	80		69	72	3	0.64	1.92
FMX332	207482	7573298	384	120	-60	80		77	78	1	0.52	0.52
FMX333	207505	7573285	384	120	-60	50		17	21	4	1.5	6
FMX334	207443	7573296	383	120	-60	90		20	25	5	0.71	3.55
FMX334	207443	7573296	383	120	-60	90		29	30	1	0.5	0.5
FMX334	207443	7573296	383	120	-60	90		34	35	1	0.64	0.64
FMX334	207443	7573296	383	120	-60	90		40	44	4	7.78	31.12
								41	43	2	14.55	29.1
FMX334	207443	7573296	383	120	-60	90		57	58	1	1.27	1.27
FMX334	207443	7573296	383	120	-60	90		61	63	2	0.96	1.92
FMX335	207460	7573287	384	120	-60	80		1	2	1	0.79	0.79
FMX335	207460	7573287	384	120	-60	80		7	9	2	1.57	3.14
FMX335	207460	7573287	384	120	-60	80		19	23	4	1.97	7.88

(I sa

MILLENNIUM MINERALS LIMITED. ABN 85 003 257 556. 10 Kings Park Road, West Perth, Western Australia / www.millenniumminerals. com.au

MILLENNIUM MINERALS LIMITED
ASX Code: MOY

FMX335	207460	7573287	384	120	-60	80		58	59	1	0.58	0.58
FMX335	207460	7573287	384	120	-60	80		68	69	1	0.63	0.63
FMX335	207460	7573287	384	120	-60	80		73	74	1	0.51	0.51
FMX335	207460	7573287	384	120	-60	80		78	80	2	2.66	5.32
FMX336	207478	7573277	385	120	-60	60		13	15	2	1.03	2.06
FMX336	207478	7573277	385	120	-60	60		21	22	1	0.6	0.6
FMX336	207478	7573277	385	120	-60	60		33	34	1	0.73	0.73
FMX336	207478	7573277	385	120	-60	60		38	41	3	0.63	1.89
FMX336	207478	7573277	385	120	-60	60		48	49	1	0.64	0.64
FMX337	207495	7573268	385	120	-60	50		1	4	3	0.53	1.59
FMX337	207495	7573268	385	120	-60	50		25	29	4	0.4	1.6
FMX338	207463	7573205	390	120	-60	90		9	10	1	0.79	0.79
FMX338	207463	7573205	390	120	-60	90		19	21	2	2.06	4.12
FMX338	207463	7573205	390	120	-60	90		24	30	6	2.62	15.72
							incl	26	27	1	5.9	5.9
FMX338	207463	7573205	390	120	-60	90		63	64	1	0.61	0.61
FMX338	207463	7573205	390	120	-60	90		72	77	5	0.75	3.75
FMX339	207456	7573218	386	120	-60	80		10	42	32	1.1	35.2
FMX339	207456	7573218	386	120	-60	80		46	47	1	0.59	0.59
FMX339	207456	7573218	386	120	-60	80		52	55	3	0.57	1.71
FMX339	207456	7573218	386	120	-60	80		58	60	2	1.07	2.14
FMX340	207438	7573228	385	120	-60	70		4	7	3	0.85	2.55
FMX340	207438	7573228	385	120	-60	70		13	14	1	0.74	0.74
FMX340	207438	7573228	385	120	-60	70		63	68	5	2.38	11.9

(I gal

Appendix 4 – Crossing table of RC drilling results

	GDA	GDA				Depth		From	То	Width	Au	
Hole_ID	East	North	RL	Az	Dip	(m)		(m)	(m)	(m)	Grade(g/t)	Gram Meters
FMX198	208926	7574710	383	100	-60	60		2	3	1	0.5	0.5
								9	10	1	1.67	1.67
								14	21	7	1.06	7.42
FMX199	208924	7574689	384	100	-60	60		10	15	5	0.65	3.25
FMX200	208907	7574711	382	100	-60	60		11	18	7	1.26	8.82
								34	51	17	1.11	18.87
FMX201	208905	7574693	384	100	-60	60				NSA		NSA
FMX202	208887	7574714	383	100	-60	78				NSA		NSA
FMX203	208884	7574697	384	100	-60	78		10	17	7	0.74	5.18
								20	23	3	0.67	2.01
								70	75	5	0.63	3.15
FMX350	208900	7574638	382	100	-60	60		15	16	1	0.54	0.54
								39	50	11	0.71	7.81
FMX351	208919	7574635	384	100	-60	30		3	19	16	1.47	23.52
							inc	12	13	1	6.45	6.45
FMX352	208890	7574659	383	100	-60	60		7	8	1	1.06	1.06
								18	19	1	0.52	0.52
								22	25	3	0.61	1.83
								45	56	11	1.43	15.73
FMX353	208905	7574658	384	100	-60	45		1	2	1	1.12	1.12
								17	34	17	0.76	12.92
FMX354	208880	7574680	383	100	-60	50		15	16	1	0.87	0.87
								22	26	4	0.65	2.6
FMX355	208900	7574677	384	100	-60	60		36	44	8	1.01	8.08
FMX356	208921	7574673	385	100	-60	30		15	21	6	1.46	8.76
FMX357	208865	7574700	383	100	-60	60		7	9	2	0.66	1.32
								12	13	1	9.6	9.6
								41	45	4	1.77	7.08
								48	49	1	0.62	0.62
FMX358	208876	7574697	384	100	-60	45		1	2	1	2.55	2.55
								12	13	1	1.76	1.76
								25	30	5	0.71	3.55
								33	34	1	0.56	0.56
FMX359	208878	7574716	383	100	-60	45		18	23	5	2.5	12.5
							inc	19	20	1	5.8	5.8
								35	36	1	0.67	0.67
FMX360	208897	7574712	383	100	-60	70		3	4	1	0.97	0.97
								9	10	1	1.44	1.44
								44	52	8	0.94	7.52
								55	64	9	0.88	7.92
								67	68	1	2.85	2.85
FMX361	208916	7574709	383	100	-60	45		20	21	1	0.53	0.53
								30	36	6	0.69	4.14

(I sal)

-

MILLENNIUM MINERALS LIMITED. ABN 85 003 257 556. 10 Kings Park Road, West Perth, Western Australia / www.millenniumminerals. com.au

FMX362	208900	7574735	382	100	-60	80		28	31	3	0.57	1.71
								40	42	2	1.03	2.06
								53	70	17	1.17	19.89
FMX363	208919	7574731	382	100	-60	50		18	23	5	2.2	11
							inc	19	20	1	5.34	5.34
								31	40	9	1.88	16.92
							inc	34	35	1	5.33	5.33
FMX365	208916	7574751	382	100	-60	60		4	6	2	2.15	4.3
								12	15	3	0.79	2.37
								36	37	1	0.58	0.58
								43	48	5	1.15	5.75
								52	54	2	0.53	1.06
FMX366	208927	7574751	382	100	-60	50		4	6	2	0.71	1.42
								31	34	3	1.09	3.27
								41	42	1	0.9	0.9
FMX367	208937	7574748	382	100	-60	40		14	26	12	0.66	7.92
FMX368	208946	7574745	382	100	-60	30		0	5	5	0.64	3.2
								8	9	1	1.41	1.41
								12	15	3	1.11	3.33
								28	29	1	2.29	2.29

NSA = No Significant assays. Intersections are calculated with 0.5g/t Au lower cut-off and a maximum of 2 consecutive metres of internal dilution. Higher grade intersections are calculated with 5g/t Au lower cut-off and a maximum of 2 consecutive metres of internal dilution.

Appendix 5 - Linq table of RC drilling results

	GDA	GDA				Depth		From	То	Width	Au	
Hole_ID	East	North	RL	Az	Dip	(m)		(m)	(m)	(m)	Grade(g/t)	Gram Meters
FMX234	207870	7573484	380	115	-60	50				NSA		NSA
FMX235	207819	7573507	380	115	-50	80		60	62	2	1.02	2.04
								67	68	1	0.64	0.64
								72	73	1	0.51	0.51
FMX236	207919	7573484	380	115	-60	90				NSA		NSA
FMX237	207915	7573567	380	115	-53	96		8	20	12	0.76	9.12
								26	37	11	3.23	35.53
							inc	33	34	1	11.95	11.95
								42	43	1	0.5	0.5
								60	62	2	1.26	2.52
FMX238	207890	7573573	380	115	-60	100		49	50	1	0.61	0.61
								62	64	2	0.89	1.78
FMX239	208011	7573549	380	160	-60	50				NSA		NSA
FMX240	208003	7573565	380	160	-60	66				NSA		NSA
FMX241	208034	7573538	380	160	-60	40				NSA		NSA
FMX242	208071	7573552	380	160	-60	40				NSA		NSA

Appendix 6 – Federation table of RC drilling results

	GDA	GDA				Depth	From	То	Width	Au Grade	Gram-
Hole ID	East	North	RL	Az	Dip	(m)	(m)	(m)	(m)	(g/t)	metres
FDRC0005	222397	7579254	384	340	-60	54			NSA		NSA
FDRC0007	222359	7579240	383	340	-60	54			NSA		NSA
FDRC0008	222366	7579221	383	340	-60	80			NSA		NSA
FDRC0009	222340	7579234	382	340	-60	54			NSA		NSA
FDRC0010	222347	7579214	386	340	-60	78			NSA		NSA
FDRC0011	222322	7579227	383	340	-60	54	9	18	9	0.57	5.13
FDRC0012	222328	7579208	389	340	-60	84	39	40	1	0.71	0.71
FDRC0013	222303	7579220	385	340	-60	54			NSA		NSA
FDRC0014	222309	7579201	391	340	-60	84			NSA		NSA
FDRC0015	222284	7579213	392	340	-60	54	21	23	2	2.05	4.1
FDRC0017	222265	7579206	397	340	-60	54	8	9	1	1.03	1.03
							13	19	6	1.13	6.78
							22	25	3	0.62	1.86
FDRC0018	222272	7579187	401	340	-60	84	44	45	1	3.24	3.24
							53	56	3	0.58	1.74
FDRC0019	222239	7579219	401	340	-60	54			NSA		NSA
FDRC0020	222246	7579199	400	340	-60	75			NSA		NSA
FDRC0021	222220	7579212	404	340	-60	54	3	7	4	0.67	2.68
							11	15	4	2.11	8.44
FDRC0022	222228	7579192	401	340	-60	75			NSA		NSA
FDRC0023	222202	7579205	399	340	-60	54			NSA		NSA
FDRC0027	222110	7579193	386	340	-60	54	12	13	1	0.84	0.84
FDRC0028	222118	7579174	389	340	-60	54			NSA		NSA
FDRC0030	222132	7579132	385	340	-55	66	65	66	1	0.56	0.56
FDRC0031	222140	7579112	380	340	-50	84			AA		AA
FDRC0033	222102	7579099	387	340	-50	80	12	14	2	0.74	1.48
FDRC0034	222027	7579189	381	340	-60	54	15	19	4	1.58	6.32
FDRC0035	222033	7579170	385	340	-60	75	39	41	2	0.72	1.44
FDRC0038	222064	7579086	390	340	-50	80	18	21	3	1.11	3.33
FDRC0039	221994	7579161	403	340	-60	54			NSA		NSA
FDRC0040	222001	7579143	391	340	-60	84			AA		AA
FDRC0041	221959	7579143	386	340	-60	54	12	13	1	0.74	0.74
FDRC0042	221965	7579123	389	340	-60	78			AA		AA
FDRC0043	221982	7579077	400	340	-55	54			AA		AA
FDRC0044	221989	7579058	393	340	-50	80			AA		AA

A BAN

Appendix 7 – Pan table of RC drilling results

	GDA	GDA				Depth		From	То	Width	Au Grade	Gram
Hole ID	East	North	RL	Az	Dip	(m)		(m)	(m)	(m)	(g/t)	metres
PARD001	222051	7579507	375	90	-60	54		9	11	2	1.29	2.58
								39	46	7	0.87	6.09
PARD002	222071	7579507	375	90	-60	54		25	26	1	0.74	0.74
PARD003	222091	7579507	375	90	-60	54		0	2	2	0.58	1.16
								14	15	1	1.95	1.95
PARD004	222111	7579507	375	90	-60	54				NSA		NSA
PARD005	222131	7579507	374	90	-60	54				NSA		NSA
PARD006	222151	7579507	373	90	-60	54				NSA		NSA
PARD007	222171	7579507	372	90	-60	54		23	24	1	0.5	0.5
PARD008	222191	7579507	372	90	-60	60				NSA		NSA
PARD009	222071	7579437	380	90	-60	70				NSA		NSA
PARD010	222091	7579437	386	90	-60	54		51	54	3	0.72	2.16
PARD011	222071	7579397	377	90	-60	70		28	29	1	0.57	0.57
								46	47	1	0.71	0.71
								63	65	2	0.63	1.26
PARD012	222091	7579397	383	90	-60	54		12	17	5	0.78	3.9
								41	42	1	0.56	0.56
PARD013	222071	7579377	376	90	-60	70		47	48	1	5.37	5.37
PARD014	222091	7579377	377	90	-60	54		21	26	5	0.62	3.1
PARD015	222064	7579327	375	90	-60	72		58	59	1	0.69	0.69
								62	68	6	0.69	4.14
PARD016	222081	7579327	375	90	-60	54		5	9	4	0.77	3.08
								19	22	3	0.62	1.86
								36	38	2	0.99	1.98
PARD017	222064	7579307	375	90	-60	78		42	51	9	0.51	4.59
PARD018	222081	7579307	376	90	-60	54		12	15	3	4.71	14.13
							Incl.	12	13	1	11.1	11.1
								22	23	1	1.56	1.56
PARD019	222065	7579287	376	90	-60	70		45	46	1	1.25	1.25
PARD020	222081	7579287	377	90	-60	54		19	22	3	0.62	1.86
PARD021	222061	7579267	376	90	-60	72		46	50	4	2.73	10.92
							Incl.	48	49	1	8.46	8.46
PARD022	222081	7579267	378	90	-60	54		20	21	1	0.8	0.8
PARD023	222061	7579227	378	90	-60	72		58	59	1	1.05	1.05

Appendix 8 – Golden Eagle South table of RC drilling results

Hole ID	GDA Fast	GDA North	RL	Az	Dip	Depth (m)	From (m)	To (m)	Width (m)	Au Grade	Gram Meters
GEBC12000	202049	7567556	427	155	-60	40	6	7	1	1 65	1 7
GENCIZOU	202045	/30/330	727	100	00		13	22	9	0.68	6.1
GEBC12001	202054	7567568	428	90	-60	55	10	11	1	0.56	0.1
GERCIZOOI	202034	/30/300	420	50	00		16	26	10	0.50	6.3
							32	34	2	1.08	2.2
GERC12002	202046	7567587	429	90	-60	60	22	24	2	0.73	1.5
							39	56	17	0.67	11.4
GERC12003	202070	7567559	421	90	-60	40	0	2	2	0.68	1.4
							5	16	11	0.68	7.5
							20	21	1	0.63	0.6
							26	27	1	0.93	0.9
							30	31	1	1.18	1.2
GERC12004	202053	7567595	428	90	-60	60	27	29	2	0.63	1.3
							34	35	1	0.71	0.7
							44	48	4	0.50	2.0
							53	60	7	0.80	5.6
GERC12005	202067	7567613	427	90	-60	70	16	17	1	0.52	0.5
							25	62	37	1.00	37.0
							65	66	1	0.55	0.6
							69	70	1	1.32	1.3
GERC12006	202075	7567595	429	90	-60	70	21	22	1	0.79	0.8
							33	37	4	0.89	3.6
							40	42	2	0.67	1.3
							45	48	3	0.48	1.4
							55	59	4	0.51	2.0
050012007	202002	7567577	424		60		65	69	4	0.56	2.2
GERC12007	202083	/56/5//	421	90	-60	60	1	18	17	0.96	16.3
							23	24	I	0.55	0.0
							27	32 27	2	1.29	4.7
							45		2	1.50	2.0
							55	56	1	0.04	0.0
GERC12009	202083	7567626	425	90	-60	70	23	26	3	0.55	15
	202003	/30/020	123	50			40	48	8	0.88	7.0
							57	61	4	0.37	1.5
GERC12010	202108	7567572	412	90	-60	40	2	3	1	0.76	0.8
							9	19	10	0.91	9.1
							22	23	1	0.51	0.5
							32	34	2	0.63	1.3
GERC12011	202119	7567549	415	90	-60	50	0	1	1	0.58	0.6
							13	14	1	0.53	0.5
							29	30	1	1.29	1.3
GERC12012	202110	7567639	424	90	-60	60	37	47	10	0.88	8.8

(I sa

-

								51	60	9	1.47	13.2
							Incl.	52	53	1	6.81	6.8
GERC12013	202118	7567620	423	90	-60	60		26	27	1	0.75	0.8
								31	37	6	0.83	5.0
								40	42	2	0.60	1.2
								49	50	1	0.56	0.6
								55	60	5	0.54	2.7
GERC12014	202127	7567602	417	90	-60	50		0	2	2	0.66	1.3
								6	9	3	0.88	2.6
								15	20	5	1.04	5.2
								28	31	3	0.57	1.7
GERC12015	202135	7567584	411	90	-60	30		7	9	2	0.76	1.5
								17	18	1	0.66	0.7
								23	24	1	0.64	0.6
GERC12017	202131	7567665	414	90	-60	55		3	11	8	0.45	3.6
								32	35	3	0.49	1.5
								38	53	15	0.77	11.6
GERC12018	202139	7567647	416	90	-60	50		2	3	1	0.66	0.7
								19	35	16	1.04	16.6
GERC12019	202148	7567629	415	90	-60	40		0	2	2	0.76	1.5
								6	14	8	1.07	8.6
								17	34	17	0.60	10.2
GERC12020	202156	7567610	413	90	-60	30		0	1	1	0.68	0.7
								8	9	1	0.51	0.5
								13	18	5	1.18	5.9
GERC12021	202158	7567678	406	90	-60	70		13	15	2	1.09	2.2
								18	19	1	1.05	1.1
								22	28	6	0.97	5.8
								31	41	10	0.77	7.7
								44	47	3	0.57	1.7
								52	56	4	0.56	2.2
								62	63	1	0.65	0.7
GERC12022	202166	7567659	405	90	-60	60		0	3	3	2.50	7.5
								13	34	21	0.74	15.5
								47	48	1	0.53	0.5
GERC12023	202175	7567641	410	90	-60	50		4	12	8	1.32	10.6
								16	27	11	1.05	11.6
GERC12024	202183	7567623	409	90	-60	40		9	10	1	0.87	0.9
								13	18	5	0.52	2.6
GERC12025	202167	7567704	400	90	-60	50		0	1	1	0.59	0.6
								22	23	1	0.69	0.7
								28	29	1	0.68	0.7
								37	44	7	1.39	9.7
								47	50	3	0.48	1.4
GERC12026	202180	7567677	404	90	-60	65		3	4	1	0.87	0.9
								7	8	1	1.08	1.1

T

-

								11	17	6	2.33	14.0
							Incl.	13	14	1	5.54	5.5
								21	29	8	0.69	5.5
								33	34	1	0.55	0.6
								37	39	2	1.38	2.8
								55	61	6	0.78	4.7
GERC12027	202186	7567713	399	90	-60	40		25	26	1	0.51	0.5
								32	40	8	0.91	7.3
GERC12028	202194	7567694	402	90	-60	50		15	26	11	0.61	6.7
								31	32	1	0.60	0.6
								44	50	6	1.19	7.1
GERC12029	202203	7567676	405	90	-60	50		1	2	1	0.52	0.5
								15	19	4	0.51	2.0
								28	35	7	1.07	7.5
GERC12030	202211	7567658	408	90	-60	40		3	8	5	0.95	4.8
								11	20	9	1.05	9.5
								23	24	1	0.80	0.8
GERC12031	202195	7567739	398	90	-60	60		37	40	3	1.23	3.7
								49	50	1	0.58	0.6
								57	58	1	0.59	0.6
GERC12032	202204	7567721	399	90	-60	50		0	1	1	1.29	1.3
								21	30	9	0.99	8.9
								34	35	1	1.43	1.4
								41	47	6	0.74	4.4
GERC12033	202212	7567703	402	90	-60	40		7	8	1	0.55	0.6
								20	22	2	0.74	1.5
								28	30	2	0.85	1.7
								39	40	1	0.67	0.7
GERC12034	202180	7567820	398	90	-60	60		10	11	1	0.80	0.8
								35	38	3	1.12	3.4
								52	58	6	1.84	11.0
								54	55	1	5.41	11.0
GERC12035	202188	7567802	398	90	-60	60		44	48	4	0.84	3.4
GERC12036	202197	7567784	397	90	-60	50		3	5	2	1.60	3.2
								20	23	3	0.70	2.1
								34	36	2	0.78	1.6
GERC12037	202205	7567766	397	90	-60	60		10	12	2	1.07	2.1
								24	28	4	1.88	7.5
							Incl.	24	25	1	6.49	6.5
								39	41	2	1.02	2.0
								45	46	1	0.51	0.5
								49	59	10	0.76	7.6
GERC12038	202213	7567748	397	90	-60	50		3	4	1	1.07	1.1
								13	14	1	0.81	0.8
								34	40	6	1.68	10.1
GERC12039	202222	7567729	400	90	-60	60		0	1	1	1.25	1.3

T

								5	6	1	0.52	0.5
								18	19	1	0.69	0.7
								23	25	2	1.70	3.4
								53	54	1	1.09	1.1
GERC12040	202230	7567711	401	90	-60	60		30	32	2	0.56	1.1
								49	50	1	0.51	0.5
GERC12041	202239	7567693	403	90	-60	45		10	15	5	0.78	3.9
								22	23	1	0.84	0.8
								33	34	1	0.86	0.9
GERC12042	202247	7567675	402	90	-60	30		0	6	6	0.63	3.8
								20	21	1	1.31	1.3
GERC12043	202189	7567824	397	90	-60	60		52	53	1	0.67	0.7
								58	EOH	2	3.22	6.4
							Incl.	59	EOH	1	5.14	5.1
GERC12044	202215	7567792	397	90	-60	65		13	14	1	0.61	0.6
								24	25	1	4.30	4.3
								51	63	12	1.29	15.5
							Incl.	52	53	1	5.58	5.6
GERC12045	202223	7567774	397	90	-60	60		7	8	1	0.77	0.8
								41	54	13	1.17	15.2
								58	59	1	0.55	0.6
GERC12046	202232	7567756	397	90	-60	50		18	31	13	1.27	16.5
								40	45	5	0.61	3.1
GERC12047	202240	7567738	398	90	-60	70		7	19	12	0.87	10.4
								31	34	3	0.74	2.2
								39	40	1	0.55	0.6
								44	62	18	1.23	22.1
							Incl.	59	60	1	9.36	9.4
GERC12048	202248	7567720	400	90	-60	50		5	9	4	0.47	1.9
								23	25	2	1.01	2.0
								28	29	1	1.04	1.0
								35	44	9	1.12	10.1
GERC12049	202257	7567702	401	90	-60	40		0	14	14	0.79	11.1
								17	25	8	0.97	7.8
								28	33	5	0.72	3.6
GERC12050	202265	7567684	401	90	-60	35		4	7	3	0.70	2.1
								10	12	2	0.63	1.3
GERC12051	202250	7567764	398	90	-60	55		9	10	1	0.78	0.8
								17	19	2	4.73	9.5
							Incl.	18	19	1	6.21	6.2
								31	32	1	4.72	4.7
								39	42	3	1.73	5.2
GERC12052	202258	7567746	398	90	-60	55		0	2	2	1.63	3.3
								17	18	1	0.56	0.6
								21	22	1	0.65	0.7
								48	49	1	0.70	0.7

T

-

								52	53	1	0.62	0.6
GERC12053	202266	7567725	399	155	-60	50		9	15	6	2.77	16.6
								19	27	8	0.69	5.5
GERC12054	202273	7567708	400	155	-60	30		3	4	1	0.50	0.5
								7	8	1	0.51	0.5
								11	12	1	0.63	0.6
								23	25	2	1.01	2.0
GERC12055	202257	7567789	397	155	-60	50		2	4	2	0.75	1.5
								30	38	8	2.59	20.7
							Incl.	36	37	1	13.10	13.1
								41	49	8	0.71	5.7
GERC12056	202267	7567771	397	155	-60	45		14	20	6	10.05	60.3
							Incl.	18	19	1	55.00	55.0
								29	31	2	0.63	1.3
								36	38	2	0.96	1.9
								42	43	1	1.37	1.4
GERC12057	202274	7567753	398	155	-60	55		1	3	2	0.68	1.4
								9	10	1	1.52	1.5
								33	34	1	0.56	0.6
								46	55	9	0.91	8.2
GERC12058	202284	7567735	398	155	-60	30		6	8	2	1.70	3.4
								18	19	1	0.63	0.6
								15	16	1	0.93	0.9
GERC12059	202110	7567766	402	155	-60	60		21	30	9	2.55	23.0
							Incl.	24	26	2	7.17	14.3
								45	52	7	0.75	5.3
								55	60	5	0.67	3.4
GERC12060	202113	7567745	399	155	-60	50		8	13	5	0.89	4.5
								19	20	1	0.98	1.0
GERC12061	202132	7567735	398	155	-60	40		0	2	2	1.02	2.0
								5	6	1	0.56	0.6
								20	21	1	1.20	1.2
GERC12062	202142	7567714	401	155	-60	30		24	25	1	0.78	0.8
GERC12063	202125	7567793	405	155	-60	70		25	27	2	0.79	1.6
								32	39	7	1.55	10.9
								46	50	4	1.32	5.3
								54	56	2	0.84	1.7
GERC12065	202157	7567740	398	155	-60	40		36	37	1	1.48	1.5
GERC12066	202153	7567784	401	155	-60	55		7	17	10	0.93	9.3
GERC12067	202161	7567766	398	155	-60	50		2	4	2	0.82	1.6
								12	13	1	0.98	1.0
								21	22	1	0.56	0.6
								25	29	4	0.79	3.2
GERC12068	202169	7567749	397	155	-60	60		4	6	2	1.24	2.5
								13	17	4	0.70	2.8
								33	34	1	0.55	0.6

1

GERC12069	202177	7567731	398	155	-60	50	12	15	3	1.87	5.6
							18	19	1	0.52	0.5
							25	31	6	0.40	2.4
							38	40	2	0.87	1.7
							44	48	4	0.91	3.6
GERC12070	202170	7567793	400	155	-60	50	7	8	1	0.77	0.8
							14	15	1	1.30	1.3
							31	33	2	0.53	1.1
							38	39	1	0.52	0.5
							44	45	1	0.58	0.6
GERC12071	202177	7567773	398	155	-60	40	4	5	1	1.93	1.9
							18	26	8	0.58	4.6
GERC12072	202017	7567719	402	155	-60	50	21	23	2	0.84	1.7
							29	34	5	1.65	8.3
							37	41	4	0.97	3.9
							44	49	5	0.75	3.8
GERC12073	202025	7567703	402	155	-60	70	5	6	1	0.93	0.9
							14	15	1	0.58	0.6
							31	32	1	0.55	0.6
							38	39	1	0.58	0.6
							50	60	10	1.45	14.5
							67	68	1	0.77	0.8
GERC12074	202030	7567684	404	155	-60	65	4	9	5	0.77	3.9
							18	19	1	0.71	0.7
							41	52	11	0.84	9.2
							60	61	1	0.58	0.6
GERC12075	202042	7567666	406	155	-60	55	1	5	4	1.17	4.7
							25	26	1	0.79	0.8
							29	30	1	0.66	0.7
							38	46	8	0.51	4.1
							52	54	2	0.72	1.4
GERC12076	201998	7567712	402	155	-60	60	27	28	1	0.67	0.7
							38	40	2	0.78	1.6
							46	47	1	0.50	0.5
							50	51	1	0.51	0.5
GERC12077	202008	7567696	403	155	-60	50	24	26	2	1.00	2.0
							29	31	2	1.33	2.7
							34	35	1	0.77	0.8
GERC12078	202016	7567673	407	155	-60	40	5	8	3	1.19	3.6
							16	20	4	1.50	6.0
GERC12079	202024	7567664	409	155	-60	30	8	9	1	5.02	5.0

JORC 2012 Edition - Table 1

Section 1 Sampling Techniques and Data

Criteria	JORC Code Explanation	Commentary
Sampling techniques	 Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling. Include reference to measures taken to ensure sample representatively and the appropriate calibration of any measurement tools or systems used. Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation. 	 Sampling was carried out using the Reverse Circulation (RC) drill method Rock chip samples were collected from a representative section outcrop material to determine whether significant gold mineralisation is likely to be present. No surface samples were used in any estimation of Mineral Resources or Ore Reserves. Standard samples were inserted to the sampling stream at a ratio of 1:50. RC drilling was carried out with a 5.25 inch face-sampling bit, 1m samples collected through a cyclone and cone splitter to form a 2 - 3kg sub-sample. All sub-samples were fully pulverised at the onsite lab to >85% passing - 75um, to produce a 50g charge for Fire Assay with AAS finish. For the reconnaissance Au81 programmes the pulverised samples were combined into four metre samples that were assayed using 50g charge for Fire Assay with AAS finish to determine total gold.
Drilling techniques	• Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	• Reverse circulation (RC) drilling was carried out with a 5.25 inch face-sampling bit.
Drill sample recovery	 Method of recording and assessing core and chip sample recoveries and results assessed. Measures taken to maximise sample recovery and ensure representative nature of the samples. Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material. 	 A record of the recent RC sample recovery and moisture content was recorded by Field Technicians. Overall sample weight and quality were good to very good (1.5-2.5 kg). ALS records sample weights on receipt of samples. This was used to help track sample recovery. There is no observed correlation between sample recovery and gold grade.

Criteria	JORC Code Explanation	Commentary
Logging	 Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies. Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography. The total length and percentage of the relevant intersections logged. 	 All of the drilling has been captured in chip trays. Logging of this programme has yet to be finalised. Geological logging is both qualitative and quantitative in nature. Logging is carried out for lithology, colour, grain size, regolith, alteration, weathering, veining and mineralisation. Sulphide and vein content were logged as a percentage of the interval. RC chip trays are retained at site.
Sub-sampling techniques and sample preparation	 If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique. Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples. Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling. Whether sample sizes are appropriate to the grain size of the material being sampled. 	 No core was drilled. The recent 1 metre RC samples were split using a rig mounted cone splitter. The vast majority of the samples were dry with moist and wet samples recorded on the sampling sheet. The sample sizes are industry-standard and considered to be appropriate to correctly represent mineralisation at the deposits based on: the style of mineralisation, the thickness and consistency of the intersections, the sampling methodology and assay ranges for gold. Field duplicates were taken from the second aperture of the cone splitter at a rate of 1 in 50 with additional field duplicates taken in the expected mineralised zones.
Quality of assay data and laboratory tests	 The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total. For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc. Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established. 	 The industry best practice standard assay method of 50g charge Fire Assay (ALS) with AAS finish was used to determine total Au content. Commercially prepared, predominantly matrix-matched low, medium & high value certified reference QAQC standards were inserted at a rate of 1:50 into the sample stream. The QAQC results from this protocol were considered to be acceptable. No geophysical tools were used to determine any element concentrations used for these results. Sample preparation checks for fineness were carried out by the laboratory as part of their internal procedures to ensure the grind size of 85% passing 75 micron was being attained. Laboratory QAQC involves the use of internal lab standards using certified reference material, blanks, splits and replicates as part of the in house procedures. Results highlight that sample assay values are accurate.
Verification of sampling	• The verification of significant intersections by either independent or alternative company personnel.	• Intersections were checked by alternative company personnel to check they were reported correctly.

Criteria	JORC Code Explanation	Commentary
and assaying	 The use of twinned holes. Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols. Discuss any adjustment to assay data. 	 No twin holes were drilled in the programme. Previous significant intersections were verified with close spaced drilling. A physical copy of the sample register is written out by the Field Assistants and checked against the designed sampling sheet created by the geologist. Assay results were not adjusted.
Location of data points	 Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation. Specification of the grid system used. Quality and adequacy of topographic control. 	 Post completion of the drilling the RC collars were surveyed with a Real Time Kinematic (RTK) DGPS device to a ±10mm positional precision. All collars are then validated against planned positions as a cross check. Surveyed collar coordinates are uploaded into the Company SQL database. Grid datum is GDA94 51K (East Pilbara). Downhole surveys were completed on all holes at 30m maximum downhole intervals with a preference of an initial survey at ~10m downhole. Surveys were taken using a single shot camera or via electronic multi-shot survey tool (Camprodual or Camteq), lithologies have negligible magnetic susceptibility (greywacke). Re-surveying was carried out to check the quality of measurements. Aerial Photogrammetry± LIDAR was produced by Fugro Surveys (±0.2m vertical & ±0.1m horizontal). Survey control points were marked out by licensed surveyor for the Fugro Survey. An error was noted in early RC drilling collar RL co-ordinates (ellipsoid not geoid model); these holes were adjusted to the Fugro DTM surface RL and recorded as DTM RL in the SQL database; the original survey RL was retained. The DTM RL was used for Mineral Resource Estimates (MRE). Otherwise there was good agreement of surveyed collars and Fugro DTM.
Data spacing and distribution	 Data spacing for reporting of Exploration Results. Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral 	 RC drilling varied from 80m X 20m to 10m X 10m spacing. Thus far the drill spacing has been sufficient to establish geological and grade continuity.
	 Resource and Ore Reserve estimation procedure(s) and classifications applied. Whether sample compositing has been applied. 	• None of the reported sample intervals were composited. In previous resource estimates some >1m RC assay composites were used. A small number of core composites were retained with a length of less than 1m (minimum 0.3m).

Criteria	JORC Code Explanation	Commentary
Orientation of data in relation to geological structure	 Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type. If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material. 	 Geological mapping and structural measurements have been taken at the deposits and they confirm the orientation of mineralisation defined by the drilling at Federation, PAN and Anne de Vidia. Based upon the above information the drilling was largely perpendicular to the mineralisation with some exceptions. This was due to steep and inaccessible terrain that meant holes needed to be drilled slightly oblique to the mineralisation to intersect the desired target. No significant orientation bias has been identified in the data at this point.
Sample security	• The measures taken to ensure sample security.	 Samples were given an ID, cross checked by field personnel that they corresponded to the assigned interval. This was checked against the designed sample register. Samples were collected on completion of each hole and delivered to the onsite assay laboratory for sample preparation. The laboratory assigned the same sample ID to the pulps that were shipped to the Perth laboratory. Monitoring of sample dispatch is undertaken for samples sent from site and to confirm that samples have arrived in their entirety and intact at their destination. Sample security is managed with dispatch dates noted for each samples by the technician, this is checked and confirmed at the Perth laboratory on receipt of samples and discrepancies are corrected via telephone link up with the on-site and Perth laboratory.
Audits or reviews	• The results of any audits or reviews of sampling techniques and data reviews.	• Internal lab audits conducted by Millennium have shown no material issues.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code Explanation	Commentary
Mineral tenement and land tenure status	• Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings. The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	 All the deposits and prospects lie within fully granted Mining Leases within the Pilbara Gold Field (46), as detailed below. All the tenements are in good standing with no known impediments. Bartons* -M46/3, & M46/441; Shearers** -M46/261 & M46/262 (100% MML); Otways** - M46/262 (100% MML); Gambols Hill** - M46/262 (100% MML); Anne de Vidia^** - M46/262 (100% MML); Castlemaine^** - M46/262 (100% MML); Roscoes Reward*[@] - MM46/166 & M46/442 (100% MML) Round Hill*[@] - MM46/166 (100% MML) & M46/442[@] (100% MML) Federation* - M46/266 (100% MML) & M46/442[@] (100% MML) Crossing*^ - M 46/266* Linq^ - M 46/266* Hut[^] - M 46/266* An 46/266* These tenements are located within the Palyku title claim (WC99/16).
		*These tenements are located within the Njamal title claim (WC99/8).
		* A \$10/oz royalty payable to Tyson Resources Pty Ltd.
		[®] MM46/166 & M46/442 (100% MML) –gross revenue royalty of 6.44% payable to Royalty Stream Investments (WA Gold) Pty Ltd for up to 20koz then it reverts to 1.5% rate for gold mined beyond 20koz ;
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	• Exploration by other parties has been reviewed and taken into account when exploring. Previous RAB & RC drilling. Millennium has re-drilled in areas that other parties had drilled to gain a greater confidence in those results. In areas where Millennium has not re-drilled the previous holes they were designated as Inferred or excluded from MRE.
Geology	• Deposit type, geological setting and style of mineralisation.	• The Nullagine Project deposits are structurally controlled, sediment hosted, lode Au style of deposit. They are all situated in the Mosquito Creek Basin that consists predominantly of Archean aged, turbidite sequences of sandstones, siltstones and

Criteria	JORC Code Explanation	Commentary		
		shales.		
Drill hole Information	 A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes: easting and northing of the drill hole collar elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar dip and azimuth of the hole down hole length and interception depth hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case. 	 Provided in a table that relates exploration results to the drill hole information including: hole co-ordinates, RL, dip, azimuth, end of hole depth, downhole length and interception depths. All of the current drilling with results returned has been reported. 		
Data aggregation methods	 In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated. Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated. 	 All of the exploration prospects have their significant intersections reported with a lower cut-off of 0.5g/t Au and maximum of 2 metres of consecutive internal dilution. Higher grade intersections use a lower cut-off of 5g/t Au and maximum of 2 metres of consecutive internal dilution. All samples reported were one metre in length. Thus no aggregation methods were required to derive intersections. No metal equivalents were used. 		
Relationship between mineralisation widths and intercept lengths	 These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known'). 	 Only selected historic exploration data related to the included targets and prospects that are presented. The relationships between the quoted intersections are shown on the relevant cross-sections within the presentation. Most of the drilling is orthogonal to the mineralisation; however, in early exploration the dip direction is sometimes uncertain and thus holes some holes can be drilled sub-parallel to the mineralisation producing longer and higher grade intersection than the true intercept. Some of the mineralisation at All Nations and Round Hill may be trending obliquely to the drill sections but this has yet to be established. The drill hole orientations relative to the ore zones have ensured accurate interpretations and 3D modelling. 		
Diagrams	• Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These	• Significant exploration results are tabulated in the presentation with drill hole plans and sections included to show them in context.		

Criteria	JORC Code Explanation	Commentary		
	should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	• Representative maps and sections have been included in the report along with documentation.		
Balanced reporting	• Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	• All of the current drill results have been reported for the project.		
Other substantive exploration data	• Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	• The outcrops of quartz veins have been previously mapped at both Gambols Hill and All Nations. Mineralisation at these locations is primarily associated with a combination of quartz veining, moderate foliation, strong sericite alteration and strong limonite staining.		