

ASX/Media Announcement

Tuesday, 21 June 2016

PILBARA ON TRACK FOR JULY RESOURCE UPGRADE AS DRILLING SUCCESS CONTINUES AT PILGANGOORA

Latest drilling delivers two new discoveries outside the main resource area plus more thick, highgrade hits which continue to extend the mineralisation beyond current resource boundaries

HIGHLIGHTS:

- Further exceptional results from the Phase 1 and 2 resource in-fill and extensional drilling programs at the 100%-owned Pilgangoora Lithium-Tantalum Project near Port Hedland in WA, with numerous thick intersections of pegmatite (down-hole widths of 20-50m) continuing to extend the mineralisation well beyond the boundary of the conceptual open pit at the Central Pegmatite. New intercepts include:
 - o 69m @ 1.97% Li₂O from 115m (PLS457);
 - o 51m @ 1.71% Li₂O from 122m (PLS458);
 - \circ 43m @ 2.02% Li₂O and 127ppm Ta₂O₅ from 77m (PLS568);
 - \circ 32m @ 1.66% Li₂O and 147ppm Ta₂O₅ from 187m (PLS649);
 - o 37m @ 1.36% Li₂O from 68m (PLS358A);
 - \circ 32m @ 1.92% Li₂O and 104ppm Ta₂O₅ from 119m (PLS584A);
 - o 28m @ 1.80% Li₂O and 119ppm Ta₂O₅ from 141m (PLS606);
 - o 31m @ 1.98% Li₂O and 114ppm Ta₂O₅ from 95m (PLS612);
 - 30m @ 1.48% Li₂O and 133ppm Ta₂O₅ from 150m (PLS613);
 - o 30m @ 1.62% Li₂O from 213m (PLS644);
 - o 33m @ 1.68% Li₂O from 70m (PLS691); and
 - o 31m @ 1.43% Li₂O from 93m (PLS692).
- Two significant new standalone discoveries have been made at the South Eastern Pegmatite and the Western Domain, respectively located 450-500m to the east and west of the Central Pegmatite, with exploration and sterilisation drilling in these areas returning significant widths of high-grade mineralisation from the first seven holes:
 - o 10m @ 2.02% Li₂O from 10m (PLS499) South Eastern Pegmatite
 - o 13m @ 1.95% Li₂O from 28m (PLS500) South Eastern Pegmatite
 - \circ 10m @ 1.36% Li₂O and 113ppm Ta₂O₅ from 98m (PLS527) − Western Domain Pegmatite
- **Further drilling will be undertaken at these new discoveries** later this year to in-fill the mineralisation and include them in the Pilgangoora Mineral Resource inventory.
- DFS drilling is now complete and the full Phase 2 drilling program is now in its final stages, with two RC rigs operating. Given the success of the resource drilling, the overall program was expanded to 28,420m (including all RC, PQ & HQ Diamond drilling) from the 16,632m originally planned, with 4,950m of drilling remaining, excluding sterilisation and geotechnical drilling.
- All of the new drilling data will be incorporated into the next major resource upgrade, which is on track
 to be delivered in early July. This updated Mineral Resource will underpin a new Ore Reserve which in
 turn will form the basis of the Definitive Feasibility Study (DFS), which is also progressing on track for
 release in August.

Australian lithium developer Pilbara Minerals Ltd (ASX: PLS) is pleased to advise that it has received more outstanding results from the ongoing resource in-fill and extensional drilling programs at its 100%-owned **Pilgangoora Lithium Tantalum Project**, located near Port Hedland in WA.

The latest results – from a further 83 Reverse Circulation (RC) drill holes completed as part of the Phase 1 and 2 programs – have continued to identify significant thick zones of high-grade mineralisation well beyond the current resource boundaries at the Central Pegmatite.

In addition, a combination of exploration and sterilisation drilling being conducted as part of the current program has resulted in the discovery of two significant new zones of mineralisation, one 300m west of the Central Pegmatite, known as the Western Domain, and one 300m to the south-east of the resource area, known as the South Eastern Pegmatite.

These new discoveries, one of which (the Western Domain) is a blind discovery (i.e. located below cover with no outcropping pegmatite) clearly demonstrate the significant remaining exploration potential of the Pilgangoora Project, notwithstanding the significant progress which has been made in terms of resource development over the past two years. Further drilling is planned at both the Western Domain and South Eastern Pegmatite later this year to convert these areas into JORC compliant Mineral Resources.

The Company's 2016 exploration and resource development drilling program at Pilgangoora is now in its final stages, with two RC rigs remaining on site.

The Phase 2 program has been expanded to 28,420m of drilling from the original budget of 16,632m, with the overall program now around 80% complete and 5,298m of drilling remaining. This is expected to be completed by the end of June 2016, except for planned sterilisation drilling. HQ diamond drilling for geotechnical (infrastructure) purposes has also been completed.

Pilbara's Managing Director and CEO, Mr Ken Brinsden, said the major part of the 2016 resource in-fill and extensional drilling at Pilgangoora was now in its final stages, with the program delivering a host of positive results on multiple fronts – including two exciting new pegmatite discoveries on both flanks of the main resource.

"The new discoveries to the west and south-east of the main resource area are significant, and they demonstrate just how large and well-mineralised the Pilgangoora Project is," he said. "One of these pegmatites was effectively discovered as a result of sterilisation drilling in area with thick cover and no outcrop – highlighting just how big the broader pegmatite system is.

"In the meantime, our focus remains on the core objective of advancing Pilgangoora towards production as rapidly as possible. To this end, recent drilling targeting the north-west extension of the Central Pit has continued to deliver exceptional results, and our expectation is that it will support a substantial upgrade to the Mineral Resource and Ore Reserve inventory for inclusion in the upcoming Definitive Feasibility Study.

"The new resource should be available by early July, and that will mark the beginning of an incredibly busy twomonth period for Pilbara as we finalise binding off-take arrangements, update the Ore Reserve inventory and complete all outstanding elements of the DFS, which remains on track for delivery during August.

Exploration Drilling - New Discoveries

Recent exploration and sterilisation drilling has resulted in two significant new discoveries along the flanks of the main resource area at Pilgangoora, namely along the South Eastern Pegmatite (See Figure 1 – Cross Section 7669700mN) and the Western Domain (See Figure 2 – Cross Section 7669900mN).

In both locations, drilling has intersected significant widths of pegmatite that will warrant further drilling to establish JORC compliant resources. Assays from the initial seven holes have been returned from these areas, where a total of 2,193m of RC drilling has been completed (see results summaries and tables in Appendix 1). Significant new intersections from these zones include:

- 10m @ 2.02% Li₂O from 10m (PLS499) South Eastern Pegmatite
- 13m @ 1.95% Li₂O from 28m (PLS500) South Eastern Pegmatite
- 10m @ 1.36% Li₂O and 113ppm Ta₂O₅ from 98m (PLS527) Western Domain Pegmatite

The South eastern pegmatites located approximately 300m from the proposed Central pit. Two out of the three RC holes drilled on the South Eastern pegmatite intersected significant mineralisation, and subsequent mapping has traced the zone at surface for 400m (See Figures 3).

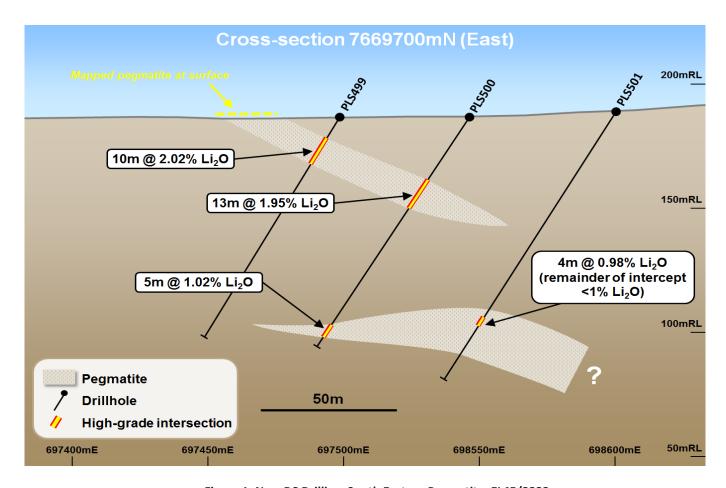


Figure 1: New RC Drilling, South Eastern Pegmatite, EL45/2232

The Cross Section below shows the additional potential of the new Western Domain intersections. Assays are awaited for holes PLS533 to PLS535 (see Figure 1 – Cross Section 7669900mN), these holes are located 200m north of PLS 527 which returned $10m @ 1.36\% Li_2O$ and $113ppm Ta_2O_5$ from 98m. This zone, which has no surface expression, remains open to the north and at depth.

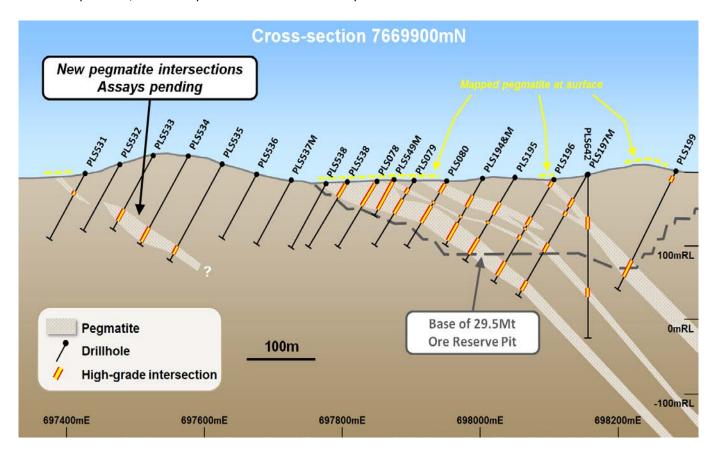


Figure 1: New RC Drilling, Western Domain, EL45/2232

Central - Northwest RC drilling

Resource extensional drilling has returned numerous thick intersections of pegmatite (down-hole widths ranging from 20m to 50m) well beyond the boundary of the conceptual open pit at the Central Pegmatite on sections 7670500mN to 7670800mN (see Figure 3).

The Phase 2 program as at 17 June 2016 totals 141 holes for 18,590m (4,950m remaining) (see results summaries and tables in Appendix 1). Significant new intersections include:

- 27m @ 1.87% Li₂O from 217m (PLS227E)
- 19m @ 1.40% Li₂O from 218m (PLS260E)
- 14m @ 1.31% Li₂O and 228ppm Ta₂O₅ from 226m (PLS315)
- 16m @ 1.59% Li_2O and 101ppm Ta_2O_5 from 121m (PLS567)
- 12m @ 1.56% Li₂O from 80m (PLS569)
- 13m @ 1.30% Li₂O and 172ppm Ta₂O₅ from 8m (PLS592); and 26m @ 1.81% Li₂O and 102ppm Ta₂O₅ from 159m
- 32m @ 1.66% Li₂O and 147ppm Ta₂O₅ from 187m (PLS649)
- 13m @ 1.37% Li₂O and 121ppm Ta_2O_5 from 65m (PLS650); and 17m @ 1.40% Li₂O from 179m; and

- 10m @ 1.34% Li $_2$ O and 145ppm Ta $_2$ O $_5$ from 215m; and
- 10m @ 1.70% Li₂O and 151ppm Ta₂O₅ from 240m
- 37m @ 1.36% Li₂O from 68m (PLS358A); and
 - 18m @ 1.57% Li₂O from 196m; and
 - 11m @ 1.71% Li₂O from 231m
- 69m @ 1.97% Li₂O from 115m (PLS457)
- 51m @ 1.71% Li₂O from 122m (PLS458)
- 43m @ 2.02% Li₂O and 127ppm Ta₂O₅ from 77m (PLS568)
- 32m @ 1.92% Li_2O and 104ppm Ta_2O_5 from 119m (PLS584A)
- 28m @ 1.80% Li₂O and 119ppm Ta₂O₅ from 141m (PLS606)
- 31m @ 1.98% Li_2O and 114ppm Ta_2O_5 from 95m (PLS612)
- 30m @ 1.48% Li₂O and 133ppm Ta₂O₅ from 150m (PLS613)
- 21m @ 1.76% Li₂O from 65m (PLS643)
- 30m @ 1.62% Li₂O from 213m (PLS644)
- 33m @ 1.68% Li₂O from 70m (PLS691)
- 31m @ 1.43% Li₂O from 93m (PLS692)

These extensions will be included within an expanded Central Pit design, which will result in a significant upgrade in the Resource / Ore Reserves (see RC drill collars in Figure 3 outside of the current pit design.

Resource Drilling - Eastern Pegmatite

In-fill resource drilling along the Eastern Pegmatite returned consistent intersections of pegmatite at depth in line with expectations (see Figure 4 – Drill Hole Location Plan).

The aim of this Phase 1 program was to convert Inferred material to Indicated (see results summaries and tables in Appendix 1). Significant new intersections include:

- 15m @ 1.51% Li₂O and 158ppm Ta₂O₅ from 105m (PLS462)
- 11m @ 1.54% Li₂O and 204ppm Ta₂O₅ from 31m (PLS463); and 15m @ 1.91% Li₂O and 188ppm Ta₂O₅ from 146m
- 14m @ 1.68% Li₂O and 196ppm Ta₂O₅ from 23m (PLS464)
- 10m @ 1.04% Li₂O and 204ppm Ta₂O₅ from 30m (PLS465)
- 12m @ 1.15% Li₂O and 211ppm Ta₂O₅ from 42m (PLS466)
- 22m @ 1.53% Li_2O and 213ppm Ta_2O_5 from 63m (PLS467)
- 13m @ 1.73% Li₂O and 188ppm Ta_2O_5 from 95m (PLS471)
- 10m @ 1.57% Li₂O and 336ppm Ta₂O₅ from 87m (PLS472)
- 13m @ 1.56% Li_2O and 281ppm Ta_2O_5 from 87m (PLS474)
- 12m @ 1.51% Li₂O and 205ppm Ta₂O₅ from 54m (PLS476); and 14m @ 1.94% Li₂O and 332ppm Ta₂O₅ from 94m

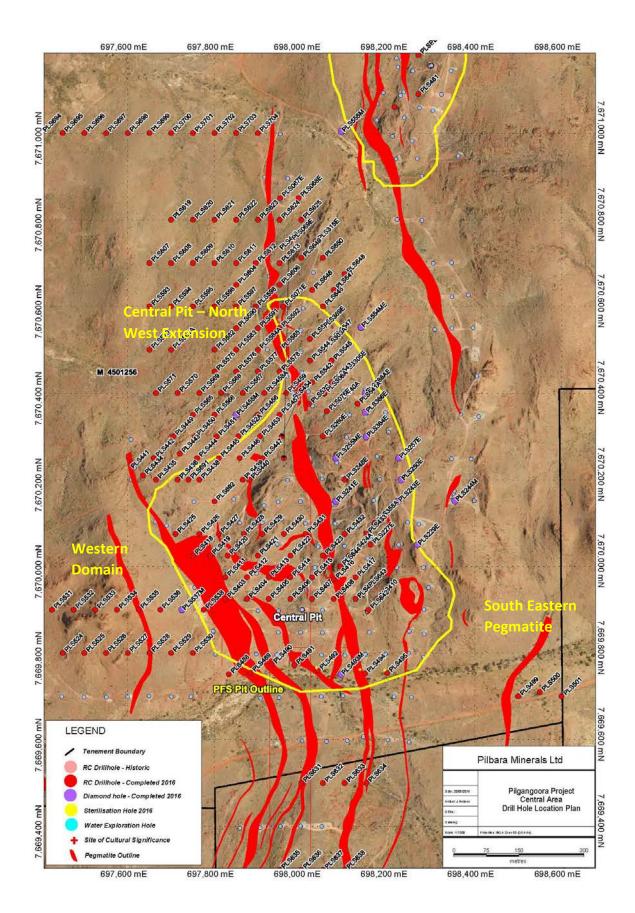


Figure 3: 1:5000 scale – Central North West Extension RC Drill Collars, EL45/2232

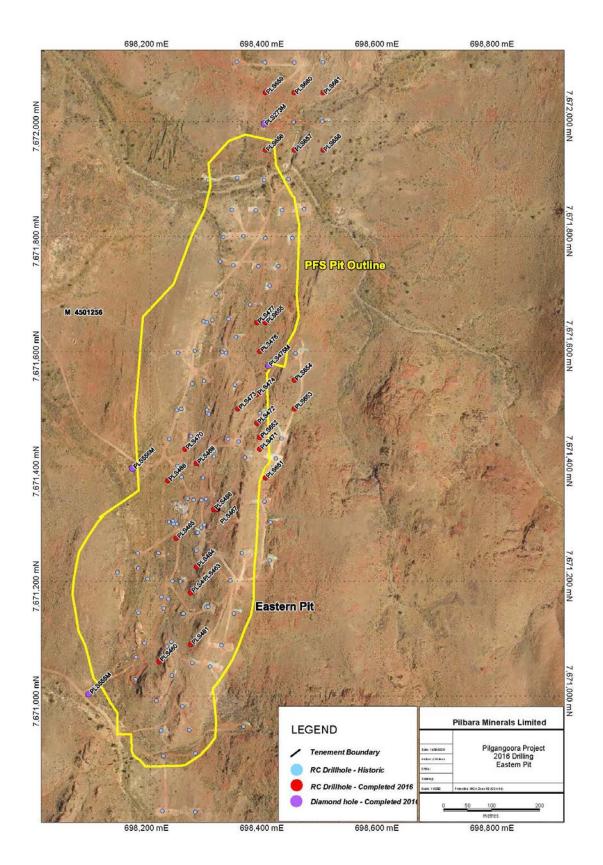


Figure 4: 1:5000 scale – Central North West Extension RC Drill Collars, EL45/2232

Appendix 1 – Table 1 and 2 below lists all recently received assay results from all drill holes in this report. Table 1: Drilling Intersections (>1% Li_2O)

Hole ID	From (m)	To (m)	Thickness (m)	Li₂O (%)	Ta₂O₅ (ppm)
PLS227	217	244	27	1.87	86
PLS255M	45.3	64	18.7	1.53	101
PLS255M	69	77	8	1.70	273
PLS255M	92	95.3	3.3	1.89	73
PLS255M	97.8	104	6.2	1.74	101
PLS260	132	144	12	1.70	68
PLS260	163	168	5	1.39	47
PLS260	187	195	8	1.13	114
PLS260	203	211	8	1.27	186
PLS260	214	215	1	1.08	121
PLS260	218	237	19	1.40	83
PLS273M	24	27	3	1.05	147
PLS273M	92.88	96.29	3.41	1.52	345
PLS315	118	121	3	1.86	73
PLS315	190	192	2	1.06	325
PLS315	201	202	1	1.61	242
PLS315	207	216	9	1.59	77
PLS315	226	240	14	1.31	228
PLS315	244	249	5	2.19	69
PLS358A	15	16	1	1.38	63
PLS358A	68	105	37	1.36	96
PLS358A	159	162	3	1.16	54
PLS358A	196	214	18	1.57	88
PLS358A	231	242	11	1.71	94
PLS358A	246	253	7	1.72	69
PLS455M	84	101	17	1.96	147
PLS455M	105	140	35	1.73	94
PLS457	115	184	69	1.97	74
PLS458	54	55	1	1.55	43
PLS458	110	118	8	1.82	95
PLS458	122	173	51	1.71	97
PLS462	12	19	7	1.95	193
PLS462	31	37	6	1.65	250
PLS462	48	51	3	1.12	365
PLS462	84	85	1	1.33	188
PLS462	105	120	15	1.51	158
PLS463	26	27	1	1.08	357
PLS463	31	42	11	1.54	204
PLS463	56	63	7	1.41	289
PLS463	73	75	2	1.63	331
PLS463	118	119	1	1.44	113
PLS463	146	161	15	1.91	188
PLS464	23	37	14	1.68	196

Hole ID	From (m)	To (m)	Thickness (m)	Li₂O (%)	Ta₂O₅ (ppm)
PLS463	146	161	15	1.91	188
PLS464	23	37	14	1.68	196
PLS464	54	56	2	1.26	217
PLS464	68	70	2	1.28	185
PLS464	132	141	9	1.43	172
PLS465	18	23	5	1.84	307
PLS465	30	40	10	1.04	204
PLS466	42	54	12	1.15	211
PLS466	57	59	2	1.60	298
PLS466	94	96	2	1.48	638
PLS466	103	105	2	1.57	227
PLS466	110	114	4	1.26	211
PLS467	49	50	1	1.18	321
PLS467	56	57	1	1.16	100
PLS467	63	85	22	1.53	213
PLS471	29	30	1	1.57	289
PLS471	77	84	7	1.62	215
PLS471	95	108	13	1.71	212
PLS471	125	127	2	1.73	188
PLS472	75	82	7	1.58	243
PLS472	87	97	10	1.57	336
PLS472	118	122	4	1.52	140
PLS474	6	8	2	2.03	531
PLS474	69	75	6	1.79	187
PLS474	87	100	13	1.56	281
PLS474	111	115	4	2.12	241
PLS474	119	120	1	1.10	347
PLS475M	70.15	75	4.85	1.83	230
PLS475M	95	108	13	1.83	336
PLS475M	111	112.58	1.58	2.08	280
PLS475M	121.57	126	4.43	1.84	185
PLS475M	157	163.18	6.18	1.83	298
PLS476	54	66	12	1.48	205
PLS476	94	108	14	1.94	332
PLS476	111	119	8	1.04	248
PLS477	48	57	9	1.88	203
PLS477	81	90	9	1.79	198
PLS477	105	108	3	2.49	393
PLS477	113	114	1	1.74	212
PLS479	38	46	8	1.74	172
PLS479	49	50	1	1.18	217
PLS492	2	10	8	1.49	96
PLS492	13	14	1	1.14	9
PLS492	17	21	4	1.10	72
PLS492	51	52	1	2.13	153
1 LJ434	<u> </u>	32	1	2.13	100

Hole ID	From (m)	To (m)	Thickness (m)	Li ₂ O (%)	Ta₂O₅ (ppm)
PLS492	59	67	8	1.16	129
PLS494	5	6	1	1.33	182
PLS494	25	28	3	0.97	100
PLS495	27	28	1	1.44	7
PLS495	32	41	9	1.18	104
PLS497	5	7	2	1.75	54
PLS498	89	93	4	1.16	67
PLS499	10	20	10	2.02	77
PLS500	28	41	13	1.95	89
PLS500	96	101	5	1.02	68
PLS501	94	98	4	0.98	70
PLS503	6	9	3	1.70	99
PLS503	27	33	6	1.50	49
PLS503	40	41	1	1.38	81
PLS503	54	55	1	1.81	72
PLS506	45	66	21	1.93	69
PLS507A	95	97	2	2.68	57
PLS507A	103	104	1	1.21	223
PLS507A	123	125	2	1.23	44
PLS507A	130	131	1	1.44	106
PLS518	15	19	4	1.21	205
PLS519	18	23	5	1.45	162
PLS519	32	33	1	1.94	141
PLS520	26	41	15	1.94	126
PLS521	41	45	4	1.54	94
PLS521	72	86	14	2.37	101
PLS522	51	52	1	2.45	313
PLS522	75	84	9	1.43	154
PLS526	79	80	1	1.16	63
PLS526	88	89	1	2.07	85
PLS527	98	108	10	1.36	113
PLS530	36	38	2	1.41	53
PLS555M	82	84.6	2.6	1.54	286
PLS567	95	104	9	1.90	104
PLS567	107	115	8	1.61	93
PLS567	121	137	16	1.59	103
PLS569	69	77	8	1.89	101
PLS569	80	92	12	1.56	79
PLS571	24	27	3	1.57	304
PLS568	77	120	43	2.02	127
PLS579	55	59	4	1.38	128
PLS580A	92	95	3	1.50	125
PLS582	89	104	15	1.74	87
PLS583	88	89	1	2.13	422
PLS583	105	114	9	2.13	151
i F3202	103	114	3	2.00	131

Hole ID	From (m)	To (m)	Thickness (m)	Li₂O (%)	Ta ₂ O ₅ (ppm)
PLS583	118	129	11	1.76	74
PLS584A	105	106	1	1.46	250
PLS584A	119	151	32	1.92	104
PLS585	150	159	9	1.52	308
PLS585	162	169	7	1.72	121
PLS585	173	182	9	1.55	58
PLS585	204	207	3	0.99	45
PLS592	8	21	13	1.30	172
PLS592	149	156	7	1.76	239
PLS592	159	185	26	1.81	102
PLS592	202	203	1	1.25	77
PLS595	39	42	3	1.54	114
PLS596	64	69	5	1.54	59
PLS597	89	90	1	1.25	65
PLS597	93	98	5	1.43	61
PLS598	76	77	1	1.31	389
PLS598	83	84	1	1.36	427
PLS598	96	104	8	1.76	229
PLS598	107	114	7	1.65	146
PLS598	118	119	1	1.57	233
PLS598	122	129	7	1.24	80
PLS604	85	91	6	2.44	80
PLS606	9	10	1	1.12	241
PLS606	17	18	1	1.40	234
PLS606	130	131	1	1.10	201
PLS606	141	169	28	1.80	119
PLS607	29	32	3	1.36	74
PLS608	49	51	2	1.63	80
PLS609	105	108	3	1.35	74
PLS610	41	42	1	2.67	117
PLS610	122	125	3	1.46	101
PLS611	76	77	1	1.36	138
PLS611	101	103	2	1.32	139
PLS611	136	137	1	1.94	76
PLS612	95	126	31	1.98	114
PLS612	150	151	1	1.12	32
PLS613	6	12	6	1.66	208
PLS613	16	21	5	1.26	192
PLS613	134	136	2	1.66	131
PLS613	150	180	30	1.48	133
PLS613	191	196	5	1.32	25
PLS622	64	69	5	1.36	197
PLS623	104	112	8	1.53	139
PLS624	7	9	2	1.24	113
PLS624	124	136	12	1.82	118
•	•				

Hole ID	From (m)	To (m)	Thickness (m)	Li ₂ O (%)	Ta ₂ O ₅ (ppm)
PLS624	143	153	10	1.29	244
PLS625	44	45	1	1.23	102
PLS625	59	64	5	1.50	203
PLS625	152	154	2	1.48	227
PLS625	164	176	12	1.39	76
PLS642	66	70	4	1.46	115
PLS642	90	93	3	1.39	87
PLS642	153	161	8	2.01	72
PLS643	65	86	21	1.76	99
PLS643	97	105	8	1.35	72
PLS643	181	182	1	1.27	61
PLS643	186	190	4	1.67	108
PLS643	242	244	2	1.88	50
PLS644	34	39	5	1.00	111
PLS644	182	183	1	1.59	136
PLS644	213	243	30	1.62	59
PLS649	48	53	5	1.33	105
PLS649	58	60	2	1.25	221
PLS649	159	163	4	0.77	151
PLS649	173	176	3	1.30	182
PLS649	187	219	32	1.66	147
PLS649	228	231	3	1.22	20.0
PLS650	65	78	13	1.37	121
PLS650	98	103	5	1.19	199
PLS650	124	133	9	1.65	97
PLS650	179	196	17	1.40	86
PLS650	207	210	3	1.92	283
PLS650	215	225	10	1.34	145
PLS650	229	231	2	1.39	101
PLS650	240	250	10	1.70	151
PLS650	263	264	1	1.03	132
PLS650	267	271	4	1.26	329
PLS691	70	103	33	1.68	90
PLS691	107	110	3	1.31	140
PLS691	114	116	2	1.57	210
PLS692	83	88	5	1.11	115
PLS692	93	124	31	1.43	70

Table 2: Drilling Intersections (>100ppm Ta₂O₅ppm)

Hole ID	From (m)	To (m)	Thickness (m)	Ta2O5 (ppm)	Li2O (%)
PLS227	217	220	3	226	2.23
PLS227	224	227	3	136	1.65
PLS255M	49	50	1	144	1.53
PLS255M	57	78.1	21.1	235	1.34

Hole ID	From (m)	To (m)	Thickness (m)	Ta2O5 (ppm)	Li2O (%)
PLS255M	97.8	99	1.2	195	2.52
PLS260	109	110	1	121	0.11
PLS260	188	194	6	136	1.05
PLS260	203	208	5	253	1.06
PLS260	211	223	12	120	1.07
PLS260	226	228	2	131	0.99
PLS273M	20	28.68	8.68	260	0.47
PLS273M	42.27	46.05	3.78	250	0.60
PLS273M	51.98	57	5.02	528	0.08
PLS273M	92.88	96.29	3.41	345	1.52
PLS315	117	118	1	166	0.60
PLS315	122	123	1	166	0.26
PLS315	178	180	2	126	0.21
PLS315	189	193	4	64	0.70
PLS315	201	203	2	195	1.14
PLS315	209	210	1	199	1.59
PLS315	215	216	1	117	1.38
PLS315	225	240	15	222	1.27
PLS315	245	246	1	113	2.37
PLS358A	81	82	1	115	1.44
PLS358A	86	95	9	182	1.28
PLS358A	105	106	1	117	0.80
PLS358A	113	114	1	103	0.13
PLS358A	197	205	8	99	1.41
PLS358A	211	213	2	118	1.97
PLS358A	229	230	1	138	0.54
PLS358A	233	238	5	127	1.37
PLS358A	249	250	1	104	2.17
PLS457	114	115	1	118	0.37
PLS457	118	123	5	94	1.65
PLS457	144	156	12	142	2.14
PLS458	55	59	4	168	0.12
PLS458	109	119	10	119	1.58
PLS458	133	143	10	192	1.70
PLS458	152	154	2	127	1.77
PLS458	171	174	3	224	1.77
PLS459	65	73	8	142	1.40
PLS459 PLS459	84	85	1	121	0.41
PLS459 PLS459	111	113	2	210	1.17
PLS459 PLS459	131	133	2	119	1.17
PLS459 PLS459	137	138	1	165	2.05
PLS459 PLS459	141	159	18	131	1.57
PLS459 PLS459				105	
	184	189	5	119	1.49
PLS460	5	6	1		0.28
PLS460	19	29	10	199	1.51

Hole ID	From (m)	To (m)	Thickness (m)	Ta2O5 (ppm)	Li2O (%)
PLS460	33	47	14	236	1.00
PLS460	59	63	4	237	1.81
PLS461	18	22	4	357	1.92
PLS461	27	31	4	329	0.32
PLS461	62	68	6	127	1.89
PLS461	76	99	23	202	1.71
PLS461	102	113	11	163	1.65
PLS462	11	21	10	206	1.54
PLS462	29	39	10	253	1.24
PLS462	48	54	6	210	0.77
PLS462	82	88	6	120	0.47
PLS462	104	121	17	154	1.42
PLS463	25	46	21	221	0.99
PLS463	56	63	7	289	1.41
PLS463	71	75	4	269	1.26
PLS463	115	120	5	165	0.89
PLS463	142	161	19	182	1.67
PLS464	24	40	16	197	1.45
PLS464	51	59	8	319	0.62
PLS464	63	65	2	155	0.74
PLS464	68	71	3	253	1.14
PLS464	105	115	10	312	0.41
PLS464	131	141	10	170	1.30
PLS465	0	6	6	138	0.34
PLS465	18	24	6	322	1.61
PLS465	29	33	4	346	1.17
PLS465	36	41	5	220	1.06
PLS465	73	78	5	194	0.35
PLS466	41	59	18	194	1.07
PLS466	94	99	5	499	0.97
PLS466	103	105	2	227	1.57
PLS466	109	114	5	207	1.09
PLS467	49	51	2	231	0.95
PLS467	62	87	25	225	1.41
PLS471	29	31	2	490	1.12
PLS471	77	85	8	209	1.52
PLS471	92	110	18	261	1.49
PLS471	125	127	2	188	1.73
PLS472	13	14	1	191	0.11
PLS472	20	22	2	315	0.50
PLS472	75	82	7	243	1.58
PLS472	86	98	12	309	1.43
PLS472	119	122	3	162	1.60
PLS473	51	60	9	200	1.96
1 237/3	J 1	30		= 3 3	1.50

Hole ID	From (m)	To (m)	Thickness (m)	Ta2O5 (ppm)	Li2O (%)
PLS473	72	102	30	205	1.19
PLS474	6	9	3	406	1.44
PLS474	69	75	6	187	1.79
PLS474	83	100	17	244	1.22
PLS474	103	106	3	121	0.74
PLS474	111	120	9	196	1.28
PLS475M	10.95	13	2.05	597	0.80
PLS475M	70.15	76.55	6.4	205	1.50
PLS475M	93.3	112.58	19.28	352	1.60
PLS475M	121.57	126	4.43	185	1.84
PLS475M	156.4	163.18	6.78	316	1.72
PLS476	52	67	15	184	1.23
PLS476	93	118	25	324	1.48
PLS477	48	58	10	197	1.72
PLS477	81	91	10	205	1.69
PLS477	104	116	12	452	1.07
PLS479	38	50	12	190	1.38
PLS479	58	60	2	150	0.14
PLS492	1	7	6	175	1.39
PLS492	51	66	15	116	0.82
PLS494	1	8	7	161	0.40
PLS494	26	29	3	111	0.59
PLS494	70	75	5	120	0.03
PLS495	30	39	9	109	0.98
PLS495	81	82	1	623	0.00
PLS495	85	86	1	116	0.17
PLS496	4	5	1	111	0.80
PLS497	4	5	1	115	0.45
PLS497	53	54	1	111	0.26
PLS498	92	93	1	112	1.25
PLS500	27	31	4	97	2.14
PLS500	38	40	2	110	2.09
PLS501	92	93	1	102	0.02
PLS501	101	107	6	112	0.27
PLS503	5	9	4	100	1.35
PLS503	15	16	1	104	0.54
PLS503	23	24	1	100	0.17
PLS505	0	1	1	122	0.24
PLS506	48	49	1	102	1.49
PLS506	60	62	2	119	2.71
PLS506	65	66	1	124	2.20
PLS507A	101	104	3	140	0.71
PLS507A	109	112	3	139	0.39
PLS507A	130	131	1	106	1.44

Hole ID	From (m)	To (m)	Thickness (m)	Ta2O5 (ppm)	Li2O (%)
PLS518	15	23	8	177	0.74
PLS519	17	24	7	167	1.14
PLS519	31	35	4	143	0.95
PLS520	30	41	11	142	1.80
PLS521	42	45	3	105	1.45
PLS521	54	56	2	179	0.09
PLS521	68	77	9	118	1.65
PLS521	82	93	11	199	1.23
PLS522	50	53	3	199	1.27
PLS522	75	83	8	162	1.48
PLS526	80	84	4	163	0.20
PLS527	97	103	6	175	1.36
PLS527	107	109	2	189	0.72
PLS527	126	128	2	126	0.06
PLS555M	81.6	84.6	3	289	1.35
PLS556M	9	11	2	646	0.03
PLS556M	18	25	7	571	0.03
PLS556M	29.9	32.3	2.4	178	0.01
PLS567	71	72	1	144	0.00
PLS567	99	104	5	163	1.70
PLS567	107	108	1	206	2.54
PLS567	114	129	15	228	1.19
PLS567	135	137	2	199	1.68
PLS567	159	162	3	218	0.45
PLS568	77	78	1	110	2.32
PLS568	89	93	4	150	2.09
PLS568	99	103	4	287	2.26
PLS568	107	108	1	130	2.71
PLS568	112	121	9	226	1.55
PLS569	68	82	14	149	1.41
PLS571	24	27	3	304	1.57
PLS579	55	59	4	128	1.38
PLS580A	75	76	1	122	0.79
PLS580A	92	96	4	130	1.23
PLS581	45	49	4	121	0.38
PLS582	72	76	4	217	0.17
PLS582	88	89	1	191	0.50
PLS582	92	98	6	109	1.53
PLS582	103	105	2	136	0.76
PLS583	85	90	5	139	0.58
PLS583	102	108	6	112	0.96
PLS583	111	120	9	180	1.40
PLS583	128	133	5	130	0.40
PLS584A	105	108	3	254	0.60
rl3384A	102	109	5	2 J4	0.00

Hole ID	From (m)	To (m)	Thickness (m)	Ta2O5 (ppm)	Li2O (%)
PLS584A	118	121	3	147	1.36
PLS584A	129	141	12	130	2.32
PLS584A	148	152	4	176	0.69
PLS585	0	9	9	158	0.31
PLS585	118	119	1	149	0.22
PLS585	148	149	1	203	0.47
PLS585	152	167	15	286	1.35
PLS585	190	191	1	111	0.17
PLS592	1	9	8	117	0.59
PLS592	13	24	11	227	0.97
PLS592	132	134	2	301	0.50
PLS592	149	150	1	147	1.59
PLS592	153	163	10	290	1.50
PLS592	168	174	6	136	1.77
PLS592	186	187	1	138	0.24
PLS595	41	42	1	199	1.51
PLS596	25	27	2	141	0.61
PLS596	37	41	4	369	0.10
PLS596	63	64	1	117	0.09
PLS596	70	71	1	157	0.04
PLS597	50	54	4	177	0.13
PLS597	57	64	7	159	0.19
PLS597	90	91	1	125	0.93
PLS597	99	100	1	366	0.22
PLS598	72	77	5	181	0.52
PLS598	82	121	39	195	1.20
PLS598	128	129	1	139	1.01
PLS604	53	57	4	113	0.12
PLS604	62	66	4	249	0.48
PLS604	86	87	1	117	2.15
PLS604	91	92	1	155	0.8
PLS606	8	20	12	243	0.43
PLS606	120	122	2	237	0.28
PLS606	129	133	4	127	0.62
PLS606	141	152	11	173	2.23
PLS606	163	165	2	164	1.32
PLS606	168	169	1	108	1.29
PLS606	174	175	1	115	0.84
PLS606	199	200	1	101	0.15
PLS607	32	37	5	144	0.48
PLS609	104	105	1	101	0.13
PLS610	38	42	4	175	0.97
PLS610	114	115	1	150	0.82
PLS610	124	125	1	136	1.12

Hole ID	From (m)	To (m)	Thickness (m)	Ta2O5 (ppm)	Li2O (%)
PLS611	72	77	5	185	0.48
PLS611	100	107	7	182	0.83
PLS612	78	82	4	77	0.32
PLS612	94	101	7	286	1.71
PLS612	114	118	4	98	1.69
PLS612	121	122	1	154	0.69
PLS612	155	156	1	108	0.17
PLS613	6	23	17	223	1.15
PLS613	119	122	3	246	0.23
PLS613	134	136	2	131	1.66
PLS613	148	158	10	234	1.28
PLS613	166	167	1	107	2.29
PLS613	174	181	7	237	1.23
PLS619	16	17	1	200	0.26
PLS622	64	71	7	254	1.03
PLS623	75	76	1	113	0.15
PLS623	98	114	16	187	1.09
PLS624	7	13	6	239	0.68
PLS624	112	113	1	570	0.06
PLS624	124	125	1	142	1.33
PLS624	132	136	4	172	1.44
PLS624	143	148	5	336	1.15
PLS624	151	157	6	292	0.70
PLS625	43	45	2	128	0.94
PLS625	60	65	5	265	1.29
PLS625	85	90	5	164	0.04
PLS625	143	145	2	184	0.38
PLS625	152	154	2	227	1.48
PLS625	164	166	2	106	2.02
PLS625	171	172	1	111	1.12
PLS642	61	73	12	138	0.91
PLS642	90	92	2	108	1.26
PLS642	151	154	3	155	1.05
PLS642	159	166	7	141	0.69
PLS643	65	73	8	107	1.60
PLS643	80	86	6	128	1.76
PLS643	103	104	1	120	0.99
PLS643	177	178	1	141	0.02
PLS643	182	191	9	118	1.09
PLS643	238	241	3	322	0.17
PLS644	30	43	13	131	0.56
PLS644	47	48	1	101	0.06
PLS644	52	57	5	246	0.04
PLS644	66	70	4	123	0.10

Hole ID	From (m)	To (m)	Thickness (m)	Ta2O5 (ppm)	Li2O (%)
PLS644	109	110	1	161	0.54
PLS644	174	184	10	149	0.26
PLS644	215	216	1	136	1.38
PLS649	29	31	2	193	0.76
PLS649	47	66	19	201	0.68
PLS649	88	89	1	111	0.04
PLS649	161	164	3	182	0.67
PLS649	173	176	3	182	1.30
PLS649	186	194	8	215	2.11
PLS649	197	200	3	125	1.45
PLS649	204	208	4	98	1.81
PLS649	213	221	8	268	0.92
PLS650	45	72	27	126	0.75
PLS650	77	79	2	115	1.42
PLS650	98	108	10	199	0.73
PLS650	124	128	4	81	2.12
PLS650	131	133	2	149	0.91
PLS650	137	138	1	313	0.19
PLS650	181	183	2	268	2.22
PLS650	187	190	3	105	1.54
PLS650	196	197	1	120	0.86
PLS650	207	211	4	239	1.61
PLS650	215	226	11	149	1.30
PLS650	230	231	1	106	1.25
PLS650	244	272	28	209	0.83
PLS691	76	80	4	219	1.07
PLS691	89	92	3	177	0.94
PLS691	97	98	1	116	3.25
PLS691	108	122	14	310	0.67
PLS691	127	128	1	116	0.00
PLS691	138	139	1	164	0.06
PLS691	151	154	3	142	0.38
PLS692	21	22	1	106	0.73
PLS692	77	78	1	119	0.02
PLS692	85	94	9	183	0.71
PLS692	99	101	2	136	1.09
PLS692	108	109	1	106	2.15
PLS692	116	117	1	180	1.68
PLS692	129	130	1	326	0.19

Appendix 1 – Phase1 Drilling Information Pilgangoora Lithium – Tantalum Project

Hole ID	North GDA94	East GDA94	RL	Dip	AZ	DEPTH
PLS434	7670210	697635	200	-60	270	46
PLS435	7670200	697665	200	-60	270	65
PLS436	7670200	697715	200	-60	270	88
PLS437	7670200	697765	200	-60	270	112
PLS438	7670200	697765	200	-90	0	124
PLS439	7670200	697865	200	-55	270	160
PLS440	7670200	697880	200	-90	0	160
PLS441	7670240	697610	200	-60	270	28
PLS442	7670250	697660	200	-60	270	70
PLS443	7670260	697720	200	-60	270	94
PLS444	7670250	697760	200	-60	270	118
PLS445	7670250	697810	200	-60	270	140
PLS446	7670250	697858	200	-60	270	162
PLS447	7670250	697910	200	-60	270	174
PLS448	7670250	697960	200	-60	270	184
PLS449	7670300	697705	200	-60	270	83
PLS450	7670300	697755	200	-60	270	111
PLS451	7670300	697805	200	-60	270	138
PLS452	7670300	697855	200	-60	270	28
PLS452A	7670300	697855	200	-60	270	166
PLS453	7670300	697905	200	-60	270	184
PLS454	7670300	697955	200	-60	270	178
PLS456	7670350	697900	200	-60	270	178
PLS457	7670350	697950	200	-60	270	184
PLS458	7670400	697915	200	-60	270	65
PLS458A	7670400	697915	200	-60	270	184
PLS459	7670400	697965	200	-60	270	196

PILGANGOORA CREEK IN-FILL LINE								
Hole ID	North GDA94	East GDA94	RL	Dip	AZ	DEPTH		
PLS488	7669751	697833	200	-60	270	66		
PLS489	7669755	697883	200	-60	250	90		
PLS490	7669774	697932	200	-60	240	90		
PLS491	7669772	697984	200	-60	240	102		
PLS492	7669760	698038	200	-60	245	106		
PLS494	7669753	698147	200	-60	250	142		
PLS495	7669754	698198	200	-60	250	106		

WEST DOMAIN – NORTH EXTENSION							
Hole ID	North GDA94	East GDA94	RL	Dip	AZ	DEPTH	
PLS524	7669800	697450	200	-60	270	94	
PLS525	7669800	697500	200	-60	270	100	
PLS526	7669800	697550	200	-60	270	100	
PLS527	7669800	697600	200	-60	270	100	
PLS528	7669800	697650	200	-60	270	100	
PLS529	7669800	697700	200	-60	270	100	
PLS530	7669800	697750	200	-60	270	100	

EASTERN PEGMATITE – NORTHERN IN-FILL							
Hole ID	North GDA94	East GDA94	RL	Dip	AZ	DEPTH	
PLS478	7672200	698410	200	-60	270	61	
PLS479	7672200	698460	200	-60	270	82	

CENTRAL DOMAI	N – 25m IN-FILL					
Hole ID	North GDA94	East GDA94	RL	Dip	AZ	DEPTH
PLS403	7669925	697825	200	-60	270	40
PLS404	7669925	697875	200	-60	270	64
PLS405	7669925	697925	200	-60	270	75
PLS406	7669925	697975	200	-60	270	76
PLS407	7669925	698025	200	-60	270	124
PLS408	7669925	698075	200	-60	270	96
PLS409	7669925	698125	200	-60	270	117
PLS410	7669925	698175	200	-60	270	102
PLS411	7669975	697825	200	-60	270	60
PLS412	7669975	697875	200	-60	270	80
PLS413	7669975	697925	200	-60	270	100
PLS414	7669975	697975	200	-60	270	111
PLS415	7669975	698025	200	-60	270	131
PLS416	7669970	698075	200	-60	270	114
PLS417	7669975	698125	200	-60	270	137
PLS418	7670025	697750	200	-60	270	30
PLS419	7670025	697790	200	-60	270	54
PLS420	7670025	697830	200	-60	270	90
PLS421	7670025	697900	200	-60	270	118
PLS422	7670025	697975	200	-60	270	138
PLS423	7670025	698050	200	-60	270	114
PLS424	7670025	698110	200	-60	270	10
PLS426	7670075	697765	200	-60	270	60
PLS427	7670075	697810	200	-60	270	71
PLS428	7670075	697868	200	-60	270	120
PLS429	7670075	697910	200	-60	270	133

CENTRAL DOMAIN – 25m IN-FILL continued								
North GDA94	East GDA94	RL	Dip	AZ	DEPTH			
PLS430	7670075	697960	200	-60	270	156		
PLS431	7670075	698010	200	-60	270	120		
PLS432	7670075	698100	200	-60	270	60		
PLS433	7670075	698150	200	-60	270	126		
PLS691	7670200	697740	200	-57	135	210		
PLS692	7670150	697800	200	-50	160	132		

WESTERN PEGMATITE – 25m IN-FILL								
Hole ID	North GDA94	East GDA94	RL	Dip	AZ	DEPTH		
PLS539	7670375	698018	200	-60	270	60		
PLS540	7670375	698080	200	-60	270	95		
PLS540A	7670375	698080	200	-60	270	105		
PLS541	7670375	698130	200	-60	270	121		
PLS541A	7670375	698130	200	-60	270	160		
PLS542	7670425	698025	200	-60	270	234		
PLS543	7670425	698070	200	-60	270	111		
PLS544	7670475	698020	200	-60	270	72		
PLS545	7670475	698070	200	-60	270	108		
PLS546	7670525	698020	200	-60	270	252		
PLS547	7670525	698070	200	-60	270	108		

EASTERN PEGMAT	EASTERN PEGMATITE – 25m IN-FILL								
Hole ID	North GDA94	East GDA94	RL	Dip	AZ	DEPTH			
PLS227	7670063	698160	219	-60	270	248			
PLS255M	7670239	698082	228	-60	270	279.8			
PLS260	7670302	698049	215	-60	270	243			
PLS273M	7671996	698398	190	-60	270	99.6			
PLS315	7670749	698034	215	-60	270	262			
PLS358A	7670100	698160	226	-60	270	264			
PLS460	7671060	698215	200	-60	270	96			
PLS461	7671090	698270	200	-60	270	140			
PLS462	7671180	698270	200	-60	270	150			
PLS463	7671200	698290	200	-60	270	170			
PLS464	7671225	698280	200	-60	270	148			
PLS465	7671275	698245	200	-60	270	90			
PLS466	7671325	698310	200	-60	270	120			
PLS467	7671325	698317	200	-90	0	120			

EASTERN PEGMATITE – 25m IN-FILL								
Hole ID	North GDA94	East GDA94	RL	Dip	AZ	DEPTH		
PLS468	7671375	698230	200	-60	270	40		
PLS469	7671405	698280	200	-60	270	84		
PLS470	7671430	698260	200	-60	270	60		
PLS471	7671430	698390	200	-60	270	136		
PLS472	7671475	698385	200	-60	270	132		
PLS473	7671500	698352	200	-60	270	110		
PLS474	7671525	698385	200	-60	270	128		
PLS476	7671600	698390	200	-60	270	145		
PLS477	7671650	698385	200	-60	270	57		

THE MONSTER						
Hole ID	North GDA94	East GDA94	RL	Dip	AZ	DEPTH
PLS518	7674200	698780	200	-90	0	40
PLS519	7674200	698830	200	-90	0	94
PLS520	7674200	698880	200	-90	0	64
PLS521	7674250	699060	200	-90	0	100
PLS522	7674250	699110	200	-90	0	94

SOUTH END – RESC	SOUTH END – RESOURCE EXTENSION								
Hole ID	North GDA94	East GDA94	RL	Dip	AZ	DEPTH			
PLS502	7667350	698015	200	-60	270	28			
PLS503	7667350	698015	200	-60	90	70			
PLS505	7667450	698000	200	-60	270	28			
PLS506	7667450	698050	200	-60	270	100			
PLS507A	7667460	698100	200	-70	90	136			
PLS508	7667550	698150	200	-90	100	150			
PLS509	7667650	698050	200	-60	90	106			
PLS511	7667720	698020	200	-60	270	106			
PLS512	7667720	698070	200	-60	270	118			
PLS513	7667720	698070	200	-70	90	91			
PLS557	7667350	698500	200	-90	0	100			
PLS558	7667300	698485	200	-90	0	100			
PLS559	7667250	698500	200	-90	0	100			
PLS560	7667200	698500	200	-90	0	100			

EAST	EAST					
Hole ID	North GDA94	East GDA94	RL	Dip	AZ	DEPTH
PLS496	7668660	697850	200	-60	270	100
PLS497	7668660	697900	200	-60	270	100
PLS498	7668660	697950	200	-60	270	112

SOUTH EASTERN PEGMATITE						
Hole ID	North GDA94	East GDA94	RL	Dip	AZ	DEPTH
PLS499	7669700	698500	200	-60	270	100
PLS500	7669710	698550	200	-60	270	106
PLS501	7669700	698600	200	-60	270	124

Hole ID	DOMAIN	North GDA94	East GDA94	RL	•	AZ	DEPTH
GEOTECH -	HQ DRILLING PROGRAM						
	CENTRAL ZONE - NORTH						
PLS455M	WEST EXTENSION	7670350	697850	200	-60	270	156.3
PLS244M	CENTRAL ZONE - EAST WALL	7670151	698354	200	-60	270	141.6
PLS554M	CENTRAL ZONE - EAST WALL	7670553	698138	200	-60	240	111.3
	CENTRAL ZONE -						
PLS493M	PILGANGOORA CREEK	7669751	698092	200	-60	240	114.5
PLS537M	WESTERN	7669900	697725	200	-60	270	100
PLS475M	EASTERN - EAST WALL	7671575	698405	200	-60	270	166.5
PLS273M	EASTERN -NORTH WALL	7671996	698398	200	-60	240	96.6
PLS555M	EASTERN - WEST WALL	7671004	698093	200	-60	270	90.6
PLS556M	EASTERN - WEST WALL	7671396	698169	200	-60	90	102.5
PLS484M	EASTERN -NORTH WALL	7672400	698575	200	-60	270	55.3
PGPQ004	SOUTH EAST WALL	7669564	697685	200	-60	270	33.46

Phase 2 Drilling Information Pilgangoora Lithium – Tantalum Project

CENTRAL ZONE -	CENTRAL ZONE – NORTH WEST EXTENSION						
Hole ID	North GDA94	East GDA94	RL	Dip	AZ	DEPTH	
PLS567	7670400	697865	222	-60	270	169	
PLS568	7670400	697815	215	-60	270	127	
PLS569	7670400	697765	211	-60	270	110	
PLS570	7670400	697715	211	-60	270	85	
PLS571	7670400	697665	202	-60	270	45	
PLS576	7670450	697850	216	-60	270	142	
PLS578	7670450	697950	220.5	-60	270	204	
PLS579	7670500	697650	195	-60	270	76	
PLS580	7670500	697700	202	-60	270	40	
PLS580A	7670500	697700	202	-60	270	105	
PLS581	7670500	697700	211	-90	0	118	
PLS582	7670500	697800	222	-60	270	132	
PLS583	7670500	697850	219.5	-60	270	155	
PLS584	7670500	697900	219	-60	270	65	
PLS584A	7670500	697900	219	-60	270	175	
PLS585	7670500	697950	222	-60	270	219	
PLS590	7670550	697850	219.5	-60	270	154	
PLS592	7670550	697950	222	-60	270	210	
PLS593	7670600	697650	199	-60	270	30	
PLS594	7670600	697700	202.5	-60	270	55	
PLS595	7670600	697750	208	-60	270	90	
PLS596	7670600	697800	210	-60	270	114	
PLS597	7670600	697850	216	-60	270	135	
PLS598	7670600	697895	206.5	-60	270	156	
PLS604	7670650	697850	216	-60	270	144	
PLS606	7670650	697950	216	-60	270	204	
PLS607	7670700	697650	202.5	-60	270	42	
PLS608	7670700	697700	202.5	-60	270	60	
PLS609	7670700	697750	208	-60	270	120	
PLS610	7670700	697800	213	-60	270	138	
PLS611	7670700	697850	215	-60	270	144	
PLS612	7670700	697895	205	-60	270	162	
PLS613	7670700	697950	206	-60	270	204	
PLS619	7670800	697700	199	-60	270	42	

CENTRAL ZONE – I	CENTRAL ZONE – NORTH WEST EXTENSION						
Hole ID	North GDA94	East GDA94	RL	Dip	AZ	DEPTH	
PLS620	7670800	697750	196	-60	270	30	
PLS621	7670800	697800	205	-60	270	72	
PLS622	7670800	697850	196	-60	270	90	
PLS623	7670800	697900	197	-60	270	120	
PLS624	7670800	697950	199.5	-60	270	162	
PLS625	7670800	698000	199	-60	270	182	

PILGANGOORA CREEK						
Hole ID	North GDA94	East GDA94	RL	Dip	AZ	DEPTH
PLS631	7669500	698000	200	-60	270	54
PLS632	7669500	698050	200	-60	270	88
PLS633	7669500	698100	200	-60	270	114
PLS634	7669500	698150	200	-60	270	138
PLS635	7669300	697950	200	-60	270	75
PLS636	7669300	698000	200	-60	270	108

CENTRAL RESOURCE UPGRADE						
Hole ID	North GDA94	East GDA94	RL	Dip	AZ	DEPTH
PLS642	7669900	698155	195	-90	0	220
PLS643	7669950	698150	195	-90	0	247
PLS644	7670000	698090	195	-90	0	262
PLS227E	7670050	698160	195	-60	270	248
PLS358A	7670100	698170	195	-60	270	264
PLS248E	7670200	698100	195	-60	270	250
PLS260E	7670300	698050	195	-60	270	243
PLS076E	7670358.5	698059.1	195	-60	270	280
PLS369E	7670548.4	698046.8	195	-60	270	260
PLS071E	7670600	697958	195	-60	270	184
PLS069E	7670750	697973.9814	195	-60	270	196
PLS315E	7670750	698033.635	195	-60	270	262
PLS067E	7670850	697951.3878	195	-60	270	178
PLS068E	7670850	697993.7331	195	-60	270	190
PLS306A	7670400	698053	195	-60	270	262

WESTERN PEGMATITE – EXTENSION						
Hole ID	North GDA94	East GDA94	RL	Dip	AZ	DEPTH
PLS645	7670600	698050	195	-60	270	246
PLS646	7670638	698025	195	-60	270	252
PLS647	7670638	698075	195	-60	270	269
PLS648	7670675	698100	195	-60	270	100
PLS649	7670712	698000	195	-60	270	100
PLS650	7670712	698050	195	-60	270	286

	ASTERN PEGMATITE – Inferred to Indicated						
Hole ID	North GDA94	East GDA94	RL	Dip	AZ	DEPTH	
PLS651	7671380	698400	195	-60	270	160	
PLS652	7671450	698390	195	-60	270	180	
PLS653	7671500	698450	195	-60	270	212	
PLS656	7671950	698400	195	-60	270	70	
PLS657	7671950	698450	195	-60	270	116	
PLS658	7671950	698500	195	-60	270	165	
PLS659	7672050	698400	195	-60	270	54	
PLS660	7672050	698450	195	-60	270	80	
PLS661	7672050	698500	195	-60	270	126	

THE MONSTER – Inferred to Indicated						
Hole ID	North GDA94	East GDA94	RL	Dip	AZ	DEPTH
PLS662	7674150	698900	195	-90	0	64
PLS663	7674150	698950	195	-90	0	106
PLS664	7674150	699000	195	-90	0	100
PLS665	7674150	699050	195	-90	0	130
PLS666	7674200	698900	195	-90	0	70
PLS667	7674200	698950	195	-90	0	64
PLS669	7674200	699050	195	-90	0	124
PLS670	7674300	699050	195	-90	0	136
PLS671	7674300	699100	195	-90	0	130
PLS672	7674300	699150	195	-90	0	118
PLS673	7674300	699200	195	-90	0	136
PLS674	7674400	699100	195	-90	0	64
PLS675	7674400	699150	195	-90	0	76
PLS676	7674400	699200	195	-90	0	100
PLS677	7674400	699250	195	-90	0	112
PLS678	7674500	699150	195	-90	0	76
PLS679	7674500	699200	195	-90	0	112
PLS680	7674500	699250	195	-90	0	217
PLS681	7674500	699300	195	-90	0	88
PLS682	7674600	699200	195	-90	0	70
PLS683	7674600	699250	195	-90	0	100

More Information:

ABOUT PILBARA MINERALS

Pilbara Minerals ("Pilbara" – ASX: PLS) is a mining and exploration company listed on the ASX, specialising in the exploration and development of the specialty metals Lithium and Tantalum. Pilbara owns 100% of the world class Pilgangoora Lithium-Tantalum project which is the second largest Spodumene (Lithium Aluminium Silicate) project in the world. Pilgangoora is also one of the largest pegmatite hosted Tantalite resources in the world and Pilbara proposes to produce Tantalite as a by-product of its Spodumene production.

ABOUT LITHIUM

Lithium is a soft silvery white metal which is highly reactive and does not occur in nature in its elemental form. It has the highest electrochemical potential of all metals, a key property in its role in Lithium-ion batteries. In nature it occurs as compounds within hard rock deposits and salt brines. Lithium and its chemical compounds have a wide range of industrial applications resulting in numerous chemical and technical uses. A key growth area is its use in lithium batteries as a power source for a wide range of applications including consumer electronics, power station-domestic-industrial storage, electric vehicles, power tools and almost every application where electricity is currently supplied by fossil fuels.

ABOUT TANTALUM

The Tantalum market is boutique in size with around 1,300 tonnes required each year. Its primary use is in capacitors for consumer electronics, particularly where long battery life and high performance is required such as smart phones, tablets and laptops.

Contacts:

Investors / Shareholders

Ken Brinsden Chief Executive Officer, Managing Director Ph. +61 (0)8 9336 6267

Media

Nicholas Read Read Corporate Ph. +61 (0)8 9388 1474

FORWARD LOOKING STATEMENTS AND IMPORTANT NOTICE

This announcement may contain some references to forecasts, estimates, assumptions and other forward-looking statements. Although the Company believes that its expectations, estimates and forecast outcomes are based on reasonable assumptions, it can give no assurance that they will be achieved. They may be affected by a variety of variables and changes in underlying assumptions that are subject to risk factors associated with the nature of the business, which could cause actual results to differ materially from those expressed herein. All references to dollars (\$) and cents in this announcement are to Australian currency, unless otherwise stated.

Investors should make and rely upon their own enquiries before deciding to acquire or deal in the Company's securities.

This release has been prepared for publication in Australia and may not be released in the United States. This release does not constitute an offer to sell, or a solicitation of an offer to buy, securities in the United States or any other jurisdiction. Any securities described in this release have not been, and will not be, registered under the US Securities Act of 1933 and may not be offered or sold in the United States except in transactions exempt from, or not subject to, registration under the US Securities Act and applicable US state securities laws.

JORC Code, 2012 Edition - Table 1 report

Section 1 Sampling Techniques and Data

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
Sampling techniques	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Pilbara Minerals Limited (PLS) have completed 130 RC drill holes for 14,093m and 11 PQ Diamond holes for 715m and 11 HQ Diamond holes for 1135m in Phase 1 In Phase 2 as of the 17/06/2016 PLS has completed 141 holes for 18,590m Results for 48 holes from Phase 1 and 35 holes from Phase 2 being
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	reported, see Appendix 1. PLS RC holes were sampled every metre, with samples split on the rig using a cyclone splitter. The sampling system consisted of a rig mounted cyclone with cone splitter and dust suppression system. The cyclone splitter was configured to split the cuttings at 85% to waste (to be captured in 600mm x 900mm green plastic mining bags) and 15% to the sample port in draw-string calico sample bags (10-inch by 14-inch). PQ/HQ Core measured and marked up on site and photographed prior to transport to Perth.
	Aspects of the determination of mineralisation that are Material to	PLS holes were all RC, with samples split at the rig, samples are then
	the Public Report.	sent to NAGROM Perth laboratory and analysed for a suite of 18

Criteria	JORC Code explanation	Commentary
	In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	elements. PQ/HQ Core measured and marked up on site and photographed prior to transport to Perth, where 10mm fillet taken for analysis. Analysis was completed by XRF and ICP techniques.
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc.) and details (e.g. core diameter, triple or standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc.).	RC Drilling was completed by a track mounted Schramm T450 with an automated rod-handler system and on-board compressor rated to 1,350cfm/800psi. Drilling used a reverse circulation face sampling hammer. The sampling system consisted of a rig mounted cyclone with cone splitter and dust suppression system. PQ/HQ Diamond Drilling completed by Hydco 1200H with an automated rod-handler system
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Sample recovery was recorded as good for RC holes. HQ core sample recovery excellent.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Whilst drilling through the pegmatite, rods were flushed with air after each 6 metre interval.
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Samples were dry and recoveries are noted as "good."
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	1m samples were laid out in lines of 20 or 30 samples with cuttings collected and geologically logged for each interval and stored in 20 compartment plastic rock-chip trays with hole numbers and depth intervals marked (one compartment per 1m). Geological logging information was recorded directly onto hard copy logging sheets and later transferred an Excel spreadsheet. The rock-chip trays are to be stored in PLS Perth office.

Criteria	JORC Code explanation	Commentary
		HQ core was cut and logged in 1 m intervals.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc.) photography.	Logging has primarily been quantitative.
	The total length and percentage of the relevant intersections logged.	The database contains lithological data for all holes in the database.
Sub- sampling techniques	If core, whether cut or sawn and whether quarter, half or all core taken. If non-core, whether riffled, tube sampled, rotary split, etc. and	RC samples were generally dry and split at the rig using a cyclone splitter, which is appropriate and industry standard. HQ Core was filleted (sawn), equivalent to a ¼ core size sample taken.
and sample preparation	whether sampled wet or dry. For all sample types, the nature, quality and appropriateness of the sample preparation technique.	
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	PLS samples have field duplicates, field standards and blanks as well as laboratory splits and repeats.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Field duplicates were taken approximately every 20m, and standards and blanks every 50 samples.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Drilling sample sizes are considered to be appropriate to correctly represent the tantalum and lithium mineralization at Pllgangoora based on the style of mineralization (pegmatite) and the thickness and consistency of mineralization.
Quality of assay data and laboratory tests	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	PLS samples were assayed at ALS Global in Perth WA, for 19 elements using ME-MS91 Sodium Peroxide for ICPMS finish and Peroxide fusion with an ME-ICP89 a ICPAES finish.
	For geophysical tools, spectrometers, handheld XRF instruments, etc., the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	No geophysical tools were used to determine any element concentrations used in this resource estimate.

Criteria	JORC Code explanation	Commentary
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (i.e. lack of bias) and precision have been established.	PLS duplicates of the samples were taken at twenty metre intervals with blanks and standards inserted every 50m. Comparison of duplicates by using a scatter chart to compare results show the expected strong linear relationship reflecting the strong repeatability of the sampling and analysis process. The PLS drilling contains QC samples (field duplicates, blanks and standards plus laboratory pulp splits, and ALS Global internal standards), and have produced results deemed acceptable.
Verification of sampling and assaying	The verification of significant intersections by either independent or alternative company personnel. The use of twinned holes.	Infill drilling completed by PLS in this program has confirmed the approximate width and grade of historical drilling. PQ diamond holes were completed as twins, and has confirmed the approximate width and grade of previous RC drilling.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	An electronic database containing collars, surveys, assays and geology is maintained by Trepanier Pty Ltd, an Independent Geological consultancy.
	Discuss any adjustment to assay data.	Li was converted to Li_2O for the purpose of reporting. The conversion used was $Li_2O = Li \times 2.153$
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	PLS holes were surveyed using DGPS in GDA94, Zone 50. Down hole surveying of drill holes was conducted using a Reflex EZ-shot, electronic single shot camera to determine the true dip and azimuth of each hole. Measurements were recorded at the bottom of each hole. Drill hole collar locations will be surveyed at the end of the program by a differential GPS (DGPS).
	Specification of the grid system used.	The grid used was MGA (GDA94, Zone 50)
	Quality and adequacy of topographic control.	The topographic surface used was supplied by GAM

Criteria	JORC Code explanation	Commentary
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Drilling spacings varied between 25m to 200m apart
	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	The interpretation of the mineralised domains are supported by a moderate drill spacing, plus both geological zones and assay grades can be interpreted with confidence.
	Whether sample compositing has been applied.	No compositing
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	The mineralisation dips approximately 45-60 degrees at a dip direction of 090 degrees The drilling orientation and the intersection angles are deemed appropriate.
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	No orientation-based sampling bias has been identified.
Sample security	The measures taken to ensure sample security.	Chain of custody for PLS holes were managed by PLS personnel.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Sampling techniques for historical assays have not been audited. The collar and assay data have been reviewed by checking all of the data in the digital database against hard copy logs. All PLS assays were sourced directly from the ALS GLOBAL laboratory

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria SORG Code explanation Confinentary	Criteria	JORC Code explanation	Commentary
---	----------	-----------------------	------------

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites	PLS owns 100% of tenement E45/2232, M45/333
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	No known impediments.
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Talison completed RC holes in 2008 GAM completed RC holes between 2010 and 2012.
Geology	Deposit type, geological setting and style of mineralisation.	The Pilgangoora pegmatites are part of the later stages of intrusion of Archaean granitic batholiths into Archaean metagabbros and metavolcanics. Tantalum mineralisation occurs in zoned pegmatites that have intruded a sheared metagabbro.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes, including easting and northing of the drill hole collar, elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar, dip and azimuth of the hole, down hole length and interception depth plus hole length. If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the understanding of the report, the Competent Person should clearly explain why this is the case.	Refer to Appendix 1 this announcement.
Data aggregatio n methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Length weighed averages used for exploration results reported in Table 2 and 3. Cutting of high grades was not applied in the reporting of intercepts in Table 2 and 3 No metal equivalent values are used.

Criteria	JORC Code explanation	Commentary
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail. The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationshi p between mineralisati on widths and intercept lengths	These relationships are particularly important in the reporting of Exploration Results. If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported. If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	Downhole lengths are reported in Table 2 and 3
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	See Figures 1-3
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	Comprehensive reporting of drill details has been provided in Appendix 1 of this announcement.
Other substantive exploration data	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	All meaningful & material exploration data has been reported.
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling). Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling	The aim is to upgrade the existing JORC compliant resource calculation.

Criteria	JORC Code explanation	Commentary	
	areas, provided this information is not commercially sensitive.		

-- ENDS ---