12 July 2016

ASX Announcement

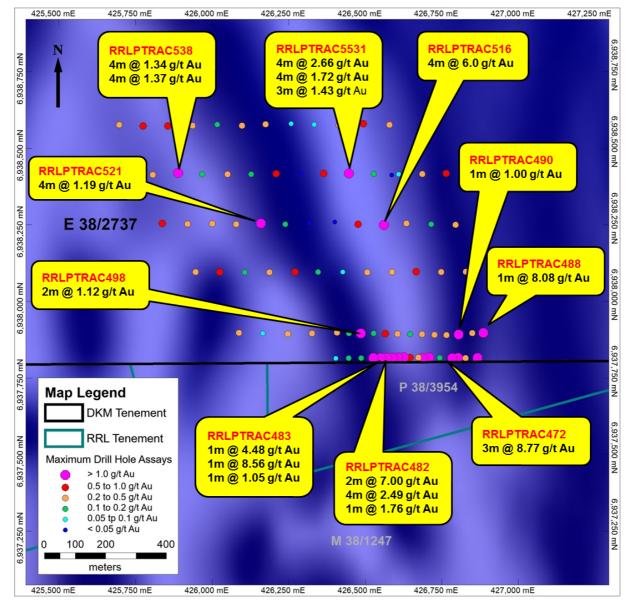
Multiple Gold Intersections from Shallow Aircore Drilling at Petra North on Joint Venture Ground

HIGHLIGHTS

- Inclined (approx.-60°) aircore drilling at Petra North includes the following intersections;
 - > 3m @ 8.77 g/t Au from 21m
 - > 2m @ 7.00 g/t Au from 30m
 - > 4m @ 6.00 g/t Au from 56m
 - > 4m @ 2.66 g/t Au from 40m
 - ➢ 4m @ 2.49 g/t Au from 46m
 - > 1m @ 8.56 g/t Au from 54m
 - > 1m @ 8.08 g/t Au from 69m
 - > 1m @ 4.48 g/t Au from 44m (Table 1)
- Mineralisation extends over 750m in strike and remains open at depth and to the north
- Shallowest intersection is less than 20 vertical meters below surface
- 27 intersections of more than 1g/t Au over 1m
- Immediately along strike from Regis Resources (ASX: RRL) Petra Resource (44,000oz gold)
- Petra North is subject to the joint venture, spend covered by Regis Resources (Figures 1 & 2)
- Follow-up drilling (including infill) at Petra North, commencing early August

Duketon Mining Limited (ASX: DKM) is pleased to announce that aircore drilling at Petra North prospect has identified multiple significant intersections. There are 27 intersections of more than 1g/t Au over 1m (see Table 1).

Mineralisation extends north from the tenement boundary across all 6 lines over a strike distance of approximately 750m. Better intersections from the recent holes include; **3m @ 8.77 g/t Au from 21m, 2m @ 7.00 g/t Au from 30m, 4m @ 6.00 g/t Au from 56m, 4m @ 2.66 g/t Au from 40m, 4m @ 2.49 g/t Au from 46m, 1m @ 8.56 g/t Au from 54m, 1m @ 8.08 g/t Au from 69m, 1m @ 4.48 g/t Au from 44m. The shallowest intersection is less than 20 vertical meters below surface. The mineralisation remains open at depth and to the north.**


The Petra North Prospect is located northwest of Regis Resources Ltd (ASX: RRL) owned Petra Resource and approximately 12km south west of Regis Resources Moolart Well Mine (Figure 1 & 2).

Duketon's Managing Director, Stuart Fogarty, said:

"This round of Petra North drilling has been impressive, especially given the shallow focus of this initial campaign. There are 27 intersections of more than 1m at better than 1g/t gold over 750 metres of strike. This has been a very successful initial program. These results will help to inform the follow-up drilling at Petra North that will commence in August. We are excited by these results and look forward to progressing on from aircore drilling to deeper RC drilling over the subsequent programs.

These drill results in conjunction with our recent drill results from our 100% owned ground make it a very exciting time for Duketon Mining. It adds to our belief that a lot more significant gold deposits will be uncovered across the Duketon belt."

Follow-up drilling (including infill) at Petra North is planned to commence in early August.

Figure 1. Petra North Prospect showing Max Au in aircore holes over magnetics.

About the Joint Venture

The farm-in period for the joint venture formally commenced on October 13 and has a 2 year term (refer to ASX announcement Oct 13 2015). The vesting point for RRL to achieve 75% is at the decision to mine and limited to the areas selected. To achieve the decision to mine RRL need to discover, delineate, study and achieve a positive mining outcome.

Upon a decision to mine DKM has three options that it may choose. DKM can contribute to the joint venture at 25%, sell to RRL or convert to a 2% NSR.

Where DKM elects to contribute, RRL will fund the first \$4M of capital costs and in addition fund 100% of the exploration expenditure up to the first gold production.

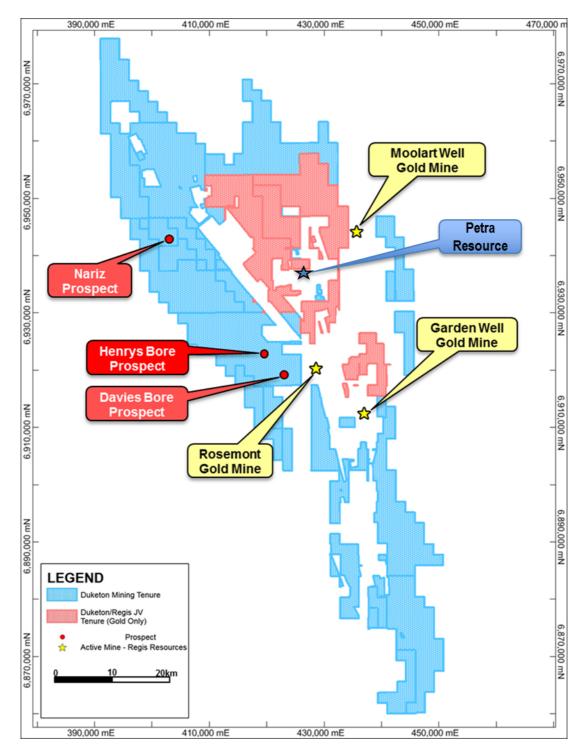


Figure 2. DKM Tenements showing location of Petra North Prospect.

	Easting		Nominal RL		Az.	Total	Depth	Depth	Intercept Width	Au
Hole ID	(MGA GDA94	Northing (MGA GDA94 Z51)		Dip (⁰)	(mag ⁰)	Depth	From	То	(m)	
	Z51)		(m)		(mag)	(m)	(m)	(m)		(ppb)
RRLPTRAC466	426866.33	6937816.22	538.69	-62	81.909	86	69	76	7	751
						Incl.	71	73	2	2005 (2.0 g/t Au)
And							81	84	3	817
						Incl.	82	83	1	2130 (2.13 g/t Au)
RRLPTRAC467	426803.02	6937815.61	538.36	-70.3	74.409	86	41	52	11	292
						Incl.	41	42	1	1780 (1.78 g/t Au)
RRLPTRAC468	426827.27	6937815.21	538.49	-69.3	83.009	92	57	62	5	118
And							66	69	3	153
RRLPTRAC469	426784.16	6937814.92	538.1	-61.5	98.409	92	29	30	1	150
And							65	72	7	297
						Incl.	69	70	1	1020 (1.02 g/t Au)
And							78	79	1	130
And							86	87	1	160
RRLPTRAC470	426743.74	6937815.92	538.19	-74.2	83.209	81	21	22	1	100
RRLPTRAC471	426708.71	6937816.96	538.26	-69.3	67.009	87	2	3	1	200
And							19	20	1	100
And							43	45	2	370
And							53	64	11	386
						Incl.	53	54	1	2180 (2.18 g/t Au)

Hole ID	Easting (MGA GDA94 Z51)	Northing (MGA GDA94 Z51)	Nominal RL (m)	Dip (°)	Az. (mag ^o)	Total Depth (m)	Depth From (m)	Depth To (m)	Intercept Width (m)	Au (ppb)
And							71	72	1	170
And							80	87	7	336
						Incl.	86	87	1	1780 (1.78 g/t Au)
RRLPTRAC472	426687.16	6937815.31	535.75	-67.9	77.409	85	0	2	2	310
And							19	26	7	3889
						Incl.	21	24	3	8777 (8.78 g/t Au)
And							54	56	2	130
And							67	68	1	180
And							74	75	1	100
RRLPTRAC473	426673.68	6937816.39	538.64	-69.1	72.709	97	43	46	3	233
And							54	64	10	210
RRLPTRAC474	426646.74	6937817.08	538.71	-68.9	70.309	101	21	23	2	180
And							32	37	5	100
And							47	50	3	437
RRLPTRAC475	426626.53	6937817.41	538.64	-66.5	82.009	104	17	18	1	130
And							44	49	5	116
And							71	73	2	110
And							90	92	2	795
						Incl.	90	91	1	1430 (1.43 g/t Au)
RRLPTRAC476	426607.67	6937817.21	538.63	-63.5	84.609	101	38	41	3	767
						Incl.	39	40	1	1630 (1.63 g/t Au)

Hole ID	Easting (MGA GDA94 Z51)	Northing (MGA GDA94 Z51)	Nominal RL (m)	Dip (°)	Az. (mag ⁰)	Total Depth (m)	Depth From (m)	Depth To (m)	Intercept Width (m)	Au (ppb)
And							83	86	3	183
RRLPTRAC477	426325.64	6937895.29	539.35	-60	86.409	68	44	48	4	370
RRLPTRAC478	426247.51	6937893.57	537.88	-60	87.409	73	36	52	16	143
RRLPTRAC479	426165.330	6937895.290	536.900	-60	87.409	87		No	o Significant Interval	
RRLPTRAC480	426087.18	6937897.64	535.63	-63.8	85.709	83	16	20	4	420
And							40	44	4	300
And							60	64	4	110
And							68	72	4	220
And							76	80	4	100
RRLPTRAC481	426588.82	6937815.91	538.57	-58.3	82.609	89	3	4	1	1550 (1.55 g/t Au)
And							9	10	1	200
And							24	25	1	310
And							46	49	3	107
And							57	58	1	100
And							59	60	1	160
And							74	75	1	120
And							83	86	3	207
RRLPTRAC482	426571.3	6937816.21	538.6	-58.4	91.609	89	12	13	1	260
And							30	32	2	7000 (7.0 g/t Au)
And							41	42	1	170
And							46	61	15	935

Hole ID	Easting (MGA GDA94 Z51)	Northing (MGA GDA94 Z51)	Nominal RL (m)	Dip (°)	Az. (mag ^o)	Total Depth (m)	Depth From (m)	Depth To (m)	Intercept Width (m)	Au (ppb)
						Incl.	46	50	4	2490 (2.49 g/t Au)
And							67	79	12	316
						Incl.	76	77	1	1760 (1.76 g/t Au)
RRLPTRAC483	426551.1	6937815.9	538.68	-70.8	102.709	91	24	25	1	240
And							33	59	26	722
						Incl.	39	40	1	1050 (1.05 g/t Au)
						Incl.	44	45	1	4480 (4.48 g/t Au)
						Incl.	54	55	1	8560 (8.56 g/t Au)
And							62	72	10	144
And							75	76	1	100
And							82	83	1	120
RRLPTRAC484	426526.85	6937816.08	538.92	-69.9	94.409	102	24	25	1	100
And							56	57	1	130
And							77	78	1	100
And							95	96	1	1210 (1.21 g/t Au)
RRLPTRAC485	426486.44	6937814.64	539.36	-69.6	149.709	77	41	42	1	130
RRLPTRAC486	426446.02	6937814.68	539.65	-74.1	90.309	80	36	38	2	125
RRLPTRAC487	426404.270	6937813.880	539.420	-60	86.409	74		No	Significant Interval	
RRLPTRAC488	426886.05	6937897.51	539.11	-67.2	77.309	95	69	80	11	884
						Incl.	69	70	1	8080 (8.08 g/t Au)

Hole ID	Easting (MGA GDA94 Z51)	Northing (MGA GDA94 Z51)	Nominal RL (m)	Dip (°)	Az. (mag ⁰)	Total Depth (m)	Depth From (m)	Depth To (m)	Intercept Width (m)	Au (ppb)
And							84	90	6	227
RRLPTRAC489	426849.68	6937896.78	539.02	-69.2	72.409	80	47	48	1	210
And							70	71	1	100
And						80	73	74	1	110
RRLPTRAC490	426805.25	6937892.26	538.74	-65	75.409	89	14	15	1	310
And							28	29	1	160
And							40	50	10	233
							46	47	1	1000 (1.0 g/t Au)
RRLPTRAC491	426764.85	6937890.37	538.76	-66.2	76.509	89	42	43	1	100
And							46	47	1	220
And							68	69	1	340
RRLPTRAC492	426725.77	6937891.08	539.36	-69.1	82.609	101	7	8	1	140
And							66	67	1	280
And							70	73	3	200
And							82	83	1	210
And							99	100	1	100
RRLPTRAC493	426685.34	6937893.39	539.85	-72.4	79.609	94	35	36	1	350
And							49	50	1	480
And							60	66	6	110
And							72	73	1	140
And							87	88	1	180
RRLPTRAC494	426646.28	6937893.12	539.65	-67.4	81.409	104	49	50	1	190

Hole ID	Easting (MGA GDA94	Northing (MGA GDA94 Z51)	Nominal RL	Dip (°)	Az.	Total Depth	Depth From	Depth To	Intercept Width	Au
	Z51)		(m)		(mag ⁰)	(m)	(m)	(m)	(m)	(ppb)
And							67	68	1	110
And							84	85	1	100
RRLPTRAC495	426605.86	6937893.62	539.39	-67.1	86.609	89	53	54	1	100
And							57	59	2	385
RRLPTRAC496	426565.44	6937894.52	539.05	-62.9	174.909	98	34	38	4	105
And							40	56	16	246
And							59	66	7	106
And							76	77	1	140
RRLPTRAC497	426527.71	6937895.41	539.27	-67.7	91.709	92	29	30	1	100
And							32	34	2	175
And							41	42	1	110
And							48	50	2	105
And							70	71	1	100
And							77	80	3	100
RRLPTRAC498	426485.95	6937895.92	539.79	-70.4	97.909	81	28	30	2	130
And							51	52	1	280
And							55	56	1	120
And							66	77	11	442
						Incl.	69	71	2	1115 (1.12 g/t Au)
RRLPTRAC499	426446.88	6937896.03	540.23	-71.4	83.409	77	18	19	1	140
And							42	43	1	120
And							68	69	1	100

Hole ID	Easting (MGA GDA94	Northing (MGA GDA94 Z51)	Nominal RL (m)	Dip (⁰)	Az. (mag ⁰)	Total Depth	Depth From	Depth To	Intercept Width (m)	Au (ppb)
	Z51)		(,		(mug)	(m)	(m)	(m)	(,	(660)
RRLPTRAC500	426407.8	6937898.06	540.03	-62.8	94.309	83	37	38	1	290
RRLPTRAC501	426828.27	6938096.9	540.25	-64.8	78.709	87	52	60	8	180
RRLPTRAC502	426747.44	6938096.14	540.69	-62.1	77.209	86	44	48	4	230
RRLPTRAC503	426666.6	6938096.87	541.01	-63.9	77.309	81	40	44	4	330
And							80	81	1	640
RRLPTRAC504	426587.12	6938096.6	541.17	-67.2	82.409	79	40	48	8	200
And							76	79	3	160
RRLPTRAC505	426506.3	6938094.9	541.14	-72.3	78.509	92	72	84	12	267
RRLPTRAC506	426426.810	6938096.540	541.070	-60	86.409	89		No	Significant Interval	
RRLPTRAC507	426345.98	6938095.85	541.38	-69.7	92.009	69	36	40	4	140
RRLPTRAC508	426270.53	6938096.36	539.33	-67.3	88.109	84	0	4	4	420
And							16	20	4	190
And							44	52	8	585
And							68	76	8	185
And							80	84	4	670
RRLPTRAC509	426187.01	6938095.2	537.24	-65.7	88.809	80	40	52	12	117
And							64	68	4	300
And							76	80	4	380
RRLPTRAC510	426106.18	6938095.68	536.14	-67.4	155.909	83	12	16	4	110
RRLPTRAC511	426025.35	6938095.75	535.54	-63.5	75.409	70	24	28	4	220
And							32	36	4	260
And							40	48	8	470

Hole ID	Easting (MGA GDA94	Northing (MGA GDA94 Z51)	Nominal RL	Dip (°)	Az.	Total Depth	Depth From	Depth To	Intercept Width	Au
	Z51)		(m)		(mag ⁰)	(m)	(m)	(m)	(m)	(ррb)
And							52	70	18	158
RRLPTRAC512	425945.86	6938095.99	535.04	-68.1	74.309	77	16	20	4	380
And							28	32	4	150
And							60	64	4	220
RRLPTRAC513	426795.01	6938249.97	541.83	-60.3	81.209	91	52	60	8	240
RRLPTRAC514	426715.51	6938252.19	542.12	-60.9	85.909	83	56	60	4	100
RRLPTRAC515	426634.66	6938255.1	541.82	-63.9	86.309	84	40	44	4	340
And							48	64	16	115
And							72	76	4	220
RRLPTRAC516	426560.6	6938249.43	541.69	-63.9	85.709	87	36	44	8	315
RRLPTRAC516	426560.6	6938249.43	541.69	-63.9	85.709	87	48	60	12	2323
						Incl.	56	60	4	6000 (6.0 g/t Au)
And							68	72	4	110
RRLPTRAC517	426477.06	6938252.47	541.16	-60	80.409	92	56	60	4	640
And							88	92	4	240
RRLPTRAC518	426400.230	6938259.130	540.310	-60	84.409	86		Nc	Significant Interval	
RRLPTRAC519	426318.070	6938255.030	539.770	-60	81.409	68		No	Significant Interval	
RRLPTRAC520	426238.6	6938251.91	537.97	-76.5	76.509	71	60	64	4	180
RRLPTRAC521	426159.1	6938254.73	537.85	-69.7	71.109	83	8	12	4	1190 (1.19 g/t Au)
And							48	56	8	170
And							60	64	4	100

Hole ID	Easting (MGA GDA94 Z51)	Northing (MGA GDA94 Z51)	Nominal RL (m)	Dip (°)	Az. (mag [°])	Total Depth (m)	Depth From (m)	Depth To (m)	Intercept Width (m)	Au (ppb)
RRLPTRAC522	426078.29	6938251.81	537.6	-72.9	70.009	98	4	24	20	168
RRLPTRAC523	426000.14	6938253.95	536.98	-70.5	69.609	74	44	52	8	225
And							56	60	4	490
And							72	74	2	420
RRLPTRAC524	425919.31	6938253.16	536.43	-62.9	63.709	85	0	4	4	290
And							36	40	4	110
And							56	60	4	150
RRLPTRAC525	425837.12	6938254.73	535.7	-69.8	91.809	92	48	56	8	360
And							64	68	4	240
And							80	84	4	200
RRLPTRAC526	426764.36	6938418.63	543.85	-60	84.409	86	56	60	4	580
RRLPTRAC527	426686.23	6938416.71	543.48	-60	91	71	40	48	8	245
RRLPTRAC528	426609.450	6938415.710	543.380	-60	84.409	82		Nc	Significant Interval	
RRLPTRAC529	426527.26	6938416.53	543.63	-72.7	83.109	78	44	48	4	100
RRLPTRAC530	426586.560	6938412.600	543.460	-60	79.409	84		Nc	Significant Interval	
RRLPTRAC531	426446.41	6938418.49	543.26	-63.7	85.709	91	12	20	8	145
And							40	52	12	967
						Incl.	40	44	4	2660 (2.66 g/t Au)
And							68	72	4	1720 (1.72 g/t Au)
And							76	80	4	240
And							84	91	7	790

	Easting		Nousing I DI		A-	Total	Depth	Depth		A
Hole ID	(MGA GDA94	Northing (MGA GDA94 Z51)	Nominal RL	Dip (⁰)	Az.	Depth	From	То	Intercept Width	Au
	Z51)		(m)		(mag ⁰)	(m)	(m)	(m)	(m)	(ppb)
						Incl.	88	91	3	1430 (1.43 g/t Au)
RRLPTRAC532	426364.23	6938418.5	541.12	-65.1	84.409	77	24	32	8	355
And							36	44	8	160
RRLPTRAC533	426290.140	6938417.350	539.770	-60	88.409	84		No	Significant Interval	
RRLPTRAC534	426209.31	6938416.96	541.52	-60	88.409	70	44	48	4	500
RRLPTRAC535	426127.14	6938415.67	541.6	-72	80.609	88	48	52	4	140
And							56	64	8	115
RRLPTRAC536	426050.35	6938415.62	540.11	-60	85.409	86	28	32	4	120
And							40	48	8	105
And							56	60	4	100
And							68	72	4	290
RRLPTRAC537	425968.17	6938415.63	538.62	-70	71.009	74	56	60	4	150
RRLPTRAC537	425968.17	6938415.63	538.62	-70	71.009	74	72	74	2	180
RRLPTRAC538	425888.65	6938419.86	537.46	-61.1	74.709	104	16	24	8	975
						Incl.	16	20	4	1340 (1.34 g/t Au)
And							32	36	4	100
And							48	56	8	105
And							88	92	4	110
And							100	104	4	1370 (1.37 g/t Au)
RRLPTRAC539	425806.51	6938413.94	536.27	-68.5	71.609	87	12	16	4	220
And							20	24	4	260

Hole ID	Easting (MGA GDA94	Northing (MGA GDA94 Z51)	Nominal RL	Dip (°)	Az.	Total Depth	Depth From	Depth To	Intercept Width	Au
	Z51)		(m)		(mag ^⁰)	(m)	(m)	(m)	(m)	(ppb)
And							28	36	8	170
And							44	48	4	130
And							60	68	8	285
And							84	87	3	340
RRLPTRAC540	426578.84	6938576.56	546.47	-69.6	81.009	89	44	48	4	260
And							52	56	4	160
RRLPTRAC541	426493.94	6938580.17	546.95	-70.3	83.509	81	64	68	4	120
And							76	80	4	760
RRLPTRAC542	426414.47	6938576.28	545.81	-60	86.409	83	56	64	8	190
And							72	76	4	100
RRLPTRAC543	426333.630	6938577.990	542.530	-60	86.409	89		No	Significant Interval	
RRLPTRAC544	426258.170	6938580.910	541.730	-60	89.409	62		No	Significant Interval	
RRLPTRAC545	426174.65	6938578.48	542.7	-69.7	92.009	73	44	48	4	380
RRLPTRAC546	426097.89	6938573.82	544.11	-73.1	73.709	78	8	12	4	220
And							32	36	4	120
RRLPTRAC547	426017.03	6938577.71	542.31	-60	88.409	77	20	24	4	100
And							28	32	4	130
And							36	40	4	170
And							60	64	4	160
RRLPTRAC548	425936.21	6938574.52	539.44	-68.9	62.509	81	8	16	8	140
And							28	36	8	130
And							44	60	16	130

Hole ID	Easting (MGA GDA94 Z51)	Northing (MGA GDA94 Z51)	Nominal RL (m)	Dip (°)	Az. (mag ⁰)	Total Depth (m)	Depth From (m)	Depth To (m)	Intercept Width (m)	Au (ppb)
And							68	72	4	100
RRLPTRAC549	425855.38	6938573.4	537.67	-69.7	69.409	75	0	8	8	145
And							48	52	4	280
And							60	64	4	580
And							72	75	3	460
RRLPTRAC550	425774.55	6938573.14	536.85	-65.9	72.409	83	52	64	12	400
And							68	76	8	215
And							80	83	3	120
RRLPTRAC551	425696.39	6938576.69	536.23	-60	70.509	65	8	12	4	180
And							16	20	4	390
And							24	32	8	240
And							56	60	4	100

Table 1. Significant Intercepts (Note: Significant intercepts are >1m @ 0.1g/t Au (maximum internal dilution of 2m). Intersections are downhole widths; Highlighted intercepts are >1m @ 1.0 g/t Au (maximum internal dilution of 2m).

For further enquiries, please contact:

Investors:

Stuart Fogarty Duketon Mining - Managing Director +61 8 6315 1490

The information in this report that relates to exploration results is based on information compiled by Mr Stuart Fogarty, Member of the Australian Institute of Mining and Metallurgists ("AusIMM") and an employee for Duketon Mining Limited. Mr Fogarty has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity that is being undertaken to qualify as a competent person as defined in the JORC Code 2012. Mr Fogarty consents to the inclusion in the report of the matters based on the information in the form and context in which it appears.

JORC Table 1 JORC Code, 2012 Edition – Table 1 report – Duketon Project

Section 1 Sampling Techniques and Data – North Petra

(Criteria in this section apply to all succeeding sections.)

Criteria	JORC Code explanation	Commentary
techniques specific specialised industry standard mea the minerals under investigation, such as o handheld XRF instruments, etc). These ex limiting the broad meaning of sampling. Include reference to measures taken to en the appropriate calibration of any measure the appropriate calibration of any measure <i>Aspects of the determination of mineralisat</i> <i>Public Report. In cases where 'industry sta</i> <i>this would be relatively simple (e.g. 'revers</i> <i>to obtain 1 m samples from which 3 kg wa</i> <i>charge for fire assay'). In other cases, mor</i> <i>required, such as where there is coarse go</i> <i>problems. Unusual commodities or mineral</i>	Nature and quality of sampling (e.g. cut channels, random chips, or specific specialised industry standard measurement tools appropriate to the minerals under investigation, such as down hole gamma sondes, or handheld XRF instruments, etc). These examples should not be taken as limiting the broad meaning of sampling.	Petra North: The Petra North Prospect was sampled using Air Core (AC) drill holes with the majority of holes on a nominal 100m east by 160m north initial grid spacing, which were drilled angled -60 degrees at 090 degrees azimuth.
	Include reference to measures taken to ensure sample representivity and the appropriate calibration of any measurement tools or systems used.	All Projects: Regis drill hole collar locations were picked up by site-based authorised surveyors using Trimble RTK GPS.
		Downhole surveying was measured by using either a Reflex EZ-Shot Downhole Survey Instrument. The surveys were completed every 30m down each drill hole.
		Regis drill hole sampling had certified standards and blanks inserted every 25th sample to assess the accuracy and methodology of the external laboratories, and field duplicates (AC only) were inserted every 20th sample to assess the repeatability and variability of the gold mineralisation. Laboratory duplicates were also completed approximately every 15th sample to assess the precision of the laboratory as well as the repeatability and variability of the gold mineralisation. Results of the QAQC sampling were considered acceptable for an Archaean gold deposit.
	Aspects of the determination of mineralisation that are Material to the Public Report. In cases where 'industry standard' work has been done this would be relatively simple (e.g. 'reverse circulation drilling was used to obtain 1 m samples from which 3 kg was pulverised to produce a 30 g charge for fire assay'). In other cases, more explanation may be required, such as where there is coarse gold that has inherent sampling problems. Unusual commodities or mineralisation types (e.g. submarine nodules) may warrant disclosure of detailed information.	Petra North: For the Regis AC drilling 4m samples were obtained by splitter (0.5kg – 3.0kg) and were utilised for lithology logging and assaying. The drilling samples were dried, crushed and pulverised to get 85% passing 75µm and were all Fire Assayed using a 50g charge (Bureau Veritas, and Aurum).
Drilling techniques	Drill type (e.g. core, reverse circulation, open-hole hammer, rotary air blast, auger, Bangka, sonic, etc) and details (e.g. core diameter, triple or	Petra North: AC drilling was completed with an 89mm diameter AC blade bit.

Criteria	JORC Code explanation	Commentary
	standard tube, depth of diamond tails, face-sampling bit or other type, whether core is oriented and if so, by what method, etc).	
Drill sample recovery	Method of recording and assessing core and chip sample recoveries and results assessed.	Petra North: AC recovery was visually assessed, with recovery being excellent except in some wet intervals which are recorded on logs.
	Measures taken to maximise sample recovery and ensure representative nature of the samples.	Petra North: AC samples were visually checked for recovery, moisture and contamination. The drilling contractor utilised a cyclone and splitter to provide uniform sample size, and these were cleaned routinely (cleaned at the end of each rod and more frequently in wet conditions if encountered).
	Whether a relationship exists between sample recovery and grade and whether sample bias may have occurred due to preferential loss/gain of fine/coarse material.	Petra North: Sample recoveries AC drilling are visually estimated to be medium to high. No significant bias is expected although no recovery and grade correlation study was completed.
Logging	Whether core and chip samples have been geologically and geotechnically logged to a level of detail to support appropriate Mineral Resource estimation, mining studies and metallurgical studies.	Petra North: Lithology, alteration, veining, mineralisation and, on some holes, magnetic susceptibility were logged from the AC chips and saved in the database. Chips from every interval are also placed in chip trays and stored in a designated building at site for future reference.
	Whether logging is qualitative or quantitative in nature. Core (or costean, channel, etc) photography.	All logging is qualitative except for magnetic susceptibility and geotechnical measurements.
	The total length and percentage of the relevant intersections logged.	All drill holes are logged in full.
Sub-sampling techniques	If core, whether cut or sawn and whether quarter, half or all core taken.	

Criteria	JORC Code explanation	Commentary
and sample preparation	If non-core, whether riffled, tube sampled, rotary split, etc and whether sampled wet or dry.	The AC drilling utilised a cyclone and splitter to produce 0.5kg to 3.0kg dry samples.
	For all sample types, the nature, quality and appropriateness of the sample preparation technique.	Samples are dried, crushed to 10mm, and then pulverised to 85% passing 75µm (industry standard practice is assumed for the historical drilling). This is considered acceptable for an Archaean gold deposit.
	Quality control procedures adopted for all sub-sampling stages to maximise representivity of samples.	Field duplicates AC were inserted every 20th sample to assess the repeatability and variability of the gold mineralisation. Laboratory duplicates were also completed roughly every 15th sample to assess the repeatability and variability of the gold mineralisation.
	Measures taken to ensure that the sampling is representative of the in situ material collected, including for instance results for field duplicate/second-half sampling.	Field AC duplicates were taken at the rig splitter allowing for the duplicate and main sample to be the same size and sampling technique. Field duplicates are taken every 20th sample. Laboratory duplicates (sample preparation split) were also completed roughly every 15th sample.
	Whether sample sizes are appropriate to the grain size of the material being sampled.	Sample sizes (0.5kg to 3kg) are considered to be a sufficient size to accurately represent the gold mineralisation based on the mineralisation style (hypogene) associated with shearing and supergene enrichment), the width and continuity of the intersections, the sampling methodology, the coarse gold variability and the assay ranges for the gold.
		Field duplicates have routinely been collected to ensure monitoring of the sub- sampling quality. Acceptable precision and accuracy is noted in the field duplicates albeit the precision is marginally acceptable and consistent with a coarse gold Archaean gold deposit.
Quality of assay data and	The nature, quality and appropriateness of the assaying and laboratory procedures used and whether the technique is considered partial or total.	Petra North: All gold assaying was completed by external commercial laboratories (SGS, Bureau Veritas, Min Analytical and Aurum) using either a 40g or 50g charge for fire assay analysis with AAS finish. This technique is industry standard for gold and considered appropriate.

Criteria	JORC Code explanation	Commentary
laboratory tests	For geophysical tools, spectrometers, handheld XRF instruments, etc, the parameters used in determining the analysis including instrument make and model, reading times, calibrations factors applied and their derivation, etc.	Petra North: No geophysical measurements were made.
	Nature of quality control procedures adopted (e.g. standards, blanks, duplicates, external laboratory checks) and whether acceptable levels of accuracy (ie lack of bias) and precision have been established.	Certified Reference Material (CRM or standards) and blanks were inserted every 25th sample to assess the assaying accuracy of the external laboratories. Field duplicates (RC, AC) were inserted every 20th sample to assess the repeatability from the field and variability of the gold mineralisation. Laboratory duplicates were also completed approximately every 15th sample to assess the precision of assaying.
		Evaluation of both the Regis submitted standards, and the internal laboratory quality control data, indicates assaying to be accurate and without significant drift for significant time periods. Excluding obvious errors, the vast majority of the CRM assaying report shows an overall mean bias of less than 5% with no consistent positive or negative bias noted. Duplicate assaying show high levels of correlation and no apparent bias between the duplicate pairs. Field duplicate samples show marginally acceptable levels of correlation and no relative bias.
		Results of the QAQC sampling were considered acceptable for an Archaean gold deposit. Substantial focus has been given to ensuring sampling procedures met industry best practise to ensure acceptable levels of accuracy and precision were achieved in a coarse gold environment.
Verification of sampling and	The verification of significant intersections by either independent or alternative company personnel.	No independent personnel have visually inspected the significant intersections in AC chips.
assaying	The use of twinned holes.	Petra North: No twinning of holes was completed at this stage.
	Documentation of primary data, data entry procedures, data verification, data storage (physical and electronic) protocols.	All geological and field data is entered into excel spreadsheets with lookup tables and fixed formatting (and protected from modification) thus only allowing data to be entered using the Regis geological code system and sample protocol. Data is then emailed to the Regis database administrator for validation and importation into a SQL database using Datashed.
	Discuss any adjustment to assay data.	Any samples not assayed (i.e. destroyed in processing, listed not received) have had the assay value converted to a -9 in the database. Any samples assayed

Criteria	JORC Code explanation	Commentary
		below detection limit (0.01 ppm Au) have been converted to 0.005 ppm (half detection limit) in the database.
Location of data points	Accuracy and quality of surveys used to locate drill holes (collar and down-hole surveys), trenches, mine workings and other locations used in Mineral Resource estimation.	Regis drill hole collar locations were picked up by site-based authorized surveyors using Trimble RTK GPS, calibrated to a base station (expected accuracy of 20mm).
		Downhole surveying was measured by using either a Reflex EZ-Shot Downhole Survey Instrument. The surveys were completed every 30m down each drill hole.
	Specification of the grid system used.	The grid system is and AMG Zone 51 (AGD 84) for surveying pickups which has been converted to MGS GDA94 z51 for reporting.
	Quality and adequacy of topographic control.	The topographic surface for all projects were derived from a combination of the primary drill hole pickups and the pre-existing photogrammetric contouring.
Data spacing and distribution	Data spacing for reporting of Exploration Results.	Petra North: The initial reconnaissance AC drill hole spacing was 160m (northing) by 100m (easting). The drilling depth was generally to blade refusal i.e. top of fresh rock.
distribution	Whether the data spacing and distribution is sufficient to establish the degree of geological and grade continuity appropriate for the Mineral Resource and Ore Reserve estimation procedure(s) and classifications applied.	Petra North The data spacing and distribution is sufficient to for a reconnaissance exploration drilling designed to test for extensions to know mineralisation to the south
	Whether sample compositing has been applied.	Petra North: 4m compositing was used in the wider spaced drill programs.
Orientation of data in relation to geological structure	Whether the orientation of sampling achieves unbiased sampling of possible structures and the extent to which this is known, considering the deposit type.	Drilling is orientated to best suit the mineralisation to be closely perpendicular to both the strike and dip of the mineralisation. Intercepts are close to true-width in most cases. See cross section diagrams
	If the relationship between the drilling orientation and the orientation of key mineralised structures is considered to have introduced a sampling bias, this should be assessed and reported if material.	It is not believed that drilling orientation has introduced a sampling bias.

Criteria	JORC Code explanation	Commentary
Sample security	The measures taken to ensure sample security.	Samples are securely sealed and stored onsite, until delivery to Perth via contract freight Transport, who then deliver the samples directly to the laborator. Sample submission forms are sent with the samples as well as emailed to the laboratory, and are used to keep track of the sample batches.
Audits or reviews	The results of any audits or reviews of sampling techniques and data.	Petra North: No audits on sampling techniques and data have been completed.

Section 2 Reporting of Exploration Results

(Criteria listed in the preceding section also apply to this section.)

Criteria	JORC Code explanation	Commentary
Mineral tenement and land tenure status	Type, reference name/number, location and ownership including agreements or material issues with third parties such as joint ventures, partnerships, overriding royalties, native title interests, historical sites, wilderness or national park and environmental settings.	Petra North:
		The Petra North prospect is E38/2737–57 blocks (actual 13,068.1127ha). Duketon Mining Ltd. Native title claimant– Wutha (WC1999/010) – partial 62.47ha.
	The security of the tenure held at the time of reporting along with any known impediments to obtaining a licence to operate in the area.	
Exploration done by other parties	Acknowledgment and appraisal of exploration by other parties.	Petra North: Shallow drilling (less than 100m vertical depth) completed by Goldconda 1986 – 1988, Johnsons Well Mining NL 1995 – 1997
Geology	Deposit type, geological setting and style of mineralisation.	Petra North : Gold mineralisation at Petra North Mineralisation at Petra North appears to consist of supergene enriched gold, interpreted to be the result of complex weathering fronts around the hypogene ore.
Drill hole Information	A summary of all information material to the understanding of the exploration results including a tabulation of the following information for all Material drill holes:	Refer to attached table
	easting and northing of the drill hole collar	
	elevation or RL (Reduced Level – elevation above sea level in metres) of the drill hole collar	
	dip and azimuth of the hole	
	down hole length and interception depth	
	hole length.	
	If the exclusion of this information is justified on the basis that the information is not Material and this exclusion does not detract from the	

Criteria	JORC Code explanation	Commentary
	understanding of the report, the Competent Person should clearly explain why this is the case.	
Data aggregation methods	In reporting Exploration Results, weighting averaging techniques, maximum and/or minimum grade truncations (e.g. cutting of high grades) and cut-off grades are usually Material and should be stated.	Reported intercepts are >1m @ 0.1g/t Au (maximum internal dilution of 2m). Intersections are downhole widths. No upper cuts have been applied.
	Where aggregate intercepts incorporate short lengths of high grade results and longer lengths of low grade results, the procedure used for such aggregation should be stated and some typical examples of such aggregations should be shown in detail.	
	The assumptions used for any reporting of metal equivalent values should be clearly stated.	
Relationship between	These relationships are particularly important in the reporting of Exploration Results.	Petra North: The holes at which were drilled angled -60 degrees at 090 azimuth. The intercepts reported are estimated to be close to true width.
mineralization widths and intercept	If the geometry of the mineralisation with respect to the drill hole angle is known, its nature should be reported.	
lengths	If it is not known and only the down hole lengths are reported, there should be a clear statement to this effect (e.g. 'down hole length, true width not known').	
Diagrams	Appropriate maps and sections (with scales) and tabulations of intercepts should be included for any significant discovery being reported These should include, but not be limited to a plan view of drill hole collar locations and appropriate sectional views.	Refer to the body of the announcement.
Balanced reporting	Where comprehensive reporting of all Exploration Results is not practicable, representative reporting of both low and high grades and/or widths should be practiced to avoid misleading reporting of Exploration Results.	A list of all holes drilled during the quarter attached.
Other substantive	Other exploration data, if meaningful and material, should be reported including (but not limited to): geological observations; geophysical survey results; geochemical survey results; bulk samples – size and method of	Petra North: No other material exploration data to report.

Criteria	JORC Code explanation	Commentary
exploration data	treatment; metallurgical test results; bulk density, groundwater, geotechnical and rock characteristics; potential deleterious or contaminating substances.	
Further work	The nature and scale of planned further work (e.g. tests for lateral extensions or depth extensions or large-scale step-out drilling).	Petra North: Small follow up drill programs are planned to follow up anomalous results
	Diagrams clearly highlighting the areas of possible extensions, including the main geological interpretations and future drilling areas, provided this information is not commercially sensitive.	See diagrams in main text