

- Why are smart machines are important for health care
- The emergence of deep learning
- Deep learning vs existing methods
- Some early results
- Practical tips on getting started
- Future directions

ABOUT ALCIDION

- Health informatics company with products in
 - Patient flow & bed management
 - Emergency Department
 - Outpatient and referrals management
 - SmartForms, clinical decision support (CDS)
- A health informatics approach
 - Computers should play a more active role in health care
 - Assist clinical staff so that the right thing to do is the easier thing to do
- We want to turbo charge our products using advances in smart machines (AI)

- ▶ I started research into AI in the early 1990's
- Focused on decision theory and complex models (uncertainty in AI)
- Probabilistic networks based on knowledge and data
 - ▶ 448 nodes, > 900 connections, > 90m probabilities

SMART MACHINES IN HEALTH CARE

With an aging population the demand for health care is increasing rapidly

- Problems of safety, productivity, variation
- ▶ How else do we scale health care?

CHALLENGES IN PATIENT FLOW

- Increasingly complex patients
 - Increased referrals to allied health and other specialties
 - Higher resource utilization, difficult to predict ahead of time
- Current models
 - Predict ED admissions and future admissions
- Challenges
 - Predicting detailed resource needs ahead of time
 - Early detection of variation
 - Logistical support for bed management
 - Using clinical context to better understand patient needs
- Al has been around for ages, why hasn't it helped us?

ALCIDION A (VERY) BRIEF HISTORY OF AI IN HEALTH

V

- ▶ Expert level performance since 1970's
- Clinical Decision Support for
 - Diagnosis
 - Management
 - Safety

AAPHelp, Internist-1, Mycin, Casnet, PIP, Oncocin, DxPlain, QMR

- Difficult to integrate into workflows
- Not integrated with IT systems
- Brittle
- Difficult to maintain over time
- Not easy to localize
- Descriptive, based on expert opinion

THE 3RD WAVE OF NEURAL NETWORKS

- Technical improvements to deal with deep networks
- Large data sets e.g.ImageNet has >14mannotated images
- 3. GPU

WHAT CAN THEY DO?

- Image description
- Text generation
- Self-driving cars
- Playing complex games
- Early work in demonstrating
 - Radiology
 - Histopathology
 - Risk detection

A close up of a child holding a stuffed animal.

DEEP NETWORK INTUITION

Deep neural networks learn hierarchical feature representations

Lee, H. et. al. Convolutional Deep Belief Networks for Scalable Unsupervised Learning of Hierarchical Representations. ICML 09 www.rsipvision.com/exploring-deep-learning/

WHY DO THEY WORK?

- Data generated from anonymised HL7 feeds
 - Admissions, readmissions, ICDs, DRGs
 - Later adding labs, radiology reports, OPD
- Multilayer perceptrons (MLP)
 - Tested 2-5 layers, many variations
 - Significant work in encoding categorical variables such as DRGs and ICDs
 - Approx 8,000 x 200,000 matrix of data
- Hardware & software
 - Linux based PC with Nvidia 980 Ti
 - Keras using Theano back-end
 - Python for running experiments and data transformation

ALCIDION

EARLY RESULTS

Readmission

- Detection of readmission < 30 days against</p>
- Usually for COPD, Heart failure, Pneumonia, AMI, Total hip/knee arthroplasty
- On par with best published algorithms based on ICDs and LACE tool approx. 0.65
 AUC (better than traditional models on this data set)
- 3 layers seems to work well, 4-5 have increased training times with minor performance benefits
- We are exploring an ensemble approach with multiple disease based models for major conditions
- General hospital demand prediction
 - Similar performance to time series models (approx 9% error 1 month prediction) compared to about 15-20% error from historical average methods
 - Require much more data to learn
 - Good performance from ARIMA models

Futoma, K. et. al. A comparison of models for predicting early hospital readmissions. Jof Bio Inform 56 (2015) 229–238 Kim, K. et. al. Predicting Patient Volumes in Hospital Medicine: A Comparative Study of Different Time Series Forecasting Methods

DL ISSUES FOR HEALTH CARE

- Very data hungry
 - Can't provide hints about the domain
- Confidently make errors
 - Recognised with > 99.6% probability
- Not explainable, hard to debug
- Embed probabilities, making them less portable to new settings
- Still descriptive, learn from what has been done

- Large volumes of data required
 - ▶ 100,000+ cases
- Non-image methods are still being developed
 - Representation of categorical data
- Research moves ahead fast using a direct publish model (arxiv)
- Many experiments required over hours days
 - Configurations, epochs, batch sizes, etc.
- Hardware & software
 - You will need a powerful Nvidia GPU and configured Linux machine
 - Open source software is available: Theano, Tensorflow (Google), Torch (Facebook), CNTK (Microsoft), Keras

ALCIDION

FUTURE DIRECTIONS

Collaboration

- Aim to create Health Informatics Machine Learning group, currently discussing with UniSA, University of Adelaide
- Working to integrate more data sources e.g. community

Improved models

- Further incorporation of clinical data such as labs
- Research to incorporate histopathology reports, radiology reports using unsupervised techniques

Building smart machines

- Make software part of the health care team, rather than a barrier to productivity
- Allow patients to monitor their own health and navigate health care