

Release

Stock exchange listings: NZX (MEL) ASX (MEZ)

Meridian Energy investor day presentation

20 November 2017

Attached is a presentation Meridian Energy is making at its investor day today.

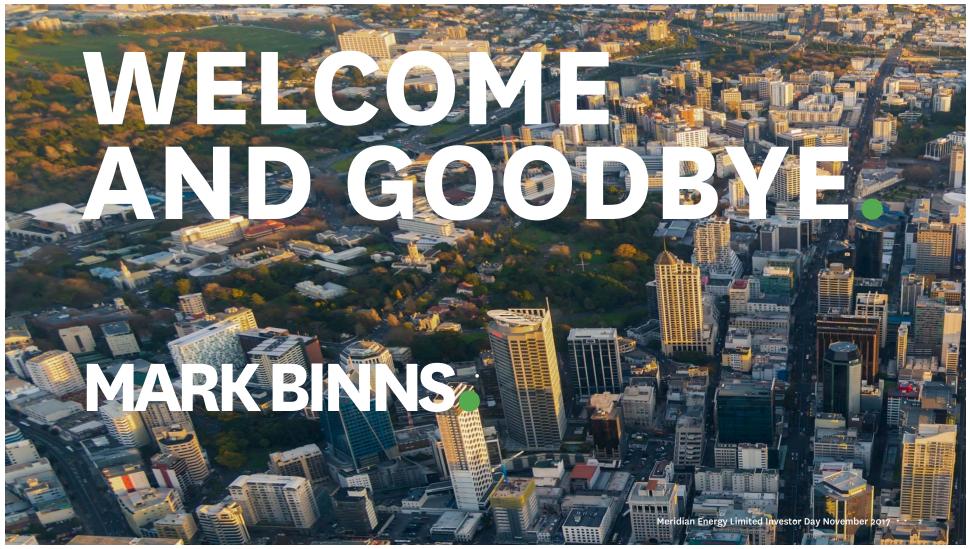
ENDS

Mark Binns Chief Executive Meridian Energy Limited

For investor relations queries, please contact:

Owen Hackston Investor Relations Manager 021 246 4772 For media queries, please contact: Polly Atkins External Communications Specialist 021 174 1715

Meridian Energy Limited (ARBN 151 800 396) A company incorporated in New Zealand 33 Customhouse Quay, PO Box 10840, Wellington 6143


www.meridian.co.nz

2017 INVESTOR DAY.

MERIDIAN ENERGY LIMITED MANAGEMENT PRESENTATION

Dow Jones Sustainability Indices In Collaboration with RobecoSAM (

INTRODUCTION

NEAL BARCLAY

Meridian Energy Limited Investor Day November 2017 😁 3

Also attending

Today.

Neal Barclay CEO Designate Our customers

Richard Griffiths Strategic Asset Manager Strategic asset management

Geoffry Sams Transmission Specialist Transmission

Chris Moller Chair

Paul Chambers CFO

Mike Roan Wholesale Markets Manager Wholesale markets

Mat Bayliss Asset Maintenance Manager Operational maintenance

Grant Telfar Strategic Advisor Energy efficiency

Gillian Blythe Strategy Manager Treasury Manager

Janine Crossley

Guy Waipara General Manager Markets & Production Managing our portfolio

Jon Spiller Transmission Manager Transmission

Dr Jen Purdie Portfolio and Fuels Advisor Climate variability and change

Owen Hackston Investor Relations Manager

NEAL BARCLAY.

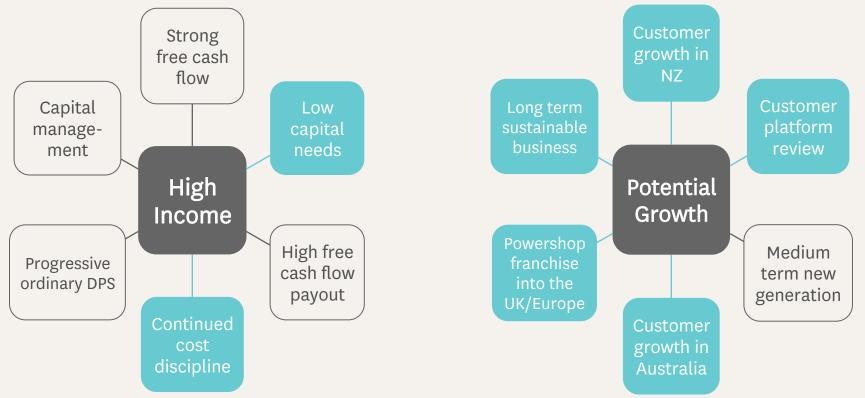
STONERS.

strandatel Marshinister

Value of our customers.

RETAIL SEGMENT PROFITABILITY 574M 575M 539M 521M 2013 2014 2015 2016 2017 Source: Meridian's FY17 segment disclosures with restated FY13-FY15 comparatives

Historical earnings growth


• Source of earnings growth in the low demand growth New Zealand market

Vertical integration

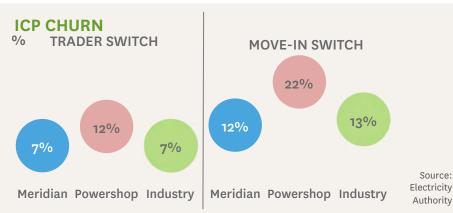
- Provides wholesale market hedge against spot market variability
- Insulates earnings against unexpected shocks in the wholesale market

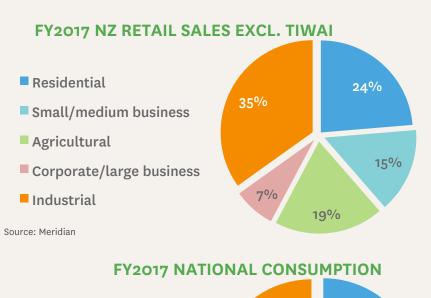

Value of our customers.

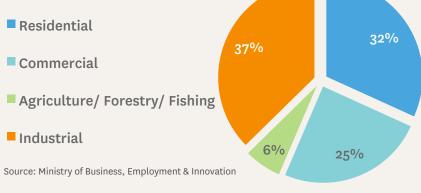
Sources of shareholder value

Customer brand strength.

High level of awareness relative to market share, authentically sustainable






Source: Evaluating Brand Performance December 2016 (Meridian – Clarity Insight)

Customer growth.

- High residential awareness, underweight residential position
- Additional load from back-to-back agreements
- Growth aspirations in all segments including commerical solar
- Examining synergies between Meridian and Powershop platforms
- More integrated go-to-market plan for two brands
- Churn improvement remains a focus

Australian scale.

- Aspiration to significantly grow Australian customer base
- Needs to be backed by more generation
- PPA process is well advanced
- Direct generation investment possible under the right commerical terms
- Planning dual-fuel offer into Victoria

Powershop UK.

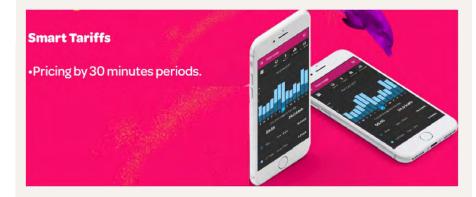
- Powershop platform and brand franchised to nPower
- 14,000 nPower ICP's through energy only soft launch
- Dual fuel functionality by January 2018
- White label offers launched
- Customer uptake dependent on nPower's sales and marketing
- Exploring mainland Europe opportunities with nPower's parent company, Innogy

Our approach to innovation.

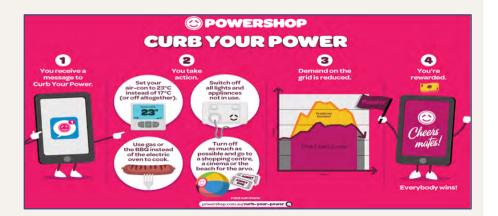
Systematic approach

- Significant review and analysis of new technology and customer changes
- Selective scope
- Test and trial approach, quick start and stop (if needed), low investment
- Global insights from three 'natural labs'

Meridian Energy Limited Investor Day November 2017 😁 12

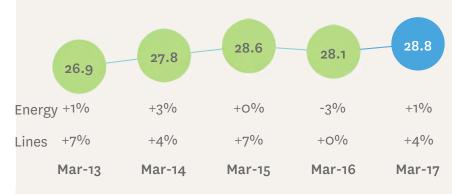

Innovation in NZ.

• Separate software development business with international focus


- Significant Meridian digital investment creating a quality customer experience
- Powershop is a true native digital business, well placed for transformation
- SmartHome and Smart Tariffs recent examples to go to market

Innovation in Australia.

A more disruptive market than New Zealand


- Powershop is well positioned
- Powershop helping customer participation in neighbourhood generation and community energy projects
- Both through tariff redistribution
- And initiatives incentivising customers to reduce consumption

The political scene.

New Zealand

- Positive on the new Government's proposals, plenty of detail to engage on
- Conversion of the Government car fleet to electric by 2025/26 will strengthen EV takeup
- Meridian is highly supportive of an Independent Climate Commission
- Case for fairer transmission charging remains compelling
- Greater focus on water quality
- Resource rentals for water is complex, we are supportive of a holistic, equitable approach
- Retail pricing could benefit from addressing misdirected low user charges

AVERAGE RESIDENTIAL ELECTRICITY COST c/kWh

Source: Ministry of Business, Innovation & Employment

The political scene.

Image: Australian Prime Minister Malcolm Turnbull (L) and Leader of the Australian Labor Party, Bill Shorten (R)

Australia

- Market is slow to commit to new renewables due to the lack of coherent energy policy
- Electricity is highly politicised, with significant potential developments in the near term:
 - VIC Government reponse to Thwaites Review on re-regulation
 - COAG Energy Council meeting on the NEG and AER investigation into NSW generator bidding
 - AGL response to Federal Government on Liddell power station
 - ACCC's continuing enquiry into electricity prices
 - Details on the VIC Government's renewable energy auction Meridian Energy Limited Investor Day November 2017 - 16

Summary.

- Greater focus on our customers
- To realise potential growth in multiple countries
- With continued discipline on cost management and customer innovation
- While protecting shareholder value in our core business
- Enduring commitment to sustainability, staff wellbeing, process safety and customer experience

Image: One of Meridian's pure electric Hyuandi IONIQ fleet vehicles

MIKE ROAN

MARKETS

NZ-WHOLESALE

Meridian Energy Limited Investor Day November 2017 😁

Overview.

• "New Zealand is a world leading example of a well functioning electricity market..."

2017 NZ Energy Policy Review – International Energy Agency

• "....strong improvement across the three key outcomes of competition, reliability and efficiency..."

2017 Electricity Authority Annual Report

Key market reforms.

2008 'dry year' and subsequent Ministerial Review

ASX - standardised forward market

Pole 3 – improved market flexibility & risk management

Financial Transmission Rights (FTRs)

ASX Monthly Products – short term standard products to price hydrology

Spot Market Gate reduces from 2hrs to 1 hr

Today: 35 retail brands Security of supply Very competitive retail market 25 generating companies 47 traders participating

ASX Commences – April 2011

• Liquidity

Pole 3 Commissioned - May 2013

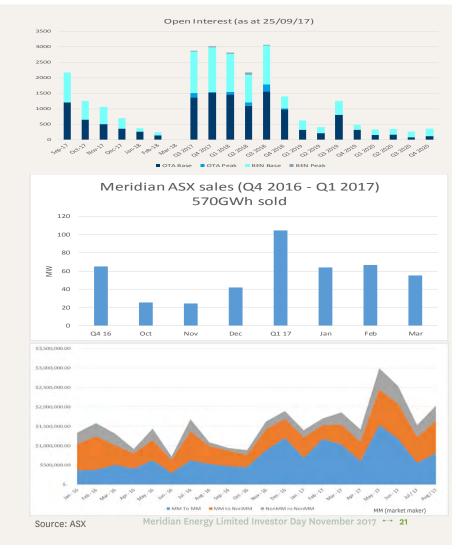
• NZ-wide competition emerges

FTRs – June 2013

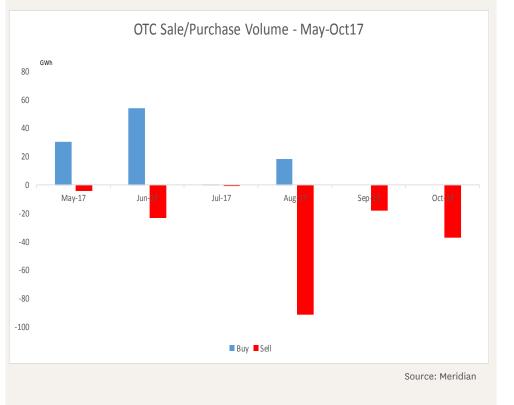
• Emergence of basis products

ASX Monthly Products Arrive - Dec 2013

• Additional liquidity (in prompt months)


Gate Closure to 1 Hour – June 2017

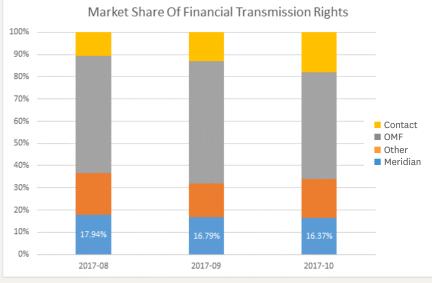
• Spot market price efficiency improves


ASX forward market.

The forward market is very effective

- Liquidity exceeds initial targets
- Monthly products provide ability to hedge seasonal shapes (and enhance liquidity)
- Meridian has sold over 100MW on ASX in various quarters
- Others use this market to hedge effectively as well

Over the Counter (OTC) market.



OTC market emerged following ASX

- Used for short term hedging
- Brokered and bilateral (direct)
- Products are typically bespoke
 - Large hedging transactions (i.e. 10MW +)
 - Unit outage hedges
 - Shaped retail hedges
 - Specific risk instruments like our swaption with Genesis

Financial Transmission Rights (FTRs).

- Instrument that manages price risk between nodes
- Meridian is one of the largest participants
 - Should not be a surprise with our South Island hydro generation and distributed customer base
- FTRs are effective baseload products
 - FTRs manage underlying basis risk
 - FTRs do not manage peak or other basis risks, OTC (and spot) market products are designed to do this

Source: Meridian

20 years of spot market trading.

Image: Meridian's Wellington trading room

- Spot market prices provide an index for most contracts
- Efficiency and reliability of these prices builds support for contracting
- Enabling changes to offers/bids as close to real time as possible improves price formation
 - Spot market is the central market
 - Spot market flexibility allows participants to adjust positions
 - The move from 2 hours to 1 hour went very smoothly
 - We will ask the EA and System Operator to consider reducing it further to 30 minutes

Summary.

- Wholesale markets are competitive and effective
- The addition of ASX, OTC and FTR markets in particular drive greater competition
- Meridian participates in all markets to manage its portfolio
- The Electricity Authority is acknowledged internationally as an effective market operator

Image: Meridian's Wellington trading room

Meridian Energy Limited Investor Day November 2017 •• 26

GUY WAIPARA

AGNC

Overview.

Generation and sales portfolio

- Bowtie framework
- Modified to cover observed behaviour
- Optimising real time hydro dispatch

2017 review

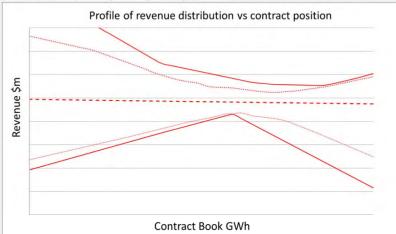

- Statistics
- Managing risk and storage
- "Hindcast" results
- What did we learn?

Image: Lake Pūkaki and Genesis Energy's Tekapo B station, June 2017

Bowties.

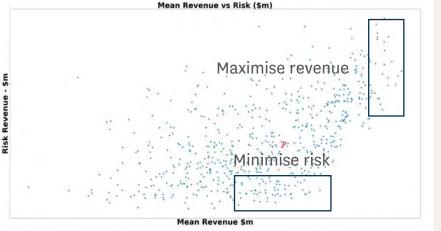
Whole of NZ construct

- Demand (including demand response)
- Supply (including plant reliability)
- Hydrology
- A simplified regional transmission system

Our objective

Source: Meridian

- To find the portfolio or contract position that delivers the maximum revenue, with the minimum distribution, across the hydrology outcomes we expect to experience
- Guides our three-year portfolio planning and is integrated across all of our wholesale and retail sales channels


Reflecting market behaviour.

Impact of contract positions

- Observations are that parties' behaviour is affected by their respective contract positions
- Have developed our models to include the best information we have on our and others' contract positions
- Still includes an opportunity cost of water to ensure that hydro storage is managed efficiently within its full operating range (from spill to shortage)

Next evolution.

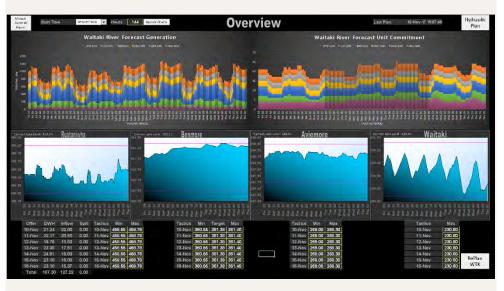
The bowtie neck has a reasonable range

- So there are a number of "optimal" contract positions
- Doing more work to test what position(s) deliver improvements in mean revenues while minimising variability
- Early results look like we have more capacity to sell above our current contract position without incurring more risk
- The NZAS back-to-back contracts have also created more sales headroom

Image: NZAS aluminium smelter, Tiwai Ploint

Moving closer to real time.

How we adjust the portfolio to reflect near-term conditions


• Even with what may look like a conservative portfolio, we can find ourselves long generation (first half of 2017) or short generation (second half of 2017)

When average doesn't show up...

- It is important that all wholesale and retail sales are well co-ordinated
- Models are run weekly with weekly energy targets delivered to our traders. Pricing guidance is provided to retail C&I sales
- Executive portfolio committee meets monthly to oversee execution of the plan
- During times of hydro stress this committee is updated weekly

Within a week, up to real time.

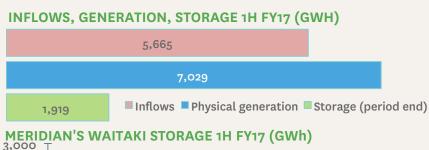
Source: Meridian's hydro optimisation tools

Hydro optimisation continues right up to real time

- Waitaki is block dispatched
- Optimising lake levels across the chain means you can get the best water to wire efficiency (remember E_p = mgh?)

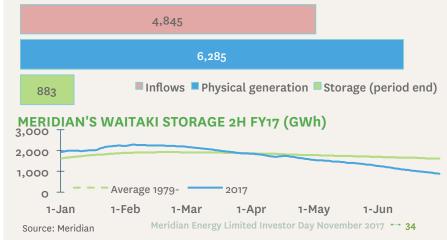
What we have achieved

- Developed in-house tools to optimise hydro production to deliver weekly targets across a range of inputs, including:
 - Weekly energy, outages, generation efficiency, ramp rates, lake levels, flow and lake level constraints, expected inflows
- Estimated \$3m pa improvement
- Also delivers consistency in operations across all Generation Controller staff

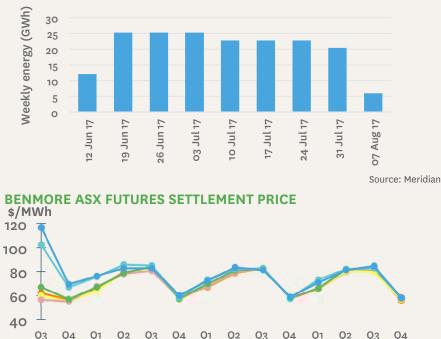

2017 key statistics.

First half FY17

- Inflows 96% of average
- Generation 3% above FY16
- \$44/MWh average generation price
- Storage 118% of average at end of December 2016


Second half FY17

- Inflows 78% of average
- Generation 8% below FY16
- \$59/MWh average generation price
- Storage 55% of average at end of June 2017
- February to June 2017 were the lowest same-period inflows on record



INFLOWS, GENERATION, STORAGE 2H FY17 (GWH)

Managing risk.

GENESIS SWAPTION VOLUMES

31 May 2017

28 February 2017

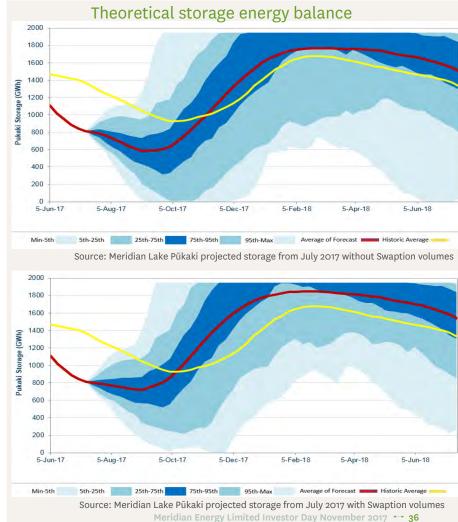
31 January 2017

Commercially

- Called the Genesis Swaption between June and August 2017
- Were able to delay calling this as we had better offers available earlier on
- ASX and OTC liquidity meant we had a range of options
- Still had the smelter demand response available to call if necessary
- Swaption flexibility significantly improved our risk management tool set. Benefit to having 50 MW tranches with relatively short call periods
- NZAS backing contracts plus the swaption has significantly reduced Meridian's risk position

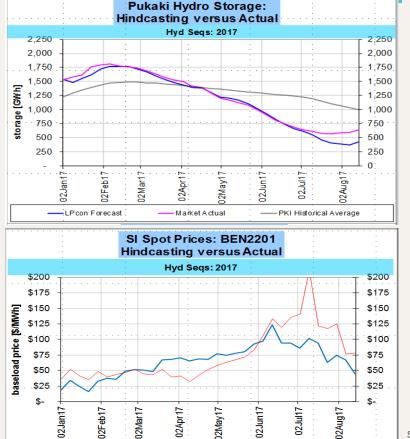
31 March 2017

30 June 2017


Storage management.

Even at the end of the dry period

- Portfolio could still be covered with minimal risk of hitting the bottom of Pūkaki
- At 21 July still 10x more likely to spill (34 sequences) than to even use contingent storage (3 sequences)
- The effect of the Swaption is to reduce the risk significantly (200 GWh lift in 5th percentile)


Take outs

- Portfolio is robust and has changed with NZAS contracts
- Still had more insurance options over and above the Swaption
- These facts seemed to surprise some stakeholders
- Ongoing information sharing was key

A "Hindcast" comparison.

Market Actual

LPcon Forecast

What is a Hindcast?

• A comparison of what occurred with what perfect competition would have delivered

Why is it important?

- Provides an analytical framework to test whether the market has delivered an efficient outcome for consumers
- Is a good proxy for a regulatory test and informs questions such as:
 - Is a company using storage too conservatively or aggressively?
 - Do market prices reasonably reflect scarcity?

Results

Source:

Meridian

- Hydro storage and market prices consistent with expected outcomes from a perfect market
- If anything, slight risk aversion in our storage use

Engaging with stakeholders.

Transpower

- Engaged early to discuss hydrology, water values and plans
- Considered a change to contingent storage but decided to put off until a review was completed
- Reviewing their security of supply policy

Electricity Authority

- Engaged early as above
- Received some complaints from others but these lacked quantitative analysis
- EA 2017 Annual Report "...electricity market has once again worked effectively to manage the dry conditions."
- Will complete a formal review of 2017

TRANSPOWER

What did we learn from this year?

"Assumptions are the termites of relationships."

(Henry Winkler)

Market maturity

- Continued to learn and evolve over dry year experiences
- The improved liquidity in the ASX and OTC markets helped manage risk

Stakeholder engagement

- No such thing as engaging too early. There is significant information asymmetry
- Having an analytical framework like hindcasting is extremely helpful
- Testing the system operator's security policy (in particular their modelling of contingent storage) was done too late

Others perceptions of risk and behaviour

 Is potentially based on historical assumptions which have not been tested, given the changes to our portfolio
 Meridian Energy Limited Investor Day November 2017 - 39

STRATEGIC ASSET MANAGEMENT

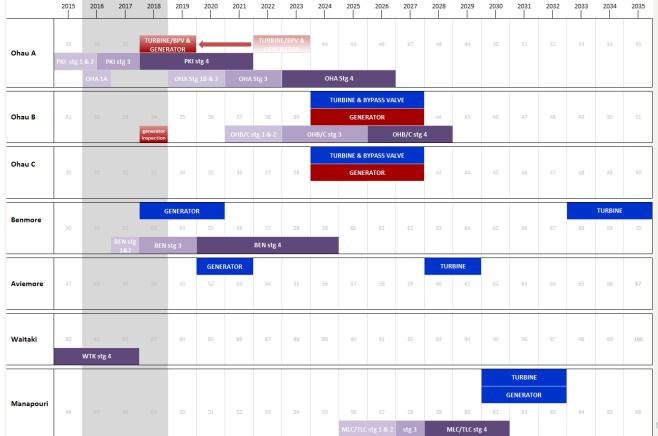
RICHARD GRIFFITHS

Content.

- Approach and philosophy
- Our 20-year asset management plan
- Expenditure forecasts
- Major projects
- Process safety
- Benchmarking

Asset management principles.

We are committed to:


- Protecting the value of Meridian's assets
- Maintaining the safety, performance and capability of these assets over their projected economic life, and
- Meeting our asset management obligations in a manner that is demonstrably world class

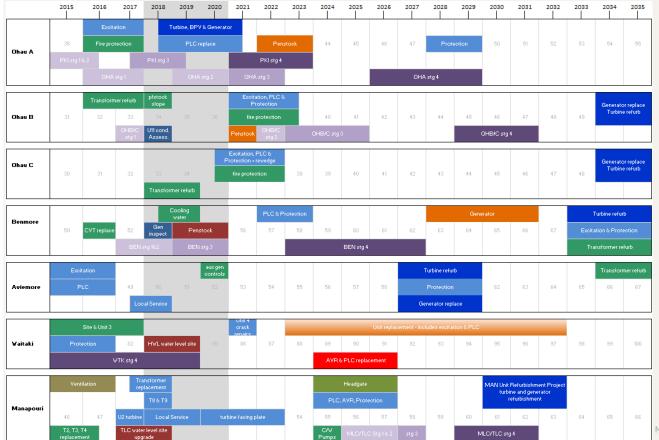
Performance is founded on:

- Total Asset Management people, process, plant
- AMP based on balancing risk, financial and plant performance
- Best practice reliability centred maintenance practices and processes
- Conformity with ISO55001

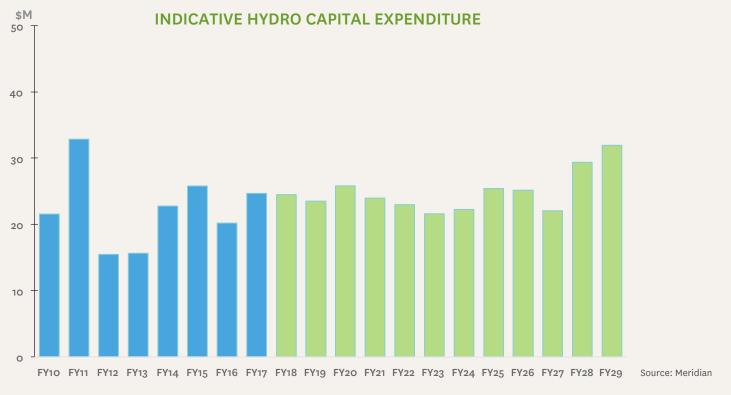
	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032	2033	2034	2035
Ohau A	inspection	36	37	TURBIN				TURBIN	E/BPV & Rator	44	45	46	47	48	49	50	51	52	53	54	55
Ohau B	31	32	33	34 generator inspection	35	36	37	38	39	TU		AYPASS VAL	VE	44	45	46	47	48	49	50	51
Ohau C	30	31	32	33	34	35	36	37	38	TU		YPASS VAL	VE	43	44	45	46	47	48	49	50
Benmore	50	51	52	G 53	ENERATO	R 55	56	57	58	59	60	61	62	63	64	65	66	67	68	TURBINE 69	70
Aviemore	47	48	49	50	51	GENER 52	TATOR 53	54	55	56	57	58	59	TUR 60	BINE 61	62	63	64	65	66	67
Waitaki	80	81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
Manapouri	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60	61	TURBINE ENERATO 62		64	65	66

Major turbine and generator works set the primary timing of the 20-year plan

Long-term commitment to the Structural Safety Evaluation Programme


Control systems, excitation & protection replacements are best fit

Fit other projects in at optimum timing



Waitaki Stage II, civil works, contingent works

Current plan

Hydro capital expenditure forecast.

Excludes Stage II Waitaki generator refurbishment – a 10-year programme, as yet unconfirmed, with peak annual spend of around \$15m

Waitaki refurbishment.

Overview

- Waitaki was first commissioned in 1935 and is the final power station on the Waitaki River
- Reliability and performance is important for managing consent flows
- Annually generates ~\$30m in energy revenues

Capital Deferral Enabling Works (complete)

- Stator cleaning on Units 1 & 2
- Unit 3 re-commissioned
- Upgraded unit protection and fire suppression
- Sluice gate control upgrades

General Upgrades (complete)

- Mechanical & electrical plant refurbishments
- Seismic strengthening of power house
- Upgrade of transformer fire walls
- Upgrade of station cranes

Waitaki refurbishment.

Dam Safety Upgrades (complete)

- Repairs to left bank abutment
- River bank erosion protection works
- Piezometers upgraded
- Uplift drainage upgraded and extended

Dam Safety Upgrades (work in progress)

- Inundation protection of the Hornell Gallery
- Manifolding of the uplift drainage system

Stage II Generator Upgrades (planned)

- Ongoing commitment to maintenance and condition monitoring to extend life and maintain reliability
- Upgrade timing driven by condition as we operate the machines in a "manage to end-of-life" mode
- While the actual timing is uncertain, the plan assumes this will initiate in 5-10 years
- Comprises complete replacement of four of the seven turbines/generators

Manapōuri transformers.

Overview

- Manapōuri commissioned in 1967
- Underground power station
- Generates ~\$250m per annum

Main Unit Transformers

- T2, T3 and T4 were replaced in 2015 following failure of the oil coolers
- T1, T5, T6, T7 currently being manufactured by Wilsons
- All four will be delivered to Deep Cove in late November 2017

Local Service Transformers

- T8 & T9 manufacturing underway
- Mitsubishi SF6 transformers
- SF6 eliminates environmental risks and fire hazards from switchyard
- Delivery expected end of FY18

Image: Transformer haulage Manapōuri power station

Ohau chain upgrade programme.

Image: Meridian's Ōhau A power station

Image: Meridian's Ōhau B power station

Overview

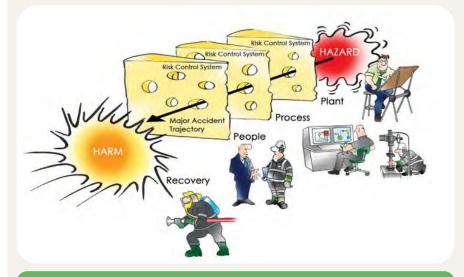
- Ōhau chain comprises Ōhau A, B & C
- Controls flow from Lakes Pūkaki & Ohau
- Collectively generate ~\$220m pa

Programme

- \$48m business case approved in October 16
- Programme extends through to 2023

Scope comprises:

- Ōhau A unit refurbishments
- Ōhau A, B & C control upgrades
- Ōhau B & C protection, excitation and transformer firewall upgrades
- Ōhau B & C generator refurbishments


Current status

- Unit G11 stator inspection completed
- Design and procurement well underway Meridian Energy Limited Investor Day November 2017 --- 53

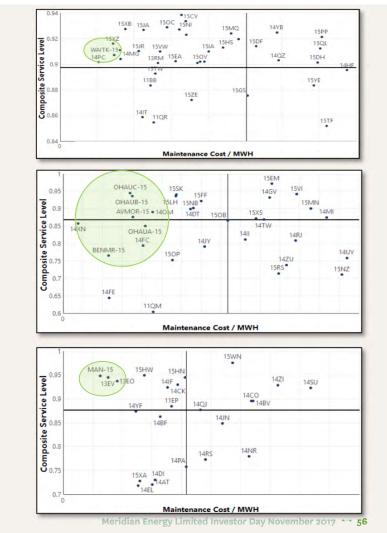
Process safety.

Overview

- Meridian initiated a review of its process safety risks in 2014
- Lockheed Martin and Scottish Power were engaged in 2015 to facilitate risk bowtie workshops and undertake a gap analysis
- Meridian established a programme to implement the recommendations
- In 2016 a ramp-down event at Manapōuri occurred. DuPont were invited to undertake a post-incident review
- DuPont endorsed the workstreams that were underway and recommended an additional focus on the interface between ICT and generation plant
- The outcome has also seen an increased level of management focus and commitment

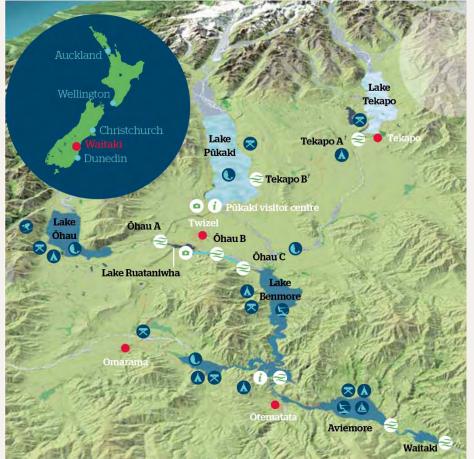
- 1. Understanding what can go wrong
- 2. Knowing what systems we have to prevent things from going wrong
- 3. Having information to assure ourselves that these systems are working effectively

Key Workstreams:


reporting

- Develop **Risk Bowties** for all sites and integrate into AMP
- Undertake an **Alarm Management** and rationalisation programme
- Undertake a Risk Management review
- Review the Plant Change Control process
- Process safety **Training and Awareness** programme
- Review the management of Controlled Documents
- Address defects with the Generation Control System
- Develop a suite of **Process Safety KPIs** and dashboard

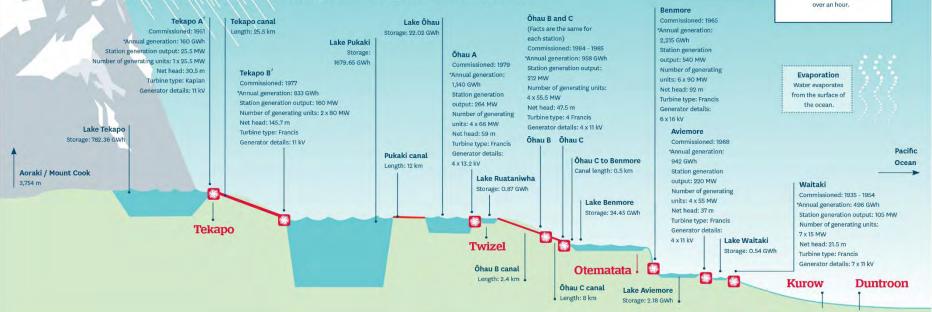
Benchmarking results.


International Benchmarking

- Meridian compares very favourably against international peer group in respect to both Composite Service Level (function of Plant Availability and Forced Outage duration) and Unit Cost Of Production
- Manapōuri is a leading performer in the large hydro category
- Waitaki chain stations are all in the upper quartile

<u>The Waitaki scheme.</u>

Some facts


- Eight hydro stations in the Waitaki Scheme
- Tekapo A and B are owned by Genesis Energy
- The six hydro stations from Lake Pūkaki to Waitaki, owned by Meridian

The Waitaki scheme.

Condensation As the vapour rises, it cools and changes to droplets. Precipitation Water falls to the earth in the form of rain, snow, sleet or hail.

How the Waitaki system works

Facts about electricity generation from Aoraki/Mount Cook through the Waitaki System.

FACT

One cubic metre of water

annual power needs.

passing through the eight power

stations of the Waitaki system

generates 2,500 kWh - about

30% of an average household's

KEY

LAKE

GENERATION

GENERATION

OWNED BY

AVERAGE ANNUAL

GENESIS ENERGY

CANAL

ENERGY EXPLAINED

Cumec one cubic metre of

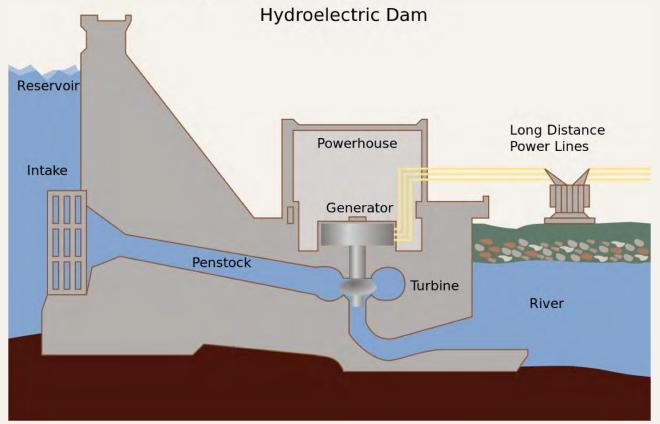
1.000 watts.

1.000 kW.

kW

MW

GWh


water flowing past a

1.000 MW passing

through a given point

given point every second.

Hydroelectric power.

Hydro Asset Maintenance.

How we are organised

- Engineers, trades staff, technicians, operators, maintenance planners
- Dedicated maintenance teams for three asset portfolios
- Ōhau Chain, Mid-Waitaki and Manapōuri
- Including graduates and apprentices, 70 staff in three locations
- Augmented by contractors

What do we do

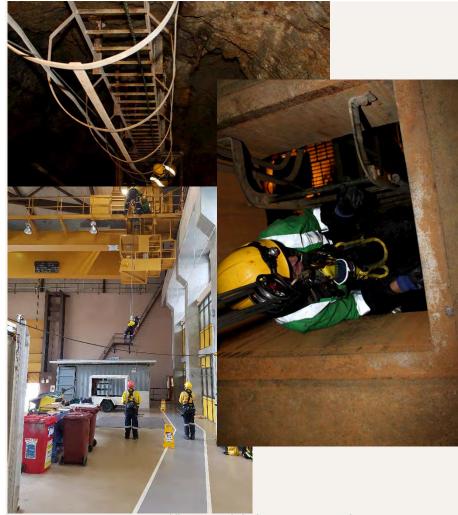
- Planned maintenance, defect and fault response
- Maintenance projects include civil, mechanical, electrical and automation repairs and upgrades

Performance.

Hydro plant performance measures

- Availability (% of time)
- Operational Unit Cost \$/MWh
- Forced Outage Factor (% of cap)
- Forced Outage Count (# events)

Maintenance process measures


- Multiple live measures
- Extensive use of maintenance management system (Maximo)
- Targets reset annually to reflect focus areas, continuous improvement
- Remuneration linked to outcomes for all staff
- Periodic benchmarking using external service

Source: Meridian

Health and safety.

Our Approach

- Lead role in industry collaboration forums (StayLive, EEA etc)
- Safety & Sustainability Board Committee
- Dedicated H&S team reporting to MaP GM
- Competent workforce, strong safety culture
- Incident reporting and investigation
- Safety performance of contractors

Community.

Our Community Engagement Strategy

- Significant footprint in multiple small rural communities
- Goodwill important when operating large assets, lakes and rivers
- Multiple engagement mechanisms & channels
 - Power Up Meridian community fund
 - Community sponsorships
 - Staff involvement
 - Collaboration
 - National sponsorships
- Meridian held in high regard

Image: Haast kiwi release, Rona Island, Lake Manapōuri

Twizel.

History

- Built in 1968 as a temporary service town
- Saved from demolition in 1983
- Today is the largest town in the MacKenzie

Meridian

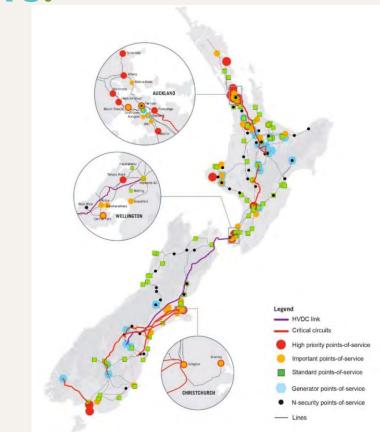
- Large employer in the area, now including a retail call centre
- Direct contributor to the community

Image: Twizel, late 1960s

MANAGING TRANSMISSION.

GEOFFRY SAMS AND JON SPILLER

ovember 2017 😁 66


Getting energy to customers.

Meridian's power stations

- 2,762MW installed capacity
- 32% of New Zealand's generation
- 89% located in South Canterbury and Southland
 Meridian's customer base
- 280,000 customers all across New Zealand
- Connected through 29 lines networks
- Geographically distant from our generation

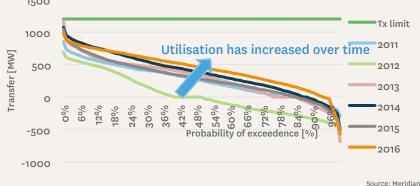
New Zealand transmission system

- Owned and operated by Transpower
- 11,238km transmission lines connecting generation to customers
- High voltage backbone running from Southland to Auckland

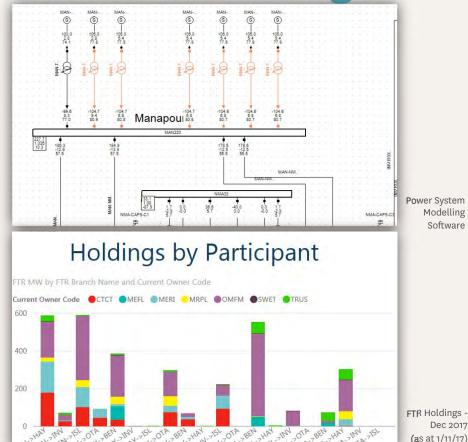
Transmission backbone.

The transmission system is robust

- Transpower backbone consists of high voltage (220-110kV) AC transmission lines
- North and South Islands connected via 350kV HVDC link between Haywards in Wellington and Benmore in South Canterbury
- Transpower's investments in the following projects over the last five years has removed most bottlenecks:
 - North Island Grid Upgrade Programme 400kV (capable) line from Whakamaru to Pakuranga in 2012 (\$824m)
 - HVDC Pole 3, replacement of Pole 1 2013 (\$672m)
 - North Auckland and Northland reinforcement for upper North Island 2013 (\$473m)
 - Ōtāhuhu substation diversity 2010 (\$99m)
 - Wairakei ring 2013 (\$141m)


Meridian Energy Limited Investor Day November 2017 😁 68

HVDC Pole 3.


Investment in the HVDC link has greatly improved Meridian's generation flexibility

- Following the decommissioning of Pole 1 in 2011, total HVDC capacity reduced from 1,000MW to 700MW
- New HVDC Pole 3 was then commissioned in 2013, increasing total HVDC capacity to 1,200MW
- Usable capacity¹ is often signficantly lower, dependant on a number of market conditions, primarly NI reserves
- Meridian has been working with Transpower to enable greater utilisation of the full HVDC capacity
- As part of this effort, the overload capability was increased in 2016, which enabled usable capacity of ~950MW

Constraint management.

Meridian has a number of tools and processes to manage transmission constraints

- Simulations from power system modelling
- Historical event analysis
- Knowledge capture of constraints and outages

We also manage exposure through a number of market mechanisms

- Financial Transmission Rights (FTR's)
- Over the counter financial arrangements
- Collaborating with the System Operator on risk assumptions
- Implementation of "special protection schemes"
- Plant maintenance scheduling

Catalyst for transmission investment.

Two primary drivers

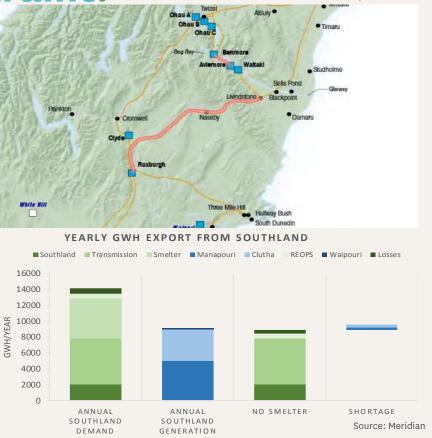
- Meridian perceives the biggest possible catalysts of change to the transmission system as:
 - Potential Tiwai Point smelter shutdown
 - Potential Huntly Rankine unit retirement
- Both these scenarios would require new transmission investment by Transpower
- Meridian believes our current tools and capabilities would enable us to continue to manage our portfolio, if the transmission investment projects were progressed

Image: NZAS aluminium smelter at Tiwai Point

Image: Genesis Energy's Huntly Power Station Meridian Energy Limited Investor Day November 2017 😁 71

Potential Tiwai Point smelter shutdown.

Image: NZAS smelter at Tiwai Point

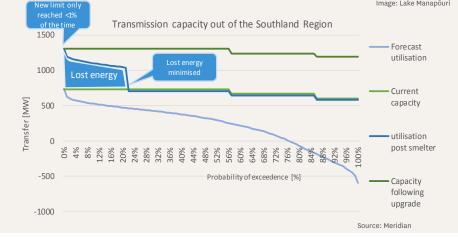

Three significant restrictions

- If an exit of the Tiwai Point smelter occurs, a number of transmission constraints have been identified by Transpower that would impede energy transfer across the transmission system:
 - 1. Southland export constraint
 - 2. HVDC north export constraint
 - 3. Lower North Island transfer constraint

1. Southland export constraint.

Constraints can be managed while investment programme is completed

- A potential Tiwai Point smelter exit will release an additional 5,000GWh of energy into the market
- This generation is predominately supplied from our Manapouri power station and Contact Energy's Clutha power scheme
- We are currently investigating options with Transpower to maintain the current transmission capacity during the subsequent investment program
- Peak generation capacity within the region will be constrained
- In order to minimise lost energy we will need to manage storage until transmission is built out



Meridian Energy Limited Investor Day November 2017 😁 73

Source: Transpower's 2016 SSF

Southland improvements.

Project ready to initiate following a smelter announcement

- Transpower have a fully costed and approved project to resolve the Southland export issue; the Clutha Upper Waitaki Lines Project¹:
 - Two sections already commissioned
 - Three years to complete remaining two sections
 - Detailed designs for remain projects completed and majority of land access rights obtained
 - Fully costed at \$110m²
 - Once complete will enable full generation export capability

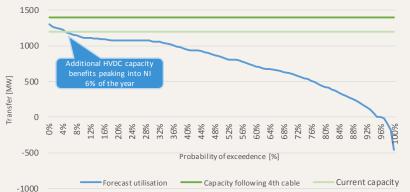
1: https://www.transpower.co.nz/clutha-upper-waitaki-lines-project-and-tiwai-future-faqs 2: Transpower's Grid Upgrade Plan 2009 Instalment 3

2. HVDC north export constraint.

Image: Transpower's Pole 3, Benmore

Current HVDC capacity is sufficient to manage greater transfer to North Island

- HVDC capacity has been substantially increased
- Current peaking capacity of 950MW has only been utilised 2% of the time
- Any potential Tiwai Point smelter exit will have no impact to current HVDC peaking capacity into the North Island
- The additional energy released if the Tiwai Point smelter was to exit can be transferred to the market under the current HVDC capacity, provided storage is managed across the year


Meridian Energy Limited Investor Day November 2017 😁 75

2. HVDC improvements.

Image: Transpower's Pole 3, Benmore

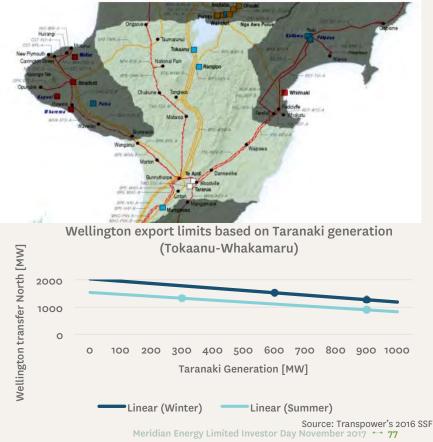
Source: Meridian

HVDC utilisation following commissioning of 4th undersea cable

Increasing usable capability

- Transpower have started detailed investigation into undersea cable replacement project
- Current cable asset end of life between 2023-2025
- Installing a fourth cable would increase HVDC capability to 1,400MW and could increase usable capacity to 1,150MW
- Cost of installing an additional 500MW cable is ~\$55.8m¹
- Adds an additional 200MW of peaking capacity into the North Island
- With flexible hydro assets able to respond quickly, we are well positioned to utilise the additional HVDC peaking capacity to support North Island demand

1: Assuming it is installed as part of the undersea cable replacement project. If project precedes in isolation, expected cost is \$150m


3. Lower North Island transfer constraint.

Current transmission issues

- Limited transfer from Bunnythorpe through to Whakamaru
- Limits lower North Island and Taranaki generation into the upper North Island

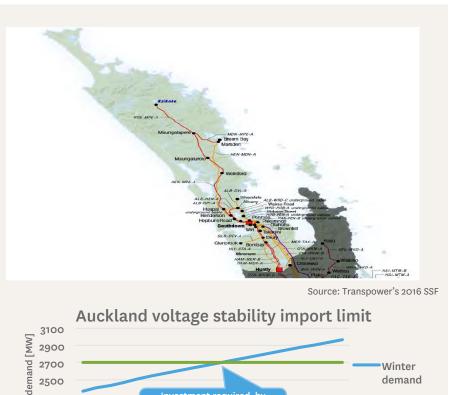
No planned improvements

- Constraint when competing with Taranaki generation
- Expect to see lower cost generation dispatch ahead of higher cost peaking thermal

Source: Transpower's 2016 SSF

Huntly Rankine unit retirement.

Image: Genesis Energy's Huntly Generation Station


Investigation is underway

- A separate issue is the potential decommissioning of Huntly Rankine units
- There is sufficient generation in the market to cover demand into the upper North Island
- 94% of upper North Island generation is currently sourced from outside region
- Transmission investment will be required ahead of the Rankine unit retirement to enable sufficient energy to be transferred into the region
- This investment would be independent of any Tiwai Point smelter outcome

Auckland import.

Investment project underway

- Transpower currently working through the Waikato and Upper North Island Voltage Management Investigation
- Longlist option consultation has been completed •
- Lower cost short-term options likely to be preferred such as series capacitors
- Solution to be implemented ahead of any Genesis Rankine unit retirement

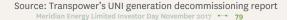
Investment required by

2024 based on Transpower

demand forecast

2015 2017 2019 2021 2023 2025 2027 2029 2031 2033

2500

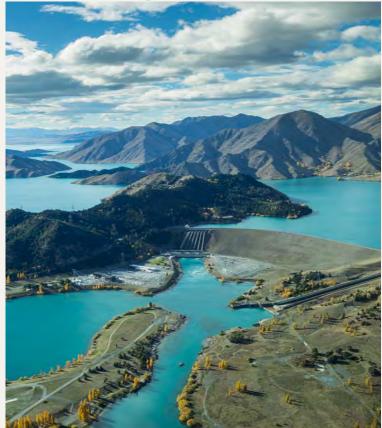

2300 7

> 1900 1700

7 2100

North

Upper 1500



demand

Current

capacity

Summary.

Meridian is well placed to manage its portfolio through future uncertainty

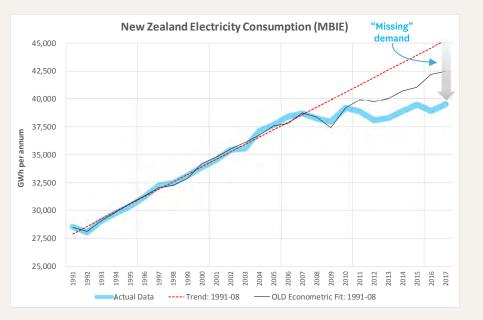
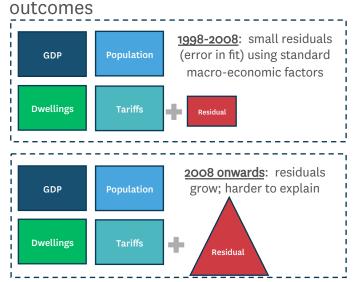

- Transmission upgrades are more critical for lower South Island and reduce as you move north
- Key projects are well developed
- Flexibility of storage will allow Meridian to manage lost energy during investment phase
- Our transmission team continue to work with the industry to improve the current capability of the transmission system

Image: Meridian Energy's Benmore Power Station

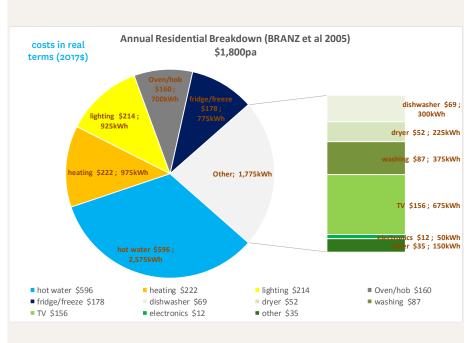
GRANTTELFAR

ENERG


Forecasting demand.

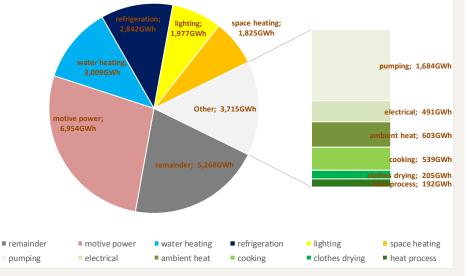
Source: Meridian, Ministry of Business, Innovation & Employment

What is the problem


- Very poor data on energy usage
- Demand has been flat for some time
- Traditional econometric modelling approach has increasingly struggled to explain demand

Usage as at 2008.

NZ household usage


- Very poor data on energy usage
- BRANZ HEEP study (2002-2005) last comprehensive nationwide survey
- Insights:
 - Electrical heating spend is low (on average)
 - Biggest spend is on hot water

Source: BRANZ, Meridian

Usage as at 2008.

Non-Residential Annual Energy Consumption (Treasury et al 2005)

Source: Treasury, Meridian

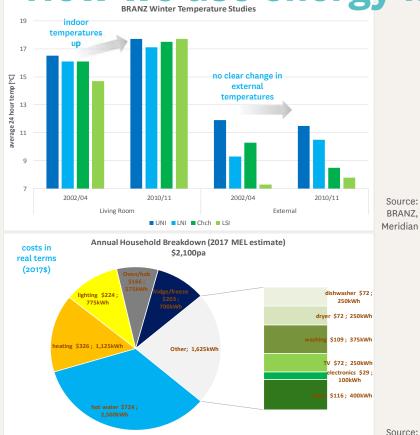
NZ non-household usage

- Even worse data
- BRANZ HEEP plus 2005 Treasury study are both useful
- Insights:
 - NZ business use a lot of motors (motive and pumping)
 - Combined lighting, refrigeration, and heating similar scale to residential

What has changed?

NZ households

- Kiwis love buying appliances
- TV efficiency has improved dramatically
- 2017 lighting efficiency reflects slow LED uptake
- Room for further efficiency improvements
- Technology driven rather than price responsive


NZ non-household

- Hard to know
- Motive power, lighting and water heating have significant potential to reduce energy demand
- Total efficiency potential up to 25%
- Likely to free-ride on technology changes
- More likely to trade-off costs (eg LEDs)

Meridian Energy Limited Investor Day November 2017 😁 85

How we use energy now.

lighting \$224

dryer \$72

other \$116

Oven/hob \$166

washing \$109

Meridian

hot water \$724

TV \$72

fridge/freeze \$203

heating \$326

dishwasher \$72

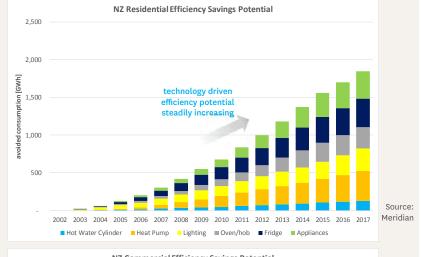
electronics \$29

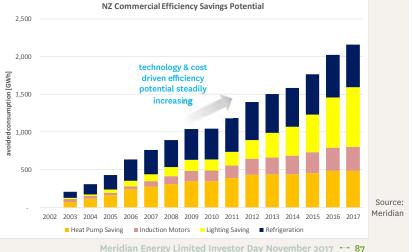
Efficiency is only one part of the puzzle

- Greater efficiency does not necessarily mean a reduction in overall consumption, e.g:
 - NZ houses appear warmer than they were 15 years ago (not hard)
 - Replacing an incandescent light bulb with an LED implies an 85% saving in energy use – but how many do LEDs do we install? What incandescent 'waste' heat now needs replacing?

Household energy usage as at 2017

- Not a lot of change proportionally
- Heating consumption has likely increased
- TV consumption has dropped markedly
- Incremental improvements in appliances ... except dryers!

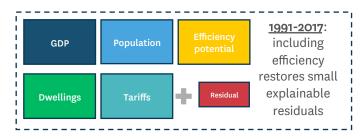

Better efficiency potential?


NZ households

- Increase seen in potential household efficiency related savings since 2002
- Hot water shown least improvement
- Scale of implied savings ~500MW of new wind generation (\$1.2B+ worth) in last 15 years

NZ non-household

- Increase seen in potential commercial efficiency related savings since 2002
- Equipment life cycle (age and replacement) is critical
- Higher uptake of LEDs than residential (probably)
- Scale of implied savings is another ~500MW of new wind generation in the last 15 years



Improved demand forecast

- Including efficiency potential alongside other economic variables dramatically improves model
 - But early days! Careful of monkeys & typewriters

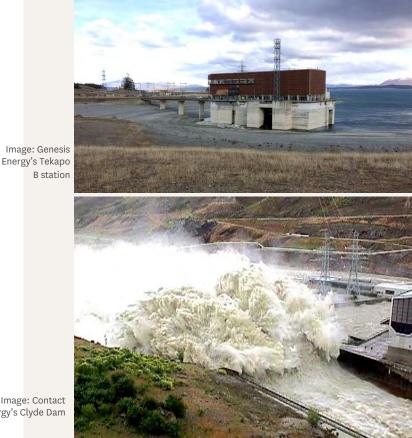
- Assessing future efficiency is challenging
 - Forecast efficiency data and customer usage is not readily available – but we *can* examine
 - Remaining efficiency potential by usage
 - Views on consumption/ICP trajectories
 - Economic energy intensity improvements
- Growth of 0.5% 1.0% pa seems likely with plant retirement adding to the system need for new power Meridian Energy Limited Investor Day November 2017 - 88

<u>GHYAI</u> VARIABILITY AND CHAN

DR JEN PURDIE

Meridian Energy Limited Investor Day November 2017 8

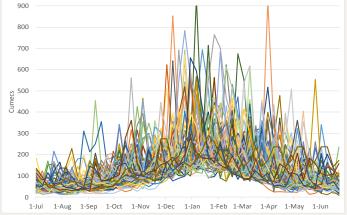
We rely on the timely arrival of our fuel.

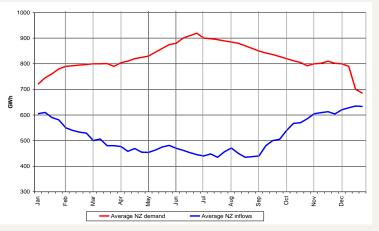

We forecast and plan on different time scales:

- Days to weeks: •
- plan generation and offers into the market to use • intermittent wind and to move water through the river chain
- Months to years: •
- plan generation and contract position, and manage • risk through financial instruments
- Years to decades:
- We make long term projections of generation and • new plant

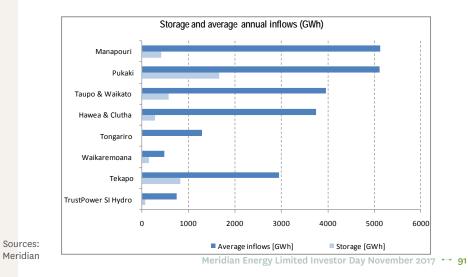
We are always walking the tightrope between:

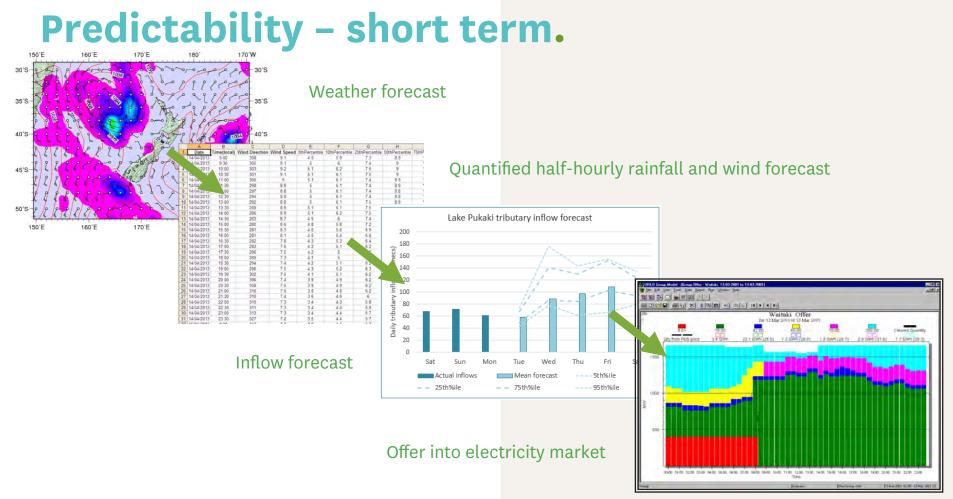
Running out, and


Image: Contact Energy's Clyde Dam


... OVERFLOWING!

Meridian Energy Limited Investor Day November 2017 - 90


Our fuel is variable.

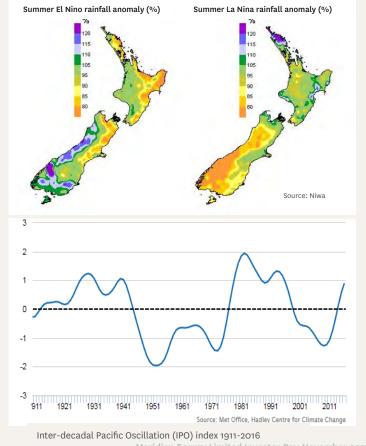

Lake Pukaki weekly average inflows 1931-2013

- Our fuel arrival varies from year to year
- It's arrival is anticorrelated with electricity demand
- We have limited ability to store it
- We have to plan the number of customers/contracts that we take on ahead of time
- We can offset some of our fuel variability with planning and financial instruments

New Zealand hydro inflows vs electricity demand

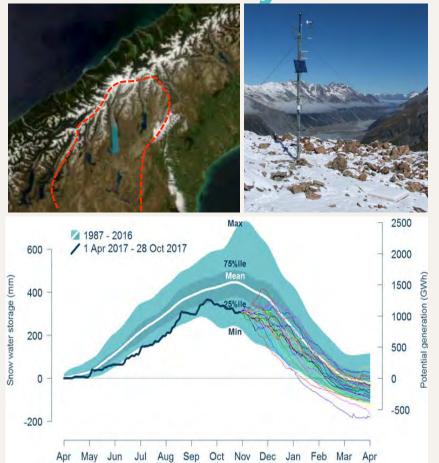
Predictability - medium term - cycles.

El Nino - Southern Oscillation (ENSO)


- Periodical variation in winds and sea surface temperatures over the tropical Pacific Ocean
- 2-5 year cycle
- Significant impact on our inflows and wind

Southern Annular Mode

- Ring of climate variability that encircles the South Pole and extends out to the latitudes of New Zealand
- 6-week cycle wet-dry


Interdecadal Pacific Oscillation (IPO)

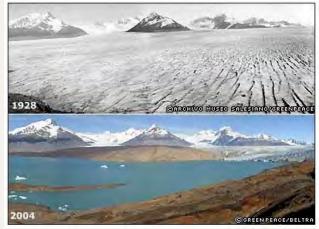
- Long term oscillation of the Pacific Ocean
- 20-year cycle
- 1977-99 was wet, 2000- now dry

Meridian Energy Limited Investor Day November 2017 😁 93

Predictability - medium term - snow

- Snowmelt contributes half of our summer inflows in the Waitaki catchment
- Difficult to measure in a mountainous catchment
- Several high-altitude measurement sites
- A snowpack simulation model estimates GWh stored as snow
- Useful in spring/summer inflow forecasting

Predictability – long term climate change.



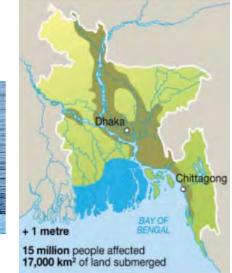


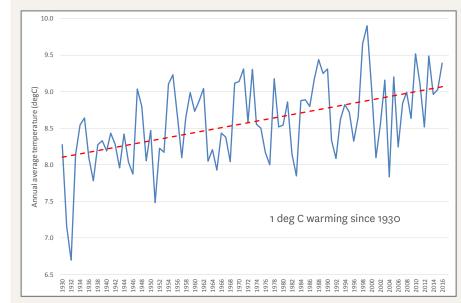
Image: Mt Hood, Washington

The climate is changing

- Glaciers are retreating
- Seasonal snow is disappearing
- Sea level has risen by 20cm in the past century

• A 1 metre sea level rise is predicted to make 15 million people in Bangladesh homeless

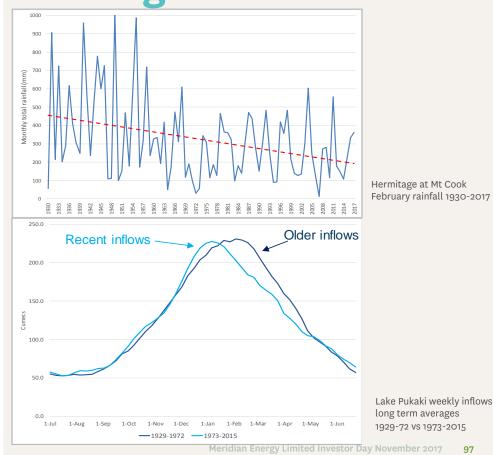
Image: Upsala glacier, Argentina



Climate change - local changes.

Images: Glacial retreat at Mt Cook National Park – Tasman Glacier

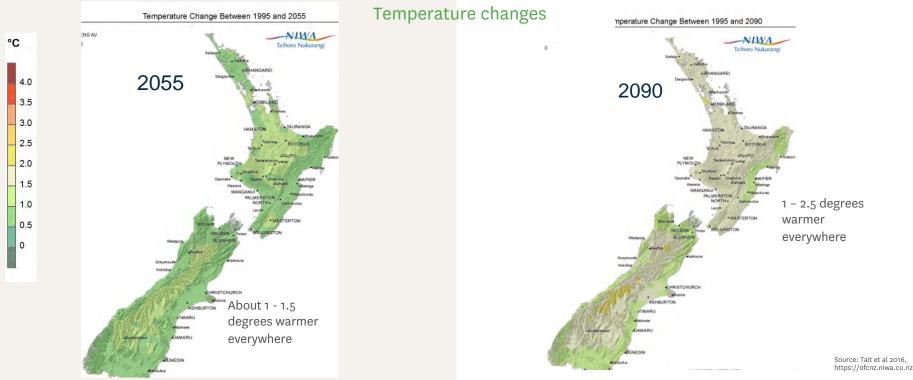
- Warming trend at local climate stations
- Snow and ice recession in our headwaters



Hermitage annual average temperature 1930-2017

Meridian Energy Limited Investor Day November 2017 😁 96

Climate change - local changes.


- Annual rainfall and inflow totals have not changed significantly over the 90 years of record...
- but the seasonality of our rainfall and inflows has changed significantly over the past 90 years
- Autumns have become up to 20% drier over time
- Mid-summer has become slightly wetter
- We have incorporated these changes into our generation modelling and planning

97

What can we expect in the future?

Niwa take global climate model (GCM) projections and regionally downscale them to predict what climate changes we can expect in NZ

Projected annual temperature changes in NZ by 2050 and 2090 under a "middle of the road" emissions scenario

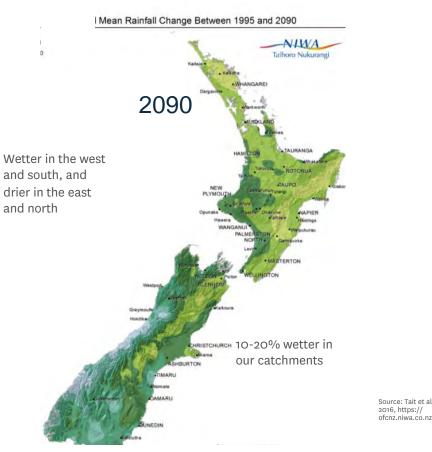
Rainfall changes – annual

%

20

15

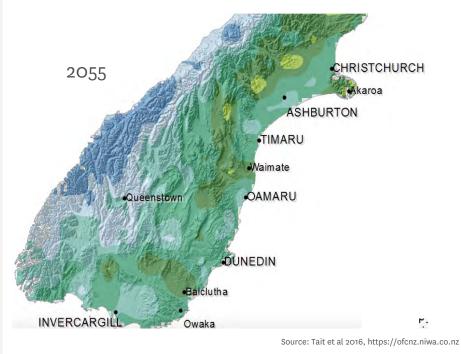
10


5

0

-5

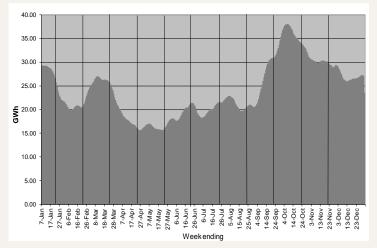

-10 -15 -20



Projected annual rainfall changes in NZ by 2050 and 2090 under a "middle of the road" emissions scenario

Rainfall changes - seasonal

Summer rainfall is projected to increase 5-15% in our catchment headwaters


Winter rainfall is projected to increase 15-25\%

Wind

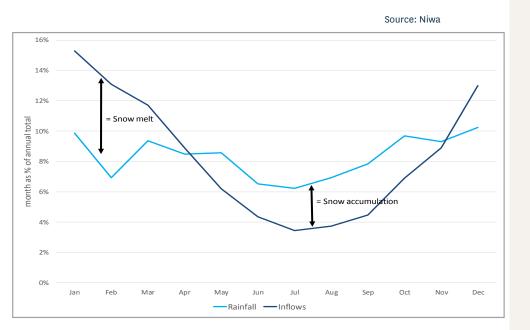
- The frequency of extreme winds over New Zealand is likely to;
 - Increase in almost all areas in winter
 - Decrease in summer

Heavy rainfall

- Larger heavy rainfall events are projected to occur in NZ
- Partly because of increased westerly winds (more and stronger fronts)
- And also because warmer air can carry more moisture (about 8% more moisture for every 1 degC warming)
- Studies suggest a 100-year return period peak river flow in NZ will become a 20-year return period event by 2100 (Gluckman P.D 2013, Lawrence et al 2013)


Long term average wind generation at Meridian wind farms

Drought

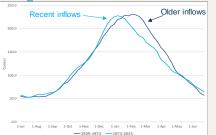

- No change to drought frequency is predicted in our catchments over the next 50 years
- Approx. 10-12% more time in drought is predicted for the East Coast of the South Island
- An increase of 10% corresponds to about 35 more days in drought per year, on average
- This is likely to increase irrigation demand

Snow

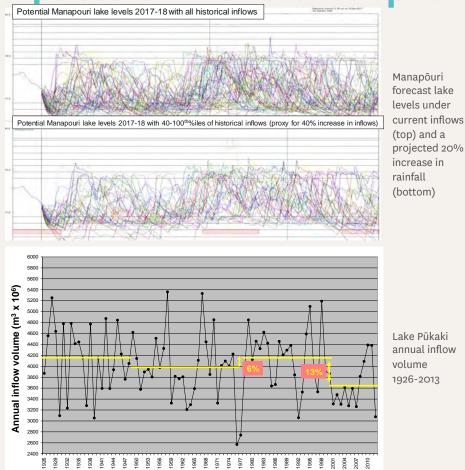
- Snow amounts are predicted to decrease and snowlines rise under climate change
- 80-90% of current snow depths by 2040
- 50-80% of current snow depths by 2090

• 50% of Waitaki summer inflows = snow melt

- So future inflows will be lower in summer and higher in winter...
- (but are predicted to be higher overall)


Lake Pukaki inflows vs Hermitage rainfall: monthly totals as % of annual total

Summary of predicted changes in climate.


We have seen:

- No significant change to hydro catchment rainfall and inflows over the last 100 years, but...
- Significant seasonal shifts in inflow regime
- Snowpack and glaciers getting smaller over time

Projected to get:

- Wetter in our catchments
- Drier in current irrigation areas
- Warmer everywhere
- Windier at our wind farms, especially in winter
- Better match between fuel and demand

Impacts on Meridian of predicted changes in climate.

These changes may result in:

- Inflow regime better matching demand
- Higher summer electricity demand (irrigation) and lower winter demand (heating)
- Higher lake levels generally, particularly at Manapōuri
- Bigger individual rain storms
- More wind generation

Changes relative to our current operations:

- We already work with fuel variability
- ENSO and the IPO move our inflow regime 10% to the wet or dry already
- We regularly reassess our probable maximum flood estimate for dam safety already

Disclaimer.

The information in this presentation was prepared by Meridian Energy with due care and attention. However, the information is supplied in summary form and is therefore not necessarily complete, and no representation is made as to the accuracy, completeness or reliability of the information. In addition, neither the company nor any of its directors, employees, shareholders nor any other person shall have liability whatsoever to any person for any loss (including, without limitation, arising from any fault or negligence) arising from this presentation or any information supplied in connection with it.

This presentation may contain forward-looking statements and projections. These reflect Meridian's current expectations, based on what it thinks are reasonable assumptions. Meridian gives no warranty or representation as to its future financial performance or any future matter. Except as required by law or NZX or ASX listing rules, Meridian is not obliged to update this presentation after its release, even if things change materially.

This presentation does not constitute financial advice. Further, this presentation is not and should not be construed as an offer to sell or a solicitation of an offer to buy Meridian Energy securities and may not be relied upon in connection with any purchase of Meridian Energy securities. This presentation contains a number of non-GAAP financial measures, including Energy Margin, EBITDAF, Underlying NPAT and gearing. Because they are not defined by GAAP or IFRS, Meridian's calculation of these measures may differ from similarly titled measures presented by other companies and they should not be considered in isolation from, or construed as an alternative to, other financial measures determined in accordance with GAAP. Although Meridian believes they provide useful information in measuring the financial performance and condition of Meridian's business, readers are cautioned not to place undue reliance on these non-GAAP financial measures.

The information contained in this presentation should be considered in conjunction with the company's financial statements, which are included in Meridian's integrated report for the year ended 30 June 2017 and is available at:

www.meridianenergy.co.nz/investors/

All currency amounts are in New Zealand dollars unless stated otherwise.