ASX ANNOUNCEMENT

ENCOURAGING RESOURCE DRILLING RESULTS FROM THE SENTINEL URANIUM-GERMANIUM- MOLYBDENUM PROJECT

SUMMARY

- Assay results now received for 384 holes drilled at the Church Deposit highlighting strong uranium and molybdenum and very high widespread germanium.
- Continuous, near surface, sub-horizontal lignite hosted mineralisation over 3.5 km of strike.
- Assay data for final 35 holes (expected late December 2008), resource modelling to commence early 2009.

KEY POINTS

- Assay results for 384 holes from the 419 hole resource drilling and resource step-out drill program have now been received from the Church deposit in the central portion of the Company's 100\% owned Sentinel Project, North Dakota (USA).
- The assay results confirm the presence of near surface, high-grade, subhorizontal, lignite hosted uranium-germanium-molybdenum mineralisation.
- Germanium mineralisation extends outside the zone of uranium mineralisation as well as occurring in stacked lignite zones.
- Excellent uranium metallurgical leach recoveries of 92\% (previously reported to the ASX on the 24 November 2008). Metallurgical testwork on germanium and molybdenum mineralisation is in progress.
- As a result of the recent positive drilling results and expansion of the mineralisation area and depth extent, resource estimation and environmental studies are now anticipated to commence in early 2009.

Abstract

The Directors of PacMag Metals Limited ("PacMag") are pleased to report results for 384 holes from the Church deposit resource drilling and resource extension drilling program (419 holes). The Church Deposit occurs within the company's central private mineral lease and represents only a small portion (approximately 20%) of the Company's current prospective tenure within the 100% owned Sentinel Project, North Dakota and further exploration is likely to significantly expand this initial discovery.

The new assay results confirm the presence of near surface, high-grade, sub-horizontal, lignite hosted uranium-germanium-molybdenum mineralisation over 3.5 kilometres of strike (Figures 13, and Table 1).

Germanium mineralisation occurs both with and beyond the extents of uranium and molybdenum mineralisation as well as in multiple stacked lignites, whereas uranium and molybdenum appear to occur only in the uppermost lignite unit.

Metallurgical testwork on germanium and molybdenum mineralisation is in progress. Excellent uranium metallurgical leach recoveries of 92% were previously reported to the ASX on the $24^{\text {th }}$ November 2008.

As a result of the recent positive drilling results and expansion of the mineralisation area and depth extent, resource estimation and environmental studies are now anticipated to commence in early 2009.

Figure 1: Church Deposit - Drill Holes Coloured by Uranium Metal Content, on Image of Metal Content.

- 3 -

Figure 2: Church Deposit - Drill Holes Coloured by Germanium Metal Content, on Image of Metal Content.

- 4 -

Figure 3: Church Deposit - Drill Holes Coloured by Molybdenum Metal Content, on Image of Metal Content.

Whilst the Company will continue to focus on pre-feasibility studies and assessing regional targets near its large Ann Mason porphyry copper-molybdenum deposit, located in Nevada, the new Sentinel Project provides an exciting near-term development play, which can easily be tested by shallow drilling. The Company is considering plans to fast track evaluation of the Sentinel Project and is currently undertaking metallurgical testwork and scoping environmental study and permitting requirements.

Sentinel Project Background

The target at Sentinel is multiple, near surface (less than 20 metres depth), stacked, subhorizontal high-grade uranium-molybdenum-germanium mineralisation zones that occur at the top of low-grade coal (lignite) horizons. The Company is continuing to grow its land position through ongoing negotiations with adjacent mineral property owners.

The Company is aiming to develop high-grade near surface resources that can be developed by coal-style open pit mining. The lignite seams are flat lying to very gently dipping and are generally 0.5 to 5 metres thick with the upper $0.3-1.7$ metre portion carrying the highest
grades of uranium and molybdenum mineralisation, whilst germanium occurs within multiple lignite seams. Drilling results from the uppermost lignite seam confirm the presence of near surface, high-grade, sub-horizontal, lignite hosted uranium-germanium-molybdenum mineralisation with excellent grades to $0.43 \% \mathrm{U}_{3} \mathrm{O}_{8}, 271 \mathrm{ppm} \mathrm{GeO} 2$ and $0.31 \% \mathrm{MoO}_{3}$ at very shallow depths.

PacMag previously reported strong reconnaissance surface sample results a further 5 km and 10 km north of the Church Deposit with results up to $0.2 \% \mathrm{U}_{3} \mathrm{O}_{8}$ and $0.62 \% \mathrm{MoO}_{3}$.

Mining in the late 1960's from a small open pit (now rehabilitated) that occurs within the Church lease is reported as producing approximately 40,000 tons of ore grading 0.175% $\mathrm{U}_{3} \mathrm{O}_{8}$ from near surface. This open pit and others within the district are all near surface rarely exceeding a depth of 15 metres. Furthermore a 40 ton bulk sample taken approximately 1 km north-west of the open pit located on PacMag's tenure returned an average grade of 0.13% $\mathrm{U}_{3} \mathrm{O}_{8}$. Mining in the district ceased in the late 1960's when $\mathrm{U}_{3} \mathrm{O}_{8}$ was at $\$ 7$ per pound. The recovery of molybdenum and germanium was not reported.

The company believes that as the mineralisation occurs from surface and because of the gently dipping strata, the project provides an excellent exploration and development opportunity over large areas.

Germanium

Germanium dioxide is currently trading at $\$ 1000 / \mathrm{kg} \mathrm{GeO}_{2}$. Germanium is known as one of the electronic metals, a high-value speciality element used in the manufacture of solar panels, fibre optics, plastics, infrared sensors and high speed electronics.

For further details regarding the Company and its project portfolio, please refer to the PacMag website at www.pacmag.com.au.

Michael Clifford
Director

For further information please contact:
Michael Clifford/Mike Joyce
(08) 94812997

ABOUT PACMAG

PacMag is an Australian-based exploration company focused on its advanced copper-molybdenum-gold assets at Ann Mason in the USA and Blue Rose, located in South Australia.

Table 1: Church Deposit - Selected Resource Drilling Results
Drilling is rotary drilling with samples collected at the collar and split into 1 foot intervals.
All holes are vertical
Samples were analysed for uranium using a 4 acid digest and determined via fluorometry at Hazen Research Inc of Colorado
Grid is local grid in metres.
Reported intersections: $1^{\prime}>0.06 \%$ U3O8 or $1^{\prime}>120 p p m$ GeO2 or $1^{\prime}>0.1 \%$ MoO3.
*Grey shaded collars, holes previously reported. $\mathrm{Na}=$ results not yet available.

Hole ID	Easting (metres)	Northing (metres)	Depth From (metres)	Depth To (metres)	Thickness (metres)	Depth from (feet)	$\begin{aligned} & \text { Depth } \\ & \text { To } \\ & \text { (feet) } \\ & \hline \end{aligned}$	Thickness (feet)	U3O8 (\%)	MoO3 (ppm)	GeO2 (ppm)
ELC-001	40,979	54,448	5.2	5.5	0.30	17	18	1	0.025	267	150
ELC-001			6.4	7.3	0.91	21	24	3	0.005	128	121
ELC-002	40,946	54,159	4.0	4.3	0.30	13	14	1	0.123	653	7
ELC-003	41,008	53,938	5.8	6.1	0.30	19	20	1	0.082	192	7
ELC-004	41,101	53,775	7.3	7.9	0.61	24	26	2	0.203	2001	5
ELC-005*	41,214	53,463	11.2	11.6	0.30	37	38	1	0.064	711	7
ELC-005	and		11.9	12.2	0.30	39	40	1	0.072	593	7
ELC-007	41,264	53,062	6.7	7.0	0.30	22	23	1	0.140	1253	7
ELC-008	41,166	52,737	2.7	3.0	0.30	9	10	1	0.002	47	151
ELC-008	and		6.4	6.7	0.30	21	22	1	0.023	510	125
ELC-010	41,143	52,197	11.2	11.6	0.30	37	38	1	0.001	4	141
ELC-011	41,136	51,905	10.6	12.2	1.52	35	40	5	0.002	4	141
ELC-015	42,052	53,182	3.0	3.3	0.30	10	11	1	0.106	386	68
ELC-015	and		4.0	4.3	0.30	13	14	1	0.064	50	105
ELC-018	41,124	54,069	4.6	5.2	0.61	15	17	2	0.005	86	147
ELC-019	41,401	54,028	3.6	4.0	0.30	12	13	1	0.001	71	140
ELC-020	41,297	54,307	7.0	7.3	0.30	23	24	1	0.004	80	132
ELC-022	41,322	55,002	4.0	4.3	0.30	13	14	1	0.078	359	33
ELC-028	39,940	55,846	4.0	4.6	0.61	13	15	2	0.064	572	7
ELC-029	38,795	55,139	13.7	14.0	0.30	45	46	1	0.015	56	144

- 7 -

ELC-031	39,150	54,637	9.1	9.4	0.30	30	31	1	0.012	45	140
ELC-037	40,028	53,822	32.2	32.5	0.30	106	107	1	0.001	4	193
ELC-040	40,140	53,596	35.6	35.9	0.30	117	118	1	0.013	203	183
ELC-040	and		37.4	37.7	0.30	123	124	1	0.005	54	157
ELC-050	41,336	53,693	3.0	3.3	0.30	10	11	1	0.007	95	132
ELC-053	40,914	53,465	27.1	27.4	0.30	89	90	1	0.001	17	124
ELC-058	39,453	55,348	5.5	5.8	0.30	18	19	1	0.026	416	180
ELC-058	and		10.6	10.9	0.30	35	36	1	0.003	39	122
ELC-059	40,135	55,385	6.7	7.9	1.22	22	26	4	0.083	940	63
ELC-059	and		8.2	8.5	0.30	27	28	1	0.061	1499	45
ELC-061	40,717	55,501	1.8	2.1	0.30	6	7	1	0.025	204	153
ELC-062	40,887	55,016	5.5	5.8	0.30	18	19	1	0.079	314	37
ELC-068	39,830	54,756	4.6	4.9	0.30	15	16	1	0.022	206	124
ELC-069	40,124	54,756	14.0	14.3	0.30	46	47	1	0.045	551	132
ELC-072	41,027	54,762	2.1	2.4	0.30	7	8	1	0.060	1320	48
ELC-073	39,356	54,440	10.9	11.2	0.30	36	37	1	0.060	383	7
ELC-077	39,791	55,843	11.6	11.9	0.30	38	39	1	0.006	4	128
ELC-082	40,868	54,158	3.0	3.3	0.30	10	11	1	0.021	299	141
ELC-082	and		3.3	3.6	0.30	11	12	1	0.073	1170	99
ELC-085	39,373	55,960	15.2	15.8	0.61	50	52	2	0.008	181	135
ELC-089	39,566	55,203	6.7	7.0	0.30	22	23	1	0.078	633	59
ELC-091	39,667	55,553	4.9	5.2	0.30	16	17	1	0.235	1845	27
ELC-092	39,369	56,058	10.6	10.9	0.30	35	36	1	0.091	896	141
ELC-096	39,116	55,249	7.9	8.2	0.30	26	27	1	0.006	222	160
ELC-100	41,651	53,170	1.5	1.8	0.30	5	6	1	0.031	812	125
ELC-101	41,557	52,650	4.0	4.9	0.91	13	16	3	0.087	1344	98
ELC-102	41,096	53,760	5.5	5.8	0.30	18	19	1	0.077	401	153
ELC-102	and		6.7	7.0	0.30	22	23	1	0.142	375	115
ELC-103	41,115	53,775	7.4	7.9	0.46	24.5	26	1.5	0.004	3120	99
ELC-103	and		9.1	9.4	0.30	30	31	1	0.077	486	158

- 8 -

ELC-104	41,107	53,790	9.4	10.0	0.61	31	33	2	0.010	395	122
ELC-105	41,086	53,772	7.9	9.1	1.22	26	30	4	0.038	599	123
ELC-106	40,917	54,155	3.6	4.0	0.30	12	13	1	0.020	1134	102
ELC-107	41,480	52,668	1.5	2.1	0.61	5	7	2	0.091	729	14
ELC-109	41,485	52,659	2.7	3.0	0.30	9	10	1	0.126	1605	89
ELC-110	41,493	52,640	2.1	3.3	1.22	7	11	4	0.087	1369	79
ELC-111	41,494	52,633	2.7	4.0	1.22	9	13	4	0.092	1497	101
ELC-112	41,501	52,622	4.0	4.3	0.30	13	14	1	0.069	1368	141
ELC-113	41,507	52,613	4.3	4.6	0.30	14	15	1	0.430	641	118
ELC-117	41,472	52,616	3.6	4.3	0.61	12	14	2	0.073	1805	113
ELC-119	41,460	52,641	2.4	2.7	0.30	8	9	1	0.068	636	59
ELC-121	41,483	52,685	0.3	0.9	0.61	1	3	2	0.046	1243	72
ELC-122	41,471	52,678	0.9	1.2	0.30	3	4	1	0.100	1058	79
ELC-124	41,454	52,650	1.5	1.8	0.30	5	6	1	0.102	1088	60
ELC-125	41,463	52,632	3.3	3.6	0.30	11	12	1	0.074	932	86
ELC-127	41,480	52,597	4.3	4.9	0.61	14	16	2	0.121	737	76
ELC-128	41,503	52,695	0.6	1.2	0.61	2	4	2	0.080	890	15
ELC-130	41,514	52,668	2.7	3.3	0.61	9	11	2	0.113	1096	43
ELC-133	41,426	52,587	3.0	3.3	0.30	10	11	1	0.087	1380	24
ELC-134	41,449	52,542	3.6	4.3	0.61	12	14	2	0.114	1920	37
ELC-135	41,456	52,567	4.0	4.3	0.30	13	14	1	0.079	1460	42
ELC-138	41,578	52,668	3.0	3.6	0.61	10	12	2	0.069	923	37
ELC-139	41,316	52,904	6.4	6.7	0.30	21	22	1	0.068	647	216
ELC-140	41,315	52,764	1.8	2.4	0.61	6	8	2	0.161	436	170
ELC-141	41,317	52,505	0.9	1.5	0.61	3	5	2	0.349	1011	81
ELC-143	41,164	52,297	9.1	9.4	0.30	30	31	1	0.010	222	187
ELC-144	41,567	52,501	1.5	1.8	0.30	5	6	1	0.016	357	168
ELC-144	and		5.5	5.8	0.30	18	19	1	0.067	1515	151
ELC-147	41,067	53,454	17.9	18.2	0.30	59	60	1	0.002	9	134
ELC-157	41,518	53,157	4.0	4.3	0.30	13	14	1	0.048	318	163

PM

- 9 -

ELC-161	41,104	53,723	5.2	5.5	0.30	17	18	1	0.067	666	58
ELC-175	40,938	53,906	4.0	5.2	1.22	13	17	4	0.008	104	142
ELC-176	41,167	53,403	9.4	10.3	0.91	31	34	3	0.030	206	127
ELC-178	41,016	53,606	17.0	17.6	0.61	56	58	2	0.101	1011	54
ELC-179	41,104	53,654	10.0	10.3	0.30	33	34	1	0.055	1074	102
ELC-179	and		10.9	11.6	0.61	36	38	2	0.138	743	73
ELC-189	41,616	52,337	4.9	5.2	0.30	16	17	1	0.065	957	73
ELC-190	41,064	52,952	19.8	20.1	0.30	65	66	1	0.042	53	197
ELC-190	and		28.6	28.9	0.30	94	95	1	0.001	4	127
ELC-191	41,167	52,959	15.8	16.1	0.30	52	53	1	0.119	912	104
ELC-193	40,917	52,456	10.0	10.3	0.30	33	34	1	0.001	4	127
ELC-199	41,166	52,854	16.4	16.7	0.30	54	55	1	0.004	15	145
ELC-200	41,181	53,554	8.5	8.8	0.30	28	29	1	0.165	1590	60
ELC-201	41,467	53,253	11.9	12.5	0.61	39	41	2	0.147	1010	25
ELC-205	41,267	52,855	9.1	9.7	0.61	30	32	2	0.168	1094	22
ELC-211	41,668	52,554	5.2	5.8	0.61	17	19	2	0.225	921	58
ELC-212	41,267	52,454	3.0	3.6	0.61	10	12	2	0.048	290	148
ELC-213	41,368	52,454	2.4	2.7	0.30	8	9	1	0.130	321	232
ELC-214	41,517	52,455	5.2	6.1	0.91	17	20	3	0.042	415	132
ELC-223	41,267	52,306	9.4	9.7	0.30	31	32	1	0.068	855	39
ELC-224	41,069	52,452	12.5	12.8	0.30	41	42	1	0.006	47	192
ELC-225	41,069	52,655	2.7	3.3	0.61	9	11	2	0.001	4	127
ELC-226	41,065	52,755	6.7	7.0	0.30	22	23	1	0.024	164	271
ELC-227	41,268	52,955	8.5	8.8	0.30	28	29	1	0.016	155	122
ELC-231	41,667	52,503	4.9	5.5	0.61	16	18	2	0.080	671	58
ELC-236	41,066	52,555	5.8	6.1	0.30	19	20	1	0.003	26	252
ELC-242	41,268	52,105	11.2	11.6	0.30	37	38	1	0.021	195	156
ELC-247	41,617	52,385	4.9	5.2	0.30	16	17	1	0.022	368	157
ELC-255	40,968	54,954	4.0	4.3	0.30	13	14	1	0.040	192	134
ELC-261	41,026	54,852	3.6	4.3	0.61	12	14	2	0.082	624	59

- 10 -

ELC-266	40,366	55,353	4.3	5.2	0.91	14	17	3	0.043	1464	35
ELC-270	39,469	54,653	4.9	6.4	1.52	16	21	5	0.031	268	142
ELC-271	39,867	54,658	7.9	8.5	0.61	26	28	2	0.003	161	135
ELC-273	39,368	54,894	9.4	9.7	0.30	31	32	1	0.072	284	7
ELC-274	39,568	54,902	6.4	7.3	0.91	21	24	3	0.139	402	17
ELC-275	40,018	54,883	8.5	8.8	0.30	28	29	1	0.004	102	138
ELC-284	39,986	55,304	3.0	4.0	0.91	10	13	3	0.024	123	154
ELC-289	40,077	55,853	7.6	8.5	0.91	25	28	3	0.009	84	127
ELC-293	39,469	54,203	15.5	16.1	0.61	51	53	2	0.083	1159	66
ELC-295	39,865	54,352	16.1	16.4	0.30	53	54	1	0.009	393	130
ELC-300	41,617	52,253	4.9	6.1	1.22	16	20	4	0.109	896	62
ELC-302	41,719	52,255	5.5	5.8	0.30	18	19	1	0.165	510	76
ELC-308	41,726	52,051	3.3	5.2	1.82	11	17	6	0.036	1492	118
ELC-311	41,615	52,253	4.6	6.1	1.52	15	20	5	0.077	807	68
ELC-313	41,670	51,953	2.4	2.7	0.30	8	9	1	0.002	87	127
ELC-315	40,867	54,655	6.4	6.7	0.30	21	22	1	0.096	804	7
ELC-315	and		6.7	7.9	1.22	22	26	4	0.006	1763	91
ELC-316	40,848	54,584	7.3	8.5	1.22	24	28	4	0.095	1220	64
ELC-317	40,768	54,625	12.8	13.7	0.91	42	45	3	0.005	147	132
ELC-318	40,848	54,541	5.2	6.4	1.22	17	21	4	0.026	334	156
ELC-324	39,818	54,152	17.6	18.5	0.91	58	61	3	0.028	314	124
ELC-330	40,867	54,855	14.0	14.3	0.30	46	47	1	0.003	122	163
ELC-331	40,817	54,454	8.5	9.1	0.61	28	30	2	0.007	208	167
ELC-345	39,668	55,273	3.3	3.6	0.30	11	12	1	0.007	14	138
ELC-346	39,947	54,810	8.2	8.8	0.61	27	29	2	0.007	156	129
ELC-402	40,269	55,657	4.3	4.6	0.30	14	15	1	0.001	207	206
ELC-405	41,769	55,151	2.7	3.0	0.30	9	10	1	0.001	251	158
ELC-433	41,517	53,354	1.8	2.1	0.30	6	7	1	0.135	2835	23
FS01	38,933	54,872	0.0	0.3	0.30	0	1	1	0.090	na	na
FS03	39,037	54,661	0.0	0.3	0.30	0	1	1	0.140	na	na

- 11 -

FS04	39,081	54,499	0.0	0.3	0.30	0	1	1	0.090	na	na
FS09	39,613	53,724	0.0	0.3	0.30	0	1	1	0.110	na	na
FS10	39,728	53,740	0.0	0.3	0.30	0	1	1	0.140	na	na
FS12	39,939	53,562	0.0	0.3	0.30	0	1	1	0.060	na	na
FS13	40,002	53,532	0.0	0.3	0.30	0	1	1	0.340	na	na
FS14	39,976	53,333	0.0	0.3	0.30	0	1	1	0.060	na	na
FS15	40,080	53,297	0.0	0.3	0.30	0	1	1	0.070	na	na
FS16	40,282	53,076	0.0	0.3	0.30	0	1	1	0.110	na	na
FS17	40,191	53,037	0.0	0.3	0.30	0	1	1	0.090	na	na

 Reporting of Exploration Results, Mineral Resources and Ore Reserve", is based on information compiled by Mr Michael Clifford and Mr J Guilinger. Mr Clifford is a Member of the Australian Institute of Geoscientists and a full time employee of the Company, whilst Mr J Guilinger is a Registered Member (RM) with the Society of Mining Engineers (SME) and a Qualified Person (QP) with the Mining and Metallurgical Society of America (MMSA), and a consultant to the Company. Mr Guilinger has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which they are undertaking to qualify as a Competent Person as defined in the 2004 Edition of the "Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserve". Mr Clifford and Mr Guilinger consent to the inclusion in this ASX Release of the matters based on their information in the form and context in which it appears.

