

Drilling Extends Vanadium at Red Hill and Buckman

ANNOUNCEMENT 1 December 2009

HIGHLIGHTS

- Further vanadium assays from Buckman and Red Hill prospects support Speewah hosting Australia largest vanadium deposit with potential for 100+ year mine life;
- Vanadium assay results received from the Buckman and Red Hill exploration targets confirm mineralisation over 9km by 2km at Buckman and 6km by 1.5km at Red Hill;
- Significant intersections include:
 - 50m @ 0.30% V₂O₅, including 19m @ 0.34% V₂O₅
 - 0.35% V₂O₅, including 28m @ 0.35% V₂O₅
 - 78m @ 0.29% V₂O₅, including 26m @ 0.37% V₂O₅
- Drilling was within the previously identified targets of 1000Mt to 2000Mt at 0.3 to 0.35% V₂O₅ at Buckman and 400Mt to 600Mt at 0.3 to 0.35% V₂O₅ at Red Hill;
- Confirms the delineation of a high grade basal zone similar to the Central vanadium deposit;
- Assay results will be used to category upgrade the Central Deposit resource and estimate maiden resources at Buckman and Red Hill in the coming months.
- Samples will now be submitted for platinum group elements and gold that occurs in a reef within the vanadium mineralisation.

Introduction

During Phase 1 of the 2009 field season NiPlats Australia Limited (ASX:NIP) has completed 6,153m (116 holes) Reverse Circulation ("RC") and 970m (6 holes) Diamond Core ("DC") drilling on the company's 100% owned Speewah Dome tenements to achieve the following objectives:

- 1. Completion of Pre-Feasibility Studies on the Central Deposit vanadium project with the goal of delivering a conceptual NPV in the first half of 2010. This was identified as Objective 1 in the Quarterly Activity Statement released to ASX on 30 October 2009;
- 2. Resource category upgrade on the Central Deposit.
- 3. Definition of maiden resource estimates on the Red Hill and Buckman exploration targets.
- 4. Provide further information on the PGE+Au reef identified in 2007 (Objective 2).
- 5. Scoping study of Fluorite project including a Fluorite resource upgrade (Objective 3).

Assay Results Received from Buckman and Red Hill Vanadium Exploration Targets

Vanadium assay results confirm mineralisation over 9km by 2km at Buckman (Figure 1) and 6km by 1.5km at Red Hill (Figure 2).

36 infill RC holes were drilled at the Buckman target (Figure 1) and 7 RC holes and one DC hole at the Red Hill target (Figure 2). Vanadium assay have been received from the RC holes (Tables 1 and 2) and the DC hole will be assayed and used for metallurgical testwork. All but 3 drill holes intersected vanadium mineralisation over vertical down-hole intervals of between 5 and 117 metres (at a $0.2\%~V_2O_5~cut$ -off). The thinner intersections are due to the drill collar being sited in outcropping mineralisation that has been partly eroded. The holes that missed intersecting vanadium mineralisation were drilled into the barren footwall unit.

Red Hill has now returned the thickest drilled intersections (maximum 117m) of all three vanadium prospects. The downhole intersections are interpreted to be almost equivalent to the true thickness of the

mineralised layer as field mapping and drilling along sections shows flat dips to the east in Buckman and to the west in Red Hill.

Using a 0.2% V₂O₅ cut-off, average intercept values range from 0.25% to 0.36% V₂O₅, with higher average grades of 0.34% to 0.37% V₂O₅ encountered across a basal layer which outcrops in the west at Buckman and in the east at Red Hill. Downhole intersections recorded in Tables 1 and 2 include:

Buckman

- SRC376A 57m @ 0.28% V₂O₅ from 32m, including 12m @ 0.36% V₂O₅ from 66m
- SRC379 31m @ 0.32% V₂O₅ from 1m, including 13m @ 0.36% V₂O₅ from 10m
- SRC381 $50m @ 0.30\% V_2O_5$ from 1m, including 19m @ $0.34\% V_2O_5$ from 29m
- SRC383 58m @ 0.29% V₂O₅ from 11m, including 11m @ 0.36% V₂O₅ from 48m
- SRC395 51m @ 0.29% V₂O₅ from 0m, including 10m @ 0.37% V₂O₅ from 32m
- SRC396 36m @ 0.32% V₂O₅ from 0m, including 14m @ 0.35% V₂O₅ from 12m
- SRC397 50m @ 0.30% V₂O₅ from 2m, including 9m @ 0.37% V₂O₅ from 35m

Red Hill

- SRC362 117m @ 0.30% V₂O₅ from 11m, including 28m @ 0.35% V₂O₅ from 69m
- SRC363 40m @ 0.32% V₂O₅ from 2m including 20m @ 0.35% V₂O₅ from 21m
- SRC364 54m @ $0.31\% \text{ V}_2\text{O}_5$ from 2m including 26m @ $0.36\% \text{ V}_2\text{O}_5$ from 30m
- SRC365 78m @ 0.29% V₂O₅ from 51m including 26m @ 0.37% V₂O₅ from 102m

At Buckman, RC holes were drilled to give a 500m by 250m coverage, while at Red Hill the RC programme tested the southern extension of the target by drilling on 1000m by 250-500m centres.

The Buckman and Red Hill vanadium targets resemble the Central vanadium deposit, where vanadium mineralisation occurs in a gently dipping slab of vanadiferous magnetite gabbro up to 80m thick, with a basal high grade (0.36-0.42% V_2O_5) layer of magnetite bearing gabbro, overlain by a lower grade zone with grades between 0.2-0.3% V_2O_5 .

The locations of the 36 RC drill holes at Buckman and 7 RC holes at Red Hill, reported in this announcement, are shown on Figures 1 and 2, and all drill hole assay results for Vanadium are summarised in Tables 1 and 2.

Director's Commentary

The Board is extremely pleased by the assay confirmation of the exploration targets of Red Hill and Buckman of 1.4-2.6 Billion tonnes at 0.3-0.35% $V_2O_{5,.}$ This is <u>in addition to the existing resource</u> at the Central Deposit of Indicated and Inferred Resources totalling 851 Mt at 0.32% (at 0.23% V_2O_5 cut-off grade).

The assay results reported in this announcement will be used to estimate maiden resources at Buckman and Red Hill which together with the Central deposit, further support Speewah as hosting Australia's largest vanadium deposit.

The Board notes the following key points in respect of the assay prefeasibility study reported earlier this month on the Central Deposit.

- 1. A selection of samples from the 65 RC holes drilled in 2009 (and the 54 holes drilled in the Central Deposit in 2007 and 2008) will now be prepared and submitted for metallurgical testing which is a key part of the Scoping Study into the Central Vanadium Project and also assess the magnetite grade and tenor at Buckman and Red Hill. It is this work that is designed to deliver the conceptual NPV for the Central Vanadium Project which will value the Project for investors and shareholders. This work is on track and expected to be completed in the 2nd quarter of 2010. The Scoping Studies will also deliver the following important outcomes:
 - a. Pit design;

- b. Pit optimisation;
- c. Ferro-vanadium (FeV) Process Flowsheet.
- 2. The potential of this Vanadium deposit is greatly enhanced by a unique metallurgy of 'higher tenor' (tenor being the recovery of Vanadium obtained in a magnetite concentrate). NiPlats notes that the tenor of the Central Deposit is higher than other Vanadium prospects in Australia and also deposits that are currently being exploited elsewhere in the world;
- 3. The Central Vanadium deposit alone equates to over <u>6 Billion pounds (Ibs) of contained Vanadium Pentoxide (V₂O₅)</u>, which is traded in US\$ per pound according to standard market practice. A commercial Ferro-vanadium project (which is the development goal of NiPlats) can produce a Vanadium Pentoxide product before further processing to produce the higher value Ferro-Vanadium alloy. Shareholders and investors interested and wishing to review regular price movement in Vanadium Pentoxide (V₂O₅) and Ferro-Vanadium (FeV₈₀) can do so at www.minormetals.com Please note that Ferro-Vanadium is traded in US\$ per kilo.

Other Assay Results Pending

Assay results pending from other programmes completed during the 2009 field season include:

- PGE + Au assays from RC samples at Central, Red Hill & Buckman Prospects;
- Fluorite assays from RC and DC samples at the ABCE deposit;
- Cu + Au assays from RC drilling along the fluorite veins and from Phase 2 of the 2009 Exploration programme, being the deep Diamond Core drilling programme in the ABCE area.

Results from these programmes will be released as separate announcements as the information comes to hand.

Resource Estimates

The following resource estimates are expected to be completed as a result of the 2009 Exploration Programme following receipt of all assays:

- 1. Category upgrade will be completed on the Central Deposit resource;
- 2. Maiden resource estimate on the Buckman Prospect;
- 3. Maiden resource estimate on the Red Hill Prospect;
- 4. Fluorite resource upgrade.

These exploration targets are based on RC drilling (vanadium assays and geological logging in 46 holes), geological mapping, copper and vanadium-in-soil geochemistry and airborne magnetic imagery. The potential quantity and grade of these targets is conceptual in nature and is not a Mineral Resource.

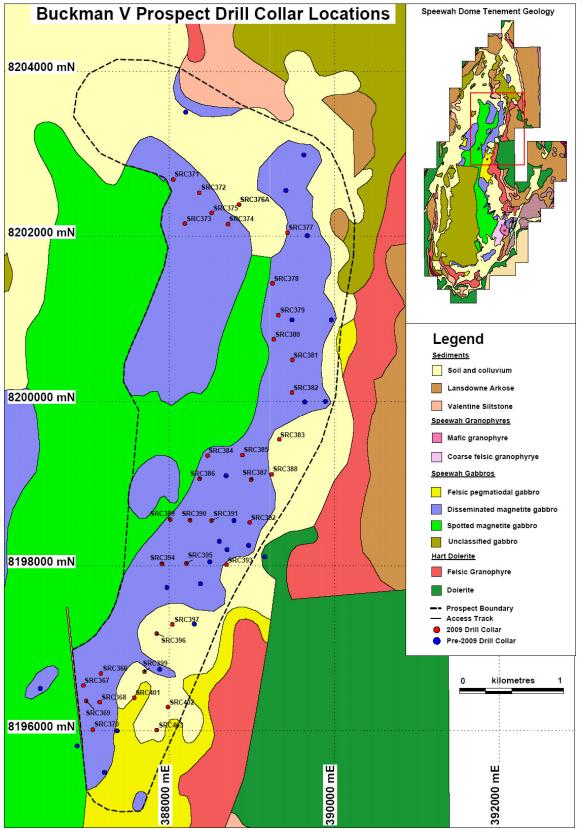


Figure 1. Geology of the Buckman vanadium exploration target within the Speewah Dome showing the locations of RC drill holes. The red dots represent RC drill-holes reported in this announcement. The blue dots represent RC drill holes completed in previous years within the Buckman exploration target (outline shown in dashed black line).

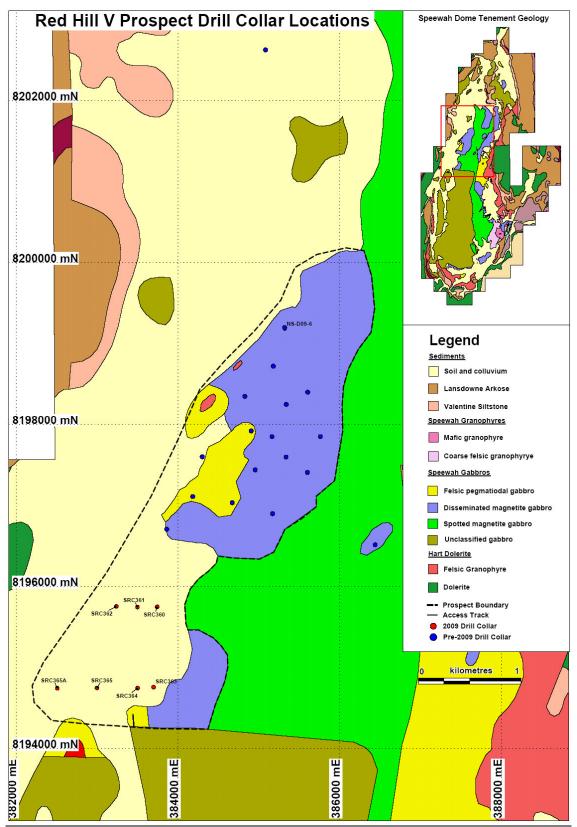


Figure 2. Geology of the Red Hill vanadium exploration target within the Speewah Dome showing the locations of RC drill holes. The red dots represent RC drill-holes reported in this announcement. The blue dots represent RC drill holes completed in previous years within the Red Hill exploration target (outline shown in dashed black line).

The information in this report that relates to exploration results is based on information compiled by Alex Eves, who is a consultant to NiPlats Australia Limited. This information was reviewed and verified by Mr KA Rogers (Member of the Australian Institute of Geoscientists), Chief Geologist for NiPlats Australia Limited. Mr Rogers has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that is being reported on to qualify as a Competent Person as defined in the 2004 Edition of the Australasian Code for Reporting of Mineral Resources and Ore Reserves. Mr Rogers consents to the inclusion in the report of the matters in the form and context in which it appears.

FOR FURTHER INFORMATION, PLEASE CONTACT:

NiPlats Australia Limited Level 22 Allendale Square 77 St Georges Terrace

Perth WA 6000

Telephone: +61 8 9221 8055 *Fax*: +61 8 9221 7866

Anthony Barton – Non Executive Chairman Richard Wolanski – Executive Director

Background

NiPlats Australia Limited ("NiPlats) is a mining and exploration company whose prime focus is the definition and development of its vanadium – platinum and fluorite discoveries in the East Kimberly region of Western Australia (Figure 3).

The tenements contain a very large vanadium deposit with Indicated and Inferred Resources totalling 851 Mt at 0.32% (at 0.23% V₂O₅ cut-off grade), comprising an Indicated Resource of 334 Mt at 0.32% V₂O₅ and an Inferred Resource of 517 Mt at 0.32% V₂O₅ which includes a high grade zone of 279 Mt at 0.39% (at 0.365% V₂O₅ cut-off grade), comprising an Indicated Resource of 107 Mt at 0.4% V₂O₅ and an Inferred Resource of 172 Mt at 0.39% V₂O₅.

Reconnaissance drilling has also identified very large exploration targets for vanadium at the Red Hill and Buckman Prospects. The Buckman exploration target is 1 to 2 Billion tonnes at 0.3-0.35% V_2O_5 , and the Red Hill exploration target is 400 to 600 million tonnes at 0.3-0.35% V_2O_5 . These exploration targets are based on RC drilling (vanadium assays and geological logging in 46 holes), geological mapping, copper and vanadium-in-soil geochemistry and airborne magnetic imagery. The potential quantity and grade of these targets is conceptual in nature and is not a Mineral Resource.

The tenements also contain a high-grade, high-quality fluorite deposit with Indicated and Inferred Resources totalling 6.7 Mt at 24.6% (at 10% CaF₂ cut-off grade), comprising an Indicated Resource of 4.1 Mt at 25.3% CaF₂ and an Inferred Resource of 2.6 Mt at 23.6% CaF₂

NiPlats Australia Limited has a 100% interest in three granted Mining Leases (M80/267, M80/268 and M80/269) and two granted exploration licences (E80/2863 and E80/3657) covering 473 km² located about 100 km southwest of Kununurra. The tenements cover the Speewah Dome where Proterozoic-age Hart Dolerite intrudes older sediments of the Speewah and Kimberley Groups, which has been disrupted by fault and fault splays of the Greenvale Fault Zone that hosts both fluorite mineralisation and carbonatites in the Speewah area.

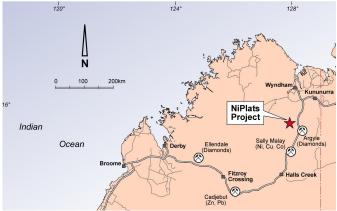


Figure 3. Location of NiPlats Australia Limited project area in northern Western Australia.

Table 1: Buckman Reverse Circulation Drill Hole Intersections at 0.2, 0.3 and 0.33% V₂O₅ cut offs

	DGPS co	-ordinates	EOH	From	То	Interval	Average	Cutoff
Hole ID	Easting	Northing	(m)	(m)	(m)	(m)	(V2O5%)	(V2O5%)
	Lasting	Horamig	(111)	1	15	14	0.32	0.20
SRC366	387171.75	8196695.70	24	4	14	10	0.33	0.30
				11	14	3	0.36	0.33
				2	7	5	0.34	0.33
SRC367	386958.02	8196550.27	24	2	6	4	0.34	0.20
0110007	000000.02	0130000.27		3	6	3	0.37	0.33
		8196347.98	24	2	18	16		
SRC368	387157.52			2	16	14	0.34 0.35	0.20 0.30
0110000	007107.02	0100047.00		3				
			 		16	13	0.35	0.33
SRC369	386993.17	8196362.19	30	1	20	19	0.36	0.20
3110303	300993.17	8190302.19	30	1	20	19	0.36	0.30
				1	20	19	0.36	0.33
SRC370	207070.02	8196015.22	18	0	13	13	0.33	0.20
SRC370	387072.93			0	11	11	0.34	0.30
				0	11	11	0.34	0.33
000074	00004000	8202689.82	24	1	6	5	0.25	0.20
SRC371	388049.32			-	-	-	-	0.30
				-	-	-	-	0.33
0000-	388364.38	8202528.41	30	1	20	19	0.30	0.20
SRC372				8	16	8	0.33	0.30
				10	15	5	0.34	0.33
		8202155.44	18	-	-	-	-	0.20
SRC373	388189.75			-	-	-	-	0.30
				-	-	-	-	0.33
	388713.92	8202148.75	74	1	34	33	0.25	0.20
SRC374				22	24	2	0.31	0.30
				-	-	-	-	0.33
	388516.00	8202284.29	54	3	42	39	0.29	0.20
SRC375				18	34	16	0.34	0.30
				19	31	12	0.35	0.33
	388847.40	8202386.21	100	32	89	57	0.28	0.20
SRC376A				65	80	15	0.35	0.30
				66	78	12	0.36	0.33
	389434.05	05 8202044.71	72	1	52	51	0.29	0.20
SRC377				31	48	17	0.34	0.30
				32	43	11	0.35	0.33
	389252.96	8201431.28	24	1	16	15	0.30	0.20
SRC378				1	9	8	0.33	0.30
				1	6	5	0.34	0.33
	389324.11	8201045.49	40	1	32	31	0.32	0.20
SRC379				6	30	24	0.34	0.30
				10	23	13	0.36	0.33
		8200752.90	30	1	25	24	0.33	0.20
SRC380	389268.14			2	19	17	0.35	0.30
				3	16	13	0.36	0.33

NiPlats

Hole ID	DGPS co	o-ordinates	EOH	From	То	Interval	Average	Cutoff
Hole ID	Easting	Northing	(m)	(m)	(m)	(m)	(V2O5%)	(V2O5%)
				1	51	50	0.30	0.20
SRC381 389494.5	389494.50	8200502.88	54	23	48	25	0.33	0.30
				29	48	19	0.34	0.33
				5	58	53	0.29	0.20
SRC382	389490.36	8200107.14	66	31	55	24	0.33	0.30
				38	49	11	0.35	0.33
				11	69	58	0.29	0.20
SRC383	389335.29	8199534.14	78	41	65	24	0.33	0.30
				48	59	11	0.36	0.33
				-	-	-	-	0.20
SRC384	388465.01	8199335.94	24	-	-	-	-	0.30
				-	-	-	-	0.33
				1	13	12	0.25	0.20
SRC385	388888.02	8199342.60	48	4	5	1	0.30	0.30
				-	-	-	-	0.33
				-	-	-	-	0.20
SRC386	388367.28	8199055.73	30	-	-	-	-	0.30
				_	-	_	_	0.33
		85 8199045.65		2	39	37	0.29	0.20
SRC387	388993.85		54	21	32	11	0.34	0.30
				23	30	7	0.35	0.33
		8199110.50		19	79	60	0.28	0.20
SRC388	389242.28		90	57	76	19	0.34	0.30
				59	69	10	0.37	0.33
		8198560.48		1	24	23	0.33	0.20
SRC389	388013.55		30	1	15	14	0.36	0.30
				4	15	11	0.37	0.33
				2	47	45	0.31	0.20
SRC390	388251.52	8198553.85	54	12	45	33	0.33	0.30
				27	37	10	0.37	0.33
				-	-	-	-	0.33
SRC391	388511.66	8198548.37	36	_	_	_	_	0.30
				_	_	_	_	0.33
00000				_	_		_	0.33
SRC392 awaiting	388977.40	8198526.83	78					0.20
assays								0.33
00000								0.33
awaiting	SRC393 awaiting 388696.26	8198014.97	48					0.20
assays								0.33
000004		8198024.16	30					0.33
SRC394 awaiting	387911.69							0.20
assays								
		8198029.70	60	0	E1	E1	0.20	0.33
SRC395	388209.35			0	51	51	0.29	0.20
0110033				23	44	21	0.34	0.30
				32	42	10	0.37	0.33

Hole ID	DGPS co-ordinates		EOH	From	То	Interval	Average	Cutoff
. IOIO ID	Easting	Northing	(m)	(m)	(m)	(m)	(V2O5%)	(V2O5%)
SRC396 387847.6		8197179.03	48	0	36	36	0.32	0.20
	387847.60			9	27	18	0.34	0.30
				12	26	14	0.35	0.33
		8197290.92	60	2	52	50	0.30	0.20
SRC397	388038.42			26	51	25	0.33	0.30
				35	44	9	0.37	0.33
		26 8196718.12	60	44	51	7	0.30	0.20
SRC399 387699.	387699.26			46	50	4	0.35	0.30
				47	50	3	0.36	0.33
		8196401.10	78	34	57	23	0.26	0.20
SRC401 387	387576.29			-	-	-	-	0.30
				-	-	-	-	0.30
	387984.50	8196288.35	120	85	108	23	0.34	0.20
SRC402				86	107	21	0.34	0.30
				89	107	18	0.35	0.33
	387848.81	8196009.85	120	88	105	17	0.34	0.20
SRC403				89	104	15	0.35	0.30
27.0.00				90	104	14	0.36	0.33

Note: 1. V assayed by XRF and converted to V_2O_5 % by multiplying by 1.785 and confirmed by ICP 2. Downhole assays conducted on 1m sample intervals 3. Collar coordinates surveyed by DGPS using GDA94 Datum, MGA94 Zone 52 4. All holes drilled vertical (azimuth 0° , dip -90°)

Table 2: Red Hill Reverse Circulation Drill Hole Intersections at 0.2, 0.3 and 0.33% $\rm V_2O_5$ cut offs

Hole ID	DGPS co-ordinates		EOH	From	То	Interval	Average	Cutoff
	Easting	Northing	(m)	(m)	(m)	(m)	(V2O5%)	(V2O5%)
SRC360		8195748.59	50	2	8	6	0.27	0.20
	383742.45			4	6	2	0.32	0.30
				5	6	1	0.34	0.33
SRC361			96	1	83	82	0.29	0.20
Upper	383499.03	8195744.92		5	12	7	0.32	0.30
Zone				7	8	1	0.34	0.33
SRC361 Lower		8195744.92	96	-	-	-	-	0.20
	383499.03			51	81	30	0.33	0.30
Zone				62	71	9	0.35	0.33
	383238.66	8195753.29	144	11	128	117	0.30	0.20
SRC362				45	126	81	0.33	0.30
				69	97	28	0.35	0.33
	383698.57	8194757.67	48	2	42	40	0.32	0.20
SRC363				18	42	24	0.35	0.30
				21	41	20	0.35	0.33
SRC364	383500.73	8194746.26	66	2	56	54	0.31	0.20
				24	56	32	0.35	0.30
				30	56	26	0.36	0.33
	382999.44	8194748.90	132	51	129	78	0.29	0.20
SRC365				98	128	30	0.36	0.30
				102	128	26	0.37	0.33
SRC365A Upper Zone	382509.25	8194745.75	240	89	231	142	0.29	0.20
				118	163	45	0.34	0.30
				122	146	24	0.35	0.33
SRC365A		8194745.75	240	-	-	-	-	0.20
Lower	382509.25			196	231	35	0.33	0.30
7one	1	i e		i	1	1	i	1

Note: 1. V assayed by XRF and converted to V_2O_5 % by multiplying by 1.785 and confirmed by ICP 2. Downhole assays conducted on 1m sample intervals 3. Collar coordinates surveyed by DGPS using GDA94 Datum, MGA94 Zone 52

203

230

27

0.34

0.33

4. All holes drilled vertical (azimuth 0°, dip -90°)

Zone