

ASX ANNOUNCEMENT / MEDIA RELEASE

ASX:ABU

March 9th, 2010

ABM Releases Details on Northern Tanami Targets Hyperion Gold Project with:

60m @ 2.57g/t Gold including 21m @ 4.57g/t Gold 28m @ 5.07g/t Gold including 13m @ 10.41g/t Gold

ABM Resources NL ("ABM" or "The Company") is pleased to present further results compiled and validated from its regional exploration portfolio and database for the Northern Tanami Project Area in the Northern Territory including:

- ➤ Hyperion Gold Project a 2 kilometre by 500 metre gold anomaly with central drilled zone of 500m strike length and drill results including:
 - o 60m @ 2.57g/t gold (at 0.3g/t cut-off) ending in mineralisation including
 - 16m @ 3.51g/t gold (at 1.0g/t cut-off)
 - **21m** @ 4.57g/t gold (at 1.0g/t cut-off)
 - o 28m @ 5.07g/t gold (at 0.3g/t cut-off) including
 - 13m @ 10.41g/t gold (at 1.0g/t cut-off)
 - o 51m @ 1.92g/t gold (at 0.3g/t cut-off) including
 - **29m** @ **3.18g/t gold** (at 1.0g/t cut-off)
 - 35m @ 2.75g/t gold (at 0.3g/t cut-off) including
 - **21m** @ **4.07g/t** gold (at 1.0g/t cut-off)
- ➤ Grange Gold Project two individual gold anomalies over combined strike length of 4.5 kilometres with drill results including:
 - o 3m @ 8.53g/t gold (at 1.0g/t cut-off)
 - o 3m @ 6.42g/t gold (at 1.0g/t cut-off)
 - o 3m @ 5.76g/t gold (at 1.0g/t cut-off)
- ➤ Soldier Gold Project 2 kilometre by 1.5 kilometre regolith gold anomaly remaining untested in fresh-rock.

Managing Director, Darren Holden said, "The Northern Tanami Projects are a great complement to our growing portfolio of advanced targets. In particular, Hyperion requires only a small amount of additional drilling to get to resource definition stage. Combining these projects with the Company's previously announced Twin Bonanza Gold Project along with the Stafford Gold Zone in the Reynolds Range and the Lake Mackay Gold-Copper Projects we have rapidly amassed one of the most enviable portfolios of gold prospects in Australia. As a result of this regional consolidation we believe the Company offers some of the best leverage to gold discovery in Australia. We look forward to growing our discoveries with an aggressive multi-target drill program commencing shortly."

Northern Tanami Projects

ABM holds multiple exploration licenses and applications in the Northern Tanami region of the Northern Territory located approximately 400 kilometres west of Tennant Creek and 200 kilometres south east of Halls Creek (see Figure 4). The area is accessible by tracks from the Tanami / Groundrush Mines located immediately south of the project area. The Northern Tanami Project represents approximately 15% of the Company's 28,000 square kilometres of licenses throughout the Tanami and Arunta Provinces of the Northern Territory. The Company is acquiring further licenses in this region from Newmont Asia Pacific with this transaction scheduled to close on March 30th, 2010. The Hyperion and Grange Gold Projects are part of the acquisition from Newmont Asia Pacific announced on January 28th, 2010.

Hyperion Gold Project

The Hyperion Gold Project is located 18 kilometres north-northeast of the Groundrush Mine. The project consists of a 2 kilometre by 500 metre gold anomaly defined by over 300 shallow rotary air blast (RAB) holes averaging 54 metres depth. In addition a further 85 RC holes and 4 diamond holes have been drilled to an average depth of 125 metres and a maximum depth of 198 metres. Many of the RC and diamond holes intersected gold bearing quartz veins hosted by sediments. Five individual prospects exist within the project area – Hyperion Central, Hyperion West, Hyperion South, Stony Ridge and Jasper Hill. The Hyperion Central Prospect is 500 metres long with wide intercepts up to 60 metres wide down to 100 metres below surface and open down plunge. Refer to Figure 1 below for further details.

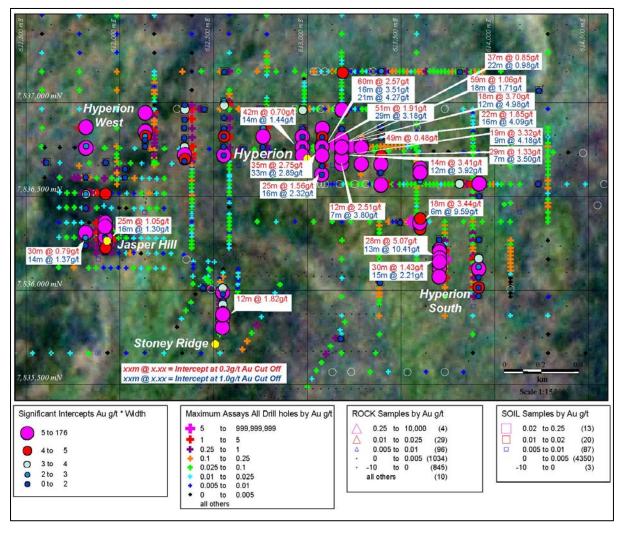


Figure 1. Hyperion Gold Project showing all drill hole locations, and surface samples and significant intercepts >20g/t*metres. Underlying image = landsat.

Grange Gold Project

The Grange Gold Project is located 13 kilometres north-northeast of the Groundrush Mine. The project consists of a gold anomaly 3 kilometres by 500 metres and a second anomaly (Brokenwood) 1.5 kilometres by 200 metres defined by 700 RAB holes drilled into regolith averaging 33 metres depth with a 90 metre maximum depth. A total of 490 shallow RC holes have been drilled into the project with an average depth of 78 metres and maximum depth of 120 metres. Many holes intersected gold bearing quartz veins and several structures remain untested along strike and at depth. The fresh rock beneath the regolith zone is largely untested.

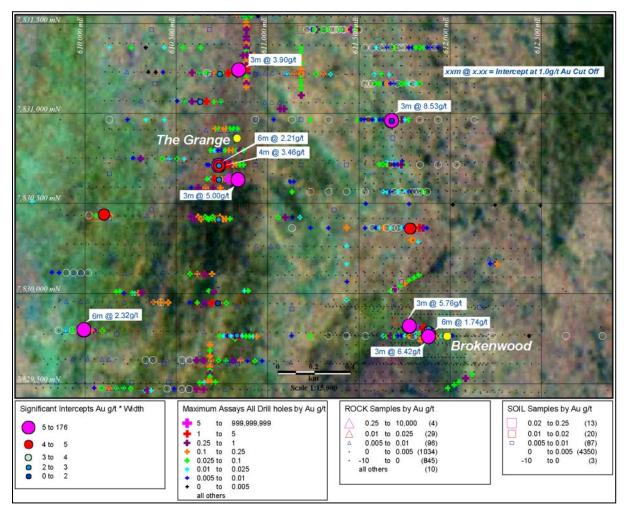


Figure 2. The Grange Project area showing all drill hole locations, and surface samples locations. Significant intercepts >10g/t*metres shown. Underlying image = landsat.

Soldier Gold Project

The Soldier Gold Project is a geochemistry anomaly measuring 2 kilometres by 1.5 kilometres and is located 85 kilometres north-northeast of the Groundrush Mine. The project consists of 90 aircore drill holes to an average depth of 33 metres and maximum depth of 90 metres. Drill holes intersected low-grade mineralisation. The fresh rock beneath the oxidized zone and several anomalous structural targets have not been tested and ABM intends to test this project with 2 to 3 RC / diamond holes into structural targets in 2010.

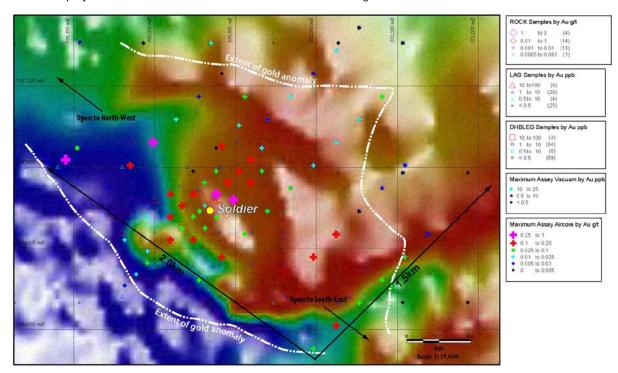


Figure 3. The Soldier Project Area showing location of all shallow aircore holes and surface sampling. Underlying image = aeromagnetics.

Signed

Darren Holden - Managing Director

Competent Persons Statement

Information in this document has been reviewed and validated by Mr Darren Holden who is a Member of The Australasian Institute of Mining and Metallurgy and is based on information supplied by Newmont Asia Pacific. Mr Holden is a full time employee of ABM Resources NL and has sufficient experience which is relevant to the style of mineralisation and type of deposit under consideration and to the activity which they are undertaking to qualify as a Competent Person as defined in the 2004 Edition of the Australasian Code for Reporting Exploration Results, Mineral Resources and Ore Reserves". Mr Holden consents to the inclusion in the documents of the matters based on this information in the form and context in which it appears.

For Further Information Please Contact

Jutta Zimmermann CFO / Company Secretary +61 8 9423 9777 Darren Holden Managing Director +61 8 9423 9777

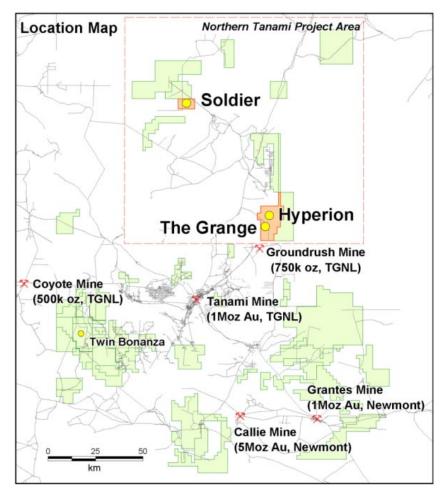


Figure 4. Location Map of the Northern Tanami Project area. Showing proximity to mines (with total approximate endowment). Green areas are ABM exploration licenses and applications including the acquisition tenements from Newmont Asia Pacific with transaction scheduled to close March 30th, 2010. Tanami Gold NL (TGNL) currently own and operate the Coyote Mine; and are acquiring the Tanami and Groundrush Mines.

Appendix 1.

Table 1. Significant intercepts (>20g/t*m) at the Hyperion Gold Project. Intervals calculation using a 0.3g/t cut-off, 10 metres internal dilution and minimum 10 metres width. All intervals taken from a validated database supplied by Newmont Asia Pacific checked and validated by Darren Holden of ABM Resources and Maxwell Geoservices. All samples assayed using Aqua Regia methods.

	From	То	Hole	Interval	Grade (g/t	Interval* Grade		Hole				
Hole	(metres)	(metres)	Depth	Width	Au)	(g/t*m)	Description	Type	Latitude	Londgitude	Dip	Azimuth
HYRC0002	40	100	100	60	2.57	154.170	60m @ 2.57g/t	RC	-19.561	130.078	-60	266
HYRC0054	79	107	156	28	5.07	141.940	28m @ 5.07g/t	RC	-19.566	130.084	-60	360
HYRC0019	32	83	150	51	1.92	97.870	51m @ 1.92g/t	RC	-19.561	130.078	-60	356
HYRC0020	108	143	156	35	2.75	96.380	35m @ 2.75g/t	RC	-19.561	130.078	-60	0
STRB0285	42	60	60	18	3.70	66.650	18m @ 3.7g/t	RAB	-19.561	130.079	-60	270
STRB0288	32	51	60	19	3.32	63.130	19m @ 3.32g/t	RAB	-19.561	130.079	-60	270
HYRC0003	35	94	100	59	1.05	62.230	59m @ 1.05g/t	RC	-19.561	130.079	-60	266
STRB0475	24	42	60	18	3.44	61.950	18m @ 3.44g/t	RAB	-19.564	130.083	-60	270
HYRC0014	89	103	120	14	3.44	48.090	14m @ 3.44g/t	RC	-19.561	130.079	-60	356
STRB1273	75	105	105	30	1.43	42.795	30m @ 1.43g/t	RAB	-19.566	130.084	-90	360
STRB0287	50	72	72	22	1.85	40.730	22m @ 1.85g/t	RAB	-19.561	130.079	-60	270
HYD0002	230	255	278	25	1.56	39.070	25m @ 1.56g/t	DD	-19.562	130.078	-60	0
HYRC0013	58	87	100	29	1.33	38.430	29m @ 1.33g/t	RC	-19.561	130.079	-60	356
HYRC0001	63	100	100	37	0.85	31.340	37m @ 0.85g/t	RC	-19.561	130.079	-60	266
HYRC0015	141	153	170	12	2.51	30.170	12m @ 2.51g/t	RC	-19.562	130.079	-60	356
HYRC0025	90	132	162	42	0.68	28.550	42m @ 0.68g/t	RC	-19.561	130.077	-60	0
ERC1209	17	42	102	25	1.05	26.250	25m @ 1.05g/t	RC	-19.565	130.067	-50	0
HYRC0004	24	73	100	49	0.48	23.630	49m @ 0.48g/t	RC	-19.561	130.08	-60	266
ERB0109	15	45	60	30	0.79	23.580	30m @ 0.79g/t	RAB	-19.565	130.066	-60	0
STRB1300	24	36	60	12	1.82	21.858	12m @ 1.82g/t	RAB	-19.569	130.073	-60	0

Table 2. Significant intercepts (>20g/t*m) at the Hyperion Gold Project. Intervals calculation using a 1.0g/t cut-off, 5 metres internal dilution and minimum 10 metres width. All intervals taken from a validated database supplied by Newmont Asia Pacific checked and validated by Darren Holden of ABM Resources and Maxwell Geoservices. All samples assayed using Aqua Regia methods.

	From	То	Hole	Interval	Grade (g/t	Interval* Grade		Hole				
Hole	(metres)	(metres)	Depth	Width	Au)	(g/t*m)	Description	Type	Latitude	Londgitude	Dip	Azimuth
HYRC0054	93	106	156	13	10.41	135.35	13m @ 10.41g/t	RC	-19.566	130.084	-60	360
HYRC0020	109	142	156	33	2.89	95.43	33m @ 2.89g/t	RC	-19.561	130.078	-60	0
HYRC0019	41	70	150	29	3.18	92.13	29m @ 3.18g/t	RC	-19.561	130.078	-60	356
HYRC0002	79	100	100	21	4.27	89.67	21m @ 4.27g/t	RC	-19.561	130.078	-60	266
STRB0285	44	60	60	16	4.09	65.42	16m @ 4.09g/t	RAB	-19.561	130.079	-60	270
STRB0288	34	46	60	12	4.98	59.73	12m @ 4.98g/t	RAB	-19.561	130.079	-60	270
STRB0475	33	39	60	6	9.59	57.51	6m @ 9.59g/t	RAB	-19.564	130.083	-60	270
HYRC0002	55	71	100	16	3.51	56.14	16m @ 3.51g/t	RC	-19.562	130.078	-60	266
HYRC0014	90	102	120	12	3.92	46.98	12m @ 3.92g/t	RC	-19.561	130.079	-60	356
STRB0287	63	72	72	9	4.18	37.61	9m @ 4.18g/t	RAB	-19.561	130.079	-60	270
HYD0002	233	249	277.6	16	2.32	37.07	16m @ 2.32g/t	DD	-19.562	130.078	-60	0
STRB1273	75	90	105	15	2.21	33.09	15m @ 2.21g/t	RAB	-19.566	130.084	-90	360
HYRC0003	35	53	100	18	1.71	30.81	18m @ 1.71g/t	RC	-19.561	130.079	-60	266
HYRC0015	144	151	170	7	3.80	26.62	7m @ 3.8g/t	RC	-19.562	130.079	-60	356
HYRC0013	59	66	100	7	3.50	24.50	7m @ 3.5g/t	RC	-19.561	130.079	-60	356
HYRC0001	78	100	100	22	0.98	21.56	22m @ 0.98g/t	RC	-19.561	130.079	-60	266
ERC1209	17	33	102	16	1.30	20.78	16m @ 1.3g/t	RC	-19.565	130.067	-50	0
HYRC0025	90	104	162	14	1.44	20.13	14m @ 1.44g/t	RC	-19.561	130.077	-60	0
ERB0109	27	41	60	14	1.37	19.22	14m @ 1.37g/t	RAB	-19.565	130.066	-60	0

Table 3. Significant intercepts (>10g/t*m) at the Grange Gold Project. Intervals calculation using a 1.0g/t cut-off, 5 metres internal dilution and minimum 10 metres width. All intervals taken from a validated database supplied by Newmont Asia Pacific checked and validated by Darren Holden of ABM Resources and Maxwell Geoservices. All samples assayed using Aqua Regia methods.

	From	То	Hole	Interval	Grade (g/t	Interval* Grade		Hole				
Hole	(metres)	(metres)	Depth	Width	Au)	(g/t*m)	Description	Type	Latitude	Londgitude	Dip	Azimuth
STAC0025	45	48	74	3	8.530	25.59	3m @ 8.53g/t	AC	-19.613	130.065	-60	270
STRB0090	69	72	76	3	6.420	19.26	3m @ 6.42g/t	RAB	-19.624	130.067	-60	270
BKRB0628	21	24	44	3	5.760	17.28	3m @ 5.76g/t	RAB	-19.624	130.066	-60	274
ERB0071	15	18	36	3	5.000	15.00	3m @ 5.00g/t	RAB	-19.616	130.057	-60	0
TGRC0016	27	33	80	6	2.315	13.89	6m @ 2.32g/t	RC	-19.624	130.049	-60	90
ERB0079	31	35	60	4	3.458	13.83	4m @ 3.46g/t	RAB	-19.616	130.056	-60	0
AB0037	6	12	36	6	2.205	13.23	6m @ 2.21g/t	RAB	-19.616	130.056	-60	0
STRB1136	45	48	60	3	3.900	11.70	3m @ 3.90g/t	RAB	-19.611	130.057	-60	0
BKRB0626	36	42	45	6	1.740	10.44	6m @ 1.74g/t	RAB	-19.624	130.067	-60	0