

ABN: 84 119 904 880

HIGH GRADE MOLYBDENUM INTERSECTIONS IN UNICORN DRILLING

HIGHLIGHTS

- High grade molybdenum (Mo) averaging 0.19% Mo (Inc 1.5m @ 0.44% Mo) within the stockwork zone of the Unicorn porphyritic rhyolite
- Strong copper (Cu) association with 0.15% Cu over the stockwork mineralisation interval
- Visible mineralisation is continuous from 85m to current hole depth (320m)

UNICORN PROSPECT

DRILLHOLE DUNDD004

Dart is very pleased to announce significant high grade molybdenum from first samples assayed in drill hole DUNDD004 (Figure 1 & 2). Assay results for only Mo and Cu have been received to date from the first batch of samples. The assay data represents sections of silica lithocap and quartz stockwork style mineralisation.

The first sampled interval of high grade Mo from the extensive (open) quartz stockwork zone was **8.5m @ 0.19% Mo, 0.15% Cu** (Table 1 & Photo 1) and represents primary hydrothermal mineralisation – see Appendix 1 for assay listing. The hole shows a consistent, strongly developed, quartz stockwork zone with visible Mo and Cu mineralisation (Photo 1) below the silica lithocap to the current hole depth of 320m.

Dart considers that these first results are very significant, typically open pit primary molybdenum mines operate from grades above 0.06% Mo and underground mines from above 0.12% Mo. These first results from Unicorn together with the extent of the mineralised porphyry at Unicorn encourage Dart to continue evaluate what is shaping up to be a very large system.

Photo 1. DUNDD004. Mo mineralisation (**Up to 0.44% Mo**) from high grade quartz stockwork style veining within silica – sericite altered rhyolitic porphyry.

www.dartmining.com.au

Page 1 of 5

BACKGROUND

Within the silica lithocap, consistent visible molybdenite has already been reported from 29m (see ASX Report 19-4-2010) to some 85m depth. Typically, high level silica lithocaps are barren or low grade above molybdenum deposits, only showing better grades directly above primary mineralisation. In contrast the assay data returned from the Unicorn silica lithocap is showing significant Mo grades (54.2m @ 0.07% Mo – Table 1) and copper mineralisation, characteristic of proximity to primary mineralisation. Dart considers

DUNDD004 shows consistent, strongly developed quartz stockwork mineralisation (Photo 1) below the silica lithocap to the current hole depth of 320m. The silica – sericite alteration of the rhyolitic host rock is intense throughout and indicates the drilling is still at a high level within the Unicorn porphyry system. The rhyolite dome model applied to the Unicorn system remains valid and is characteristic of very large mineralised systems worldwide with great depths of mineralisation and potential for very high grade zones within the autometasomatised altered porphyry (Figure 2). This concept will be tested in the current hole designed to continue to some 800m depth.

Hole No.	Hole Dip	Hole Azimuth	MGA	MGA	RL
		(MGA Grid)	East	North	AHD
			(m)	(m)	(<i>m</i>)
DUNDD004	-68.5	270	588,811	5,978,100	830

Sample Interval	From (m)	Total Depth	Significant Intersections Cutoffs: 0.02% Cu	Significant Intersections Cutoffs: 0.02% Mo	Comments		
(m)	()	(m)					
		300+					
SILICA CAP ZONE - VARIABLE WEATHERING							
54.2	0		54.2m @ 0.09% Cu	54.2m @ 0.07% Mo	Variably weathered Silica Cap Zone		
	40		14.2m @ 0.17% Cu		Lightly Weathered Silica Cap Zone		
	0			42m @ 0.08% Mo	Variably weathered Silica Cap Zone		
QUARTZ STOCKWORK ZONE							
8.5	89.5		8.5m @ 0.15% Cu	8.5m @ 0.19% Mo	Quartz Stockwork Zone		

Mo assay data from preliminary four acid digest technique to be followed by XRF analysis.

 Table 1. Significant Intersections DUNDD004 (Only assay data for 0 – 54.2m and 89.5 – 98m available – See Appendix 1 for full assay data).

ENDS -

COMPETENT PERSON'S STATEMENT

Information in this report that relates to a statement of exploration results of the Company is based on information compiled by Dean Turnbull, B. App. Sc (Geol)., AIG. Mr Turnbull is a Director of Dart Mining NL and has sufficient experience relevant to the style of mineralisation and type of deposits under consideration and to the activity undertaken. He is qualified as a competent person as defined in the 2004 Edition of the "Australasian Code for Reporting of Mineral Resources and Ore Reserves" (or "JORC Code"). Mr Turnbull consents to the inclusion of this information in the form and context in which it appears in this report.

For further information visit our website at <u>www.dartmining.com.au</u> or contact:

John Quayle, CEO Ph: +61 (0) 3 9621 1322

Figure 1. Drill Design of DUNDD004 & 5 with previous RAB and Diamond drill plan on the Molybdenum Soil / Rock Geochemistry Underlay

Figure 2. Conceptual Interpretative Section on 5,978,100 mN - DUNDD004 (270⁰) diamond drill design trace and initial assay data.

www.dartmining.com.au

SAMPLE	FROM	то	REC %	INTERVAL (m)	Mo (ppm)	Cu (ppm)	% Mo	% Cu	
VARIABLY WEATHERED SILICA CAP ZONE									
DUNDD000537	0	6	67	6	850	230	0.085	0.023	
DUNDD000538	6	12.1	42	6.1	850	230	0.085	0.023	
DUNDD000539	12.1	17	57	4.9	800	310	0.080	0.031	
DUNDD000540	17	20	93	3	650	325	0.065	0.033	
DUNDD000541	20	23	100	3	550	410	0.055	0.041	
DUNDD000542	23	26	100	3	1000	2400	0.100	0.240	
DUNDD000543	26	29	100	3	650	700	0.065	0.070	
DUNDD000544	29	32	100	3	900	700	0.090	0.070	
DUNDD000545	32	35	100	3	650	750	0.065	0.075	
DUNDD000546	35	38	100	3	750	1400	0.075	0.140	
DUNDD000547	38	40	100	2	455	650	0.046	0.065	
DUNDD000548	40	42	100	2	850	1600	0.085	0.160	
DUNDD000549	42	44	100	2	435	1300	0.044	0.130	
DUNDD000550	44	46	100	2	550	1000	0.055	0.100	
DUNDD000551	46	48	100	2	335	1300	0.034	0.130	
DUNDD000552	48	50	100	2	460	900	0.046	0.090	
DUNDD000553	50	52.2	100	2.2	550	1800	0.055	0.180	
DUNDD000554	52.5	54.5	100	2	270	3800	0.027	0.380	
QUARTZ STOCKWORK IN PORPHYRITIC RHYOLITE									
DUNDD000555	89.5	90.8	92	1.3	1700	1200	0.170	0.120	
DUNDD000556	90.8	92.3	80	1.5	4400	950	0.440	0.095	
DUNDD000557	92.3	93	100	0.7	2300	1400	0.230	0.140	
DUNDD000558	93	94	100	1	2200	1200	0.220	0.120	
DUNDD000559	94	95	100	1	850	1700	0.085	0.170	
DUNDD000560	95	96	100	1	1200	3100	0.120	0.310	
DUNDD000561	96	97	100	1	1000	1700	0.100	0.170	
DUNDD000562	97	98	100	1	550	1400	0.055	0.140	

APPENDIX 1. Initial assay data – Mo & Cu (DUNDD004)