

New Drill Target Identifies

Copper (8.1%), Gold (5.0 g/t) and Silver (24oz/t)

ANNOUNCEMENT

25 August 2010

HIGHLIGHTS

- Surface sample at new site has returned <u>highest multi element grade copper with gold and</u> <u>silver</u> at Speewah of 8.1% Copper, 5.0 g/t Gold and 24oz/t Silver;
- New site at Speewah Dome (Hayden) is 1 kilometre from previously reported (28 July 2010) multi-element 8.26% Copper, Gold (4.28 g/t) and Silver (25 oz/t) sample.

RECENT COPPER/GOLD FIELDWORK 2010

NiPlats Australia Limited ("NiPlats" or "the Company") (ASX: NIP) is pleased to report further high grade **copper, gold and silver assays** in surface samples from Speewah received since the previous update to market on 28 July 2010. The results represent a **new drill target** and the **best ever copper, gold and silver assay** results ever found within the Speewah Dome of:

- <u>5.0 g/t Gold, 8.1% Copper and 24oz/t Silver, at Hayden Prospect</u> (AE2010-32);
- <u>3.7 g/t Gold, 6.9% Copper and 17oz/t Silver</u>, at Hayden Prospect (AE2010-33).

Other excellent results include:

- <u>3.0% Copper</u>, at Eiffler Prospect (AE2010-49), 140m north of previously reported 16.5% Cu sample;
- <u>2.8% Copper</u>, in Magnetite Valley north of Hayden (AE2010-62);
- <u>5.0% Lead</u>, at Blue Vein (VC2010-001).

Assay results reported in this announcement from the surface samples are given in Table 1A and the location of the high grade samples quoted above are shown on Figure 1. Previously reported surface samples are given in Table 1B.

A number of other prioritised drill targets have now been identified which include the Eiffler, Hayden, East Dome, Gray's Vein and Yungul prospects (Figure 1). <u>The Diamond Core Drill Rig is expected on site by</u> the end of the week with the RC Drill Rig on site early next week.

DIRECTOR'S COMMENTARY

The Board believes that further exceptional examples of multi-element high grade gold, silver and copper from samples in the last week, including the best ever recorded multi element assays, confirm the 2010 exploration focus on Copper/Gold and evidence of multiple drill targets. These results show the potential of the Speewah Dome for multi-elements, with the current exploration programme focused on copper, gold and silver.

R Wolanski DIRECTOR

Level 22, Allendale Square 77 St Georges Terrace Perth, WA 6000

PO Box Z5518, Perth WA 6000

PHONE +61 (0)8 9221 8055 FAX +61 (0)8 9325 8088 WEB WWW.niplats.com.au

Sample	Easting	Northing	Cu	Au	Ag	Pb	Zn	CaF2		
ID	MGA94_m	MGA94_m	ppm	ppb	ppm	ppm	ppm	%	Lithology	
AE2010-32	390322	8206856	81400	4970	737	206	922		Azurite-malachite and ?chalcocite in quartz vein, Hayden Prospect	
AE2010-33	390322	8206856	69200	3740	523	132	640		Azurite-malachite and ?chalcocite in quartz vein, Hayden Prospect	
AE2010-34	389981	8206377	330	12	3	16	10		N-S quartz vein along western side of Magnetite Valley	
AE2010-35	390261	8205817	230	15	2	5	112		Quartz vein with altered host rock - western side of Magnetite Valley	
AE2010-37	390171	8205277	24	5	<0.5	4	74	0.21	N-S fault with quartz vein	
AE2010-38	390210	8205315	44	2	<0.5	12	64	<0.05	Carbonatite vein with N-S quartz vein along fault	
AE2010-39	390218	8205355	26	2	<0.5	4	54	<0.05	N-S quartz vein along fault with carbonatite and breccia	
AE2010-44	391116	8206291	26	2	<0.5	<1	10	<0.05	Small quartz vein	
AE2010-45	390908	8206110	86	2	<0.5	10	54	<0.05	N-S epithermal quartz vein, 1m x 30m	
AE2010-46	386814	8200140	6610	687	25	3340	106	<0.05	Malachite patch between quartz vein and breccia dyke, Green Vein	
AE2010-47	386820	8200078	60	4	<0.5	75	70	<0.05	Epidote & quartz veining adjacent to quartz vein & breccia dyke, Green Vein	
AE2010-49	387884	8205526	30200	4	40.5	11	70	0.21	Malachite in altered red-brown breccia dyke, Eiffler Prospect	
AE2010-50	386931	8197971	1500	3	3.5	39	40	95.54	2m x 30m massive fluorite vein with malachite staining, Green Vein	
AE2010-51	386950	8197917	1210	2	18	3900	476	<0.05	Epidote-carbonate veining near fluorite-copper vein, Green Vein	
AE2010-54	390501	8211421	24	<1	<0.5	13	48		Sheared sandstone & altered fine grained mafic?, Arsenic Pass	
AE2010-55	389912	8211421	12	<1	<0.5	4	6		Quartz vein oriented 030, ~30 m long, Arsenic Pass	
AE2010-56	389466	8209295	12	<1	<0.5	2	100		Small silicified gabbro outcrop , Magnetite Valley	
AE2010-57	389504	8209293	16	1	<0.5	2	52		Small quartz-carbonatite outcrop, Magnetite Valley	
AE2010-58	389798	8208484	16	<1	<0.5	2	20		En echelon N-S quartz vein, Magnetite Valley - ~10-20m long outcrop	
AE2010-59	389725	8208410	4	<1	<0.5	<1	4		En echelon N-S quartz vein, Magnetite Valley - ~10-20m long outcrop	
AE2010-61	390390	8206889	36	<1	<0.5	10	8		Epidote altered quartz veining, Hayden Prospect	
AE2010-62	389958	8207878	28200	53	7	57	80		Malachite in altered/sheared silts adjacent to N-S quartz vein, Magnetite Valley	
VC2010-1	386735	8195912	194	20	14	49800	58	31.44	Quartz-fluorite vein containing galena, Blue Vein	

Table 1A: New surface rock chip sample assays including copper, gold, silver and lead

Note: Sample locations by hand-held GPS, MGA94 Zone 52

Au by 40g Fire Assay and ICP MS, Cu, Pb and Zn by ICP OES, and Ag by ICP MS CaF2 % value calculated from the XRF fluorine (F) assay then multiplied by 2.0547

Sample ID	Easting	Northing	Cu	Au	Ag	Pb	Zn	CaF2	Dreenet	
	MGA94_m	MGA94_m	%	ppb	ppm	ppm	ppm	%	Prospect	
AE2010-26	382047	8188788	3.42	4900	66	1240	210	NA	Todhunter	
AE2010-28	387810	8206448	0.5	22	12	15	52	NA	Eiffler	
AE2010-12	387889	8250394	16.5	11	138	15	40	NA	Eiffler	
AE2010-15	391404	8206477	8.26	4280	786	10500	775	NA	Greys Vein	
AE2010-18	391400	8206494	2.47	1240	811	32400	310	NA	Greys Vein	
SV621-2010	391355	8206518	6.43	110	54.5	3180	1040	NA	Greys Vein	
RR2010-001	387641	8194926	1.39	2	22.5	101	174	NA	East Dome	
RR2010-003	387667	8194985	0.65	27	2	110	110	NA	East Dome	
SV621	391355	8206518	3.08	1490	320	1.77	610	NA	Greys Vein	
SPR33	391313	8206636	1.35	1800	590	5	285	NA	Greys Vein	
EZS187	387772	8195136	1.08	28	8.6	130	100	NA	East Dome	
EZS189	387703	8194973	2.55	94	6.2	120	170	NA	East Dome	
SS2	390625	8184970	12.2	662	11	45	5	43.35	B Vein South	
West Ridge 1	386731	8181996	0.91	9	<0.5	11	74	NA	Yungul South	

Table 1B: Historical and	previously re	eported surface	rock chip sam	ple assays >0.5	5% Cu

Note: CaF2 % value calculated from the XRF fluorine (F) assay then multiplied by 2.0547 NA = Not Assayed

Competent Persons Statement

Mr Ken Rogers, Member of the Australian Institute of Geoscientists, Chief Geologist of NiPlats Australia Limited, compiled the technical aspects of this report relating to the Speewah Project and content of this release. Mr Rogers has sufficient experience that is relevant to the style of mineralisation and type of deposit under consideration and to the activity that is being reported on to qualify as a Competent Person as defined in the 2004 Edition of the Australasian Code for Reporting of Mineral Resources and Ore Reserves (the JORC Code). Mr Rogers consents to the inclusion in the report of the matters in the form and context in which it appears.

Background

NiPlats Australia Limited ("NiPlats) is a mining and exploration company whose prime focus is the definition and development of its vanadium, platinum and fluorite discoveries in the East Kimberly region of Western Australia. Newly discovered copper and gold prospectivity is a major focus in 2010 in addition to completing studies on the vanadium and fluorite projects.

The tenements contain a very large vanadium deposit with combined Measured, Indicated and Inferred Resources totalling 3,159 Mt at 0.30% (at 0.23% V₂O₅ cut-off grade) in three deposits.

This includes the Central deposit with Measured, Indicated and Inferred Resources totalling 854 Mt at 0.32% (at 0.23% V₂O₅ cut-off grade), comprising a Measured Resource of 201 Mt at 0.33% V₂O₅, Indicated Resource of 175 Mt at 0.32% V₂O₅ and an Inferred Resource of 478 Mt at 0.31% V₂O₅ which includes a high grade zone of 434 Mt at 0.37% (at 0.23% V₂O₅ cut-off grade), comprising a Measured Resource of 115 Mt at 0.37% V₂O₅, Indicated Resource of 85 Mt at 0.38% V₂O₅ and an Inferred Resource of 234 Mt at 0.37% V₂O₅.

In addition, maiden vanadium Mineral Resources have been estimated at the Red Hill and Buckman Prospects. The Buckman deposit contains an Inferred Resource of 1,170 Mt at 0.30% V_2O_5 (at 0.23% V_2O_5 cut-off grade), and the Red Hill deposit contains an Inferred Resource of 1,135 Mt at 0.30% V_2O_5 (at 0.23% V_2O_5 cut-off grade).

The tenements also contain a high-grade, high-quality fluorite deposit with Indicated and Inferred Resources totalling 6.7 Mt at 24.6% (at 10% CaF₂ cut-off grade), comprising an Indicated Resource of 4.1 Mt at 25.3% CaF₂ and an Inferred Resource of 2.6 Mt at 23.6% CaF₂

NiPlats Australia Limited has a 100% interest in three granted Mining Leases (M80/267, M80/268 and M80/269) and two granted exploration licences (E80/2863 and E80/3657) covering 473 km² located about 110 km southwest of Kununurra. The tenements cover the Speewah Dome where Proterozoic-age Hart Dolerite intrudes older sediments of the Speewah and Kimberley Groups, which has been disrupted by fault and fault splays of the Greenvale Fault Zone that hosts both fluorite and copper mineralisation in the Speewah area.