

SUCCESSFUL DRILLING PROGRAM CONFIRMS PEAK HILL PROSPECTIVITY

Highlights:

- Successful RC drilling program completed at Peak Hill Joint Venture targeting Magnetite and Direct Shipping Ore (DSO) iron mineralisation
- Results confirm the presence of significant magnetite mineralisation in the Robertson Range Formation
- Best intersection in hole HRC046 of 128 metres at 30.6% Fe
- Approximately 2km of strike has been tested, an additional 12km remains to be tested
- Drilling results support exploration target¹ of 3.5-5 Billion tonnes of magnetite iron ore

Padbury Mining Ltd and its Joint Venture (JV) partner, Aurium Resources Limited are pleased to announce the results of the recent RC Drilling program at the Peak Hill Joint venture. A 20 hole RC drilling program was completed in April 2010 to investigate the Magnetite and DSO iron ore potential at the Western Flank and Telecom Hill target areas of the Peak Hill Joint Venture (see Table 1 and Figure 2). The program was highly successful at delineating significant magnetite mineralisation.

In addition to the recent positive drilling results, CSA Global Pty Ltd. was commissioned to undertake a review of the project and assist the company with its exploration strategy into the future. The outcome of the review confirmed the potential for the project to host DSO and large magnetite iron ore deposits.

Western Flank Target

The holes in the Western Flank target area were designed with the dual purpose of testing the DSO potential of hematite-goethite enrichment located at surface and the magnetite potential within the host rocks beneath over a strike length of approximately 1 kilometre.

The deeper holes tested the magnetite potential within a banded iron formation (BIF) with a true thickness of up to two hundred metres. The BIF unit which crops out to the east and extends under shallow scree cover to the west is a member of the Robinson Range Formation which is locally dipping steeply to the west. The best results occurred on section 7174300 mN where three deeper holes were drilled to test for DSO near surface and magnetite at depth.

¹ The potential quantity and grade is conceptual in nature, that there has been insufficient exploration to define a Mineral Resource and that it is uncertain if further exploration will result in the determination of a Mineral Resource.

The magnetite unit was intersected in three holes drilled on 100m centres to a depth of 258m below surface (see Figure 2). In the fresh rock (50-80m below surface) the BIF displays favourable uniform iron grades and deleterious element chemistry.

The best hole, HC046, intersected magnetite bearing BIF from 110 - 238m with an average grade of 30.6% Fe, based on a cutoff grade of 20% Fe and a magnetic susceptibility reading above $1000x10^{-4}$ SI units with up to four metres internal dilution. The other holes on section 7174300mN, HC045 and HC047, intersected significant magnetite mineralisation with 48m and 168m respectively (see Figure 2 and Table 2).

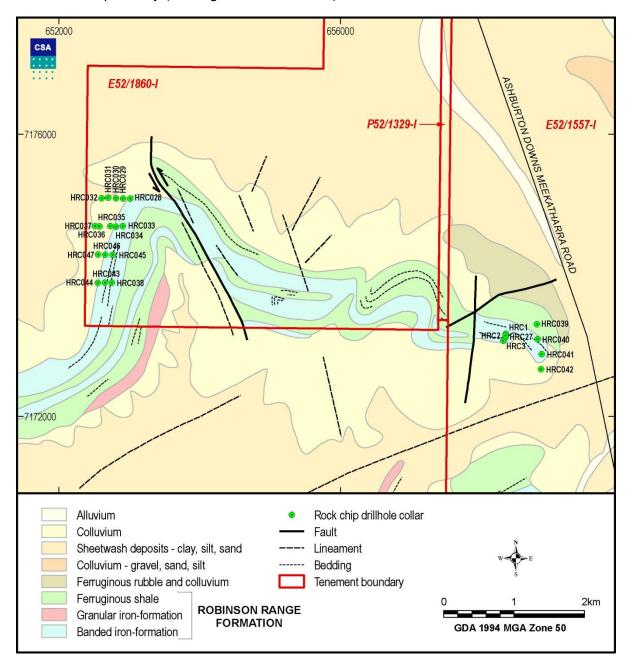


Figure 1 Collar Location Plan

¹ The potential quantity and grade is conceptual in nature, that there has been insufficient exploration to define a Mineral Resource and that it is uncertain if further exploration will result in the determination of a Mineral Resource.

Another 13 holes were designed to assess the potential of hematite-geothite enriched material. These holes were drilled to depths ranging from 50-150m and intersected zones of hematite and goethite enrichment within the oxide zone up to 30m depths. It appears the enriched hematite occurs as a relatively thin, supergene derived, veneer over the BIF unit and the best results occurred from 0-8m in hole HC045 at 52% Fe.

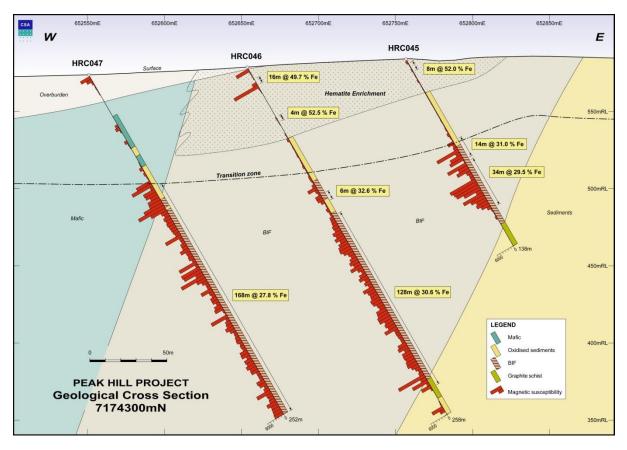


Figure 2. Schematic Cross-section through the Western Flank target

Several of the deeper DSO holes also intersect magnetite mineralisation within BIF units within the Robinson Range Formation. These were relatively thin intercepts near the bottom of hole. The presence of BIF in this area supports the aeromagnetic interpretation which indicates the Robinson Range stratigraphy is continuous in this area.

The thickness and continuity of magnetite mineralisation intersected during drilling has confirmed the strong potential for large magnetite deposits within the project. Given the potential size of these deposits future exploration will be focused on gaining a better understanding of the extent of the magnetite mineralisation. The hematite/goethite enrichment intersected during this program is lower grade than expected, however several other DSO targets have been delineated and these will be assessed in more detail as the project develops.

¹ The potential quantity and grade is conceptual in nature, that there has been insufficient exploration to define a Mineral Resource and that it is uncertain if further exploration will result in the determination of a Mineral Resource.

Telecom Hill

Four holes were drilled at the Telecom Hill area targeting magnetite mineralisation. The holes were entirely within the Robinson Range formation to assess the tenor of the magnetite. All four holes intersected significant magnetite mineralisation (see Table 2). The best intersection occurred in hole HC040 from 24-124m with a grade of 26.13%Fe.

The positive magnetite drill results from both the Western Flank and Telecom Hill areas along with results from recent reconnaissance mapping and sampling, and interpretation of airborne magnetic data supports the proposed exploration target¹ of 3.5 to 5 billion tonnes being hosted in the Robinson Range and Horseshoe Formations within the project area.

Hole No	Easting	Northing	mRL	Drilled depth (m)	Azimut h	Dip	Target Area
HRC028	653010	7175092	575	60	90	-60	Western Flank
HRC029	652909	7175093	576	150	90	-60	Western Flank
HRC030	652810	7175097	571	78	90	-60	Western Flank
HRC031	652699	7175104	561	90	90	-60	Western Flank
HRC032	652604	7175097	567	110	90	-60	Western Flank
HRC033	652904	7174702	596	108	90	-60	Western Flank
HRC034	652809	7174696	580	84	90	-60	Western Flank
HRC035	652729	7174702	576	84	90	-60	Western Flank
HRC036	652576	7174701	568	102	90	-60	Western Flank
HRC037	652513	7174703	567	128	90	-60	Western Flank
HRC038	652750	7173900	584	50	90	-60	Western Flank
HRC039	658790	7173309	574	84	90	-60	Telecom Hill

Table 1. Drill Hole Location 2010 Drilling

¹ The potential quantity and grade is conceptual in nature, that there has been insufficient exploration to define a Mineral Resource and that it is uncertain if further exploration will result in the determination of a Mineral Resource.

HRC040	658800	7173100	582	132	90	-60	Telecom Hill
HRC041	658858	7172885	582	132	90	-60	Telecom Hill
HRC042	658852	7172676	592	150	90	-60	Telecom Hill
HRC043	652650	7173900	582	150	90	-60	Western Flank
HRC044	652549	7173894	570	96	90	-60	Western Flank
HRC045	652760	7174296	N/A	138	90	-60	Western Flank
HRC046	652657	7174298	N/A	258	90	-60	Western Flank
HRC047	652554	7174300	N/A	252	90	-60	Western Flank

Table 2. Significant intersections 2010 RC Drilling

Hole	From	То	Interval	Fe%	AI2O3%	SiO2%	P%	Mineralistion type
HRC028	10	18	8	51.4	5.05	9.72	0.076	Hematite/goethite
HRC029	4	10	6	52.4	5.13	9.55	0.072	Hematite/goethite
HRC036	6	10	4	48.0	10.60	14.93	0.026	Hematite/goethite
HRC044	36	44	8	51.0	3.68	12.85	0.163	Hematite/goethite
HRC045	0	8	8	52.1	1.90	14.82	0.202	Hematite/goethite
HRC046	36	40	4	52.6	3.65	11.98	0.267	Hematite/goethite
HRC029	126	150	24	25.9	2.72	44.48	0.078	Magnetite
HRC030	56	78	22	32.9	1.02	43.08	0.199	Magnetite

¹ The potential quantity and grade is conceptual in nature, that there has been insufficient exploration to define a Mineral Resource and that it is uncertain if further exploration will result in the determination of a Mineral Resource.

⁵

HRC031	74	90	16	29.0	1.74	45.08	0.152	Magnetite
HRC032	58	72	14	25.4	4.54	52.89	0.022	Magnetite
HRC035	68	84	16	31.8	1.02	43.52	0.220	Magnetite
HRC037	65	81	16	21.6	5.58	53.05	0.168	Magnetite
HRC037	82	114	32	23.4	4.31	49.55	0.199	Magnetite
HRC039	0	84	84	29.5	3.41	46.67	0.409	Magnetite
HRC040	24	124	100	26.1	3.90	51.32	0.238	Magnetite
HRC041	64	132	68	22.9	5.17	49.97	0.199	Magnetite
HRC042	118	144	26	22.0	6.37	50.38	0.163	Magnetite
HRC043	58	76	18	33.2	1.27	43.76	0.195	Magnetite
HRC043	78	112	34	34.2	1.36	42.27	0.184	Magnetite
HRC045	60	74	14	31.0	0.96	48.05	0.230	Magnetite
HRC045	76	110	34	29.5	1.37	45.02	0.154	Magnetite
HRC046	94	100	6	32.7	1.02	46.04	0.186	Magnetite
HRC046	110	238	128	30.6	1.22	45.44	0.200	Magnetite
HRC047	84	252	168	27.8	2.65	45.82	0.142	Magnetite

Hematite intersections are based on a 45% Fe cutoff with up to 4m internal dilution. Magnetite Intersections based on a 20% Fe cutoff, and a magnetic susceptibility greater than

Magnetite Intersections based on a 20% Fe cutoff, and a magnetic susceptibility greater that 1000×10^{-4} SI units and up to 4m internal dilution.

¹ The potential quantity and grade is conceptual in nature, that there has been insufficient exploration to define a Mineral Resource and that it is uncertain if further exploration will result in the determination of a Mineral Resource.

Future Project Work

The recent project review report by CSA has confirmed the prospectivity of the Peak Hill project and delineated a number of targets for DSO and magnetite iron ore. Given the positive results of the CSA review and the successful results from the recent drilling the JV partners intend to complete a series of evaluation programs aimed at better defining the magnetite iron ore potential of the project. The partners intend to take a staged approach with the aim of delineating a large maiden resource before the end of the year.

The first stage will be additional analytical and metallurgical testwork programs to better understand the beneficiation requirements of the magnetite material. Initially this will involve a program of Davis tube recovery (DTR) testwork using samples collected during the recent drilling. Based on the results of the DTR work bench scale metallurgical testwork will follow.

Davis tube recovery testwork completed on samples collected during previous drilling suggest the Robinson Range magnetite mineralisation upgrades well, at the relatively coarse grind size of 80 microns. The DTR work being undertaken for this drill program will be conducted at various grind sizes to assess the optimum beneficiation characteristics.

A series of field based programs will be undertaken in Q3 2010. Initially this will involve detailed mapping of the Robinson Range formation to ensure effective targeting of future drilling campaigns. The next stage will be to mobilize a rig to the project and commence drilling aimed at delineating a maiden Inferred Resource for the project.

For further information please contact:

Gary Stokes

Managing Director

Padbury Mining Limited

+61 8 9361 5400

Competent Persons Statement

The geological modelling and estimation of the Exploration Target¹ for Padbury's Peak Hill Project was completed under the overall supervision of Mr. Mark Gunther BSc, who is a full time employee of CSA Global Pty Ltd and is a Competent Person as defined by the Australasian Code for the Reporting of Mineral Resources and Ore Reserves (JORC Code) 2004 Edition. Mark Gunther consents to the inclusion in this report of the matters based on his information in the form and context in which it appears.

¹ The potential quantity and grade is conceptual in nature, that there has been insufficient exploration to define a Mineral Resource and that it is uncertain if further exploration will result in the determination of a Mineral Resource.