

Primary gold intersected in Salmon Gums RC and diamond drilling

- Gold grades up to 5.4 g/t in fresh mafic gneiss intersected in wide spaced drilling
- Provides initial indication of primary gold sources underlying extensive soil anomalies
- Alteration halo mapping in progress and geophysical surveys planned

Triton Gold Limited (ASX: TON): Results of broad spaced reverse circulation and diamond drilling have confirmed the occurrence of primary gold mineralization within the core focus Salmon Gums project. The results, with grades up to 5.4 g/t gold, are consistent with Triton's structured exploration approach and continued success achieved in the earlier surface sampling and air-core drilling phases of this previously under-explored and emerging area of the Albany-Fraser Province of Western Australia.

An area of approximately 11km by 4km encompassing the Lady Penrhyn and Sirius prospects had been defined by strong showings of gold in surface soils and the underlying weathered profile in earlier programmes. The current drilling results confirm indications of local sources for the surface gold within the underlying fresh bedrock. The next phase will aim to sharpen the focus for follow up drilling using bedrock alteration zoning patterns derived from the recent RC and diamond drilling, complemented by surface geophysical surveys designed to detect sulphide accumulations within the mineralized system.

Triton's Managing Director Lance Govey said "we believe that our Salmon Gums, Fraser Range North and Cundeelee projects have strong potential to host world class gold deposits akin to the AngloGold Ashanti and Independence Group's 5Moz+ Tropicana Deposit. At Salmon Gums there are still a number of completely untested soil anomalies scattered throughout the 2,000 square kilometre project area and second stage drilling at Fraser Range North has also been completed recently."

Drilling details

At the Lady Penrhyn and Sirius prospects within the Salmon Gums project area twenty two reverse circulation (RC) holes and five diamond holes were completed during the quarter with gold and multi-element assays now received and appropriate QA/QC procedures completed. The wide spaced drilling (250m spaced holes on lines spaced between 0.25km and 1km, see Figure 1) targeted below selected aircore gold anomalies and structures interpreted from geophysics that may have controlled the influx of gold bearing fluids. All holes were completed in fresh gneissic or amphibolitic bedrock within a vertical profile ranging between 30 metres and 230 metres below surface.

Best results were intersected at Lady Penrhyn with grades above 1.0 g/t Au in two areas 2.5 kilometres apart. In the first area diamond hole SGD005 intersected 3.9 g/t Au over a 0.5m interval from 155.5m downhole within a 2.1 metre zone (at 1.2 g/t Au) of chlorite-silica altered mafic gneiss with disseminated pyrite and traces of chalcopyrite mineralization. Earlier aircore drilling had intersected up to 1.1 g/t Au in shallow clay weathered saprolite 0.5 kilometres north of SGD005.

The second area located 2.5 kilometres to the south-west returned one metre with original and field duplicate gold grades ranging between 1.0 g/t to 5.4 g/t from 92 metres in RC hole SGR006, also

hosted in a mafic gneiss, with supporting anomalous gold in saprolite in earlier aircore drilling. The range in gold values, also observed in lab repeat assays for the same interval, is evidence of the presence of coarse grained gold. Wide spaced RC drilling over a further distance of 2.5 kilometres southwest of SGR006 also intersected anomalous gold values in fresh bedrock. Results are summarized in Tables 1 and 2 and Figures 1 and 2.

Completion of the RC and diamond drilling at Salmon Gums will trigger a decision by Teck Australia Pty Ltd ("Teck"), a wholly-owned subsidiary of major Canadian mining group Teck Resources Limited, to give notification if it intends to exercise an option to farm-in to the project. Under the key terms of the farm-in Teck will be required to manage and fund exploration on the two key tenements at Salmon Gums, and may ultimately earn 70% in the tenements upon completion of a pre-feasibility study. A strategic alliance formed between the companies in 2007 covers the Salmon Gums, Fraser Range North and Cundeelee tenements, and any other tenure acquired within a pre-defined area of influence.

A L Govey Managing Director 1 July 2010

Hole_ID	SampleID	From (m)	To (m)	Width (m)	Au (ppb)	Au Rpt (g/t)	Geology
	SG006753	93.0	93.3	0.3	40		carbonate-chlorite altered
							amphibolite
	SG006806	154.0	155.0	1	35		chlorite-pyrite-chalcopyrite
							altered mafic gneiss
	SG006807 - SG006810	155.5	157.6	2.1	1226	-	mafic gneiss - see below
	including SG006808	155.5	156.0	0.5	3947	1.65	silica-chlorite-pyrite-chalcopyrite
							altered mafic gneiss
SGD005	including SG006809	156.0	156.1	0.1	821	1.22	pyrite vein & chlorite altered
							mafic gneiss
	SG006812	157.6	158.2	0.6	44		fine pyrite veins in chlorite
							altered mafic gneiss
	SG006814	158.5	159.0	0.5	63		disseminated pyrite in silica-
							chlorite altered mafic gneiss
	SG006816	160.0	161.0	1	97	0.143	disseminated pyrite in mafic
							gneiss
	SG006818	171.1	172.0	0.9	64		mafic gneiss
	SG006820	183.0	184.2	1.2	37		fine carbonate veins in mafic
							gneiss
	SG006827	186.0	187.1	1.1	38		fine carbonate veins in mafic
							gneiss
	SG006828	188.2	188.7	0.5	34		chlorite altered mafic gneiss
	SG006829	188.7	188.9	0.2	76	0.07	quartz-carbonate brecciated vein
							in mafic gneiss

Table 1:	Significant	diamond	drill	hole	results
----------	-------------	---------	-------	------	---------

Hole_ID	SampleID	From (m)	To (m)	Width (m)	Au (ppb)	Au Rpt (g/t)	Geology
SGR001	SG006083	52	56	4	37		mafic gneiss
	including SG007030	54	55	1	170	0.15	indire griefss
SGR005	SG006359	64	68	4	53		
	including SG007032	64	65	1	44		intermediate gneiss -
	including SG007033	65	66	1	52		disseminated pyrrhotite
	including SG007034	66	67	1	122		
	SG007039	139	140	1	44		mafic gneiss
	SG006408	92	96	4	188		
	including SG007040	92	<u>93</u>	1	1019	2.39	
SGR006	SG007041 (duplicate)	92	<u>93</u>	1	5441	1.48	mafic gneiss - fine chalcopyrite-
5611000	including SG007042	<u>93</u>	94	1	160		pyrite disseminations
	including SG007043	94	95	1	67		
	including SG007044	95	96	1	69		
	SG007048	27	28	1	54		amphibolite/saprock
	SG007053	31	32	1	42		ampinoonte, suprock
SGR008	SG007054	40	41	1	33		
5611000	SG007055	41	42	1	32		amphibolite
	SG007056	42	43	1	35		amprisonice
	SG007057	43	44	1	36		
SGR012	SG006578	68	72	4	147	0.06	mafic gneiss - chlorite alteration
560012	including SG007061	71	72	1	150	0.18	& minor pyrite
	SG006595	28	32	4	40		
	including SG007063	28	29	1	20		
SGR013	including SG007064	29	30	1	120		upper saprolite
	including SG007065	30	31	1	50		
	including SG007066	31	32	1	30		
	SG006596	32	35	3	56	0.04	
	including SG007068	33	34	1	120		mafic gneiss & quartz veins
	including SG007069	34	35	1	640	1.05	
SGR018	SG006846	72	76	4	44	0.05	mafic gneiss
000010	including SG007071	73	74	1	150		

Table 2: Significant reverse circulation drill hole results

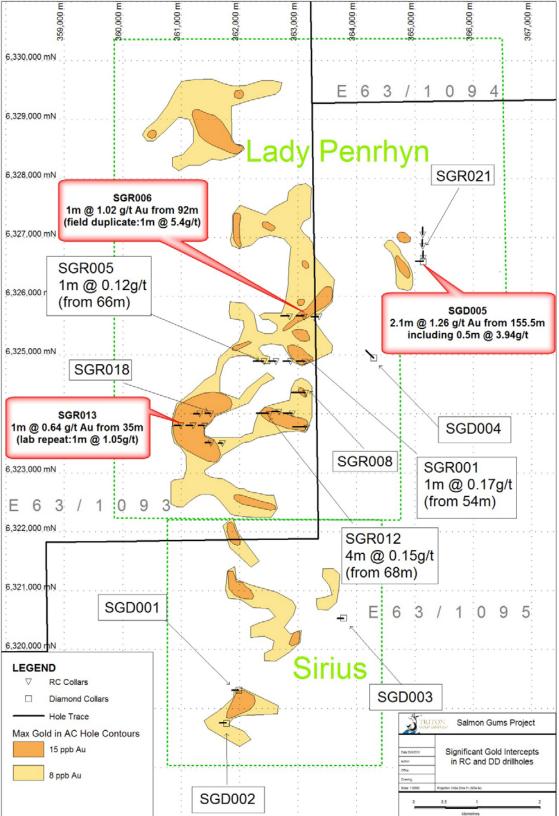


Figure 1: Location of RC and diamond drill holes with significant gold results



Figure 2: Location of air core drill holes with significant gold results

-ENDS-

For further information, please contact:

Lance Govey Managing Director Tel: +61 8 9215 4222 Email: Igovey@tritongold.com.au Brad Boyle Company Secretary Tel: +61 8 9215 4222 Email: brad.boyle@balancelegal.com.au

Competent Persons Statement

The information in this report that relates to Exploration Results based on information compiled by Mr. Lance Govey, who is a Member of the Australian Institute of Mining and Metallurgy. Mr. Govey is the Managing Director and a full-time employee of the company, and has sufficient experience which is relevant to the style of mineralisation under consideration and to the activity which he is undertaking to qualify as a Competent Person as defined in the 2004 Edition of the 'Australasian Code for Reporting of Exploration Results, Mineral Resources and Ore Reserves'. Mr. Govey consents to the inclusion in the report of the matters based on his information in the form and context in which it appears.

Forward-Looking Statements: This document may include forward-looking statements. Forward-looking statements include, but are not necessarily limited to, statements concerning Triton Gold Limited's planned exploration program and other statements that are not historic facts. When used in this document, the words such as "could", "plan", "estimate" "expect", "intend", "may", "potential", "should" and similar expressions are forward-looking statements. Although Triton Gold Limited believes that its expectations reflected in these are reasonable, such statements involve risks and uncertainties, and no assurance can be given that actual results will be consistent with these forward-looking statements.